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Abstract We introduce Visibly Linear Temporal Logic (VLTL), a linear-time
temporal logic that captures the full class of Visibly Pushdown Languages
over infinite words. The novel logic avoids fix points and instead provides
natural temporal operators with simple and intuitive semantics. We prove
that the complexities of the satisfiability and visibly pushdown model checking
problems are the same as for other well known logics, like CaRet and the nested
word temporal logic NWTL, which in contrast are strictly more limited in
expressive power than VLTL. Moreover, formulas of CaRet and NWTL can be
translated inductively and in linear-time into VLTL.

1 Introduction

Input-driven languages introduced by Mehlhorn [24], and later reintroduced
and thoroughly investigated by Alur et al. [4,5] under the name of Visibly
Pushdown Languages (VPL), are a subclass of context-free languages that is
similar in tractability and robustness to the less expressive class of regular
languages. VPL are closed under all Boolean operations, and problems such
as universality and inclusion that are undecidable for context-free languages
are EXPTIME-complete for VPL [4,5]. A VPL consists of nested words, that is,
words over an alphabet (pushdown alphabet) which is partitioned into three
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disjoint sets of calls, returns and internal symbols. This partition induces a
nested hierarchical structure in a given word obtained by associating to each
call the corresponding matching return (if any) in a well-nested manner. VPL
are accepted by Non-deterministic Visibly Pushdown Automata (NVPA) [4,5],
a subclass of pushdown automata where the input symbol controls the kind
of operations permissible on the stack. Alternative characterizations of VPL
have been given in terms of operational and declarative formalisms. Here, we
recall characterizations [6,10] based on alternating automata, like the class of
parity alternating visibly pushdown automata and the more tractable class
of parity two-way alternating finite-state jump automata (AJA) [10], which
extend standard alternating finite-state automata (AFA) with non-local moves
for navigating the nested structure of words in VPL.

VPL have applications in the formal verification of recursive programs with
finite data modeled by pushdown systems [8,5,3]. Runs in these programs
can be seen as nested words, where procedure calls and returns define the
nesting. VPL turn out to be useful also in the streaming processing of semi-
structured data, such as XML documents, where each open-tag is matched
with a closing-tag in a well-nested manner (see e.g. [23,1]). The theory of
VPL is connected to the theory of regular tree-languages since nested words
can be encoded by labeled binary trees satisfying some regular constraints,
and there are translations from VPL into regular tree languages over tree-
encodings of nested words, and vice-versa. However, as shown in [23,1], NVPA
are often more natural (and sometimes exponentially more succinct) than tree
automata, and preferable in the streaming processing of XML documents.

Linear Temporal logics for VPL-properties. CaRet [3] and its extension
NWTL+ [2] are context-free versions of standard linear temporal logic LTL [27].
It is well-known [33] that LTL does not allow to specify all the linear-time ω-
regular properties. Similarly, the logics CaRet and NWTL+ can only express
a strict subclass of VPL. There are logical frameworks which capture the full
class of VPL. For example, [4] introduce MSOµ, which extends the standard
monadic second order logic (MSO) with a binary matching-predicate to handle
nested words. One drawback of this approach is that MSOµ is not elementar-
ily decidable. Also, [10] introduces a fix-point calculus for which satisfiability
and visibly pushdown model checking are EXPTIME-complete. Additionally,
fix-point logics are in some sense low-level logics, which are considered to be
“unfriendly” as specification languages. In the setting of regular languages,
some tractable formalisms allow to avoid fix-point binders and still obtain
full expressivity, like ETL [31] and fragments of the industrial-strength logic
PSL [17], like dynamic linear time temporal logic [16] and the regular lin-
ear temporal logic RLTL [21,28]. RLTL, in particular, fuses regular expres-
sions and LTL modalities. In the linear-time setting, providing both regular
expressions and temporal operators as been motivated by the need for human-
readable specification languages,1 as witnessed by the widespread adoption of

1 From [14,7] : “PSL and SVA balance well [...] expressiveness, usability, and imple-
mentability.”
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ForSpec, PSL and SVA in industry (see e.g. [7]). Our work follows this direction
for visibly-pushdown languages. We recently introduced [11,12] an algebraic
characterization of VPL over finite nested words in terms of the class of visi-
bly rational expressions (VRE). VRE extend regular expressions with two novel
operators which capture in a natural way the nested relation between calls and
matching returns in nested words. These two operators, when applied to lan-
guages L of well-matched words—that is, nested words without pending calls
and pending returns—, correspond to classical tree substitution and Kleene
closure applied to the tree language encoding of L (in accordance with the en-
coding of well-matched words by ordered unranked finite trees [1]). However,
as observed in [1] when comparing well-matched words with ordered unranked
trees, “word operations such as prefixes, suffixes, and concatenation [...] do
not have analogous tree operations.” This expressive ability is explicit in VRE,
which provides both word-like concatenation and tree-like substitution (and
their Kleene closures), which allows VRE to describe both the linear structure
and the hierarchical structure of nested words.

Our contribution. We investigate a new linear temporal logic for VPL spec-
ifications, which merges in a convenient way VRE and LTL modalities. The
task of combining language operators (such as concatenation and Kleene clo-
sure) and logical modalities is in general not easy. For example, extending
regular expressions by allowing unrestricted complementation (logical nega-
tion) results in a formalism which is still decidable but with a non-elementary
computational complexity [30].

Thus, we propose a generalization of RLTL with past that we call Visibly
Linear Temporal Logic (VLTL), which is obtained by replacing regular ex-
pressions for VRE expressions as building blocks for the temporal modalities.
Our natural choice leads to a unifying and convenient logical framework for
specifying VPL-properties because:

– VLTL is closed under Boolean combinations including negation and cap-
tures the full class of VPL. Moreover, VLTL avoids fix points and only offers
temporal operators with simple and intuitive semantics.

– VLTL is elementarily decidable. In particular, satisfiability and visibly push-
down model checking have the same complexity as for the strictly less ex-
pressive logics CaRet and NWTL+. Namely, these decision problems are
EXPTIME-complete.

Another feature of VLTL is that CaRet and NWTL+ can be inductively trans-
lated in linear-time into VLTL, so that algorithms and results for VLTL are
readily applicable to CaRet and NWTL+. In particular, the temporal modal-
ities of CaRet and NWTL+ can be viewed as derived operators of VLTL. In
this manner, one can introduce additional user-friendly temporal modalities
as VLTL expressions, which can then be combined arbitrarily. Thus, VLTL can
be also used as a common unifying logical framework for obtaining efficient
decision procedures for other simple-to-use logics for VPL (where efficient here
means with optimal complexity).
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In order to tackle the decision problems for VLTL, we follow an automata
theoretic approach, extending recent results for future RLTL [29]. These results
introduce a translation of RLTL into parity AFA, which is crucially based on
the well-known polynomial-time translation of regular expressions into non-
deterministic finite-state automata. A direct generalization of this construc-
tion to parity alternating visibly pushdown automata would lead to doubly
exponential time decision procedures. Instead, the approach we present in this
paper is based on a compositional polynomial-time translation of VLTL for-
mulas into a subclass of parity two-way alternating AJA with index 2. We call
this class stratified AJA with main states (SAJA). Essentially, SAJA are the
two-way AJA version of one-way hesitant AFA over infinite words introduced
in [20], where the ability to combine both forward and backward moves is
syntactically restricted in a way that guarantees that every infinite path in
a run has a suffix which is fully forward (that is, eventually, every copy of
the automaton only moves, at each step, to future input positions). Moreover,
we identify a subclass of VRE such that the corresponding fragment of VLTL
has the same expressiveness as full VLTL and admits a translation into SAJA
whose number of states is linear in the size of the specification. Hence, we
obtain a translation for this fragment of VLTL into equivalent Büchi NVPA of
size 2O(|ϕ| logm), where m is the size of the largest VRE used in the given VLTL
formula ϕ.

Related work. The branching temporal logic PDL [15] combines modal logic
and regular expressions, and is extended to recursive programs in [22]. In this
extension low-level operational aspects are allowed in the form of path ex-
pressions given by NVPA. This logic is incomparable with VLTL. Furthermore,
the related satisfiability and visibly pushdown model-checking problems are 2-
EXPTIME-complete. A similar logic is studied in [9] which introduces a linear
temporal framework for VPL, by allowing PDL-like path regular expressions
extended with the binary matching-predicate µ of MSOµ. The setting is pa-
rameterized by a finite set of MSO-definable temporal modalities, which leads
to an infinite family of linear temporal logics having the same complexity as
VLTL and also subsuming the logics CaRet and NWTL+. However, it seems
clear (even if this issue is not discussed in [9]) that each of these logics does
not capture the full class of VPL. Moreover, the complexity analysis in [9],
based on the use of two-way alternating tree automata, is not fine-grained and
it just allows to obtain a generic polynomial in the exponent of the complexity
upper bound.

2 Preliminaries

In this section, we recall two different characterizations of the class of Visi-
bly Pushdown Languages (VPL, for short) [4], namely, Visibly Pushdown Au-
tomata [4] (representing the basic formalism for VPL) and Visibly Rational
Expressions [11,12].
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In the rest of the paper, we fix a pushdown alphabet Σ = Σcall∪Σret∪Σint ,
that is, a finite alphabet Σ which is partitioned into a set Σcall of calls, a set
Σret of returns, and a set Σint of internal actions.

Let N be the set of natural numbers. For a finite or infinite word w on Σ,
|w| is the length of w (we set |w| = ω if w is infinite). The set of positions
Pos(w) in a non-empty word w is {1 . . . |w|} if w is finite and N \ {0} if w
is infinite. The empty word is denoted by ε and its set Pos(ε) of positions is
empty. For all i ∈ Pos(w), w(i) is the ith symbol of w, and for all j ∈ Pos(w)
with j ≥ i, w[i, j] is the non-empty finite word w(i)w(i+1) . . . w(j). A pointed
word over Σ is a pair (w, i) consisting of a word w over Σ and a position
i ∈ Pos(w).

Matched calls and returns. The set WM (Σ) of well-matched words is the sub-
set of Σ∗ inductively defined as follows:
– ε ∈WM (Σ);
– 2 · w ∈WM (Σ) if 2 ∈ Σint and w ∈WM (Σ);
– c · w · r · w′ ∈WM (Σ) if c ∈ Σcall , r ∈ Σret , and w,w′ ∈WM (Σ).

Let i be a call position of a word w. If there is j > i such that j is a return
position of w and w(i + 1) . . . w(j − 1) is a well-matched word, we say that
j is the matching return of i along w. Note that j is uniquely determined
if it exists. The set MWM (Σ) of minimally well-matched words is the set of
well-matched words of the form c ·w · r such that c is a call, r is a return, and
w is well-matched. Note that r corresponds to the matching return of c. For a

language L ⊆ Σ∗, we define MWM (L)
def
= L ∩MWM (Σ), that is, the set of

words in L which are minimally well-matched.

Example 1 Let Σcall = {c}, Σret = {r}, and Σint = {2}. Consider the word
w below. The word w is not well-matched, in particular, the call at position 1
has no matching return in w. Moreover, note that the sub-word w(2) . . . w(10)
is minimally well-matched.

1 2 3 4 5 6 7 8 9 10

c c � c � r c r � rw =

2.1 Visibly Pushdown Automata

Non-deterministic Visibly Pushdown Automata (NVPA) [4] are standard Push-
down Automata operating on finite words over a pushdown alphabet Σ satis-
fying the following “visibly” restriction: (i) on reading a call, one symbol is
pushed onto the stack, (ii) on reading a return, one symbol is popped from the
stack (if the stack is empty, the stack content remains unchanged), and (iii) on
reading an internal action, no stack operation is performed. The languages of
finite words accepted by NVPA are called visibly pushdown languages (VPL).
We also consider Büchi ω-NVPA [4], which are standard Büchi Pushdown Au-
tomata on infinite words over Σ satisfying the above visibly restriction. The

5



ω-languages accepted by Büchi NVPA are called ω-visibly pushdown languages
(ω-VPL). We now proceed with the formal definition of the syntax and seman-
tics of NVPA and Büchi ω-NVPA.

Syntax and semantics of NVPA. An NVPA over the pushdown alphabet Σ =
Σcall ∪ Σret ∪ Σint is a tuple P = 〈Q,Q0, Γ,∆, F 〉, where Q is a finite set of
(control) states, Q0 ⊆ Q is a set of initial states, Γ is a finite stack alphabet,
∆ ⊆ (Q × Σcall × Q × Γ ) ∪ (Q × Σret × (Γ ∪ {⊥}) × Q) ∪ (Q × Σint × Q) is
a transition relation (where ⊥ /∈ Γ is the special stack bottom symbol), and
F ⊆ Q is a set of accepting states. On reading a call c ∈ Σcall , P chooses
a push transition of the form (q, c, q′, γ), pushes the symbol γ 6= ⊥ onto the
stack, and changes the control from q to q′. On reading a return r ∈ Σret , P
chooses a pop transition of the form (q, r, γ, q′), where γ is popped from the
stack (if γ = ⊥, then γ is read but not popped). Finally, on reading an internal
action 2 ∈ Σint , P can choose only transitions of the form (q,2, q′) which do
not use the stack.

A configuration of P is a pair (q, β), where q ∈ Q and β ∈ Γ ∗ ·{⊥} is a stack
content. A run π of P over a finite word σ1 . . . σn−1 ∈ Σ∗ is a finite sequence of

configurations of the form π = (q1, β1)
σ1−→ (q2, β2) . . .

σn−1−→ (qn, βn) such
that q1 ∈ Q0, β1 = ⊥ (initialization requirement), and the following holds for
all 1 ≤ i ≤ n− 1:

Push If σi is a call, then for some γ ∈ Γ , (qi, σi, qi+1, γ) ∈ ∆ and βi+1 = γ ·βi.
Pop If σi is a return, then for some γ ∈ Γ ∪ {⊥}, (qi, σi, γ, qi+1) ∈ ∆, and

either γ 6= ⊥ and βi = γ · βi+1, or γ = ⊥ and βi = βi+1 = ⊥.
Internal If σi is an internal action, then (qi, σi, qi+1) ∈ ∆ and βi+1 = βi.

The run π is accepting whenever the last state is accepting, that is, if qn ∈ F .
The language L(P) of P is the set of finite words w ∈ Σ∗ such that there is
an accepting run of P on w.

Syntax and semantics of Büchi ω-NVPA. Büchi ω-NVPA are syntactically de-
fined as NVPA. Fix a Büchi ω-NVPA P = 〈Q,Q0, Γ,∆, F 〉 over the pushdown
alphabet Σ. A run π over an infinite word σ1σ2 . . . ∈ Σω is an infinite sequence
π = (q1, β1)

σ1−→ (q2, β2) . . . that is defined using the natural extension of the
definition of runs on finite words. The run is accepting if for infinitely many
i in the sequence, qi ∈ F . The ω-language Lω(P) of P is the set of infinite
words w ∈ Σω such that there is an accepting run of P on w.

2.2 Visibly Rational Expressions (VRE)

We recall the classes of VRE and ω-VRE [11,12]. VRE extend regular expres-
sions (RE) with two non-regular operators: the binary M -substitution operator
and the unary S-closure operator.2 Given L ⊆ Σ∗ and a language L′ of finite

2 The origin of the name M -substitution is minimally well-matched substitution, while
S-closure stands for Strict Minimally Well-Matched Closure, see [11,12].
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or infinite words on Σ, we use L · L′ for the concatenation of L and L′, L∗ for
the Kleene closure of L, and Lω for the ω-Kleene closure of L. Recall that Lω
is the set of infinite words w of the form w1 · w2 · . . . such that wi ∈ L for all
i ≥ 1. Note that Lω is empty iff either L = ∅ or L = {ε}.

Definition 1 (M-substitution [11,12]) Let w ∈ Σ∗, 2 ∈ Σint , and L ⊆
Σ∗. The M -substitution of 2 by L in w, denoted by w x2 L, is the language of
finite words over Σ obtained by replacing occurrences of 2 in w by minimally
well-matched words in L. Formally, w x2 L is inductively defined as follows:

– εx2 L
def
= {ε};

– (2 · w′) x2 L
def
=
(
MWM (L) · (w′ x2 L)

)
∪
(
({2} ∩ L) · (w′ x2 L)

)
– (σ · w′) x2 L

def
= {σ} · (w′ x2 L) for each σ ∈ Σ \ {2}.

For two languages L,L′ ⊆ Σ∗ and 2 ∈ Σint , the M -substitution of 2 by L′ in

L, written Lx2 L′, is defined as Lx2 L′
def
=
⋃
w∈L w x2 L′. Note that x2

is associative, and {2}x2 L = MWM (L) if {2} ∩ L = ∅.

Definition 2 (S-closure [11,12]) Given L ⊆ Σ∗ and 2 ∈ Σint , the S-
closure of L through 2, denoted by L	2 , is defined as follows:

L	2
def
=
⋃
n≥0

MWM (L)x2 (L ∪ {2}) x2 . . .x2 (L ∪ {2})︸ ︷︷ ︸
n occurrences of x2

.

Example 2 Let Σcall = {c1, c2}, Σret = {r1, r2}, and Σint = {2}. Let us
consider the languages L = {c1 2 r1, c2 2 r2} and L′ = {c1 r1, c2 r2}. Then,

L	2 ={ci1 ci2 . . . cin2 rin . . . ri2 ri1 | n ≥ 1, i1, . . . , in ∈ {1, 2}} and

L	2 x2 L′ ={ci1 ci2 . . . cin rin . . . ri2 ri1 | n ≥ 2, i1, . . . , in ∈ {1, 2}}.

Definition 3 The syntax of VRE α and ω-VRE β over Σ is defined as follows:

α := ∅
∣∣ ε ∣∣ int

∣∣ call
∣∣ ret

∣∣ σ ∣∣ α ∪ α ∣∣ α · α ∣∣ α∗ ∣∣ αx2 α
∣∣ α	2

β := αω
∣∣ β ∪ β ∣∣ α · β

where σ ∈ Σ. The basic expressions int , call , ret are used to denote in a
succinct way the languages Σint , Σcall , and Σret (this is just syntactic sugar).
Note that, for any given a ∈ Σ—and in particular for a ∈ Σint—, a is a VRE
expression.

A VRE α denotes a language of finite words over Σ, written L(α), defined
inductively in the obvious way. Similarly, an ω-VRE β denotes a language of
infinite words over Σ, written L(β).

Note that ω-VRE are defined in terms of VRE in the same way as ω-
regular expressions are defined in terms of regular expressions. We also consider
syntactical fragments of VRE and ω-VRE.
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Definition 4 (Well-matched and well-formed VRE) The subclass of well-
matched VRE η over Σ is defined by the following syntax:

η := ∅
∣∣ ε ∣∣ 2 ∣∣ c · ξ · r ∣∣ η ∪ η ∣∣ η · η ∣∣ η∗ ∣∣ η x2 η

∣∣ η	2

where 2 ∈ Σint , c ∈ Σcall , r ∈ Σret , and ξ is a standard regular expression
over Σint , defined as follows:

ξ := ∅
∣∣ ε ∣∣ 2 ∣∣ ξ ∪ ξ ∣∣ ξ · ξ ∣∣ ξ∗

A VRE α is well-formed if each sub-expression of α of the form (α1 x2 α2)
or α	2

1 is well-matched, and an ω-VRE β is well-formed if each VRE occurring
in β is well-formed.

As usual, the size |α| of a VRE α is the length of the string describing α.
Well-formed VRE are introduced because, as we will establish below, they are
enough to express the whole class of visibly pushdown languages. Moreover, as
we will see in Section 5, they allow a more efficient treatment than the general
class of VRE.

Theorem 1 (from [11,12]) (Well-formed) VRE and (well-formed) ω-VRE
capture the classes of VPL and ω-VPL, respectively.

Proof The results for VRE and ω-VRE were established in [11,12]. By definition
of well-formed ω-VRE, in order to conclude the proof of the theorem, we only
need to show that well-formed VRE are sufficient to capture the class of VPL.
This can be proved by a straightforward adaptation of the translation from
NVPA to VRE in [11,12] (details can be found in Appendix A). ut

3 Visibly Linear Temporal Logic (VLTL)

In this section, we introduce the Visibly Linear Temporal Logic (VLTL), an
extension of Regular Linear Temporal Logic (RLTL) with past (see [21,28])
obtained by replacing regular expressions in the temporal modalities of RLTL
with VRE.

Syntax and semantics of VLTL. The syntax of VLTL formulas ϕ over the push-
down alphabet Σ is as follows:

ϕ := true
∣∣ ϕ ∨ ϕ ∣∣ ¬ϕ ∣∣ α;ϕ

∣∣ ϕ;α
∣∣ ϕ|α⟫ϕ ∣∣ ϕ|α〉ϕ ∣∣ ϕ⟪α|ϕ ∣∣ ϕ〈α|ϕ

where α is a VRE over Σ, the symbol ; is the sequencing operator, | ⟫ and
⟪ | are the future power operator and the past power operator, and | 〉 and 〈 |
are the future weak power operator and the past weak power operator. The
power formulas ϕ1|α⟫ϕ2, ϕ1⟪α|ϕ2, ϕ1|α〉ϕ2, and ϕ1〈α|ϕ2 are built from three
elements: ϕ2 (the attempt), ϕ1 (the obligation), and α (the delay). Informally,
for ϕ1|α⟫ϕ2 to hold, either the attempt holds, or the obligation is met and the
whole formula evaluates successfully after the delay; additionally, the attempt
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must be eventually met. The expression ϕ1⟪α|ϕ2 works similarly except that
the formula is repeated before the delay. The weak formulas ϕ1|α〉ϕ2 and
ϕ1〈α|ϕ2 do not require the attempt to be eventually met. A VLTL formula ϕ
is well-formed if every VRE occurring in ϕ is well-formed. For a VLTL formula
ϕ, we denote by ‖ϕ‖ the integer 1 if either ϕ = true or ϕ has a Boolean
connective at its root; otherwise, ‖ϕ‖ is the size of the VRE associated with

the root operator of ϕ. The size |ϕ| of a VLTL formula ϕ is defined as |ϕ| def
=∑

ψ∈SF(ϕ) ‖ψ‖, where SF(ϕ) is the set of sub-formulas of ϕ. For clarity in the
presentation, we assume that Boolean operators have lower precedence than all
other operators, so α;ϕ∨ (ϕ∧ψ; true) is equivalent to (α;ϕ)∨ (ϕ∧ (ψ; true)).

VLTL formulas ϕ are interpreted over infinite pointed words (w, i) over Σ.
The semantics of VLTL is given by the satisfaction relation (w, i) |= ϕ, defined
inductively as follows:

(w, i) |= true

(w, i) |= ¬ϕ ⇔ (w, i) 6|= ϕ
(w, i) |= ϕ1 ∨ ϕ2 ⇔ (w, i) |= ϕ1 or (w, i) |= ϕ2

(w, i) |= α;ϕ ⇔ for some j > i, (w, j) |= ϕ and w[i, j] ∈ L(α)
(w, i) |= ϕ;α ⇔ for some j < i, (w, j) |= ϕ and w[j, i] ∈ L(α)
(w, i) |=ϕ1|α⟫ϕ2 ⇔ for some sequence i = j1 < . . . < jn, (w, jn) |= ϕ2

and for all 1 ≤ k < n, w[jk, jk+1] ∈ L(α) and (w, jk) |= ϕ1

(w, i) |=ϕ1⟪α|ϕ2 ⇔ for some sequence j1 < . . . < jn = i, (w, j1) |= ϕ2

and for all 1 < k ≤ n, w[jk−1, jk] ∈ L(α) and (w, jk) |= ϕ1

(w, i) |=ϕ1|α〉ϕ2 ⇔ either (w, i) |= ϕ1|α⟫ϕ2,
or for some infinite sequence i = j1 < j2 < . . . ,
w[jk, jk+1] ∈ L(α) and (w, jk) |= ϕ1 for all k ≥ 1

(w, i) |=ϕ1〈α|ϕ2 ⇔ either (w, i) |=ϕ1⟪α|ϕ2,
or for some sequence 1 = j1 < . . . < jn = i, (w, jn) |= ϕ1

and w[jk, jk+1] ∈ L(α) and (w, jk) |= ϕ1 for all 1 ≤ k < n

It is important to note that we have adopted an overlapping and strict se-
mantics for the temporal modalities of VLTL. The term overlapping means
that adjacent position intervals [i, j] and [j, h], resp. [i, j] and [j,∞[, share
position j, while the term strict means that we additionally require that the
start point and the end point of a position interval are distinct (i.e, i < j
and j < h). Thus, for example, w[jk−1, jk] and w[jk, jk+1] in the semantics
of ϕ1|α⟫ϕ2 both share the letter w(jk) at position jk. Similarly, in the se-
mantics of the future sequencing operator, the overlapping intervals are [i, j]
and [j,∞], where i < j. The choice considered subsumes the other possible
choices. In other terms, one can introduce derived operators for expressing
the non-overlapping and/or non-strict semantics. We illustrate this by con-
sidering the future sequencing operator and the future power operator. The
non-overlapping semantics of ϕ1|α⟫ϕ2 and α;ϕ can be expressed as ϕ1|α′⟫ϕ2

and α′;ϕ, respectively, where α′ = α·(int∪ret∪call). It is easy to show that the
non-strict semantics and the proposed semantics of ϕ1|α⟫ϕ2 coincide. On the
other hand, the non-strict semantics of α;ϕ can be expressed in the proposed
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semantics by the formula α;ϕ∨(ϕ∧α′′; true), where α′′ = [α]1 ·(int∪ret∪call),
and [α]1 = σ1 ∪ . . . ∪ σn, where {σ1, . . . , σn} corresponds to L(α) ∩ Σ. One
can compute in linear time (in the size of α and n) the possible empty set
of such letters σ1, . . . , σn. Note that the overlapping semantics is necessary
for allowing a direct and linear-time translation of known temporal logics like
CaRet [3] and NWTL [2] into VLTL (see Subsection 3.1).

The ω-pointed language Lp(ϕ) of ϕ is the set of infinite pointed words
(w, i) over Σ satisfying ϕ, that is (w, i) |= ϕ. The ω-language L(ϕ) of ϕ is
the set of infinite words w over Σ such that (w, 1) ∈ Lp(ϕ). Two formulas ϕ1

and ϕ2 are globally equivalent if Lp(ϕ1) = Lp(ϕ2). The satisfiability problem
for VLTL is checking for a VLTL formula ϕ, whether L(ϕ) 6= ∅. The visibly
pushdown model checking problem for VLTL is checking for a VLTL formula ϕ
over Σ and a pushdown system P (defined as a Büchi NVPA P over the same
pushdown alphabet Σ and with all states accepting), whether Lω(P) ⊆ L(ϕ).

Note that the VLTL operators generalize both the operators of standard
LTL with past (in particular, the next, previous, until, and since modalities)
and the operators of ω-visibly rational expressions. For example, the until for-
mula ϕ1 U ϕ2 requires that either ϕ2 holds (attempt) or otherwise ϕ1 holds
(obligation) and the formula is reevaluated after a delay of a single step. Sim-
ilarly, the ω-visibly rational expression αω has no possible escape, a trivially
fulfilled obligation, with a delay indicated by α. Thus, ω-VRE can describe
sophisticated delays with trivial obligations and attempts, while conventional
LTL constructs allow complex obligations and attempts, but trivial one-step
delays. Power operators can be seen as a generalization of both types of con-
structs.

In the rest of this section, we use some VRE of constant size:

αONE
def
= int ∪ ret ∪ call

αMWM
def
= 2 x2 (call · (αONE )∗ · ret)

αWM
def
= (int∗ · (αMWM )∗)∗

αMR
def
= (call∗ · αWM )∗

where 2 ∈ Σint . Note that L(αONE ) = Σ, L(αMWM ) = MWM (Σ), L(αWM ) =
WM (Σ), and L(αMR) is the set of finite words where no unmatched return
occurs. We use some shortcuts in VLTL:

Gϕ
def
= ϕ |αONE · αONE 〉 ¬true ϕ def

= ϕ; (αONE · αONE )

That is, Gϕ is the LTL always operator and ϕ is the LTL previous operator.

Expressiveness of VLTL. First, we observe that (well-formed) ω-VRE can be
translated in linear-time into language-equivalent (well-formed) VLTL formulas
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by the mapping f from ω-VRE to VLTL inductively defined as follows:

f(αω)
def
= true|α · αONE 〉¬true

f(β ∪ β′) def
= f(β) ∨ f(β′)

f(α · β)
def
= (α · αONE ); f(β)

Thus, by Theorem 1, (well-formed) VLTL formulas can express every ω-VPL.
Note that we do not need past modalities. The converse direction holds as well
(see Section 6). Hence, we obtain the following result.

Theorem 2 (Future Well-formed) VLTL formulas capture the class of ω-VPL.

3.1 Comparison with Known Context-free Extensions of LTL.

We compare now VLTL with some known context-free extensions of LTL:
CaRet [3], NWTL [2], and NWTL+ [2]. Recall that NWTL and NWTL+ are
expressively complete for the first-order fragment FOµ of MSOµ [2], while it
is an intriguing open question whether the same holds for CaRet [2], the latter
being subsumed by NWTL+. In the analysis of recursive programs, an impor-
tant feature of CaRet and NWTL+ is that they allow to express in a natural
way LTL properties over non-regular patterns such as (*) the stack content at a
given position, and (**) the local computations of procedures which skip over
nested procedure invocations. As we will prove in the following, these logics
can be easily translated in linear time into VLTL. Additionally, the logic VLTL
can specify more expressive regular properties over the patterns (*) and (**)
such as the following requirement for a given N ≥ 1, “whenever the procedure
A is invoked, the depth of the stack content is a multiple of N”, which can be
expressed by the following VLTL formula ϕN ,

G(cA −→ (¬true);αN ) αN
def
= [(αWM · call · . . . · αWM · call︸ ︷︷ ︸

N times

·αWM )]∗

where the call cA denotes the invocation of procedure A. We claim that no
CaRet formula can express requirement ϕN . Indeed, let c be a call action
such that c 6= cA, and for each n ≥ 1, let wn be the infinite word over Σ
given by cn · cA · cω. Evidently, (wn, 1) ∈ L(ϕN ) iff n + 1 is a multiple of
N . By the syntax and semantics of CaRet (which is recalled later), one can
easily show by structural induction that for each CaRet formula ψ, there is a
natural number kψ ≥ 1 (actually, it suffices to take kψ > |ψ|) such that for all
n, n′ ≥ kψ, ψ cannot distinguish between wn and wn′ (that is, (wn, 1) ∈ L(ψ)
iff (wn′ , 1) ∈ L(ψ)). On the other hand for all k ≥ 1, there are n, n′ ≥ k such
that n+ 1 is a multiple of N and n′ + 1 is not. Hence, the claim holds.

As another interesting example, we consider a bounded-response context-
free requirement which can be easily expressed in FOµ and VLTL, but for
which we are not aware of any simple equivalent NWTL+ formula: “every
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internal request req ∈ Σint is followed by a response res ∈ Σint before the
procedure where req occurs terminates”. This property can be specified in
VLTL as follows:

G(req −→ (αMR · res); true)

We show now that formulas of the logics CaRet, NWTL and NWTL+ can
be inductively translated in linear time into VLTL. We begin by recalling the
syntax and semantics of CaRet [3], NWTL [2], and NWTL+ [2].

Full CaRet [3]. CaRet extends standard LTL with past by allowing non-regular
versions of the standard LTL temporal modalities. The semantics of these
modalities is based on two distinct notions of non-local successor for a position
i along an infinite word w over the fixed pushdown alphabet Σ (see [3]):

The abstract successor of i along w, succ(a, w, i).

– If i is a call with a matching return, then succ(a, w, i) is the matching
return of i.

– If i is a call with no matching return, then succ(a, w, i) = ⊥ (where the
symbol ⊥ means ‘undefined’).

– If i is not a call, then succ(a, w, i) = i+ 1 if i+ 1 is not a return position,
and succ(a, w, i) = ⊥ otherwise.

The caller of i along w, succ(c, w, i).

– succ(c, w, i) is the greatest call position ic < i such that either succ(a, w, ic) =
⊥ or succ(a, w, ic) > i if such a call position exists;

– otherwise, succ(c, w, i) = ⊥.

For every pair of positions i and j with 1 ≤ i ≤ j, and dir ∈ {a, c}, a
dir-path of w from i to j, is a sequence of positions i = j1 < j2 < . . . < jn = j
such that for all 1 ≤ k < n, jk+1 = succ(dir, w, jk) if dir = a, and jk =
succ(dir, w, jk+1) if dir = c. Note that there is at most one dir-path of w from
i to j. Intuitively, in the analysis of recursive programs, the abstract paths
(i.e., the a-paths) capture the local computation within a procedure removing
computation fragments corresponding to nested calls, while a caller path (i.e.,
a c-path) captures the content of the call-stack of a procedure. The syntax of
CaRet over Σ is defined as follows:

ϕ := σ
∣∣ ϕ∨ϕ ∣∣ ¬ϕ ∣∣ ϕ

∣∣ ϕ
∣∣ dirϕ

∣∣ dirϕ
∣∣ ϕUϕ ∣∣ ϕSϕ ∣∣ ϕUdirϕ

∣∣ ϕSdirϕ
where σ ∈ Σ, dir ∈ {a, c}, , , U , and S are the standard ‘next’, ‘previous’,
‘until’, and ‘since’ LTL modalities, respectively, and a, a, Ua, and Sa are
their non-regular abstract versions, and c, c, U c, and Sc are their non-
regular caller versions. The semantics of the non-regular temporal modalities
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is as follows.

(w, i) |= dirϕ ⇔ (w, j) |= ϕ for some j > i such that j = succ(a, w, i)
if dir = a, and i = succ(c, w, j) if dir = c

(w, i) |= dirϕ ⇔ (w, j) |= ϕ for some j < i such that i = succ(a, w, j)
if dir = a, and j = succ(c, w, i) if dir = c

(w, i) |= ϕ1 Udir ϕ2 ⇔ there is a dir-path i = j1 < j2 . . . < jn such that
(w, jn) |= ϕ2 and (w, jk) |= ϕ1 for all 1 ≤ k < n

(w, i) |= ϕ1 Sdir ϕ2 ⇔ there is a dir-path j1 < j2 . . . < jn = i such that
(w, j1) |= ϕ2 and (w, jk) |= ϕ1 for all 1 < k ≤ n

The logics NWTL and NWTL+ [2]: these logics are based on the notion of
summary path. Formally, for an infinite word w over Σ and two positions
i and j such that i ≤ j, a summary path of w from i to j is a sequence
i = j1 < j2 . . . < jn = j such that for all 1 ≤ k < n: if jk is a matched-call
and succ(a, w, jk) ≤ j, then jk+1 = succ(a, w, jk); otherwise jk+1 = jk + 1.
Note that there is exactly one summary path from i to j. The logic NWTL+

extends CaRet with the binary modalities U ς and Sς , which correspond to
the standard until and since modalities of LTL interpreted on summary paths.
NWTL is obtained from NWTL+ by disallowing modalities Udir,Sdir,c,c,
where dir ∈ {a, c}.

From NWTL+ to VLTL. We assume that Σint contains at least a symbol 2.
Fix an infinite word w over Σ. For a VRE α over Σ and a sequence of positions
ν = j1 < . . . < jn, ν satisfies α along w if w[jk, jk+1] ∈ L(α) for all 1 ≤ k < n.
We define the following constant-size VRE:

αa
def
= αMWM ∪ ((int ∪ ret) · (int ∪ call))

αc
def
= call · αWM · (call ∪ ε)

α1
ς

def
= αMWM ∪ ((int ∪ ret) · αONE )

α2
ς

def
= αMWM ∪ (αONE · (int ∪ call))

Lemma 1 Let ν = j1 < . . . < jn be a sequence of positions along w. Then:
1. ν is an abstract path of w from j1 to jn iff ν satisfies αa along w.
2. ν is a caller path of w from j1 to jn iff ν satisfies αc along w.
3. ν is the summary path of w from j1 to jn iff there is 1 ≤ h ≤ n such that

j1 < . . . < jh satisfies α1
ς along w and jh < . . . < jn satisfies α2

ς along w.

Proof Properties 1 and 2 easily follow, while Property 3 is a consequence of
the following observation: the path ν = j1 < . . . < jn is the summary path of
w from j1 to jn iff there is 1 ≤ h ≤ n such that (i) each call position between
j1 and jh−1 has a matching return inside [j1, jh], and (ii) each return position
between jh + 1 and jn has a matched call inside [jh, jn]. ut

We can prove the desired result.
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Theorem 3 For a CaRet, NWTL or NWTL+ formula ϕ, one can construct in
linear time a VLTL formula with constant-size VRE which is globally equivalent
to ϕ.

Proof Since NWTL+ subsumes both CaRet and NWTL, it suffices to consider
the logic NWTL+. We define a linear-time computable mapping H : NWTL+

→ VLTL which associates to each NWTL+ formula ϕ over Σ a globally equiv-
alent VLTL formula H(ϕ). The mapping is defined by structural induction as
follows, where dir ∈ {a, c}. The mapping H is homomorphic with respect to
the Boolean connectives and

– H(σ)
def
= (σ · αONE ); true

– H(ϕ)
def
= (αONE · αONE );H(ϕ)

– H(ϕ)
def
= H(ϕ); (αONE · αONE )

– H(dirϕ)
def
= αdir;H(ϕ)

– H(dirϕ)
def
= H(ϕ);αdir

– H(ϕ1 U ϕ2)
def
= H(ϕ1) |αONE · αONE⟫H(ϕ2)

– H(ϕ1 S ϕ2)
def
= H(ϕ1) ⟪αONE · αONE |H(ϕ2)

– H(ϕ1 Udir ϕ2)
def
= H(ϕ1) |αdir⟫H(ϕ2)

– H(ϕ1 Sdir ϕ2)
def
= H(ϕ1) ⟪αdir|H(ϕ2)

– H(ϕ1 U ς ϕ2)
def
= H(ϕ1) |α1

ς⟫
(
H(ϕ2) ∨ (H(ϕ1) |α2

ς⟫H(ϕ2))
)

– H(ϕ1 Sς ϕ2)
def
= H(ϕ1) ⟪α2

ς |
(
H(ϕ2) ∨ (H(ϕ1) ⟪α1

ς |H(ϕ2))
)

Correctness of the construction can be easily proved by induction on the struc-
ture of the NWTL+ formula and by using Lemma 1. This concludes the proof
of the theorem. ut

4 A Subclass of Alternating Jump Automata Over Infinite Words

Alternating Jump Automata (AJA) over finite and infinite words [10] are an
alternative automata-theoretic characterization of VPL and ω-VPL. In this
section, in order to capture VLTL formulas compositionally and efficiently, we
introduce a subclass of two-way parity AJA with index 2 over infinite words.
We call this class of automata two-way stratified AJA with main states (SAJA).
In Section 5, we will show how to translate (well-formed) VRE into a subclass
of AJA over finite words. This result, Theorem 6, is then used in Section 6 to
handle the temporal operators in the translation of VLTL formulas into SAJA
(Theorem 8).

Note that a naive approach based on the use of unrestricted two-way parity
AJA would lead to decision procedures for VLTL that are computationally more
expensive. More concretely, following [13], two-way parity AJA with n states

and index k can be translated into equivalent Büchi ω-NVPA with 2O((nk)2)

states and stack symbols. We show that SAJA with n states can be more
efficiently translated into equivalent Büchi NVPA with 2O(n logm) states and
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stack symbols, where m is the size of the largest non-trivial coBüchi stratum.
We say that a coBüchi stratum is non-trivial when it contains both final and
non-final states (otherwise it can be treated as a rejecting or as an accepting
stratum).

Another technical issue is the efficient handling of logical negation. Like
for RLTL, VLTL does not have a positive normal form. Hence, a construction
for the negation operator must be given explicitly. Like for standard parity
AFA, complementation of parity two-way AJA is easy: one only has to dualize
the transition function and to complement the acceptance condition. However,
the classical complementation for the parity acceptance condition increases the
color assigned to every state by one unit, so that the total number of colors
could grow linearly with the size of the formula.

Even though a negation immediately followed by another negation can
be handled by an easy modification of the classical parity construction—by
decreasing all colors in the second negation, instead of increasing them—,
a correct inductive construction must also handle arbitrary operations in be-
tween two negations. Many constructions allow to reintroduce colors arbitrarily
which precludes the use of the simple mechanism of decreasing colors whenever
possible. Instead, we show here how to exploit the internal structure of SAJA
sub-automata to provide a general complementation procedure that still uses
only three colors.

The rest of this section is organized as follows. First, in Subsection 4.1
we recall the framework of parity two-way AJA. Then, in Subsection 4.2, we
introduce the class of SAJA. In Subsection 4.3, we provide a characterization of
the accepting runs of SAJA, which will be used in Subsection 4.4 for obtaining
an efficient translation of SAJA into equivalent Büchi ω-NVPA.

4.1 Parity two-way AJA

AJA operate on words over a pushdown alphabet and extend standard alternat-
ing finite-state automata by also allowing non-local moves: when the current
input position is a matched call, a copy of the automaton can move (jump)
in a single step to the matched-return position. We also allow ε-moves and
local and non-local backward moves. We first give the notion of Alternating
Jump Transition Tables (AJT), which represent AJA without acceptance con-
ditions. Let DIR = {ε,→,←,y,x,y•, •x}. Intuitively, the symbols→ and←
are used to denote forward and backward local moves, and y and x are for
non-local moves which lead from a matched call to the matching return, and
vice-versa. The two additional symbols y• and •x are used to denote variants
of non-local moves. Intuitively, a y•-move is a forward move which leads from
a matched call ic to the position following the matched return of ic, while a

•x-move is a backward move which leads from a matched return ir to the po-
sition preceding the matching call of ir. Even though these additional moves
can be easily simulated with the other moves, they are crucial to handle in an
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efficient way M -substitution and S-closure in the compositional translation of
well-formed VRE into AJA over finite words shown in Section 5 below.

For a set X, B+(X) denotes the set of positive Boolean formulas over X
built from elements in X using ∨ and ∧ (we also allow the formulas true and
false). A model of a formula θ ∈ B+(X) is a subset of X which satisfies θ. A

model is minimal if no strict subset of it satisfies θ. The dual formula θ̃ of θ is
obtained from θ by switching ∨ and ∧, and switching true and false.

A tree is a directed graph 〈V,E〉, where the set of vertices V is a prefix
closed subset of N∗ (ε is the root of the tree) and the set of edges E satisfies
the following: (v, v′) ∈ E iff v, v′ ∈ V and v′ = v · i for some i ∈ N (note that
the set of edges is completely specified by V ). For a set S, a S-labeled tree is a
tuple 〈V,E,L〉, where 〈V,E〉 is a tree and L : V → S is a mapping associating
to each vertex of the tree an element of S.

Two-way AJT [10]. A two-way AJT T over the pushdown alphabet Σ is a
tuple T = 〈Q, q0, δ〉, where Q is a finite set of states, q0 ∈ Q is the initial
state, and δ : Q × Σ → B+(DIR × Q × Q) is a transition function. Given an
atom (dir, q, q′) ∈ DIR × Q × Q of A and a pointed word (w, i) over Σ, the
effect of the move (dir, q, q′) with respect to (w, i) is the pair (j, p) defined as
follows:

– dir = ε: j = i and p = q.
– dir =→: j = i+ 1, and p = q if i+ 1 ∈ Pos(w) and p = q′ otherwise.
– dir =←: j = i− 1, and p = q if i− 1 ∈ Pos(w) and p = q′ otherwise.
– dir =y: if i is a call with matching return jr, then j = jr and p = q;

otherwise j = i+ 1 and p = q′.
– dir =x: if i is a return with matching call jc, then j = jc and p = q;

otherwise j = i− 1 and p = q′.
– dir =y•: if i is a call with matching return jr and jr + 1 ∈ Pos(w), then
j = jr + 1 and p = q; otherwise j = i+ 1 and p = q′.

– dir = •x: if i is a return with matching call jc and jc − 1 ∈ Pos(w), then
j = jc − 1 and p = q; otherwise j = i− 1 and p = q′.

Note that (j, p) ∈ ({0, |w|+1}∪Pos(w))×Q if w is finite, and (j, p) ∈ ({0}∪
Pos(w))×Q otherwise. Accordingly, let Pos(w) be the set {0, |w|+1}∪Pos(w)
if w is finite, and the set {0}∪Pos(w) otherwise. We introduce now the notion
of run. Since we will also consider AJA over finite words, runs are defined for
both finite and infinite words. Given a finite or infinite pointed word (w, i)
on Σ and a state p ∈ Q, a (i, p)-run of T over w is a Pos(w) × Q-labeled
tree r = 〈V,E, L〉 such that the root is labeled by (i, p). Intuitively, a vertex
having label (j, q) with j ∈ Pos(w) describes a copy of the automaton which
is in state q and reads the jth input position. Vertices having label (0, q) or, in
case w is finite, label (|w|+ 1, q) are used as markers for representing terminal
backward and forward moves, respectively. Additionally, we require that the
set of edges E is consistent with the transition function δ. Formally, vertices of
r having label (0, q) or, in case w is finite, label (|w|+ 1, q) have no successor.
Moreover, for every vertex v with label (j, q) such that j ∈ Pos(w), there is
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a minimal model X = {(dir1, q1, q
′
1), . . . , (dirn, qn, q

′
n)} of δ(q, w(j)) such that

the set of successors of v is {v1, . . . , vn} and for all k ∈ {1, . . . , n}, L(vk) is the
effect of the move (dirk, qk, q

′
k) with respect to (w, j).

For an infinite path π = v1, v2, . . . of the run r with L(vi) = (ji, qi) for all
i ≥ 1, we denote by Inf(π) the set of states that occur infinitely many times
along the sequence of states q1, q2, . . . visited by π. The path π is strictly-
forward if (i) ji ≤ ji+1 for all i ≥ 1 and (ii) for infinitely many i, ji < ji+1.
Moreover, the path π is eventually strictly-forward if π has a suffix which is
strictly-forward.

The run r is memoryless if the behavior of the AJT T along r depends only
on the current input position and current state. Formally, for all v, v′ ∈ V such
that L(v) = L(v′), we have that {L(v′′) | v′′ ∈ E(v)} = {L(v′′) | v′′ ∈ E(v′)},
where E(v) is the set of successors of v and E(v′) is the set of successors of
v′. Note that if r is memoryless, then r can be alternatively represented by
the directed graph G(r) = 〈V ′, E′, v0〉, where V ′ ⊆ Pos(w) × Q is the set of
labels associated with the vertices of r, v0 = (i, p) is the initial vertex, and
((j, q), (j′, q′)) ∈ E′ iff there is (v, v′) ∈ E such that L(v) = (j, q) and L(v′) =
(j′, q′). In the rest of the paper, we use this representation for memoryless
runs.

Parity two-way AJA. A parity two-way AJA A on infinite words over Σ is a
tuple A = 〈Q, q0, δ, F−, Ω〉, where 〈Q, q0, δ〉 is a two-way AJT over Σ, F− ⊆ Q
is a backward acceptance condition, and Ω : Q → N is a parity acceptance
condition assigning to each state an index (or color). A run r of A (that is a
run of the associated AJT) over an infinite word is accepting if the following
two conditions are satisfied:

– for each infinite path π of the run, the maximum index Ω(q) over the states
q ∈ Inf(π) is even;

– for each vertex of r with label (0, q), it holds that q ∈ F−.

The ω-pointed language Lp(A) ofA is the set of infinite pointed words (w, i)
over Σ such that there is an accepting (i, q0)-run of A on w. The ω-language
L(A) of A is the set of infinite words w over Σ such that (w, 1) ∈ Lp(A).

The dual automaton Ã of A is the parity two-way AJA obtained from A
by dualizing the transition function, and by complementing the acceptance
condition: formally, Ã = 〈Q, q0, δ̃, Q\F−, Ω̃〉, where δ̃(q, σ) is the dual formula

of δ(q, σ) and Ω̃(q) = Ω(q) + 1 for all q ∈ Q and σ ∈ Σ.
Given an infinite pointed word (w, i) over Σ, we can associate in a standard

way [26] to A and (w, i) an infinite-state parity game, where player 0 plays for
acceptance, while player 1 plays for rejection. Winning strategies of player 0
correspond to accepting (i, q0)-runs of A over w, and the plays conforming to a
strategy correspond to the maximal paths of the associated run starting from
the initial vertex. Since the existence of a winning strategy in parity games
implies the existence of a memoryless one (see e.g. [34]), we can restrict our-
selves to consider only memoryless runs of A. Moreover, by [26] (see also [10])

the dual automaton Ã of A accepts the complement of Lp(A). Note that the
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backward acceptance condition F− is necessary to handle the dualization of
the terminal backward moves. Hence, the following holds.

Proposition 1 ([26,10]) Given a parity two-way AJA A = 〈Q, q0, δ, F−, Ω〉,
Lp(A) coincides with the set of infinite pointed words (w, i) such that there is

a memoryless (i, q0)-run of A over w. Moreover, the dual automaton Ã of A
accepts the complement of Lp(A).

4.2 Two-way stratified AJA with main states (SAJA)

We introduce now the class of SAJA as an extension of one-way hesitant AFA
over infinite words introduced in [20]. This extension equips SAJA with two-
way and non-regular capabilities in a restricted form. Intuitively, the ability
of combining both forward and backward moves is syntactically restricted in
such a way to ensure that every infinite path in a run is eventually strictly-
forward. Moreover, for efficiency issues, we distinguish between main states
and secondary states. Intuitively, in the translation of VLTL formulas into
SAJA, main states are associated with the regular part of the formula, while
secondary states are associated with the non-regular part (the M -substitution
and S-closure operators in the VRE of the formula). The number of secondary
states can be quartic in the number of main states. We now proceed with the
formal definition of the syntax and semantics of SAJA.

A two-way AJT T = 〈Q, q0, δ〉 is an AJT with main states if:
– the set of states is partitioned into a set M of main states and into a set S

of secondary states such that q0 ∈ M.
– there are no moves from secondary states to main states. Hence, every path

starting from a secondary state visits only secondary states.

Definition 5 (SAJA) A SAJA A is a tuple A = 〈Q, q0, δ,F〉 with Q = M∪ S,
where 〈Q, q0, δ〉 is a two-way AJT with main states and F is a strata family of
the form F = {〈ρ1, Q1, F1〉, . . . , 〈ρk, Qk, Fk〉}, where

– Q1, . . . , Qk is a partition of the set of states Q;
– for all 1 ≤ i ≤ k, ρi ∈ {−, t,B,C}; and
– Fi ⊆ Qi, such that Fi = ∅ whenever ρi = t.

A stratum 〈ρi, Qi, Fi〉 is called a negative stratum if ρi = −, a transient stra-
tum if ρi = t, a Büchi stratum (with Büchi acceptance condition Fi) if ρi = B,
and a coBüchi stratum (with coBüchi acceptance condition Fi) if ρi = C. Ad-
ditionally, we require that there is a partial order ≤ on the sets Q1, . . . , Qk
such that the following holds:

R1. Moves from states in Qi lead to states in components Qj such that Qj ≤
Qi. Additionally, if Qi belongs to a transient stratum, there are no moves
from Qi leading to Qi.

R2. For all atoms (dir, q, q′) or (dir, q′, q) occurring in δ, the following holds:
(i) If the stratum of q is negative then dir ∈ {←,x, •x, ε} and otherwise
dir ∈ {→,y,y•, ε}; (ii) if dir = ε, then there are no ε-moves from q.
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R3. For every Büchi or coBüchi stratum 〈ρi, Qi, Fi〉, Fi ∩ S = ∅.

The SAJA A encodes a parity two-way AJA, denoted by P (A), having
the same AJT as A and whose backward acceptance condition F− and parity
acceptance condition Ω are defined as follows:

– F− is the set of states q such that there is a negative stratum 〈−, P, F 〉 of
A so that q ∈ F .

– For all strata S = 〈ρ, P, F 〉 of A and q ∈ P , the index Ω(q) of q is
– 0 if either S is a transient stratum, or S is a negative stratum, or S is

a coBüchi stratum and q ∈ P \ F ;
– 2 if S is a Büchi stratum and q ∈ F ;
– otherwise, the index of q is 1.

An (accepting) run of A is an (accepting) run of P (A). The ω-pointed
language Lp(A) of A is Lp(P (A)) and the ω-language L(A) of A is L(P (A)).

In the above definition, R1 is the stratum order requirement and it ensures that
every infinite path π of a run gets trapped in the component Qi of some non-
transient stratum. R2 is the eventually syntactical requirement and it ensures
that Qi belongs to a Büchi or coBüchi stratum and that π is eventually strictly-
forward. R2 also ensures that for all runs and vertices having label of the form
(0, q), q belong to a negative stratum.

Let π be an infinite path of a run of a SAJA A and 〈ρi, Qi, Fi〉 be the
Büchi or coBüchi stratum in which π gets trapped. We say that the path π is
accepting whenever Inf(π) ∩ Fi 6= ∅ if ρi = B and Inf(π) ∩ Fi = ∅ otherwise
(i.e. π satisfies the corresponding Büchi or coBüchi requirement). Note that
requirement R3 in the definition of SAJA ensures that whenever π starts at a
vertex associated with a secondary state (hence, π visits only secondary states),
then π is accepting if the stratum 〈ρi, Qi, Fi〉 is a coBüchi stratum, and it is
rejecting otherwise. By Definition 5, the backward acceptance condition and
the parity acceptance condition encoded by a SAJA A ensure that a run of A
is accepting iff : (1) all its infinite paths are accepting and (2) for each vertex
with label (0, q) such that q is in the stratum S = 〈ρi, Qi, Fi〉 (recall that S is
ensured to be a negative stratum), it holds that q ∈ Fi.

The SAJA-dual Ã of a SAJA A = 〈Q, q0, δ,F〉 is defined as Ã = 〈Q, q0, δ̃, F̃〉,
where δ̃(q, σ) is the dual formula of δ(q, σ), and F̃ is obtained from F by
converting a Büchi stratum 〈B, Qi, Fi〉 into the coBüchi stratum 〈C, Qi, Fi〉, a
coBüchi stratum 〈C, Qi, Fi〉 into the Büchi stratum 〈B, Qi, Fi〉, and a negative
stratum 〈−, Qi, Fi〉 into the negative stratum 〈−, Qi, Qi \Fi〉. By construction

the dual automaton P̃ (A) of the parity two-way P (A) encoded by A and the

parity two-way P (Ã) encoded by Ã have the same AJT. Moreover, it is easy to

check that a run r is accepting for P̃ (A) iff it is accepting for P (Ã). Thus, by
Proposition 1, we obtain the following lemma, which is crucial for handling,
compositionally and efficiently, negation in VLTL formulas.

Lemma 2 The SAJA-dual Ã of a SAJA A accepts the complement of Lp(A).
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4.3 Characterization of accepting memoryless runs in SAJA

In this section, we first give a characterization of the fulfillment of the accep-
tance condition for a coBüchi stratum along a memoryless run of a SAJA in
terms of the existence of an odd ranking function. The latter generalizes the
notion of odd ranking function for standard coBüchi alternating finite-state
automata [19] which intuitively allows to convert a coBüchi acceptance con-
dition into a Büchi-like acceptance condition. Then, by exploiting the above
result and a generalization of the Miyano-Hayashi construction [25], we give a
characterization of the accepting memoryless runs of a given SAJA in terms of
infinite sequences of finite sets satisfying determined requirements which can
be easily checked by a Büchi NVPA. The approach we propose is a refinement
of the method used in [13] to convert parity two-way AJA into equivalent Büchi
ω-NVPA.

A SAJA is pure if it does not use the non-local moves y• and •x. The
following observation is straightforward.

Remark 1 Given a SAJA A, one can construct in linear time a pure SAJA A′
such that Lp(A′) = Lp(A).

The constructions given in [19,25] are crucially based on the fact that in the
runs of one-way alternating finite-state automata (AFA) over infinite words,
for all positions i, every infinite path π starting from i visits all the positions
j ≥ i. The following definition and Remark 2 show that a weak variant of
the above property holds for the class of SAJA. As we will see later, this is
sufficient to adapt the constructions in [19,25].

Definition 6 (Dominant positions) Let w be an infinite word over Σ. A
position i of w is a dominant position whenever for every matched call jc with
matched return jr, either i ≤ jc or i > jr.

Intuitively, the dominant positions of an infinite word w over Σ are ob-
tained by erasing all the non-initial positions of the maximal minimally well-
matched sub-words of w. Note that the set of dominant positions of w is
infinite. We first make the following observation.

Remark 2 Let ρ be a run of a parity two-way AJA A over an infinite word w
such that A does not use the non-local moves y• and •x. Let π be an infinite
strictly-forward path of ρ that starts from a vertex with label (i, q), and let j
be a dominant position with j > i. Then, π visits positions j − 1 and j.

We introduce now the notion of ranking function for memoryless runs of
SAJA. Recall that for the class of coBüchi AFA, a ranking function [19] for a
run is a mapping assigning to each vertex a rank taken from a finite set, with
the restriction that the rank cannot increase along a move in the run. This
ensures that along every infinite path, the rank always converges to a value.
The ranking function is said to be odd [19] if it is guaranteed that for each
infinite path in the run, the convergence value is always odd. If the values
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always converges to an even value, the run is called even. It is known that a
run of a coBüchi AFA is accepting iff there exists an odd ranking function. We
adapt this result to the class of SAJA and we focus on odd ranking functions.

The size of a SAJA stratum 〈ρ, P, F 〉 is the number of main states in P
(we do not take into account the number of secondary states in P ). A coBüchi
stratum 〈C, P, F 〉 is trivial whenever F = ∅. Note that an infinite path of a
SAJA run which gets trapped in a trivial coBüchi stratum is always accepting.

Definition 7 (Odd ranking functions) Let A = 〈Q, q0, δ,F〉 be a SAJA
with Q = M ∪ S, S = 〈C, P, F 〉 be a non-trivial coBüchi stratum of A and
n = |P ∩M| be the size of the stratum. For an infinite word w on Σ and a
memoryless run G = 〈V,E, v0〉 of A over w, a ranking function of the stratum
S for the run G is a function fS : V → {1, . . . , 2n} that satisfies the following:

1. for all (j, q) ∈ V such that q ∈ F , fS(j, q) is even (recall that F ⊆ P ∩M);
2. for all (j, q), (j′, q′) ∈ V such that (j′, q′) is a successor of (j, q) in G and
q, q′ ∈ P ∩M, it holds that fS(j′, q′) ≤ fS(j, q).

Thus, since the image of fS is bounded, for every infinite path π = v0, v1, . . .
of G that gets trapped in the set of main states of the coBüchi stratum S, fS
converges to a value. That is, there is a number l such that fS(vl′) = fS(vl)
for all l′ ≥ l. We say that fS is odd if for all such infinite paths π of G, fS
converges to an odd value (or, equivalently, any of such paths π visits infinitely
many times vertices v such that fS(v) is odd).

Note that in the above definition, if fS is odd, then π is accepting. The
following lemma asserts that the existence of an odd ranking function is also a
necessary condition for a memoryless run of a pure SAJA to be accepting. The
construction in the proof of Lemma 3 is similar to the ranking construction
in [19].

Lemma 3 Let G be a memoryless run of a pure SAJA A over an infinite word
w. Then, G is accepting iff
1. for every non-trivial co-Büchi stratum S = 〈C, P, F 〉, there is an odd rank-

ing function of S for the run G;
2. every infinite path of G which gets trapped in the component of a Büchi

stratum S = 〈B, P, F 〉 satisfies the Büchi acceptance condition F ;
3. for each vertex (0, q) such that q is in the stratum S = 〈ρ, P, F 〉, it holds

that q ∈ F .

Proof Let A = 〈Q, q0, δ,F〉 with Q = M ∪ S.
Recall that in SAJA, moves from secondary states lead to secondary states

as well, and for every coBüchi stratum S = 〈C, P, F 〉, F does not contain
secondary states. Hence, by Definition 7, it follows that Conditions 1–3 in the
lemma imply that the memoryless run G is accepting.

For the converse implication, assume that G = 〈V,E, v0〉 is an accepting
memoryless run over an infinite word w. Conditions 2 and 3 in the lemma
hold. For Condition 1, let S = 〈C, P, F 〉 be a non-trivial coBüchi stratum of
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A and let n = |P ∩M| be the size of the stratum. We need to show that there
is an odd ranking function of S for the accepting run G. In the following, we
construct a ranking function of S for G and show that it is odd. An F -vertex
is a vertex of G associated with a state in F . Let G′ = 〈V ′, E′〉 be a sub-graph
of G and v ∈ V ′. The vertex v is finite in G′ if the set of vertices which are
reachable from v in G′ is finite. The vertex v is F -free in G′ if no F -vertex is
reachable from v in G′. Moreover, for each l ≥ 1, we define

width(G′, l)
def
= |{(l, q) ∈ V ′}|

to be the number of vertices in G′ associated with position l. First, we in-
ductively define an infinite sequence (Gi = 〈Vi, Ei〉)i≥0 of sub-graphs of G as
follows:

– V0 is the set of (P ∩M)-vertices and E0 = E ∩ V0 × V0.

– V2i+1
def
= V2i \ {v | v is finite in G2i} and E2i+1 = E2i ∩ V2i+1 × V2i+1.

– V2i+2
def
= V2i+1 \ {v | v is F -free in G2i+1} and E2i+2 = E2i+1 ∩ V2i+2 ×

V2i+2.

Since G2i+1 is obtained from G2i by removing all the vertices that can
only access finitely many vertices and the number of successors of any vertex
is finite, it follows that every maximal path in the graph G2i+1 is infinite. We
claim that if G2i+1 is not empty, then G2i+1 contains some F -free vertex. By
contradiction, we assume the contrary, which implies that there is an infinite
path π of G2i+1 which visits F -vertices infinitely many times. Since G2i+1 is a
sub-graph of the run G, we obtain that π is an infinite path of the run G which
gets trapped in the coBüchi stratum S = 〈C, P, F 〉 and does not satisfy the
coBüchi acceptance condition F . This is a contradiction since G is an accepting
run. Hence, the claim follows. Since every maximal path in the graph G2i+1 is
infinite, the claim implies that if G2i+1 is not empty, then there is an infinite
path π of G2i+1 which visits only F -free vertices. Now, every infinite path
of the run G is eventually strictly-forward because A satisfies the eventually
syntactical requirement. Consequently, the infinite path π is eventually strictly
forward and, by Remark 2, there is some position l such that for all dominant
positions h of w with h ≥ l, π visits some vertex associated with the position
h. Since all the vertices of π, which are F -free vertices, are removed in G2i+2,
we obtain that for some l ≥ 1 and all the dominant positions h ≥ l,

width(G2i+2, h) ≤ width(G2i+1, h)− 1

Since each step only removes vertices, we obtain that for some l ≥ 1 and all
the dominant positions h ≥ l,

width(G2i+2, h) ≤ width(G0, h)− (i+ 1)

Since G0 contains only P ∩ M-vertices and n = |P ∩ M|, we obtain that for
some l ≥ 1 and for all the dominant positions h ≥ l, G2n does not contain
vertices associated with the dominant position h. Since the set of dominant
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positions h ≥ l is infinite and, in particular, every infinite path of G, which
is eventually strictly forward, visits some dominant position h ≥ l, it follows
that every vertex of G2n is finite in G2n. Thus, we obtain the following result.

Claim 1. G2n+1 is empty.

We define a ranking function fS : V → {1, . . . , 2n} of the stratum S =
〈C, P, F 〉 for the accepting memoryless run G as follows:

fS(v) =

2i if i ≤ n, v ∈ V2i, and v /∈ V2i+1

2i+ 1 if i < n, v ∈ V2i+1, and v /∈ V2i+2

1 otherwise

Note that fS is well-defined since Vi ⊇ Vi+1 for all i ≥ 0. We only need to
show the following.

Claim 2. fS is an odd ranking function of the stratum S for the run G.

Proof of Claim 2. First, we show that fS is a ranking function of S for the
run G, in other words, fS satisfies Properties 1 and 2 of Definition 7. For
Property 1, let (j, q) ∈ V such that q ∈ F . We need to prove that fS(j, q) is
even. Since F ⊆ M ∩ P , (j, q) is a vertex of G0. Moreover, since (j, q) is not
F -free, there is no i ≥ 0 such that (j, q) ∈ V2i+1 and (j, q) /∈ V2i+2. Thus, by
Claim 1, there is i ≤ n such that (j, q) ∈ V2i and (j, q) /∈ V2i+1. By definition
of fS , we obtain that fS(j, q) = 2i and the result follows. For Property 2 of
Definition 7, let (j, q), (j′, q′) ∈ V such that (j′, q′) is a successor of (j, q) in G
and q, q′ ∈ P ∩M. We need to show that fS(j′, q′) ≤ fS(j, q). Note that (j, q)
and (j′, q′) are vertices of G0. By Claim 1, there are 0 ≤ i, i′ ≤ 2n such that
(j, q) ∈ Vi, (j, q) /∈ Vi+1, (j′, q′) ∈ Vi′ , and (j′, q′) /∈ Vi′+1. Moreover, either i is
even and (j, q) is finite in Gi or i is odd and (j, q) is F -free in Gi. Since (j′, q′)
is a successor of (j, q) in G0, it follows that i′ ≤ i. Thus, by definition of fS ,
we obtain that fS(j′, q′) ≤ fS(j, q), and the result holds.

We show now that fS is odd. Let π = v0, v1, . . . be an infinite path of G
that gets trapped in the set of main states of the non-trivial coBüchi stratum
S. We need to show that fS converges to an odd value along π. We assume
the contrary and derive a contradiction. Since fS is a ranking function of S
for the run G, there is k ≥ 0 such that for all h ≥ k, fS(vh) = fS(vk) and
fS(vk) is even. By definition of fS , this means that there is i ≤ n such that
vh ∈ V2i and vh /∈ V2i+1 for all h ≥ k. This entails that vh is finite in G2i

for all h ≥ k. Hence, vk is finite in G2i and there is an infinite path from vk
in G2i, which is a contradiction. Thus, the result follows, which concludes the
proof of Claim 2.

This concludes the proof of Lemma 3. ut

Now, based on Lemma 3 and the classical breakpoint construction [25], we
give a characterization of the accepting memoryless (1, q0)-runs of a pure SAJA
A = 〈Q, q0, δ,F〉. Our characterization is given in terms of infinite sequences
of finite sets, called regions, satisfying determined requirements which can be
checked by Büchi NVPA.
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Definition 8 (Regions) Let A = 〈Q, q0, δ,F〉 be a pure SAJA. A rank of a
main state q of a coBüchi stratum is a natural number in {1, . . . , 2n}, where
n is the size of the stratum of q.

A region of A is a triple (R,O, f), where R ⊆ Q is a set of states, O ⊆ R,
and f is a mapping assigning to each non-trivial coBüchi main state q ∈ R a
rank of q such that f(q) is even if q ∈ F , where 〈C, P, F 〉 is the stratum of q. A
state q of A is accepting with respect to f if (1) either q is an accepting state
of a Büchi stratum, or (2) q belongs to a coBüchi stratum and, additionally,
f(q) is odd if q ∈ R and q is a main state of some non-trivial coBüchi stratum.
The stop region is the region given by (R, ∅, ∅) where R is the set of states
belonging to the F -components of the negative strata 〈−, P, F 〉 of A.
Let w ∈ Σω. An infinite sequence of regions ν = (R1, O1, f1), (R2, O2, f2), . . .
is good with respect to w if for all i ≥ 1, there is a mapping gi assigning to
each q ∈ Ri a minimal model of δ(q, w(i)) such that the following holds, where
Acci denotes the set of accepting states of A with respect to fi, and (R0, ∅, ∅)
is the stop region:

– Initialization. q0 ∈ R1 and O1 = R1 \Acc1.
– For all p ∈ Ri and (dir, q, q′) ∈ gi(p), let (j, p′) be the effect of (dir, q, q′)

with respect to (w, i); then, p′ ∈ Rj (δ-consistency with respect to gi).
Moreover, if p and p′ are main states in the same non-trivial coBüchi stra-
tum, then fj(p

′) ≤ fi(p) (Ranking requirement with respect to gi).
– Miyano-Hayashi requirement with respect to gi. For all p ∈ Oi and (dir, q, q′) ∈
gi(p) such that dir ∈ {→,y}, let (j, p′) be the effect of (dir, q, q′) w.r.t.
(w, i) (note that j 6= 0); if p′ /∈ Accj , then p′ ∈ Oj .
The infinite sequence of regions ν is accepting with respect to w precisely

when there are infinitely many dominant positions k > 1 of w such that
Ok−1 = ∅ and Ok = Rk \Acck.

Intuitively, the infinite sequence of regions ν represents a graph G = 〈V ⊆
N×Q,E, v0〉 where v0 = (1, q0) and for all input positions i ≥ 1, Ri is the set
of vertices of G associated with position i. The initialization and δ-consistency
requirement ensure that G is a memoryless (1, q0)-run of A over w and for
each vertex (0, q) of the run, state q is in the F -component of some negative
stratum 〈−, P, F 〉. Additionally, the ranking requirement ensures that for each
non-trivial coBüchi stratum S, there is a ranking function fS of S for the run
G. By Lemma 3, the run is accepting if fS is odd and Condition 2 in Lemma 3
holds. This, in turn, is equivalent to require that every infinite path of G visits
infinitely many vertices in Acc, where Acc is the set of G-vertices (i, q) such
that q ∈ Acci. We show in the proof of the following Theorem 4 that this
last condition is satisfied iff there is an infinite sequence of dominant positions
1 = h1 < h2 < . . . of w such that for all i ≥ 1, any finite path of G that starts
at position hi and ends at position hi+1 − 1 visits a vertex in Acc. Thus, the
Miyano-Hayashi and the acceptance requirements on the sets Oi ensure the
existence of such an infinite sequence of dominant positions hj (in particular,
Ohj−1 = ∅ and Ohj

= Rhj
\ Acchj

for all j > 1). Formally, we obtain the
following result.
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Theorem 4 (Characterization theorem for pure SAJA) For a pure SAJA
A and an infinite word w over Σ, w ∈ L(A) iff there is an infinite sequence
of regions of A which is good and accepting with respect to w.

Proof Let A = 〈Q, q0, δ,F〉 be a pure SAJA with Q = M ∪ S and w be an
infinite word over Σ.

“⇐” Assume that there is an infinite sequence ν of regions of A of the form
ν = (R1, O1, f1), (R2, O2, f2), . . . which is good and accepting with respect to
w. We need to show that w ∈ L(A). For all i ≥ 1, let Acci be the set of
accepting states of A with respect to fi, and gi be the mapping assigning to
each q ∈ Ri a minimal model of δ(q, w(i)) such that ν satisfies the δ-consistency
requirement, the ranking requirement, and the Miyano-Hayashi requirement
w.r.t. gi. Let Q0 be the set of states p′ ∈ Q such that (0, p′) is the effect of
(dir, q, q′) w.r.t. (w, i) for some i ≥ 1, p ∈ Ri, and (dir, q, q′) ∈ gi(p). Note that
the δ-consistency requirement ensures that Q0 contains only states belonging
to the F -components of the negative strata 〈−, P, F 〉 of A. We define a graph
G = 〈V,E, v0〉 and show that it is an accepting memoryless (1, q0)-run of A
over w. The graph G is defined as follows:

– v0 = (1, q0), V ⊆ N×Q such that: (i) (0, q) ∈ V iff q ∈ Q0 and (ii) for all
i > 0, (i, q) ∈ V iff q ∈ Ri;

– there is an edge from (i, q) to (j, q′) iff i > 0 and for some (dir, p, p′) ∈ gi(q),
(j, q′) is the effect of (dir, p, p′) w.r.t. (w, i).

Since the sequence of regions ν satisfies the initialization requirement and
the δ-consistency requirement with respect to gi for all i ≥ 1,G is a memoryless
(1, q0)-run of A over w. It remains to be shown that G is accepting. We assume
the contrary and derive a contradiction. Then, since A is a SAJA and the
acceptance condition for the vertices (0, q) is satisfied, there must be an infinite
path π = (h1, q1), (h2, q2), . . . of G such that π is strictly forward and one of
the following holds:

– for some Büchi stratum 〈B, P, F 〉, qi ∈ P \ F for all i ≥ 1. Since qi ∈ Rhi
,

we obtain that qi ∈ Rhi
\Acchi

for all i ≥ 1.
– for some non-trivial coBüchi stratum 〈C, P, F 〉, qi ∈ P ∩M for all i ≥ 1, and

for infinitely many i ≥ 1, qi ∈ F . 3 Since ν satisfies the ranking requirement
w.r.t. ghi

, fhi+1
(qi+1) ≤ fhi

(qi) for all i ≥ 1. It follows that there is l ≥ 1
such that ql ∈ F and for all i ≥ l, fhi

(qi) = fhl
(ql). In particular, fhl

(ql)
is even. Hence, for all i ≥ l, qi ∈ Rhi

\Acchi
.

Thus, we obtain that there is an infinite path π = (h1, q1), (h2, q2), . . . of
G which is strictly forward and such that qi ∈ Rhi

\Acchi
for all i ≥ 1. Hence,

Rhi
\Acchi

6= ∅ for all i ≥ 1. Since π is strictly forward, by Remark 2, π must
visit all the positions j − 1 and j of w such that j > h1 and j is a dominant
position of w. Thus, since the sequence of regions ν is accepting, the following

3 Recall that F ⊆ M and moves from secondary states lead to secondary states as well.
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holds: (i) there is ` ≥ 1 such that Oh`
= Rh`

\Acch`
6= ∅ and (ii) for infinitely

many i ≥ l, Ohi = ∅. On the other hand, since ν satisfies the Miyano-Hayashi
requirement w.r.t. the mappings gj , we deduce that Ohi

6= ∅ for all i > `. We
have obtained a contradiction. Hence, G is an accepting memoryless (1, q0)-run
of A over w, and we are done.

“⇒” Let w ∈ L(A). Hence, by Proposition 1, there is an accepting memo-
ryless (1, q0)-run G = 〈V,E, v0〉 of A over w. By Lemma 3, for every non-trivial
coBüchi stratum S of A, there is an odd ranking function fS of S for the run
G. Let Acc be the set of vertices (i, q) of the run G such that (1) either q is
an accepting state of a Büchi stratum, or (2) q belongs to a coBüchi stratum
S and, additionally, fS(i, q) is odd if q is a main state in some non-trivial
coBüchi stratum. Since G is accepting and every infinite path of G gets even-
tually trapped either in a Büchi stratum or a coBüchi stratum, by Definition 7,
every infinite path of G visits infinitely many times vertices in Acc. We define
an infinite sequence of regions ν = (R1, O1, f1), (R2, O2, f2), . . . and show that
it is accepting and good with respect to w, which implies the desired result.
For all i ≥ 1, Ri and fi are defined as follows:

– Ri
def
= {(i, q) | (i, q) ∈ V for some q ∈ Q};

– for all non-trivial coBüchi strata S = 〈C, P, F 〉 and q ∈ Ri∩P ∩M, fi(q) =
fS(i, q).

Let Acci be the set of the accepting states of A with respect to fi. Note
that for all q ∈ Ri, q ∈ Acci iff (i, q) ∈ Acc.

Since G is a run over w, for all i ≥ 1, there must be a mapping gi over Ri
such that for all q ∈ Ri, gi(q) is a minimal model of δ(q, w(i)) and the sequence
ν satisfies the δ-consistency requirement with respect to gi. Moreover, since
for every non-trivial coBüchi stratum S of A, fS is an odd ranking function of
S for the run G, the sequence ν satisfies the ranking requirement with respect
to gi. We need to define the sets Oi and show that the resulting sequence is
accepting and satisfies the initialization requirement and the Miyano-Hayashi
requirement. For this, we use the following claim.

Claim 3. There is an infinite sequence 1 = h1 < h2 < . . . of dominant
positions of w such that for all j ≥ 1 and finite paths of G of the form
π = (hj , p), . . . , (hj+1 − 1, q), π visits some state in Acc.

First, we show that the result follows from the claim above and then we
prove the claim. So, let 1 = h1 < h2 < . . . be an infinite sequence of dominant
positions of w satisfying the claim above. For every i ≥ 1, let j ≥ 1 be the
unique integer such that hj ≤ i < hj+1. Then, Oi is defined as follows:

– Oi is the set of states q such that there is a finite path of G of the form
π = (hj , p), . . . , (i, q) which does not visit vertices in Acc.

Note that Oi∩Acci = ∅ and Oi ⊆ Ri. By construction and the claim above,
we have that O1 = R1 \ Acc1 and for all j > 1, Ohj−1 = ∅ and Ohj

= Rhj
\
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Acchj . Hence, the infinite sequence of regions ν = (R1, O1, f1), (R2, O2, f2), . . .
is accepting and satisfies the initialization requirement because q0 ∈ R1. For
the Miyano-Hayashi requirement with respect to gi, let p ∈ Oi, (dir, q, q′) ∈
gi(p) with dir ∈ {→,y}, and (k, p′) be the effect of (dir, q, q′) with respect to
(w, i) such that p′ /∈ Acck, and then (k, p′) /∈ Acc. We need to show that p′ ∈
Ok. Let j ≥ 1 such that hj ≤ i < hj+1. Since Oi 6= ∅ and Ohj+1−1 = ∅, we have
that i < hj+1− 1. Moreover, since hj+1 is a dominant position of w, it follows
that k < hj+1. Hence, since p ∈ Oi and (k, p′) is a successor of (i, p) in G which
is not in Acc, we obtain that p′ ∈ Ok. Thus, ν = (R1, O1, f1), (R2, O2, f2), . . .
is an infinite sequence of regions which is good and accepting w.r.t. w. We
only need to prove Claim 3.

Proof of Claim 3. Fix k ≥ 1 such that k is a dominant position of w. Note that
the first position of w is dominant. For each i ≥ 1, let Ti be the set of states
q ∈ Q such that there is a finite path of G of the form (k, p), . . . , (i, q) which
does not visit Acc-vertices. Since k is arbitrary, in order to prove Claim 3, it
suffices to show that there is a dominant position m > k such that Tm−1 = ∅.
Let K = {(i, q) ∈ N×Q | q ∈ Ti}. Note that K ∩Acc = ∅. First, we prove that
the set K is finite. We assume the contrary and derive a contradiction. Let
GK be the sub-graph of G given by the restriction of G to the set of vertices
K. Note that by construction, every vertex in GK is reachable in GK from a
vertex of the form (k, p). Moreover, each vertex of GK has only finitely many
successors. Since GK is infinite and the set of vertices of the form (k, p) is finite,
by König’s Lemma, GK contains an infinite path π. This is a contradiction
since π does not visit vertices in Acc and π is also an infinite path of G. Thus,
the set K = {(i, q) ∈ N×Q | q ∈ Ti} is finite. It follows that there is j ≥ 1 such
that for all i ≥ j, Tj = ∅. Since the set of dominant position of w is infinite, we
obtain that there is a dominant position m > k such that Tm−1 = ∅. Hence,
the result follows, which concludes the proof of Claim 3 and Theorem 4 as
well. ut

4.4 From SAJA to Büchi ω-NVPA

Given a SAJA A we show how to exploit Remark 1, Definition 8 and Theo-
rem 4 to construct for an equivalent Büchi ω-NVPA whose set of control states
and stack symbols range over the set of regions of A. Formally, we show the
following result.

Theorem 5 For a SAJA A = 〈M ∪ S, q0, δ,F〉, one can build in exponential
time a Büchi ω-NVPA P accepting L(A) with 2O(|S|+|M|·log(k)) states and stack
symbols, where k is the size of the largest non-trivial coBüchi stratum of A if
such a stratum exists, and a fixed constant c > 1 otherwise.

Proof Let A = 〈Q, q0, δ,F〉 be a SAJA over Σ, where Q = M ∪ S. By Re-
mark 1, we can assume that A is pure. We construct a Büchi ω-NVPA P =
〈P, P0, Γ,∆, F 〉 such that that given an input word w ∈ Σω, P accepts w if and
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only if there is an infinite sequence of regions of A which is good and accepting
w.r.t. w. At each step, the automaton keeps track in its control state of the
guessed region associated with the current input position i, the guessed region
associated with the previous input position (if i > 1), and a flag which is 1 iff
i is a dominant position. Whenever i is a call position, then P either guesses
that i is pending along w, or i is a matched call position. In the first case, P
pushes on the stack the special symbol pending; the guess is correct iff the
symbol pending in never popped from the stack. In the second case, P pushes
on the stack the current region, the current flag `, and the guessed region Rr
associated with the matched return position. The guess is correct if and only if
the symbol on the stack is eventually popped at a position j whose region isRr
and such that the flag associated with the next position j + 1 is `. The Büchi
acceptance condition of P ensures that the symbol pushed on the stack is
eventually popped. Note that the automaton can check locally, using its tran-
sition relation, whether the infinite sequence of regions guessed satisfies the
δ-consistency requirement, the ranking requirement, and the Miyano-Hayashi
requirement. Finally, the Büchi acceptance condition of P is also used to check
that the guessed sequence of regions is accepting.

In order to simplify the formal definition of P, we introduce additional
notation. For a region R = (R,O, f) and σ ∈ Σ, a (R, σ)-model is a mapping
assigning to each q ∈ R, a minimal model of δ(q, σ). Now, we give a notion for
representing the effects of moves (dir, q, q′) of the SAJA A at the current input
symbol σ. We use the term ‘left’ for representing that the automaton moves
to state q, and ‘right’ for a move to state q′. Given a direction dir ∈ {ε,→,←
,y,x}, two regions R = (R,O, f) and Rdir = (Rdir, Odir, fdir), and a (R, σ)-
model g for some σ ∈ Σ, we say that R is left (resp., right) dir-consistent
w.r.t. g and Rdir if the following holds:

– For all p ∈ R and (dir, q, q′) ∈ g(p), let p′ = q (resp., p′ = q′). Then,
p′ ∈ Rdir (δ-consistency requirement). Moreover, if p and p′ are in the same
non-trivial coBüchi stratum, then fdir(p

′) ≤ f(p) (Ranking requirement).
– Miyano-Hayashi requirement. For all p ∈ O and (dir, q, q′) ∈ g(p), let p′ = q

(resp., p′ = q′). If dir ∈ {→,y} and p′ is not accepting w.r.t. fdir, then
p′ ∈ Odir.

Additionally, if dir ∈ {←,x}, we say that R is initially dir-consistent w.r.t.
g if for all p ∈ R and (dir, q, q′) ∈ g(p), q′ is in the F -component of some
negative stratum 〈−, P, F 〉 of A.

In the following, an internal transition (p,2, p′) of a Büchi ω-NVPA is

denoted by p
2−→ p′, a push transition (p, c, p′, γ) is denoted by p

c,push(γ)−→ p′,

and a pop transition (p, r, γ, p′) is denoted by p
r,pop(γ)−→ p′. Formally, the Büchi

NVPA P = 〈P, P0, Γ,∆, F 〉 is defined as follows:

– P = Γ = {pending} ∪ (REG∪ {∅})×REG× {0, 1}, where REG is the set
of regions of A.

– P0 is the set of states of the form (∅, (R,O, f), 1) such that q0 ∈ R and
O = R \Acc, where Acc is the set of accepting states of A w.r.t. f .
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– F consists of the states of the form ((R−, ∅, f−), (R,O, f), 1) such that
O = R \Acc, where Acc is the set of accepting states of A w.r.t. f .

Finally, the transition relation ∆ consists of the following transitions.

Internal transitions: (R−,R, `)
2−→ (R,R+, `

′) such that `′ = ` and there is
a (R,2)-model g so that
– R is left ε-consistent with respect to g and R, and R is left →-consistent

and right y-consistent with respect to g and R+.
– If R− 6= ∅, then R is left←-consistent and right x-consistent with respect

to g and R−. Otherwise, for all dir ∈ {←,x}, R is initially dir-consistent
with respect to g.

Push transitions: (R−,R, `)
c,push(γ)−→ (R,R+, `

′) such that there is a (R, c)-
model g so that
– R is left ε-consistent with respect to g and R, and R is left →-consistent

with respect to g and R+.
– If R− 6= ∅, then R is left←-consistent and right x-consistent with respect

to g and R−. Otherwise, for all dir ∈ {←,x}, R is initially dir-consistent
with respect to g.

– If γ = pending, then ` = `′ = 1 and R is right y-consistent with respect
to g and R+. Otherwise, `′ = 0, γ is of the form (R,Rr, `) for some region
Rr, and R is left y-consistent with respect to g and Rr.

Pop transitions: (R−,R, `)
r,pop(γ)−→ (R,R+, `

′) such that there is a (R, r)-
model g so that
– R is left ε-consistent with respect to g and R, and R is left →-consistent

and right y-consistent with respect to g and R+.
– IfR− 6= ∅, thenR is left←-consistent with respect to g andR−. Otherwise,

for all dir ∈ {←,x}, R is initially dir-consistent with respect to g.
– If γ = ⊥, then ` = `′ = 1 and R is right x-consistent with respect to g

and R− if R− 6= ∅.
– If γ 6= ⊥, then ` = 0, γ is of the form (Rc,R, `′) for some region Rc, and
R is left x-consistent with respect to g and Rc.

By construction, w ∈ L(P) iff there is a run of P over w of the form

((∅,R1, `1), β1)
w(1)−→ ((R1,R2, `2), β2) . . .

w(n)−→ ((Rn,Rn+1, `n+1), βn+1) . . .
such that the following hold:

– R1,R2, . . . is a infinite sequence of regions which is good with respect to
w;

– for all i ≥ 1, `i = 1 iff i is a dominant position of w;
– for infinitely many j ≥ 1, Rj = (Rj , ∅, fj), `j+1 = 1, and Rj+1 =

(Rj+1, Rj+1 \ Accj+1, fj+1), where Accj+1 is the set of accepting states
of A with respect fj+1.
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By Theorem 4, it follows that L(P) = L(A). Moreover, the number of regions
is at most 22|Q| ·2|M|·log(2k), where k is the size of the largest non-trivial coBüchi
stratum of A if such a stratum exists, and the constant 1 otherwise. Hence,
Theorem 5 follows. ut

5 Translation of VRE in subclasses of AJA on finite words

In the translation of VLTL formulas into SAJA, we use two subclasses of AJA
over finite words (for which we give different acceptance notions). These two
classes are introduced to handle the VRE associated with the future and past
temporal operators. The approach proposed here substantially differs from the
alternating automata-theoretic approach for RLTL, which is crucially based on
the use of non-deterministic automata for handling the regular expressions of
the temporal modalities4.

The rest of this section is organized as follows. First, we introduce two
basic classes of AJA over finite words, namely, forward and backward AJA with
main states (Definition 9). Then, we introduce in Definition 10 some semantic
constraints on the runs of the above two classes of AJA which are crucial for
allowing a correct translation of VLTL formulas into equivalent SAJA. We show
that these semantic requirements can be syntactically captured by defining
two suitable subclasses of forward and backward AJA, that we call forward
and backward MAJA (Definition 11). We establish that VRE can be translated
in polynomial time into equivalent forward and backward MAJA. Moreover,
in Subsection 5.1, we demonstrate that for the restricted class of well-formed
VRE, the above translation can be done compositionally and the resulting
MAJA has a number of states which is linear in the size of the VRE.

Remark 3 Without loss of generality, for the runs of two-way AJT over finite
words, we restrict ourselves to memoryless runs.

Definition 9 (Forward and backward AJA with main states) A forward
AJA with main states is an AJT with main states A = 〈M ∪ S, q0, δ,Acc〉
augmented with a set Acc of accepting states such that:

– only moves (dir, q, q′) with dir ∈ {→,y,y•} are allowed;
– δ(q, σ) = false for all accepting main states q and σ ∈ Σ.

Similarly, a backward AJA with main states is such that:

– only moves (dir, q, q′) with dir ∈ {ε,←,x, •x} are allowed;
– δ(q, σ) = false for all accepting main states q and σ ∈ Σ.

If A is forward, then a run of A over a finite word w is accepting if for all
vertices of the form (|w| + 1, q), q ∈ Acc. Similarly, if A is backward, then a
run is accepting if for all vertices of the form (0, q), q ∈ Acc. The language
L(A) of A is the set of non-empty finite words w on Σ such that there is an
accepting (1, q0)-run on w (or an accepting (|w|, q0)-run if A is backward).

4 AJA are strictly more expressive than their non-deterministic counterpart [10].
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A pseudo run of A is defined as a run of A but for all accepting main states
q and σ ∈ Σ, we replace the value false of δ(q, σ) with true. The notion of
pseudo run is introduced for converting a run of a AJA A over a subword w[i, j]
of an infinite word w in a pseudo run of A over w. In order to correctly handle
the VRE expressions in the translation of VLTL formulas into SAJA, we need
to impose additional restrictions on the above two classes of AJA (which intu-
itively allow to simulate the behavior of non-deterministic automata), ensuring
at the same time that these restrictions still allow to capture VRE efficiently.
These restrictions in their semantic form are the following ones.

Definition 10 (Semantic constraints on AJA with main states)
J1. In each (pseudo) run starting from a main state, there is exactly one

maximal path (the main path) from the initial vertex which visits only
main states. Moreover, each vertex of the run which is not visited by the
main path is associated with a secondary state.

J2. In a pseudo run over an infinite word, if the main path ends at a vertex
(j, q), then either j = 0 or q is accepting.

J3. In a pseudo run over an infinite word, if the main path visits an accepting
state, then there is no infinite path from a secondary vertex.

J4. Let the given AJA A be forward (resp., backward). Then, for all infinite
words w on Σ and 1 ≤ i ≤ j, w[i, j] ∈ L(A) iff there is a pseudo (i, q0)-run
(resp., pseudo (j, q0)-run) of A over the infinite word w whose main path
visits position j + 1 (resp., i − 1) in an accepting main state, the latter
being obtained by a local move.

Intuitively, the main path simulates the unique path of a run in a non-deterministic
automaton. The semantic requirements J2–J4 allow to deal with the sequenc-
ing and power operators in the translation of VLTL formulas into SAJA. Now,
we show that requirements J1–J4 can be syntactically captured. In particular,
these syntactical constraints also ensure that in a (pseudo) run, the secondary
vertices are associated with positions inside minimally well-matched subwords
of the input word. The forward AJA with main states satisfying these syntac-
tical requirements are called forward AJA with main paths (MAJA). Backward
MAJA is defined similarly, and we simply use MAJA when the direction is clear
from the context.

Definition 11 (Forward and backward MAJA) A forward MAJA is a
tuple A = 〈M ∪ S ∪ {⊥M,⊥S}, q0, δ,Acc〉 such that 〈M ∪ S ∪ {⊥M,⊥S}, q0, δ〉
is an AJT with main states containing a special main state ⊥M /∈ M and a
special secondary state ⊥S /∈ S. Moreover, Acc is a set of accepting states, and
for all states q and σ ∈ Σ, the following holds:

S1. q ∈ M: if σ /∈ Σcall , then δ(q, σ) is a disjunction of moves of the form (→
, p, p) where p ∈ M; otherwise, δ(q, σ) is a disjunction of conjuncts θ, where
either θ = (dir, p,⊥M) ∧ (→, p′, p′) for some dir ∈ {y,y•}, p ∈ M \ Acc
and p′ ∈ S, or θ = (→, p, p) for some p ∈ M. Moreover, if q ∈ Acc, then
δ(q, σ) = false.
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S2. q ∈ S: (i) if σ ∈ Σcall , then δ(q, σ) is a disjunction of conjuncts of the
form (y•, p,⊥S) ∧ (→, p′, p′), where p, p′ ∈ S, (ii) if σ ∈ Σint , then δ(q, σ)
is a disjunction of moves of the form (→, p, p) where p ∈ S, and (iii) if
σ ∈ Σret , then δ(q, σ) ∈ {true, false}.

S3. q ∈ {⊥M,⊥S}: δ(q, σ) = false.
S4. S ∪ {⊥S} ⊆ Acc, q0 ∈ M \Acc, ⊥M /∈ Acc, and no moves lead to q0.

Note that the empty disjunction is false. A backward MAJA is defined sim-
ilarly but we switch calls and returns, →-moves for ←-moves, y-moves for
x-moves, and y•-moves for •x-moves.

Note that MAJA correspond to a syntactical subclass of AJA with main
states. Conditions S1 and S2 in Definition 11 (and their variants for backward
MAJA) ensure that in each (pseudo) run of a MAJA A starting from a main
state, there is exactly one maximal path π (the main path) from the initial
vertex which visits only vertices associated with main states. Moreover, each
vertex of the run which is not visited by the main path is associated with
a secondary state. Hence, the fulfillment of requirement J1 of Definition 10
follows. By Definition 11, for all main states q and input symbols σ, δ(q, σ) 6=
true. Therefore, by J1 and definition of pseudo run, the fulfillment of the
semantic requirement J2 follows.

With regard to the semantic requirements J3-J4, fix a forward MAJA A
with initial state q0 (the backward case is similar). Requirement S4 in Defini-
tion 11 ensures that the empty string ε is not accepted byA, and the fulfillment
of the acceptance condition depends only on the main path. Hence, a run of
A over a finite word is accepting iff the main path visits an accepting state.
Now, let us consider a (pseudo) run G of the forward MAJA A over a finite or
infinite word w starting from a main vertex. Assume that the main path of G
visits an accepting main state, which also implies that the main path ends at
an accepting vertex. Then, conditions S1–S4 in Definition 11 ensure that for
every path π of G from a secondary vertex (i, p), the following holds: p 6= ⊥S

and the next unmatched return position j along the suffix of w from i is always
defined, and π is finite and never visits positions after j. In particular, there are
two non-accepting main vertices (jc, qc) and (k, qr) such that jc is a matched
call position with matching return jr, k ∈ {jr, jr + 1} and jc ≤ i ≤ jr. Hence,
the semantic requirement J3 holds. Moreover, it follows that for all infinite
words w and positions 1 ≤ i ≤ j, there is a (1, q0)-run of A over the finite
word w[i, j] whose main path visits an accepting vertex iff there is a pseudo
(i, q0)-run of A over the infinite word w whose main path visits position j + 1
in an accepting main state (note that Definition 11 ensures that this accepting
main state is obtained by a local move). Thus, since a run of A over a finite
word is accepting iff the main path visits an accepting state, the fulfillment
of the semantic requirement J4 follows. Consequently, we obtain the following
result.

Proposition 2 MAJA satisfy the semantic requirements J1–J4 of Definition 10.
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Remark 4 MAJA with no secondary states correspond to standard finite-state
non-deterministic automata.

By an adaptation of known results, we show that in the general case, VRE
can be translated in polynomial time into equivalent MAJA.

Theorem 6 (From unrestricted VRE to MAJA) Given a VRE α, one can
build in polynomial time a forward (resp., backward) MAJA A with O(|α|)
main states and O(|α|4) secondary states such that L(A) = L(α) \ {ε}.

Proof First, we introduce the notion of reverse NVPA. A reverse NVPA is
defined as an NVPA with the difference that the automaton pushes onto the
stack on reading returns, pops the stack on reading calls, and does not use the
stack on internal actions. Formally, a reverse NVPA is a tuple 〈Q,Q0, Γ,∆, F 〉,
where Q,Q0, Γ and F are defined as for NVPA and ∆ ⊆ (Q×Σret ×Q×Γ )∪
(Q × Σcall × (Γ ∪ {⊥}) × Q) ∪ (Q × Σint × Q). Essentially, a reverse NVPA
over a pushdown alphabet Σ corresponds to an ordinary NVPA operating over
the pushdown alphabet obtained from Σ by switching call and returns. The
quadratic-time translation from VRE to NVPA given in [11,12] can be easily
adapted for obtaining a quadratic-time translation from VRE α to reverse
NVPA accepting the reverse of L(α). Hence, the following holds:

Claim 4. Given a VRE α, one can build in quadratic time an NVPA P and a
reverse NVPA Pr accepting L(α) and the reverse of L(α), respectively, with
O(|α|) states and O(|α|2) stack symbols.

By Theorem 4 in [10], given an NVPA P with n states and s stack symbols,
one can construct an equivalent one-way AJA A over finite words with O(n2s)
states. The constructed AJA A in [10] is a variant of a forward MAJA, where
y•-moves are not allowed. It is easy to convert in linear-time A into a forward
MAJA accepting L(P) \ {ε} with O(n) main states and O(n2s) secondary
states. The same construction can be used to convert a reverse NVPA Pr with
n states and s stack symbols into a backward MAJA with O(n) main states
and O(n2s) secondary states, accepting the reverse of L(Pr) \ {ε} by just
switching calls and returns, and forward directions with the corresponding
backward directions. By the claim above, the theorem follows. ut

5.1 Compositional translation of well-formed VRE into MAJA

In this section, we show that well-formed VRE can be compositionally trans-
lated in polynomial time into equivalent forward and backward MAJA having
a number of states which is linear in the size of the given VRE. Our approach
exploits an additional syntactical subclass of MAJA that captures more effi-
ciently the restricted class of well-matched VRE. The additional syntactical
constraints are used to implement in an efficient way M -substitution and S-
closure in well-matched VRE. Note that thanks to the fulfillment of the se-
mantic requirements J1–J4 of Definition 10, the concatenation and the Kleene
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closure operators can be handled in a way analogous to the standard transla-
tion of regular expressions in non-deterministic automata.

For a MAJA A with transition function δ, we say that a main state q does
not distinguish return symbols if whenever there is a return r ∈ Σret such that
δ(q, r) contains occurrences of accepting main states, then all returns r′ ∈ Σret

δ(q, r′) contain occurrences of accepting main states as well. Similarly, we say
that a main state q does not distinguish call symbols, if whenever there is a
call c ∈ Σcall such that δ(q, c) contains occurrences of accepting main states,
then all calls c′ ∈ Σcall , δ(q, c

′) contain occurrences of accepting main states
as well.

Definition 12 A matched-call forward MAJAA = 〈M∪S∪{⊥M,⊥S}, q0, δ,Acc〉
is a forward MAJA satisfying the following additional syntactical constraints
for all c ∈ Σcall :
1. for all q ∈ M, δ(q, c) does not contain atoms of the form (→, p, p) with
p ∈ M;

2. for each atom (y, p,⊥M) in δ(q0, c), the main state p does not distinguish
return symbols.

A matched-return backward MAJA is a backward MAJA which satisfies similar
constraints but switching calls and returns, switching→-moves with←-moves,
and switching y-moves with x-moves.

By Definitions 11 and 12, a matched-call forward MAJA accepts only words
with no pending calls, and a matched-call backward MAJA accepts only words
with no pending returns. The additional syntactical constraint given by Def-
inition 12(2) (and its version for matched-return backward MAJA) is used to
implement in an efficient way M -substitution and S-closure in well-matched
VRE. The polynomial-time translation of well-formed VRE into MAJA is based
on the following two Lemmata 5 and 7, which show that the considered sub-
class of MAJA is efficiently closed under union, concatenation, Kleene closure,
M -substitution, and S-closure. By “efficiently” we mean that for each opera-
tion, the construction outputs a MAJA whose size is linear in the sizes of the
input MAJA. In order to obtain these results, we first make some observations
on the behavior of MAJA which easily follow from Definition 11. Note that
the use of y•-moves instead of y-moves from secondary states associated with
call positions in forward MAJA (and similarly for backward MAJA), as estab-
lished by requirement S2 in Definition 11, is crucial for ensuring Property 2
of the following Lemma 4. On the other hand, Property 2 of Lemma 4 allows
us to apply simple constructions (see Lemma 7) for showing that forward and
backward MAJA are efficiently closed under M -substitution and S-closure.

Lemma 4 Let A be a forward or backward MAJA and G be an accepting
(pseudo) (i, q)-run of A over a finite word w, where q is a main state and
i ∈ Pos(w). Then, the following holds.
1. For all G-vertices vm = (jm, pm) and vs = (js, ps) such that pm is a main

state, ps is a secondary state, and vs is reachable from vm in G, it holds
that ps 6= ⊥S and:
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– If A is forward then jm is a matched-call in w with matching return jr
and jm < js ≤ jr. Moreover, vm has either a main successor of the form
(jr, pr), which is obtained by applying a move of the form (y, pr,⊥M),
or a main successor of the form (jr+1, pr), which is obtained by applying
a move of the form (y•, pr,⊥M).

– If A is backward then jm is a matched-return in w with matching call jc
and jc ≤ js < jm. Moreover, vm has either a main successor of the form
(jc, pc), which is obtained by applying a move of the form (x, pc,⊥M),
or a main successor of the form (jc−1, pc), which is obtained by applying
a move of the form ( •x, pc,⊥M).

2. For every position j along w, it holds that
– A is forward: if j is not a return position, then there is at most one
G-vertex associated with j. If, instead, j is a return position, there is at
most one main G-vertex and at most one secondary G-vertex associated
with j. Moreover, if i ≤ j and there is a G-vertex associated with a
position k ≥ j, then there is a G-vertex associated with position j.

– A is backward: if j is not a call position, then there is at most one G-
vertex associated with j. If, instead, j is a call position, there is at most
one main G-vertex and at most one secondary G-vertex associated with
position j. Moreover, if j ≤ i and there is a G-vertex associated with a
position k ≤ j, then there is a G-vertex associated with position j.

We first show that MAJA are closed under union, concatenation, and Kleene
closure. Moreover, as for the class of non-deterministic finite-state automata,
the constructions just require the use of an additional state.

Lemma 5 Let A and A′ be two forward (resp., backward) MAJA with k and
k′ states respectively. Then, one can construct in linear time
– Union: a forward (resp., backward) MAJA accepting L(A) ∪ L(A′) with at

most k + k′ + 1 states;
– Kleene closure: a forward (resp., backward) MAJA accepting [L(A)]∗ \ {ε}

with k + 1 states;
– Concatenation: three forward (resp., backward) MAJA accepting L(A) ·
L(A′), (L(A)∪{ε}) · L(A′), and L(A) · (L(A′)∪{ε}), respectively, with at
most k + k′ + 1 states.

Moreover, the constructed MAJA are matched-call (resp., matched-return) if
A and A′ are matched-call (resp., matched-return).

Proof We illustrate the constructions one by one.

Construction for Union. The construction for forward MAJA, which holds for
backward MAJA as well, is given in Fig. 1, where q0∪ is a fresh main state.
Since A and A′ are forward MAJA, by construction, A∪ is a forward MAJA
accepting L(A) ∪ L(A′), which is matched-call if A and A′ are matched-call.
The construction for backward MAJA is analogous.

Construction for Kleene closure. For forward MAJA, the construction is illus-
trated in Fig. 1, where q0∗ is a fresh main state. For backward MAJA, we simply
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A = 〈M ∪ S ∪ {⊥M,⊥S}, q0, δ,Acc〉 A′ = 〈M′ ∪ S′ ∪ {⊥M,⊥S}, q′0, δ′,Acc′〉
(M ∪ S) ∩ (M′ ∪ S′) = ∅

Union: A∪ = 〈M ∪ S ∪M′ ∪ S′ ∪ {⊥M,⊥S} ∪ {q0∪}, q0∪, δ∪,Acc ∪Acc′〉

δ∪(q, σ) =


δ(q0, σ) ∨ δ′(q′0, σ) if q = q0∪
δ(q, σ) if q ∈ M ∪ S
δ′(q, σ) if q ∈ M′ ∪ S′

false if q ∈ {⊥M,⊥S}

Kleene closure: A∗ = 〈M ∪ S ∪ {⊥M,⊥S, q
0
∗}, q0∗, δ∗,Acc〉

δ∗(q, σ) =

Update(δ(q0, σ)) if q = q0∗
Update(δ(q, σ)) if q ∈ M ∪ {⊥M}
δ(q, σ) if q ∈ S ∪ {⊥S}

Update(δ(q, σ))
def
= δ(q, σ) if there is no atom (→, qacc, qacc) in δ(q, σ) with qacc ∈ M∩Acc;

otherwise, Update(δ(q, σ))
def
= δ(q, σ) ∨ (→, q0, q0)

Concatenation: A · A′ = 〈M ∪ S ∪M′ ∪ S′ ∪ {⊥M,⊥S}, q0, δ · δ′,Acc′ ∪ S〉

δ · δ′(q, σ) =


Update(δ(q, σ)) if q ∈ M
δ(q, σ) if q ∈ S
δ′(q, σ) if q ∈ M′ ∪ S′

false if q ∈ {⊥M,⊥S}

Update(δ(q, σ))
def
= δ(q, σ) if there is no atom (→, qacc, qacc) in δ(q, σ) with qacc ∈ M∩Acc;

otherwise, Update(δ(q, σ))
def
= δ(q, σ) ∨ (→, q′0, q′0)

Fig. 1 Constructions for union, Kleene closure, and concatenation of forward MAJA.

replace the →-direction with the ←-direction. Note that if the MAJA A has
no secondary states, then A is a non-deterministic finite-state automaton and
the construction corresponds to the classical one used for regular languages.

By construction, A∗ is a forward MAJA if A is forward, and backward
if A is backward. We describe the proof for forward MAJA (the proof for
backward MAJA is analogous). By Definition 12(1), for all calls c and main
states q, Update(δ(q, c)) = δ(q, c) if A is matched-call. By Definition 12, it
follows that A∗ is also matched-call if A is matched-call It remains to show
that L(A∗) = [L(A)]∗ \ {ε}.

Inclusion L(A∗) ⊆ [L(A)]∗\{ε}. Let w ∈ L(A∗). There is an accepting (1, q0)-
run G∗ of A∗ over the non-empty finite word w. Let N(G∗) be the number
of main vertices of G∗ which are obtained by applying the unique new move
(→, q0, q0). We prove by induction on N(G∗) that w ∈ [L(A)]∗. The base
case follows immediately. Assume now that N(G∗) > 0. Then, since q0 /∈ Acc
(Requirement S4 in Definition 11), by construction, there is a position 1 < i ≤
|w| such that the main path π of G∗ visits a vertex v of the form v = (i− 1, q)
for some main state q of A and the vertex v′ = (i, q0). Moreover, v′ is the
unique successor of v in G∗, v

′ is the last vertex along the main path obtained
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by applying a new move, and δ(q, w(i−1)) contains a singleton conjunct of the
form (→, qacc, qacc) for some accepting main state qacc of A. Let V ′ be the set
of vertices reachable from v′, G be the subgraph of G∗ obtained by removing
all vertices in V ′ and adding the edge from v to the new vertex (i, qacc), and G′

be the subgraph of G∗ with initial vertex v′ corresponding to the restriction
of G∗ to V ′. Since N(G′) = 0, G′ is an accepting (i, q0)-run of the forward
MAJA A over w. Hence w[i, |w|] ∈ L(A). Moreover, by Lemma 4(1), G is
an accepting (1, q0)-run of A∗ over w[1, i − 1]. Since N(G) < N(G∗), by the
induction hypothesis, w[1, i − 1] ∈ [L(A)]∗. Thus, since w[i, |w|] ∈ L(A), we
obtain that w ∈ [L(A)]∗, and the result follows.

Converse Inclusion [L(A)]∗ \ {ε} ⊆ L(A∗). Let w ∈ [L(A)]∗ \ {ε}. Conse-
quently, there is k ≥ 1 such that w = w1 · . . . · wk and wi ∈ L(A) for all
1 ≤ i ≤ k. We prove by induction on k that w ∈ L(A∗). The base case k = 1
is obvious since by construction, L(A) ⊆ L(A∗). Now, assume that k > 1.
By the induction hypothesis, there is an accepting (1, q0)-run G of A∗ over
w′ = w1 · . . . · wk−1 and there is an accepting (1, q0)-run G′ of A∗ over wk.
Since for a main state q of the MAJA A∗, δ∗(q, σ) is never true, the main
path π of G must lead to a vertex v of the form v = (|w′| + 1, qacc) for some
accepting main state qacc. Let v′ be the vertex that precedes v along π. Since
A∗ is a forward MAJA, by Definition 11, v′ is of the form v′ = (|w′|, q) and
v is obtained from v′ by applying the move (→, qacc, qacc). Moreover, v is the
unique successor of v′. Also, since q0 /∈ Acc, by construction (→, qacc, qacc) is a
singleton conjunct in δ(q, w′(|w′|)). Let G′+|w′| and G∗ be the graphs defined
as follows:
– G′+|w′| is obtained from G′ by replacing every G′-vertex (i, q) with the

vertex (i+ |w′|, q);
– G∗ is obtained from the merging of G and G′+|w′| by additionally removing

the vertex v and by replacing the edge (v′, v) with the edge (v′, v0), where
v0 = (|w′|+ 1, q0) is the initial vertex of G′+|w′|.

By construction and Lemma 4(1), G∗ is an accepting (1, q0)-run of A∗ over
w = w′ · wk. Hence, the result follows.

Construction for Concatenation. For forward MAJA A and A′, the construc-
tion of the forward MAJA A·A′ accepting L(A) ·L(A′) is illustrated in Fig. 1.
For backward MAJA, we consider the construction of A′ ·A for forward MAJA
(note that the roles of A and A′ are switched) and we replace the→-direction
with the ←-direction. Note that if A and A′ have no secondary states, then
A and A′ are non-deterministic finite-state automata and the construction
corresponds to the classical construction used for regular languages. The con-
struction can be proven to be correct by reasoning as for the case of the Kleene
closure.

Finally, for the construction of the forward MAJA accepting (L(A)∪{ε}) ·
L(A′) and L(A) · (L(A′) ∪ {ε}), we slightly modify the construction given for
the language L(A) · L(A′). Again, the construction of the backward MAJA
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is symmetric. The forward MAJA accepting (L(A) ∪ {ε}) · L(A′) is obtained
from A · A′ in Fig. 1 by adding extra moves from the initial (main) state
q0 to mimic the initial moves of A′ from q′0. The forward MAJA accepting
L(A) · (L(A′)∪ {ε}) is instead obtained from A ·A′ in Fig. 1 by updating the
set of accepting states to Acc ∪ Acc′. This concludes the proof of Lemma 5.
ut

Next, we show that matched-call forward and matched-return backward
MAJA are efficiently closed under M -substitution and S-closure. For this, we
need the following preliminar result.

Lemma 6 Let A = 〈M ∪ S ∪ {⊥M,⊥S}, q0, δ,Acc〉 be a matched-call forward
(resp., matched-return backward) MAJA. Then, one can build in linear time
a matched-call forward (resp., matched-return backward) MAJA, denoted by
MWM (A), of the form 〈M∪S∪{⊥M,⊥S}, q0, δ′,Acc〉 accepting MWM (L(A)).
Moreover, MWM (A) satisfies the following:

1. If MWM (A) is matched-call forward: for all calls c ∈ Σcall , returns r ∈
Σret , and main states q 6= ⊥M occurring in δ′(q0, c), δ

′(q, r) contains oc-
currences of accepting main states.

2. If MWM (A) is matched-call backward: for all calls c ∈ Σcall , returns
r ∈ Σret , and main states q 6= ⊥M occurring in δ′(q0, r), δ

′(q, c) contains
occurrences of accepting main states.

Proof We assume that A = 〈M ∪ S ∪ {⊥M,⊥S}, q0, δ,Acc〉 is a matched-call
forward MAJA (the other case being similar). Then, MWM (A) = 〈M ∪ S ∪
{⊥M,⊥S}, q0, δ′,Acc〉, where the transition function δ′(q, σ) is defined as fol-
lows for all q ∈ M ∪ S ∪ {⊥M,⊥S} and σ ∈ Σ:

– q ∈ S ∪ {⊥M,⊥S}: δ′(q, σ) = δ(q, σ);
– q = q0: δ′(q0, σ) = false if σ /∈ Σcall . Otherwise, if σ ∈ Σcall , then δ′(q0, σ)

is defined as follows. For each conjunct θ occurring in δ(q0, σ), we remove
θ unless θ = (y, p,⊥M)∧ (→, p′, p′) and for some r ∈ Σret , δ(p, r) contains
accepting main states (note that p 6= q0).

– q ∈ M and q 6= q0: δ′(q, σ) = false if σ /∈ Σret . Otherwise, if σ ∈ Σret ,
then δ′(q, σ) is defined as follows. For each conjunct θ occurring in δ(q, σ)
(note that θ is of the form (→, p, p) for some p ∈M), we remove θ iff the
associated main state p is not accepting.

By construction, MWM (A) is a matched-call forward MAJA which accepts
only minimally well-matched words in L(A). Moreover, since A is a matched-
call forward MAJA, for an accepting (1, q0)-run over a minimally well-matched
word w, the main path visits just the first position of w, the last position of
w, and an accepting main vertex associated with position |w| + 1. Hence, by
construction, every word in MWM (L(A)) is accepted by MWM (A) as well.
Finally, by Definition 12(2), it follows that MWM (A) satisfies Condition 1 in
the lemma, which concludes the proof. ut
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MWM (A) = 〈M ∪ S ∪ {⊥M,⊥S}, q0, δ,Acc〉
For all calls c,

ΥA(c)
def
= {p ∈ S | δ(q0, c) contains some conjunct of the form (y, q,⊥M) ∧ (→, p, p)}

S-closure: A	2 = 〈M ∪ S ∪ {⊥M,⊥S}, q0, δ	2 ,Acc〉

δ	2 (q, σ) =

 δ(q, σ) if q ∈ M ∪ {⊥M,⊥S}
δ(q, σ) if q ∈ S and σ /∈ Σcall

Update(δ(q, σ)) otherwise

For all states q ∈ S and calls c,

Update(δ(q, c))
def
= for all (→, p, p)-moves from q on reading 2 – note that p ∈ S – and for

all p′ ∈ ΥA(c), we add disjunctively in δ(q, c) the conjunct (y•, p,⊥S) ∧ (→, p′, p′).

Fig. 2 Construction for S-closure of a matched-call forward MAJA A.

Lemma 7 Let 2 ∈ Σint and A and A′ be matched-call forward (resp., matched-
return backward) MAJA with k and k′ states, respectively. Then, one can
build in linear time two matched-call forward (resp., matched-return backward)
MAJA, one accepting [L(A)]	2 with k states, and the other one accepting
L(A)x2L(A′) with k + k′ + 1 states.

Proof We consider the case when A and A′ are matched-call forward MAJA.
The constructions for matched-return backward MAJA are similar by switching
calls and returns, and forward directions with the dual backward directions.

Construction for S-closure. Let MWM (A) be the matched-call forward MAJA
of Lemma 6 associated with A and accepting MWM (L(A)). First, we infor-
mally describe the construction of the matched-call forward MAJA A	2 ac-
cepting [L(A)]	2 . For each call c, let ΥA(c) be as defined in Fig. 2. Essentially,
A	2 simulates MWM (A) but when a copy of MWM (A) can performs an in-
ternal move of the form (→, p, p) upon reading 2 from the current secondary
state q, then the copy ofA	2 can choose to either process 2 as the current copy
of MWM (A), or recursively process instead some guessed word w ∈ [L(A)]	2

as follows. The copy of A	2 guesses a call c that is the initial symbol of w,
chooses a secondary state p′ ∈ Υ (c), and splits into two copies. The first copy
moves to the next position in state p′ using a (→, p′, p′)-move. The second
copy jumps to the position following the last position of w in state p by a
(y•, p,⊥S)-move. The first copy ensures recursively that w ∈ [L(A)]	2 , while
the second copy can restart the simulation of the considered copy of MWM (A)
from the desired control state p.

The formal definition of A	2 is given in Fig. 2. Note that by Lemma 6,
for every minimally well-matched word w = c · w′ · r, w ∈ L(A) iff w ∈
L(MWM (A)) iff there is p ∈ ΥA(c) and a (2, p)-run of MWM (A) over w.

By construction, it follows that A	2 is a matched-call forward. We only
need to prove the construction is correct, that is, L(A	2) = (L(A))	2 .
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Inclusion L(A	2) ⊆ [L(A)]	2 . Let w ∈ L(A	2). Consequently, there is an
accepting (1, q0)-run G of A	2 over w. Let N(G) be the number of vertices
v in G such that v has successors obtained by applying some new move. We
prove by induction on N(G) that w ∈ [L(MWM (A))]	2 , which implies the
desired result. If N(G) = 0, then w ∈ L(MWM (A)) and the result follows.
Now, assume that N(G) > 0. By construction, there is a vertex v = (i, q) such
that q ∈ S, v has two successors v1 = (j + 1, p) and v2 = (i + 1, p′), w[i, j]
is a minimally well-matched word, the atom (→, p, p) occurs in δ(q,2), and
p′ ∈ ΥA(w(i)). By construction (see Fig. 2), for some main state q′, δ(q0, w(i))
contains the conjunct (y, q′,⊥M) ∧ (→, p′, p′) and δ(q′, w(j)) contains some
accepting main state (Lemma 6). We can assume that the vertex v is chosen
in such a way that all the (secondary) states reachable from v2 are obtained
by MWM (A)-moves. It follows that there is an accepting pseudo (i, q0)-run of
MWM (A) over w whose main path visits position j+ 1 in an accepting state.
By Lemma 4(1), it follows that w[i, j] ∈ L(MWM (A)) and every G-vertex
which is a descendant of v2 is associated with a position in [i + 1, j]. Let G′

be the graph defined as follows:

– G′ is obtained from G by removing vertex v2 and all its descendants, and
replacing each remaining vertex v′ = (j′, q′′) such that j′ > j with the
vertex (j′ − (j − i), q′′).

We claim that G′ is an accepting (1, q0)-run ofA	2 on w[1, i−1]·2·w[j+1, |w|].
Hence, since N(G′) < N(G) and w[i, j] ∈ L(MWM (A)), by the induction
hypothesis, the result follows. Note that for each call position i′ such that
i′ < i and its matched return position j′ along w satisfies j′ > j, j′− (j− i) is
the matching return position of i′ along w[1, i− 1] ·2 ·w[j+ 1, |w|]. Moreover,
by Lemma 4(2), v is the unique vertex in G associated with the call position i
along w. It follows that there is no vertex v′ in G such that v′ is not reachable
from v and at the same time v′ is associated with a position in [i, j]. Therefore,
the claim follows.

Converse inclusion [L(A)]	2 ⊆ L(A	2). Let w ∈ [L(A)]	2 . In this case,
w ∈ [L(MWM (A))]	2 . We show by induction on |w| that w ∈ L(A	2), and
the result follows. Note that |w| ≥ 2. If w ∈ L(MWM (A)), the result follows
immediately, since by construction, every run of MWM (A) is also a run of
A	2 . This includes the base case |w| = 2.

Assume now that w /∈ L(MWM (A)). Then, there is u ∈ L(MWM (A))
such that w is of the form w = w′ · u ·w′′ and w′ ·2 ·w′′ ∈ [L(MWM (A))]	2 .
By the induction hypothesis, w′ · 2 · w′′ ∈ L(A	2) ⊆ MWM (Σ). Hence,
there is an accepting (1, q0)-run G of A	2 over w′ · 2 · w′′. By Lemma 4(2),
there is a unique vertex v = (|w′|+ 1, q) associated with the position |w′|+ 1
(the ‘2-position’). Moreover, since A	2 is a matched-call forward MAJA and
w′ ·2 ·w′′ ∈ MWM (Σ), by construction, q ∈ S, v has a unique successor v1 of
the form (|w′|+ 2, p) and (→, p, p) is a move of MWM (A) from q on reading
2. Since u ∈ L(MWM (A)), u is of the form c ·u′ · r for some call c and return
r and there is a (2, p′)-run G′ of MWM (A) on u for some p′ ∈ ΥA(c). By

40



A = 〈M ∪ S ∪ {⊥M,⊥S}, q0, δ,Acc〉 MWM (A′) = 〈M′ ∪ S′ ∪ {⊥M,⊥S}, q′0, δ′,Acc′〉

(M ∪ S) ∩ (M′ ∪ S′) = ∅ and 2 /∈ L(A′)
For all calls c,

ΥA′ (c)
def
= {p ∈ S′ | δ′(q′0, c) contains some conjunct of the form (y, q,⊥M) ∧ (→, p, p)}

M-substitution: Ax2A′ = 〈M ∪ S ∪M′ ∪ S′ ∪ {#,⊥M,⊥S}, q0, δ′′,Acc ∪ S′〉

δ′′(q, σ) =


δ′(q, σ) if q ∈ M′ ∪ S′ ∪ {⊥M,⊥S}
δ(q, σ) if q ∈ M ∪ S, σ /∈ Σcall , and σ 6= 2

Update(δ(q, σ)) if q ∈ M ∪ S and σ ∈ Σcall∨
p∈M∩Acc(→, p, p) if q = # and σ ∈ Σret

false otherwise

For all q ∈ M, p ∈ S and calls c,

– Update(δ(p, c))
def
= for all (→, p′, p′)-moves of A from p on reading 2 – note that p′ ∈ S

– and for all p′′ ∈ ΥA′ (c), we add in δ(p, c) the conjunct (y•, p′,⊥S) ∧ (→, p′′, p′′).
– Update(δ(q, c))

def
= for all (→, q′, q′)-moves ofA from q on reading 2 – note that q′ ∈ M

– and for all p′ ∈ ΥA′ (c), we add in δ(q, c) the conjunct (y•, q′,⊥M) ∧ (→, p′, p′) if q′

is not accepting, and the conjunct (y,#,⊥M) ∧ (→, p′, p′) otherwise.

Fig. 3 Construction for M -substitution of matched-call forward MAJA A and A′.

construction, (y•, p,⊥S)∧ (→, p′, p′) is a conjunct in δ	2(q, c). Let Gu, G′+|w′|,

and G′′ be the graphs defined as follows:
– Gu is obtained from G by replacing each vertex (i′, q′) such that i′ > |w′|+1

with the vertex (i′ + |u| − 1, q′);
– G′+|w′| is obtained from G′ by replacing each vertex (j, t) of G′ with (j +

|w′|, t);
– G′′ is obtained by merging Gu and G′+|w′|, and adding an edge from the

vertex v of Gu to the initial vertex of G′+|w′|.

By reasoning as for the inclusion L(A	2) ⊆ [L(A)]	2 , we obtain that G′′ is
an accepting (1, q0)-run of A	2 on w = w′ · u · w′′. Hence, the result follows.

Construction for M -substitution. The construction is given in Fig. 3, where
# is a fresh non-accepting main state and we assume that 2 /∈ L(A′) (the
other case is similar). Note that one can check whether 2 /∈ L(A′). The proof
of correctness is analogous to the proof of S-closure.

This concludes the proof of Lemma 7. ut

Polynomial translation of well-formed VRE into MAJA with linear
size. We are ready to prove the desired result.

Theorem 7 For a well-formed VRE α, one can compositionally construct
in polynomial time a forward MAJA and a backward MAJA both accepting
L(α) \ {ε} and having at most O(|α|) states.
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Proof For a basic sub-expression α in Σ ∪{call , ret , int , ∅, ε}, one can directly
construct a forward (resp., backward) MAJA with a constant number of states
accepting L(A) \ {ε}. Moreover, for VRE α1 and α2, it holds that

L(α1x2α2) \ {ε} = (L(α1) \ {ε})x2(L(α2) \ {ε})
L(α	2

1 ) \ {ε} = (L(α1) \ {ε})	2

L(α∗1) \ {ε} = (L(α1) \ {ε})∗ \ {ε}

L(α1 · α2) \ {ε} =

 (L(α1) \ {ε}) · (L(α2) \ {ε}) if ε /∈ L(α1) ∪ L(α2)
L(α1) · (L(α2) \ {ε}) if ε ∈ L(α1)
(L(α1) \ {ε}) · L(α2) otherwise

Moreover, one can check in linear time whether for a given VRE α, ε ∈ L(α).
Thus, by Lemma 5, it suffices to show that given a well-matched VRE α, one
can construct in polynomial time a matched-call forward MAJA with O(|α|)
states which accepts L(α)\{ε} (similarly for a matched-return backward). The
proof is by structural induction on α. The induction step easily follows from
Lemmata 5 and 7. In particular, note that by Lemmata 5 and 7, each non-basic
step adds at most a new state. For the base case, α can be either ε, or ∅, or 2,
or c · ξ · r, for some 2 ∈ Σint , c ∈ Σcall , r ∈ Σret , and regular expression ξ over
Σint . The unique non-trivial case is when α = c · ξ · r. Kleene’s theorem [18]
guarantees that one can construct compositionally and in polynomial time two
non-deterministic finite-state automata (NFA) Aξ and ARξ over Σint accepting
the language L(ξ) and the reverse of L(ξ), respectively, and having at most
O(|ξ|) states. Then, the construction of the matched-call forward MAJA A
and the matched-return MAJA AR accepting L(c · ξ · r) are based on the
NFA Aξ and ARξ . Here, we focus on the matched-call forward MAJA A. Let
Aξ = 〈Q, q0, ∆, F 〉. Then, A = 〈M ∪ S ∪ {⊥M,⊥S}, c, δ, S ∪ {⊥S, qacc}〉, where
M = {c,#, qacc}, S = Q, and δ is defined as follows.

δ(q, σ) =



(y,#,⊥M) ∧ (→, q0, q0) if q = c and σ = c
(→, qacc, qacc) if q = # and σ ∈ Σret∨
q′∈S:(q,σ,q′)∈∆

(→, q′, q′) if q ∈ S and σ ∈ Σint

true if σ = r and for some (q, r, q′) ∈ ∆, q′ ∈ F
false otherwise

This concludes the proof of the theorem. ut

6 Decision Procedures for VLTL

In this section, we study the satisfiability and visibly pushdown model checking
problems for VLTL. Based on Lemma 2 and Theorems 6 and 7, we derive a
polynomial-time compositional translation of VLTL formulas into SAJA, which
provides an automata-theoretic approach to these decision problems.
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Theorem 8 (From VLTL to SAJA) Given a VLTL formula ϕ, one can con-
struct in polynomial time a SAJA Aϕ such that Lp(Aϕ) = Lp(ϕ). Moreover,
Aϕ satisfies the following:
1. there are no ε-moves from the initial state;
2. the size of the largest non-trivial coBüchi stratum of A is linear in the size

of the largest VRE associated with a weak future power operator in ϕ which
is in the scope of an odd number of negations;

3. the set of main states is O(|ϕ|) (where |ϕ| is the size of ϕ), while the set
of secondary states is O(|ϕ|4) for the general case, and it is just O(|ϕ|) if
either ϕ is well-formed, or the VRE occurring in ϕ have a fixed size.

Proof The translation is described by induction on the structure of the given
VLTL formula ϕ. The base case ϕ = true is trivial (in particular, the SAJA
has only one state and the stratum associated to such a state is transient). For
the induction step, given two VLTL formulas ϕ1 and ϕ2, assume that Aϕ1

=
〈M1 ∪ S1, q

0
1 , δ1,F1〉 and Aϕ2 = 〈M2 ∪ S2, q

0
2 , δ2,F2〉 are the SAJA associated

with the VLTL formulas ϕ1 and ϕ2, which accept the ω-pointed languages
Lp(ϕ1) and Lp(ϕ2). Assume also that Aϕ1

and Aϕ2
satisfy the invariant given

by Conditions 1–3 in the theorem. Given a VLTL formula ϕ obtained from ϕ1

and ϕ2 by applying one of the VLTL operators we illustrate the construction of
the SAJA Aϕ = 〈M∪S, q0, δ,F〉 associated with the formula ϕ. Then, at the end
of the proof we show that Aϕ accepts Lp(ϕ) and satisfies Conditions 1–3 in the
theorem as well. In the construction, for the VRE α associated with a temporal
modality, we use the MAJA Aα = 〈Mα∪Sα∪{⊥M,⊥S}, qα, δα,Accα〉 associated
with α of Theorem 6 or Theorem 7 (depending on whether α is well-formed
or not). Recall that Mα∪{⊥M} is the set of main states containing the special
main state ⊥M /∈ Mα, and Sα ∪ {⊥S} is the set of secondary states containing
the special secondary state ⊥S /∈ Sα (see Definition 11). In the following, in
order to simplify the notation, we write Mα instead of Mα ∪ {⊥M}, and Sα
instead of Sα∪{⊥S}. In particular, for all input symbols σ and states q of Aα,
we use the notation q →σ Accα to mean that q is a main state and δα(q, σ)
contains atoms θ of the form (dir, q, qacc) or (dir, qacc, q) for some accepting
main state qacc. Similarly, q 6→σ Accα represents that δα(q, σ) does not contains
such atoms. Note that since Aα is a MAJA, by Definition 11, it follows that θ
is a singleton conjunct in δα(q, σ). Moreover, θ = (dir, qacc, qacc) and dir =→
if Aα is forward, and dir =← if Aα is backward.

Disjunction: ϕ = ϕ1 ∨ ϕ2. The initial state q0 of Aϕ is a fresh state and:

M = M1 ∪M2 ∪ {q0}, S = S1 ∪ S2

δ(q, σ) =

 δ1(q01 , σ) ∨ δ2(q02 , σ) if q = q0
δ1(q, σ) if q ∈ M1 ∪ S1
δ2(q, σ) if q ∈ M2 ∪ S2

F = F1 ∪ F2 ∪ {〈t, {q0}, ∅〉}

Negation: ϕ = ¬ϕ1. Aϕ is the SAJA-dual of Aϕ1
.
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Sequencing: ϕ = α;ϕ1 or ϕ = ϕ1;α. Let Aα = 〈Mα∪Sα, qα, δα,Accα〉 be the
forward (resp., backward) MAJA for the VRE α if ϕ = α;ϕ1 (resp., ϕ = ϕ1;α),
and such that (Mα ∪ Sα) ∩ (M1 ∪ S1) = ∅.

M = M1 ∪Mα, S = S1 ∪ Sα, and q0 = qα

δ(q, σ) =

 δ1(q, σ) if q ∈ M1 ∪ S1
δα(q, σ) if q ∈ Sα or q 6→σ Accα or q = qα
δα(q, σ) ∨ (ε, q01 , q

0
1) if q →σ Accα and q 6= qα

F =

{
F1 ∪ {〈B,Mα ∪ Sα, ∅〉} if ϕ = α;ϕ1

F1 ∪ {〈−,Mα ∪ Sα,Sα〉} if ϕ = ϕ1;α

Future Power and Future Weak Power. Let ϕ =ϕ1|α⟫ϕ2 or ϕ =ϕ1|α〉ϕ2.
Let Aα = 〈Mα ∪ Sα, qα, δα,Accα〉 be the forward MAJA for the VRE α and
such that (Mα ∪ Sα) ∩ (M1 ∪ S1) = ∅ and (Mα ∪ Sα) ∩ (M2 ∪ S2) = ∅. Then,
the initial state q0 of Aϕ is a fresh state and:

M = M1 ∪M2 ∪Mα ∪ {q0} and S = S1 ∪ S2 ∪ Sα

δ(q, σ) =


δ2(q02 , σ) ∨ (δ1(q01 , σ) ∧ δα(qα, σ)) if q = q0
δ1(q, σ) if q ∈ M1 ∪ S1
δ2(q, σ) if q ∈ M2 ∪ S2
δα(q, σ) if q ∈ Sα or q 6→σ Accα
δα(q, σ) ∨ (ε, q0, q0) if q →σ Accα

F =

{
F1 ∪ F2 ∪ {〈B,Mα ∪ Sα ∪ {q0}, ∅〉} if ϕ =ϕ1|α⟫ϕ2

F1 ∪ F2 ∪ {〈B,Mα ∪ Sα ∪ {q0}, {q0}〉} if ϕ =ϕ1|α〉ϕ2

Past Power and Past Weak Power. Let ϕ =ϕ1⟪α|ϕ2 or ϕ =ϕ1〈α|ϕ2. Let
Aα = 〈Mα ∪ Sα, qα, δα,Accα〉 be the backward MAJA for the VRE α and such
that (Mα ∪ Sα) ∩ (M1 ∪ S1) = ∅ and (Mα ∪ Sα) ∩ (M2 ∪ S2) = ∅. Then, the
initial state q0 of Aϕ is a fresh state and:

M = M1 ∪M2 ∪Mα ∪ {q0} and S = S1 ∪ S2 ∪ Sα

δ(q, σ) =



δ2(q02 , σ) ∨ (δ1(q01 , σ) ∧ δα(qα, σ)) if q = q0 and ϕ =ϕ1⟪α|ϕ2

δ2(q02 , σ)∨(
δ1(q01 , σ) ∧ (δα(qα, σ) ∨ (←,⊥M,⊥S))

)
if q = q0 and ϕ =ϕ1〈α|ϕ2

δ1(q, σ) if q ∈ M1 ∪ S1
δ2(q, σ) if q ∈ M2 ∪ S2
δα(q, σ) if q ∈ Sα or q 6→σ Accα
δα(q, σ) ∨ (ε, q0, q0) if q →σ Accα

F = F1 ∪ F2 ∪ {〈−,Mα ∪ Sα ∪ {q0},Sα〉}

Correctness of the construction. We say that an occurrence of a sub-
formula of ϕ has positive polarity if it is in the scope of an even number of
negations. Otherwise we say that ϕ has negative polarity. Note that each step of
the construction adds at most a new transient stratum with just one state if the

44



associated VLTL operator is a Boolean connective. For steps associated with
a temporal modality with VRE α, the step adds a new non-transient stratum
whose number of main states is at most |Mα|+1, and whose of secondary states
is at most |Sα|. We can also assume that the SAJA Aϕ1

and Aϕ2
of the sub-

formulas ϕ1 and ϕ2 share the strata associated with the common sub-formula
occurrences at the same polarity in ϕ1 and ϕ2. By construction it follows that
Aϕ is a SAJA satisfying Conditions 1–3 in the theorem. We finally show that
Lp(Aϕ) = Lp(ϕ). For the case of negation, the result directly follows from
the induction hypothesis and Lemma 2. For the other cases, we illustrate the
future power operator and the past power operator. The remaining cases are
similar or simpler.

Correctness for the case ϕ =ϕ1|α⟫ϕ2 (future power operator). The acceptance
condition of Aϕ ensures that every accepting path in a run does not contain in-
finitely many occurrences of states belonging to the new stratum. Hence, since
a forward MAJA satisfies the semantic requirements J1-J3 of Definition 10, it
easily follows that
– (w, i) ∈ Lp(Aϕ) iff there are positions j1 < . . . < jn of w such that j1 = i,

(w, jn) ∈ Lp(Aϕ2), and for all 1 ≤ k < n, (w, jk) ∈ Lp(Aϕ1) and there is
a pseudo (jk, qα)-run of Aα over w whose main path visits an accepting
main state at position jk+1 + 1.

Since a forward MAJA satisfies the semantic requirement J4 of Definition 10,
there is a pseudo (jk, qα)-run of Aα over w whose main path visits an accepting
main state at position jk+1 + 1 iff w[jk, jk+1] ∈ L(Aα). Thus, since L(Aα) =
L(α), by applying the induction hypothesis, we obtain that (w, i) ∈ Lp(A)
iff there are positions j1 < . . . < jn of w such that j1 = i, (w, jn) |= ϕ2,
and for all 1 ≤ k < n, (w, jk) |= ϕ1 and w[jk, jk+1] ∈ L(α). This means that
(w, i) ∈ Lp(Aϕ) iff (w, i) |= ϕ, and the result follows.

Correctness for the case ϕ =ϕ1⟪α|ϕ2 (past power operator). The acceptance
condition of Aϕ ensures that every vertex (0, q) in an accepting run of Aϕ
satisfies that q /∈ Mα ∪ {q0}. Thus, by construction and since a backward
MAJA fulfills the semantic requirements J1 and J2 of Definition 10, it easily
follows that
(*) (w, i) ∈ Lp(Aϕ) iff either (w, i) ∈ Lp(Aϕ2

), or i > 1, (w, i) ∈ Lp(Aϕ1
),

and for some 1 ≤ j < i, (w, j) ∈ Lp(Aϕ) and there is a pseudo (i, qα)-run
of Aα over w whose main path visits an accepting main state at position
j − 1.

Since a backward MAJA satisfies the semantic requirement J4 of Definition 10,
there is a pseudo (i, qα)-run of Aα over w whose main path visits an accepting
main state at position j − 1 iff w[j, i] ∈ L(Aα). Since L(Aα) = L(α), by
iterating the above equivalence (*) and applying the induction hypothesis,
we obtain that (w, i) ∈ Lp(A) iff there are positions j1 < . . . < jn of w
such that jn = i, (w, j1) |= ϕ2, and for all 1 < k ≤ n, (w, jk) |= ϕ1 and
w[jk−1, jk] ∈ L(α). This means that (w, i) ∈ Lp(Aϕ) iff (w, i) |= ϕ, as desired.

This concludes the proof of Theorem 8. ut
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By Theorems 5 and 8, we obtain the following corollary.

Corollary 1 For a well-formed VLTL formula ϕ, one can build a Büchi NVPA
P accepting L(ϕ) with 2O(|ϕ|·log(k)) states and stack symbols, where k is the
size of the largest VRE associated with a weak future power operator in ϕ which
is in the scope of an odd number of negations if there is such a VRE, and a
fixed constant c > 1 otherwise.

Checking whether L(P) ⊆ L(ϕ) for a pushdown system P and a VLTL
formula ϕ, reduces to checking emptiness of L(P)∩L(¬ϕ). Thus, since checking
emptiness for the intersection of ω-VPL by Büchi NVPA is in PTIME [4], and
satisfiability and visibly pushdown model checking for CaRet are EXPTIME-
complete [3], by Theorems 3, 5, and 8, we obtain the following result.

Corollary 2 Satisfiability and visibly pushdown model checking for the logic
VLTL are EXPTIME-complete.

Note that our automata-theoretic approach, based on the use of SAJA as
an intermediate step, can be conveniently used also for less expressive logical
frameworks. In particular, by Theorems 3, 5, and 8, any CaRet or NWTL+

formula ϕ can be translated into equivalent Büchi NVPA of size 2O(|ϕ|), which
matches the upper bounds for the known direct translations [3,2]. Note that
the size of the alphabet has been considered constant in the given bounds, and
that the number of symbols occurring in a formula is bounded by the size of
the formula.

Analogously, our approach can also be used to convert formulas ϕ of RLTL
with past into equivalent Büchi non-deterministic finite-state automata of size
2O(|ϕ|·log(k)), where k is the size of the largest regular expression associated
with a weak future power operator in ϕ. This follows from Theorem 5 and the
fact that the SAJA obtained from ϕ has only local moves and no secondary
states. The recent upper bounds for RLTL [29] tackled only future operators
leaving RLTL with past as an open problem.

7 Concluding Remarks

We have introduced and investigated the linear-time temporal logical VLTL
which provides a new characterization of the well-known class of ω-VPL. The
logic VLTL can be seen as an extension of standard LTL, where the temporal
modalities are guarded by VPL over finite words specified by means of Vis-
ibly Rational Expressions (the atomic blocks in a VLTL formula). We have
made some choices in presenting the VLTL framework. In particular, we have
adopted an action-based approach where the pushdown alphabet Σ is ex-
plicitly given. However, in formal verification, one usually considers a finite
set AP of atomic propositions which represent predicates over the states of
the given system. Moreover, for verifying recursive programs, one fixes three
additional propositions, here denoted by call , ret , and int : call denotes the
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invocation of a procedure, ret denotes the return from a procedure, and int
denotes internal actions of the current procedure. Thus, the (observable) prop-
erties about a state s of the system can be represented by a pair of the
form (τ, P ) where τ ∈ {call , ret , int} and P is a Boolean formula built from
atomic propositions in AP. Hence, the set AP induces a pushdown alphabet
ΣAP = Σcall∪Σret∪Σint , where Σcall = {call}×2AP , Σret = {ret}×2AP , and
Σint = {int}×2AP . By adopting this propositional-based approach, where the
pushdown alphabet is implicitly given, the syntax and the semantics of VLTL
remain as presented in this paper.

Additionally, the automata-theoretic machinery exploited for the action-
based setting can be used for propositional alphabets as well. Even if the size
of ΣAP is exponential in the size of AP, one can use a symbolic representa-
tion of the transition relations and adapt the constructions in this paper to
maintain a succinct encoding of the transition functions of the resulting au-
tomata. Therefore, all results of this paper hold for the propositional-based
approach as well. For clarity and space considerations we omit the details of
these adapted constructions.

Another important observation concerns our choice of definition of the size
of a VLTL formula. It is standard to adopt as the size of a formula the number
of distinct subformulas, because this corresponds to a succinct encoding of the
input. Our choice follows this trend except for the size of the VRE blocks in
a VLTL formula, where we use the length of the string describing the VRE,
and not the number of distinct VRE subexpressions. This last choice was fol-
lowed for technical convenience in order to ease the presentation of Section
5.1 regarding the compositional translation of well-formed VRE into forward
and backward MAJA (Theorem 7). In particular, for the expressions α ∪ α′,
α · α′, and α x2 α′, we assume that the MAJA A and A′ resulting from the
two operands α and α′ have no state in common (see Figures 1 and 3). This
assumption can be relaxed and the MAJA A and A′ can share the states as-
sociated with the MAJA resulting from the common subexpressions of α and
α′.

As future work, we aim to investigate the relative expressive power of
fragments of VLTL and to capture minimal expressively complete VLTL frag-
ments. Recent results [32] show that the future fragment of VLTL closed under
Boolean connectives and using only the future sequencing operator is already
expressively-complete for the class of ω-VPL.
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A From NVPA to well-formed VRE

In this section we prove the following result.

Theorem 9 Given an NVPA P, one can construct a well-formed VRE α such that L(α) =
L(P).

In order to prove Theorem 9, we need additional definitions. We fix an NVPA P =
〈Q,Q0, Γ,∆, F 〉 over the pushdown alphabet Σ. Given q, p ∈ Q, a summary of P from q to
p is a run π of P over some word w ∈ MWM (Σ) from a configuration of the form (q, β) to a
configuration of the form (p, β′) for some stack contents β and β′. Observe that if π is such
a run over w ∈ MWM (Σ) from (q, β) to (p, β′), then β′ = β and the portion of the stack
corresponding to β is never read in π. In particular, there is also a run of P from (q,⊥) to
(p,⊥) over w which uses the same transitions used by π. Given a run π of P over some word
w and S ⊆ Q×Q, we say that the run π uses only sub-summaries from S whenever for all
q, p ∈ Q, if there is sub-run of π which is a summary from q to p, then (q, p) ∈ S.

Let Λ be the following alphabet, disjoint from Σ, given by

Λ
def
= {2qp | q, p ∈ Q}

For each Λ′ ⊆ Λ, we denote by ΣΛ′ the pushdown alphabet obtained by adding to Σ the
additional symbols in Λ′, which are interpreted as internal actions. Moreover, we define
PΛ = 〈Q,Q0, Γ,∆Λ, F 〉 as the NVPA over ΣΛ obtained from P by adding for each (q, p) ∈
Q×Q, the internal transition (q,2qp, p).

We prove that one can construct a well-formed VRE α over ΣΛ denoting L(P) (the
additional symbols in Λ are used only as parameters for intermediate substitutions). The
proof consists of the following two Lemmata 8 and 9.

Lemma 8 Assume that for all (q, p) ∈ Q × Q, one can construct a well-matched VRE
α(q, p) such that L(α(q, p)) is the set of words in MWM (Σ) so that there is a summary of
P from q to p over w. Then, one can construct a well-formed VRE α such that L(α) = L(P).

Proof Fix an ordering {(q1, p1), . . . , (qn, pn)} of Q × Q. Given a regular expression ξ over
ΣΛ, let

ξ[2q1p1 ← α(q1, p1), . . . ,2qnpn ← α(qn, pn)] (1)

be the VRE obtained from ξ by simultaneously replacing each occurrence of 2qipi with the
well-matched VRE α(qi, pi). The following follows immediately:

Claim 5. The VRE given by Equation (1) is well-formed and denotes the language

L(ξ) x2q1p1
L(α(q1, p1)) . . .x2qnpn

L(α(qn, pn))

Let A1 = 〈Q,Q0,∆1, F 〉 and A2 = 〈Q,Q0,∆2, F 〉 be the non-deterministic finite-state
automata (NFA) over ΣΛ, where ∆1 and ∆2 are defined as follows:

– ∆1 is obtained from the transition relation of PΛ by removing all the push and pop
transitions, and by adding for each pop transition of PΛ of the form (q, r,⊥, p), the
transition (q, r, p);

– ∆2 is obtained from the transition relation of PΛ by removing all the push and pop
transitions, and by adding for each push transition (q, c, p, γ) of PΛ, the transition
(q, c, p).

Let
Lreg =

⋃
(q0,q,p)∈Q0×Q×F

L1,q0,q · L2,q,p

where for all q, p ∈ Q, L1,q,p and L2,q,p are the set of words w such that there is a run of
the NFA A1 and NFA A2 over w from q to p. Then,

L(P) = Lreg x2q1p1
L(α(q1, p1)) . . .x2qnpn

L(α(qn, pn))
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Moreover, from Kleene’s Theorem for regular expressions [18], Lreg can be effectively cap-
tured by a regular expression ξ. By Claim 5 above, we obtain that the well-formed VRE

ξ[2q1p1 ← α(q1, p1), . . . ,2qnpn ← α(qn, pn)]

which denotes the language L(P), as desired. ut

Lemma 9 For all (q, p) ∈ Q×Q, one can construct a well-matched VRE denoting the set
of words in MWM (Σ) so that there is a summary of P from q to p over w.

Proof Given (q, p) ∈ Q×Q, S ⊆ Q×Q, and Λ′ ⊆ Λ, we define the following two languages:

– S(q, p,S, Λ′) def
= the set of words w ∈ MWM (ΣΛ′ ) such that there is a summary of PΛ

over w from q to p which uses only sub-summaries from S.

– WM (q, p,S, Λ′) def
= the set of words w ∈WM (ΣΛ′ ) such that there is a run of PΛ over

w from (q,⊥) to some configuration of the form (p, β) which uses only sub-summaries
from S (note that β = ⊥).

We show by induction on the cardinality of the finite set S that the languages S(q, p,S, Λ′),
WM (q, p,S, Λ′), and {c}·WM (q, p,S, Λ′) ·{r} with c ∈ Σcall and r ∈ Σret can be effectively
denoted by well-matched VRE over ΣΛ′ . The Lemma follows from this claim.

Base case: S = ∅. The result for S(q, p, ∅, Λ′) follows immediately because S(q, p, ∅, Λ′) = ∅.
We only need to prove that the language WM (q, p, ∅, Λ′) can be effectively denoted by a
regular expression over the set of internal actions given by Σint ∪Λ′. Let A = 〈Q,Q0,∆′, F 〉
be the non-deterministic finite-state automaton (NFA) over Σint ∪Λ′, where ∆′ is obtained
from the transition relation of PΛ by removing all push and pop transitions, and all internal
transitions (q′,2q′p′ , p

′) with 2q′p′ /∈ Λ′. Since no word in WM (q, p, ∅, Λ′) contains occur-
rences of calls or occurrences of returns, WM (q, p, ∅, Λ′) is the set of words w over Σint ∪Λ′
such that there is a run of A over w from q to p. Kleene’s Theorem [18] guarantees that one
can construct a regular expression over Σint ∪ Λ′ denoting WM (q, p, ∅, Λ′).

Induction step: S 6= ∅. Let (q′, p′) ∈ S and Pq′→p′ be the set:

{(s, c, r, s′) ∈ Q×Σcall ×Σret ×Q | there is γ ∈ Γ. (q′, c, s, γ), (s′, r, γ, p′) ∈ ∆}

So, Pq′→p′ is the set of tuples (s, c, r, s′) such that there is a push transition from q′ to s
reading the call c and a matching pop transition from s′ to p′ reading r. It easily follows
that

S(q′, p′,S, Λ′) =([ ⋃
(s,c,r,s′)∈Pq′→p′

{c} ·WM (s, s′,S \ {(q′, p′)}, Λ′ ∪ {2q′p′}) · {r}
]x2

q′p′
)
x2q′p′

[ ⋃
(s,c,r,s′)∈Pq′→p′

{c} ·WM (s, s′,S \ {(q′, p′)}, Λ′) · {r}
]

By the induction hypothesis, the sets {c} ·WM (s, s′,S \ {(q,′ p′)}, Λ′ ∪ {2q′p′}) · {r} and
{c} ·WM (s, s′,S \{(q,′ p′)}, Λ′) · {r} can be effectively denoted by well-matched VRE. Thus,
for each (q′, p′) ∈ S, the set S(q′, p′,S, Λ′) can be effectively denoted by a well-matched
VRE.

Fix an ordering {(p1, q1), . . . , (pn, qn)} of S and let ΛS be the subset of Λ given by
{2q1p1 , . . . ,2qnpn}. Now, we observe that for all calls c and returns r,

WM (q, p,S, Λ′) = WM (q, p, ∅, Λ′ ∪ ΛS) x2q1p1
(S(q1, p1,S, Λ′) ∪ Λ′) . . .

. . .x2qnpn
(S(qn, pn,S, Λ′) ∪ Λ′)

{c} ·WM (q, p,S, Λ′) · {r} = {c} ·WM (q, p, ∅, Λ′ ∪ ΛS) · {r}x2q1p1

(S(q1, p1,S, Λ′) ∪ Λ′) . . .x2qnpn
(S(qn, pn,S, Λ′) ∪ Λ′)

Moreover, note that if (q, p) /∈ S, then S(q, p,S, Λ′) = ∅. Hence, the result follows. ut
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