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Abstract. Many important timed requirements of computing systems
cannot be described by the behavior of individual execution traces. Ex-
amples include countermeasures to deal with side-channel timing attacks
and service-level agreements, which are examples of timed hyperproper-
ties. In this paper, we propose the temporal logic HyperMTL, that extends
MTL by allowing explicit and simultaneous quantification over multiple
timed traces in the point-wise semantics. We demonstrate the applica-
tion of HyperMTL in expressing important properties in information-flow
security and cyber-physical systems. We also introduce a model check-
ing algorithm for a nontrivial fragment of HyperMTL by reducing the
problem to model checking untimed hyperproperties.

1 Introduction

There has been tremendous progress in automated reasoning about trace prop-
erties in the past three decades. These properties were classified by Alpern and
Schneider [3] into safety and liveness properties. Temporal logics like LTL [31]
and CTL [11] were crafted to give formal syntax and semantics of trace proper-
ties, and many verification algorithms and tools were developed to reason about
these logics (see [11,34,9,10,12,29,5,4]). However, many interesting requirements
are not trace properties. For example, information-flow security policies such as
noninterference [25] and observational determinism [35] cannot be expressed as
properties of individual execution traces. Also, service level agreement require-
ments (e.g., mean response time and percentage uptime) that use statistics across
all executions of a system are not trace properties. Rather, they are properties
of sets of execution traces. These requirements are hyperproperties [14]. Tem-
poral logics, like HyperLTL and HyperCTL∗ [13], and probabilistic variants, like
HyperPCTL [1], have been proposed to reason about temporal hyperproperties.

Hyperproperties can also be timed, i.e., they explicitly stipulate the tim-
ing relation of independent executions. An example of a timed hyperproperty
is countermeasures against timing channels. A timing channel is one through
which an attacker learns sensitive information by observing the time at which
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L := 1;
for (i := 1 to H) {do something};
L := 2;

Fig. 1. Timing leak.

publicly observable events occur.
A timing leak is an information
leak through a timing channel.
For instance, consider the pro-
gram in Fig. 1, where H and L de-
note “high” (i.e., secret) and “low”
(i.e., public) security variables or channels confidentiality. By observing the tim-
ing of the public channel L, an adversary can infer information about H. In order
to prevent an attacker to infer the value of H, a countermeasure is to make sure
that in any given system, the for-loop takes equal time for any two distinct values
of H. This policy to defend against timing leaks is a system property (as opposed
to the property of individual executions) and constitutes a timed hyperproperty.
We propose here the temporal logic HyperMTL to express timed hyperproperties.
Designing a temporal logic for timed hyperproperties has multiple challenges,
and a trivial extension of HyperLTL to a timed logic or lifting MTL to a hyper
logic result in a flawed or impractical framework. We discuss these issues next.

Dealing with multiple timed traces. Timed traces of the same system may not
align. Consider the following timed traces σ1 and σ2 shown on the left:

σ1 = ({a},2)({b}, 5)({a, b},8)· · ·
σ2 = ({b},3)({a, b},4)({a}, 7)· · ·

σ′1 = ({a}, 1) ({a}, 3) ({a}, 5) · · ·
σ′2 = ({a}, 1) ({a}, 2) ({a}, 3) ({a}, 4)({a}, 5) · · ·

These traces have no matching time stamps, which makes reasoning about them
simultaneously challenging. Another challenge is the speed of time progress in
different traces. Consider traces σ′1 and σ′2 above on the right, where σ′1 reaches
time 5 in fewer steps than σ′2, which has to be taken into account when reasoning
about σ′1 and σ′2 simultaneously. These two examples show why HyperLTL cannot
be trivially extended to a timed version, as the semantics of HyperLTL evaluates
a set of traces synchronously, that is, positions advance in a lock-step manner
(see Fig. 2 (left) for an example, where evaluation occurs at identical positions
of both traces).

Decidability of verification. In order to allow reasoning about traces with differ-
ent speeds, one has to allow asynchronous semantics, where one trace may make
progress while another stutters (see Fig. 2 (right)). However, the computation
power needed to reason about such a model of computation rises to the level
required to solve the post correspondance problem (PCP) [32], which is known
to be undecidable (the formal proof is out of the scope of this paper).

σ

{a}

{a}

σ′ σ2

{a}{a}

{a}

σ1

Fig. 2. Synchronous semantics (left) vs asynchronous semantics (right).

2



Our first contribution is the temporal logic HyperMTL with the following features:
— Timed temporal operators. HyperMTL generalizes HyperLTL by allowing ex-
plicit timing constraints over temporal operators. For example, formula ϕ =
∀π.∀π′.[2,5](aπ ↔ aπ′) means that any pair of traces π and π′ should agree
on the position of proposition a in all events within time period [2, 5]. In ad-
dition to explicit timing constraints, we augment the temporal operators with
features to express bounds on the difference in time elapse between traces. This
is essential to realistically capture policies such as countermeasures to timing
side-channels. For example, we enrich temporal operators to express properties
like[0,∞),[0,1](rπ ∧ rπ′) which requires that proposition r should hold in events
in trace π and π′ that are at most one time unit of each other.
— Two-layered design. In order to obtain a decidable model-checking problem,
HyperMTL is divided into two layers. The outer layer is interpreted with syn-
chronous semantics, that is, the operators are evaluated position by position in
a lock-step manner similar to HyperLTL (see Fig. 2 (left)). The inner layer allows
temporal operators to be interpreted by the asynchronous semantics, where eval-
uation of traces can be asynchronous (see Fig. 2 (right)). For example, formula
ϕ = ∀π.∃π′.[0,∞)A.([3,6],[1,2](rπ ∧ rπ′)) means that for every trace π, there
is another trace π′, where it is (synchronously) always the case that eventually
(asynchronously) within interval [3, 6] proposition r is observed in the two traces
within interval [1, 2] of each other.
— Framing. Finally, the synchronous semantics can suffer from anomalies be-
cause evaluation points of a formula may depend on its context. We fix this
problem by introducing the notion of formula framing. For instance, formulas
true and pπ ∨ ¬pπ are only equivalent when true is evaluated at the ticking in-
stants of π and therefore cannot be substituted as in an arbitrary context. Our
solution allows to “frame” true and pπ ∨ ¬pπ forcing their evaluation to consider
π (and only π) to regain substitutivity.

Our second contribution is to show the application of HyperMTL in different
areas of computing. We demonstrate how HyperMTL can express important (1)
security policies such as countermeasures to side-channel timing attacks and
insecure composition, (2) service level agreements, and (3) properties of cyber-
physical systems such as robustness, sensitivity, and overshoot observability.

Our third contribution is a model-checking algorithm for a fragment of Hyper-
MTL. We show that the fragment with bounded intervals for the asynchronous
operators and unrestricted synchronous operators the logic is decidable. This
fragment covers all interesting examples listed above. We obtain the decidability
result by reducing the model-checking problem for this fragment of HyperMTL
to the model-checking of HyperLTL [13,24].

Organization The rest of the paper is organized as follows. In Section 2, we
review the preliminary concepts. Then, we present the syntax and semantics of
HyperMTL in Section 3, while its applications are discussed in Section 4. Our
model checking algorithm is presented in Section 5. We discuss related work in
Section 6 and finally conclude in Section 7.
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2 Preliminaries

Let AP be a set of atomic propositions and Σ = 2AP be the alphabet. We call
each element of Σ a letter. A trace is an infinite sequence σ = a0a1 · · · of letters
from Σ. We use σ(i) for ai and σi for the suffix aiai+1 · · · . An indexed trace is a
pair (σ, p), where p ∈ N is a natural number (called the pointer). Indexed traces
are used to traverse a trace by moving the pointer. Given an indexed trace (σ, p)
and n > 0, we use (σ, p) + n to denote the resulting indexed trace (σ, p+ n).

We fix the time domain to be non-negative integers Z≥0. An event is a
pair (a, t), where a ∈ Σ and t ∈ Z≥0. Given an event e = (a, t), we use
label(e) for a and time(e) for t. A timed trace is an infinite sequence σ =
(a0, t0)(a1, t1)(a2, t2) . . . , over (Σ × Z≥0), such that for all i ≥ 0, we have
ti < ti+1. Given an indexed timed trace (σ, p), we use time(σ, p) to denote
time(σ(p)).

2.1 HyperLTL

HyperLTL [13] is a temporal logic for hyperproperties, which allows reasoning
about multiple execution traces simultaneously. The syntax of HyperLTL is:

α ::= ∃π.α
∣∣ ∀π.α ∣∣ ϕ ϕ ::= aπ

∣∣ ϕ ∨ ϕ ∣∣ ¬ϕ ∣∣ ϕ ∣∣ ϕ U ϕ
where π is a trace variable from an infinite supply of trace variables. The intended
meaning of aπ is that proposition a ∈ Σ holds in the current time in trace
π. Trace quantifiers ∃π and ∀π allow reasoning simultaneously about different
traces of the computation. Atomic predicates aπ refer to a single trace π, and
can be combined with Boolean operators to build relational tests as well as
with temporal operators to construct temporal relational formulas. Informally,
HyperLTL allows to reason about properties of systems that require to reason
about the whole set of traces of the system at once, and not about each individual
trace at a time.

Given a HyperLTL formula ϕ, we use Var(α) for the set of trace variables
quantified in α. A formula α is well-formed if for all atoms aπ in α, π is quantified
in α (i.e., π ∈ Var(α)) and if no trace variable is quantified twice in α.

Given a set of traces W , the semantics of a HyperLTL formula α is defined
in terms of trace assignments, which is a (partial) map from trace variables to
indexed traces Π : Var(α) ⇀ (W ×N). We use Dom(Π) for the subset of Var(α)
for which Π is defined. Given a trace assignment Π, a trace variable π, a trace
σ and a pointer p, we denote by Π[π 7! (σ, p)] the assignment that coincides
with Π for every path variable except for π, which is mapped to (σ, p). Also, we
use Π + n to denote trace assignment Π ′ such that Π ′(π) = Π(π) + n for all
π ∈ Dom(Π) = Dom(Π ′). The semantics of HyperLTL is as follows:

(W,Π) |= ∃π.α iff for some σ ∈W , (W,Π[π 7! (σ, 0)]) |= α
(W,Π) |= ∀π.α iff for all σ ∈W , (W,Π[π 7! (σ, 0)]) |= α
(W,Π) |= ϕ iff Π |= ϕ

Π |= aπ iff a ∈ σ(p), where (σ, p) = Π(π)
Π |= ϕ1 ∨ ϕ2 iff Π |= ϕ1 or Π |= ϕ2
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Π |= ¬ϕ iff Π 6|= ϕ
Π |= ϕ iff (Π + 1) |= ϕ
Π |= ϕ1 U ϕ2 iff for some j ≥ 0 (Π + j) |= ϕ2

and for all 0 ≤ i < j,(Π + i) |= ϕ1

Note that quantifiers assign traces to trace variables and set the pointer to the
initial position 0. Also, the pointer in all trace assignments move in lock-step
(at the same speed) within the semantics of U (that is, like in Fig. 2 (left), all
pointers for different traces have the same value). Given a HyperLTL formula α
and a Kripke structure that can generate a set of traces W , the model-checking
problem for HyperLTL consists of deciding whether (W,Π∅) |= α, where Π∅ is the
trace assignment with Dom(Π∅) = ∅.
Example 1. The meaning of HyperLTL formula α = ∀π.∀π′.(aπ ↔ aπ′) is that
any pair of traces should agree on the value of a at every position.

In Sec 5, we will use a timed version of the U operator, so we define a derived
temporal operator UI that requires the satisfaction of the second argument in
the interval I, using repeated applications of the next operator. The operator
UI is formally defined as follows (i refers  operator applied i times on the
argument):

ϕ1U[a,b]ϕ2
def
=

∨
a≤i≤b

(iϕ2∧
∧

0≤j<i
jϕ1), ϕ1U[a,∞)ϕ2

def
=

∧
0≤i<a

iϕ1∧aϕ1Uϕ2

2.2 Kripke Structures

We model timed systems as timed Kripke structures with time elapse in the arcs.

Definition 1. A Kripke structure (KS) is a tupleM = (S, S0,!,AP, L), where
– S is a set of states, and S0 ⊆ S is a set of initial states;
– !⊆ S × Z≥0 × S is a set of transitions;
– AP is the set of atomic propostions; and
– L : S ! 2AP is a labeling function that assigns a set of atomic propositions

to each state.

We assume that every state has a successor, so each sink state s is equipped with
a self-loop of the form (s, 1, s). Note that untimed Kripke structures are simply
Kripke structures for which all edges are of the form (s, 1, s′).

A run of a Kripke structure (S, S0,!,AP, L) from a state s ∈ S is an infinite
sequence of the form γs = s0d0s1d1s2d2 · · · , where s0 = s and for each i ≥ 0, we
have (si, di, si+1) ∈!, for some di ∈ Z≥0. A trace of a run γs is a timed trace
of the form (L(s0), t0)(L(s1), t1)(L(s2), t2) · · · , such that t0 = 0 and for every
i > 0, ti+1 = ti+di, that is, we encode the delays from the actions of the Kripke
structure into time-stamps on the letters of the timed trace. The language of a
Kripke structure M (denoted L(M)) is the set of all traces corresponding to
runs ofM.

Example 2. The untimed interpretation of the Kripke structure K1 shown in
Fig. 3 (left) satisfies HyperLTL formula α = ∀π.∀π′.(aπ ↔ aπ′), whereas K2, in
Fig. 3 (middle), does not.
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Fig. 3. Three timed Kripke structures: K1 (left) K2 (middle) and K3 (right).

3 The Temporal Logic HyperMTL

In this section, we present the syntax and semantics of HyperMTL. In Hyper-
MTL, formulas are constructed in two layers using two kinds of temporal oper-
ators, synchronous and asynchronous. This layering enables the construction
of both synchronous and asynchronous formulas, and a limited combination
that still guarantees decidability. Synchronous operators allow comparing traces
at the same point in time and reason about the time elapses. The evaluat-
ing time instants are those where at least one of the traces involved contains
an event. If a trace σ does not contain an event at an evaluation time t then
the closest previous event is used (we assume all traces contain an event at
the initial time 0). Consider for example, traces σ and σ′ shown on the right.

σ = (a0, 0) (a1, 1) (a2, 4) (a3, 5) · · ·
σ′ = (b0, 0) (b1, 1) (b2, 3) (b3, 5) · · ·

The evaluation of {σ, σ′} at time
t = 3 considers event (a1, 1) for
σ and (b2, 3) for σ′. On the other
hand, asynchronous operators allow traces to proceed at different speeds and
also allow to reason about the difference in elapsing times between two traces.

We first present the syntax and then the semantics of each layer. Finally, we
show how the choice of the evaluation point in the synchronous semantics can
lead to unexpected logical cases and propose a simple framing mechanism to fix
these anomalies.

3.1 Syntax

As with HyperLTL, the outermost layer (α formulas) introduces the trace quan-
tifiers that bind trace variables; then the synchronous layer (ϕ formulas) in-
troduces the synchronous temporal operators and the asynchronous layer (ψ
formulas) introduce the asynchronous temporal constructs:

α ::= ∃π.α
∣∣ ∀π.α ∣∣ ϕ

ϕ ::= true
∣∣ aπ ∣∣ ϕ ∨ ϕ ∣∣ ¬ϕ ∣∣ ϕ UI ϕ ∣∣ A.ψ

ψ ::= true
∣∣ aπ ∣∣ ψ ∨ ψ ∣∣ ¬ψ ∣∣ ψ UI,J ψ

Here, a ∈ AP is an atomic proposition, and I and J are intervals of the form [l, u]
with l, u ∈ Z≥0 ∪ {∞} and l ≤ u. As for HyperLTL, the meaning of aπ is that a
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holds in the trace assigned to trace variable π. The intended meaning of ϕ1UI ϕ2

is that there is an event at time t within an interval I, such that ϕ2 holds at
t and that ϕ1 holds at all events before t. The meaning of interval J = [l, u]
is that the difference in time elapse between any two traces must be between l
and u, when the obligation ϕ2 is fulfilled. As usual, we use the syntactic sugar
Iϕ

def
= true UI ϕ and Iϕ

def
= ¬(I¬ϕ), and I,Jϕ

def
= true UI,J ϕ, etc.

Temporal operators in synchronous formulas allow time to flow according to
a global clock. The evolution of time in the evaluation of a formula proceeds
according to the time-stamps of events in any of the traces in the formula. In
case aπ is evaluated at a given time t, and the trace σ assigned to π does not
contain an event at t, then the most recent past event in σ is used. The operator
A (for (A)synchronous) denotes the evaluation of the subformula asynchronously,
and allows to reuse temporal and propositional symbols. The asynchronous layer
considers the possibility that traces proceed at different speeds which is captured
by the notion of trajectory, also called a time-flow, defined below.

3.2 Semantics

The quantifier layer. To define the semantics of synchronous HyperMTL, we
use pointed-timed trace assignments, that is, partial mappings Π : Var(α) ⇀
(Σ×Z≥0)ω×N, which are pointed assignments over timed traces. The intended
meaning of Π(π) = (σ, p) is that the event from timed trace σ at position p
is currently used in the evaluation of trace π. Given a subset of trace variables
π ⊆ Var(α), we use Π \ π for the map that removes from the domain of Π all
π ∈ π. As in the untimed case, Π[π 7! (σ, p)] is the assignment that coincides
with Π for every trace variable except for π, which is mapped to (σ, p). The
satisfaction of a HyperMTL formula ϕ over a timed word assignment Π, and a
set W of timed words, denoted by (W,Π) |= ϕ, is defined as for HyperLTL:

(W,Π) |= ∃π.α iff (W,Π[π 7! (σ, 0)]) |= α for some σ ∈W
(W,Π) |= ∀π.α iff (W,Π[π 7! (σ, 0)]) |= α for all σ ∈W
(W,Π) |= ϕ iff Π |=s ϕ

where |=s is the semantics of the synchronous layer defined next.

The synchronous layer. We present first some preliminary definitions to cap-
ture the passage of time, by defining the sequence of time ticks for a given
collection of traces. Intuitively speaking, this sequence contains the instants of
the events in the union of events in the traces. We start by defining the position
of trace σ at time t as the index of the latest event in σ whose time does not
surpass t:

pos(σ, t) def
= i, such that time(σ(i)) ≤ t < time(σ(i+ 1))

Recall that time(σ(i)) is the time-stamp of the i-th event in σ. The position
adjustment Π|t is an assignment (with Dom(Π|t) = Dom(Π)), which moves
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the pointer to the position denoted by t. That is, for π ∈ Dom(Π), Π|t(π) =
(σ, pos(σ, t)) for (σ, p) = Π(π). Then, given Π, we define the current instant and
the next instant as follows:

now(Π) = max
π∈Dom(Π)

{
time(σ(p)) | for (σ, p) = Π(π)

}
next(Π) = min

π∈Dom(Π)

{
time(σ(p+ 1)) | for (σ, p) = Π(π)

}
Finally, the synchronous successor of Π is succ(Π) = Π|next(Π). This can be
extended to succj+1(Π) = succj(succ(Π)). Note that, starting at time 0, succ
follows the union of the time-stamps of Dom(Π) in increasing order. We use
Π(j) as short for succj(Π). We are now ready to define the semantics |=s:

Π |=s true iff always holds
Π |=s aπ iff a ∈ label(σ(p)) for (σ, p) = Π(π)
Π |=s ϕ1 ∨ ϕ2 iff Π |=s ϕ1 or Π |=s ϕ2

Π |=s ¬ϕ iff Π 6|=s ϕ
Π |=s ϕ1 UI ϕ2 iff for some i ≥ 0,

Π(i) |=s ϕ2 and (now(Π(i))− now(Π)) ∈ I
and for all j < i, Π(j) |=s ϕ1

Π |=s A.ψ iff for some trajectory τ , (Π, τ) |=a ψ

The notion of a trajectory is related to the asynchronous layer, defined next.

Example 3. Consider the following HyperMTL formula with only synchronous
temporal operator α = ∀π.∀.π′.[1,2](aπ ↔ aπ′). The Kripke structure K1 in
Fig. 3 (left) does not satisfy this formula, whereas K2 in Fig. 3 (middle) does.

The asynchronous layer. The asynchronous layer allows traces to proceed at
different speeds. We start by the asynchronous semantics of intervals. Let α be
a formula, [l, u] be a time interval and ∆ be a map from Var(α) ⇀ Z≥0 that
gives a time duration for each π in Dom(∆). We write ∆ |=I [l, u] whenever for
all π in Dom(∆), ∆(π) ∈ [l, u]. We write ∆ |=J [l, u] whenever for all distinct
π, π′ ∈ Dom(∆), |∆(π)−∆(π′)| ∈ [l, u].

A trajectory encodes which traces move and which traces stay at a given
instant.

Definition 2. Let V be a set of trace variables. A trajectory is an infinite se-
quence τ0τ1τ2 · · · of subsets of V , such that for every π ∈ V , there are infinitely
many i ∈ Z≥0 for which π ∈ τi.

For example, the trajectory depicted in Fig. 2 (right) is {σ1, σ2}{σ1}{σ1, σ2} · · · .
Similar to timed traces, by τ i, we mean the suffix τiτi+1 . . . . The asynchronous
successor of a pointed time trace assignment Π with respect to a trajectory τ ,
denoted succa(Π, τ), is the pair (Π ′, τ1), where Π ′ is defined as follows. First,
Dom(Π ′) = Dom(Π); then for π ∈ Dom(π′), Π ′(π) = Π(π) + 1 if π ∈ τ0, and
Π ′(π) = Π(π) otherwise. Again, this definition can be extended to the j-th
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successor by defining succja to be the function that applies j times the function
succa. We use (Π, τ)(j) as a short for succja(Π, τ).

Given two pointed time trace assignments Π and Π ′ with the same domain
Dom(Π) = Dom(Π ′) (as it is the case with successors) the passage of time is
defined as a map from Var(α) ⇀ Z≥0 that returns the passage of time for each
assignment as follows:

∆(Π,Π ′)(π)
def
= time(Π ′(π))− time(Π(π))

Finally, we define the time passage in j steps ∆j(Π, τ) as the time passage
between the current evaluation instant and the evaluation instant obtained after
j steps, that is, ∆j(Π, τ) = ∆(Π,Π ′), where (Π ′, τ ′) = (Π, τ)(j). We are finally
ready to define the semantics of the asynchronous layer:

(Π, τ) |=a true iff always holds
(Π, τ) |=a aπ iff a ∈ label(σ(p)) for (σ, p) = Π(π)
(Π, τ) |=a ψ1 ∨ ψ2 iff (Π, τ) |=a ψ1 or (Π, τ) |=a ψ2

(Π, τ) |=a ¬ψ iff (Π, τ) 6|=a ψ
(Π, τ) |=a ψ1 UI,J ψ2 iff for some i > 0, (Π, τ)(i) |=a ψ2,

∆i(Π, τ) |=I I and ∆i(Π, τ) |=J J, and
for all j < i, (Π, τ)(j) |=a ψ1

Essentially, the asynchronous until operator UI,J checks whether following the
trajectory τ the attempt ψ2 is met (also satisfying the temporal constraints I
and J) and the obligation ψ1 is fulfilled at all previous evaluation instants.

Example 4. The meaning of formula α = ∀π.∃π′.[0,∞)A.([0,∞),[0,1](aπ ∧aπ′))
is that for every trace, there exists another one, such that it is (synchronously)
always the case that proposition a is (asynchronously) observed in both traces
within one time unit of each other. For example, K3 in Fig 3 (right) satisfies this
formula.

3.3 Framing

Unfortunately, the semantics defined above has some unexpected drawbacks,
which we fix here with the notion of framing. Consider a formula α that contains
a synchronous sub-formula ϕ. The set of time instants at which ϕ is evaluated
depends on the events of all traces in Var(α) (which is a super-set of the traces
that actually appear as trace variables in ϕ). For example, consider the formula
∀π.∃π′.

(
[5,10]aπ ↔ [4,10]aπ′

)
. The sub-formula ϕ1 = [5,10]aπ only refers

to π while its enclosing formula refers to π and π′. Let σ and σ′ be the traces
assigned to π and π′. The semantics of the synchronous layer of HyperMTL evalu-
ates ϕ1 at the points at which either σ or σ′ contain an event and not only at the
points at which σ does. This evaluation causes semantic anomalies, illustrated
in the following examples.

Example 5. Consider ϕ = [1,3]true and W = {σ} for σ = (a, 0)(a, 2)(a, 4) . . . .
In this case (W,Π∅) 6|= ϕ but (W,Π∅) |= ∃π.ϕ and (W,Π∅) |= ∀π.ϕ even though
π /∈ Var(ϕ).
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In first-order logic, if a variable x does not appear in a formula P , P is equivalent
to ∃x.P and to ∀x.P , but the previous example illustrates that this is not the
case for HyperMTL. It is true in the asynchronous semantics, but not necessarily
for synchronous formulas due to the additional ticking instants.

Example 6. Consider formulas ϕ1 =[1,2]aπ1 and ϕ2 =[3,4]aπ2 and consider
timed words σ1 = (a, 0)(a, 4)(a, 8) . . . and σ2 = (a, 0)(a, 2)(a, 12) . . . In this case
(σ1, 0) 6|= ϕ1 and (σ2, 0) 6|= ϕ2, but ((σ1, σ2), 0) |= ϕ1 ∧ ϕ2. Even though σ1 is
the trace assigned to π1, the ticks in σ1 make ϕ2 true (even though ϕ2 does not
refer to π1 and hence “should not be affected” by the trace assigned to π1).

To fix these anomalies, we enrich the synchronous layer with a framing op-
erator [ϕ]π that restricts the time-words that the semantics use, resulting in the
following syntax:

ϕ ::= true | aπ | ϕ ∨ ϕ | ¬ϕ | ϕ UI ϕ | A.ψ | [ϕ]π

To be well-formed we require that every sub-formula of the form [ϕ]π satisfies
that Var(ϕ) ⊆ π. We assume that every formula is well-formed. The semantics
for the synchronous layer is now extended so Π |=s [ϕ]π whenever Π[π] |=s ϕ.
Using this new definition we can prove that [true]π and [pπ ∨ ¬pπ]π are equiva-
lent, and can be substituted in every context (that includes π as a path).

4 HyperMTL in Action

We first note that in all the applications explored in this section, explicit framing
was not necessary as the context of every sub-formula guarantee that it was
evaluated when necessary.

Side-channel Timing Attacks. A timing attack is one that exploits the
time-dependent behavioral characteristics of the implementation of an algorithm
rather than other “functional” properties of the algorithm. For example, the ex-
ecution time for the square-and-multiply algorithm used in modular exponenti-
ation in encryption algorithms depends linearly on the number of ‘1’ bits in the
encryption key. While the number of ‘1’ bits alone is not nearly enough informa-
tion to make finding the key easily, repeated executions with the same key and
different inputs can be used to perform statistical correlation analysis of timing
information to recover the key completely, even by a passive attacker. This is
a practical attack against a number of encryption algorithms, including RSA
and ElGamal. In order to design a countermeasure against this attack, one can
require that in any given system, for any pairs of executions, it should always
be the case that, if the function is invoked in both executions, they both return
within close enough times. The corresponding HyperMTL formula is ϕtiming in
Fig. 4, where inv and ret denote invocation and return of a function, interval
[0, 10] is an upper bound on the execution time of the function, and interval
[0, 1] specifies how close the execution times should be in π and π′.
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ϕtiming = ∀π.∀π′.[0,∞)A.

(
(invπ ∧ invπ′) ! [0,10),[0,1](retπ ∧ retπ′)

)

ϕcompose = ∀π.∀π′.[0,∞)A.

(
(invHπ ∧ invHπ′) ! [0,5],[0,2](hcopyπ ∧ hcopyπ′)

)

ϕsla = ∀π.∃π′.[0,∞)A.

(
(reqπ ∧ reqπ′) ! [0,100],[0,1](resπ ∧ resπ′)

)
ϕrobust = ∀π.∀π′.[0,∞)A.

(
I,[0,∞)

(
d(xπ, xπ′) ≤ c

)
! I′,[0,∞)

(
d(yπ, yπ′) ≤ c′

))
ϕovershoot = ∀π.∀π′.[0,∞)A.

[
stepπ ! I,[0,∞)(xπ < c)

]
!

[0,∞)A.

[(
stepπ′ ∧I,[0,∞)(xπ′ > c)

)
!I,[0,∞)d(yπ, yπ′) > ε

]

Fig. 4. Examples of properties expressed in HyperMTL.

Another example of timing leaks is related to composing secure components.
For example, secure multi-execution (SME) [16] removes insecurities (including
timing leaks) in any given process. To this end, it runs two copies, H (for secrets)
and L (for public channels), of a given program; feeding (a copy of) H and L input
to the H-copy, and dropping its L output; and feeding only L input to the L-copy,
and dropping its H output. Since the L-copy receives no H input, no information
can be leaked. In some implementations of SME inputs enter a queue, which is
serviced by first running the L-copy on the L projection of the next input, then
running the H-copy on the input. While this approach prevents leaks to output
values, the time at which the L-copy processes the next input depends on how
long it takes for the H-copy to finish processing previous inputs, which in turn,
opens a timing channel. In other words, a correct composition of two secure
components should satisfy ϕcompose in Fig. 4. where invH denotes invocation of
the H-copy and hcopy denotes that the execution is in the H-copy. Again, intervals
[0, 5] and [0, 2] are arbitrary.

Service Level Agreements. A service level agreement (SLA) specifies ac-
ceptable performance of a system. These agreements often use statistics such
as mean response time, the mean time that elapses between a request and a
response. Other examples include time service factor, and percentage uptime.
If these statistics are used to define policies across all executions of a system,
then they are timed hyperproperties. Here, we consider a simple fair SLA policy,
where no execution can be discriminated. More specifically, we require that for
any execution with a particular response time, there has to exists another one
with a similar timing behavior, as show in ϕsla in Fig. 4, where req and res denote
request and response propositions, respectively, and intervals [0, 100] and [0, 1]
are arbitrary.
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Cyber-physical Systems. In cyber-physical systems, robustness is the abil-
ity of a computer system to cope with errors during execution and cope with
erroneous input. More specifically, we require that if the distance between two
different input values is bounded by some value c within some time interval I,
then the distance between outputs is also bounded by some value c′ within time
interval I ′, as shown in ϕrobust in Fig. 4, where x and y are input and output
variables, respectively. Note that by abuse of notation x and y refer to the value
of variables rather than atomic propositions.

Another feature in cyber-physical systems is overshoot observability. Here, we
require that (1) in one execution, if a signal steps, then for some time interval
I the input is bounded, (2) in another execution the signal steps and the input
overshoots, then (3) the distance between the output signals is greater than some
bound (i.e., the overshoot is observed in the output). This is shown in ϕovershoot
in Fig. 4.

5 Model Checking

The model-checking problem is the following: Given a Kripke structure K, whose
language is W , and a HyperMTL formula α decide whether (W,Π) |= α. In this
section, we show that the model-checking problem for HyperMTL is decidable for
a fragment of HyperMTL, where the intervals in the asynchronous until operator
UI,J are bounded. We will refer to this fragment as “bounded HyperMTL”. Another
fragment we will consider are formulas without the asynchronous sub-formulas
(those starting with A). We will refer to the fragment as the “synchronous Hy-
perMTL”. Our approach to show decidability consists of the following:
– Step 1: Reduce the model-checking problem of bounded HyperMTL to that

of synchronous HyperMTL.
– Step 2: Reduce the model-checking problem of synchronous HyperMTL to

that of HyperLTL, which is known to be decidable [13].
We provide the details of these steps separately.

Bounded HyperMTL to Synchronous HyperMTL. Given a bounded Hyper-
MTL formula α, we provide an algorithm to construct an equivalent synchronous
HyperMTL formula α̂. The intuition is that an asynchronous formula A.ψ with
bounded until operators only depends on a finite interval of a timed trace. Hence,
the asynchronous formula can be replaced by a synchronous formula that encodes
all finite interval patterns satisfied by A.ψ.

First, we formalize when two timed traces σ and σ′ agree on certain intervals.
Given two timed traces σ and σ′, and natural numbers r, r′ and s, we say that σ
and σ′ are (r, r′, s)-conformant, if the timed trace σ starting from r and the timed
trace σ′ starting from r′ are the same for a duration of s, that is, for every i such
that r ≤ time(σ(i)) ≤ r+s, there is a j such that time(σ′(j))−r′ = time(σ(i))−r
and label(σ(i)) = label(σ′(j)) (and vice-versa for σ′ and σ). The first time of an
assignment defined as first(Π) = min

π∈Dom(Π)

{
time(σ(p)) | for (σ, p) = Π(π)

}
.

12



This allows us to define conformance between assignments. Two assignments Π
and Π ′ are s-conformant, if Dom(Π) = Dom(Π ′) and for all π ∈ Dom(Π),
label(σ(p)) = label(σ′(p′)) and σ and σ′ are (first(Π),first(Π ′), s)-conformant,
where Π(π) = (σ, p) and Π ′(π) = (σ′, p′).

Next, given a bounded asynchronous formula ψ we define the future time
period Tψ of a timed trace which has an effect on the satisfaction of ψ. Let
ub(I) be the least upper-bound of an interval I. Tψ is defined inductively as:
Ttrue = 0; Taπ = 0; Tψ1∨ψ2

= max{Tψ1
, Tψ2
}; T¬ψ = Tψ; Tψ1UI,Jψ2

= ub(I) +
ub(J) + max{Tψ1 , Tψ2}.

The next proposition formalizes the intuition that the satisfaction of a bounded
asynchronous formula depends on only a finite interval of an assignment starting
from the first time of the assignment.

Proposition 1. Let ψ be bounded asynchronous, and let Π and Π ′ be two Tψ-
conformant assignments. Then, for any τ , Π, τ |=a ψ if and only if Π ′, τ |=a ψ.

The proof proceeds by induction on the structure of ψ. For the case ψ = aπ the
result follows because labels match at the pointer indices in the two assignments.
For the until operator, ψ1UI,Jψ2, a witness for ψ2 happens at pointer values that
satisfy I and J , hence, the latest pointer values corresponding to the witness are
within ub(I) + ub(J) from the first(Π) and first(Π ′), respectively.

Next, we provide a construction for a synchronous formula that encodes all
the assignments that are conformant to a given assignment in a given interval.
Let ϕs,πσ,r encode the pattern of σ in the interval [r, s]. More precisely, if σ =
(a0, t0)(a1, t1) · · · , then

ϕs,πσ,r =
∧

i:r≤time(σ(i))≤r+s,a=label(σ(i))

true U[ti,ti] aπ

Given any assignment Π and a natural number s, we construct a synchronous
formula ϕsΠ such that Π ′ |=s ϕ

s
Π for every Π ′ that is s-conformant with Π.

ϕsΠ =
∧

π∈Dom(Π),Π(π)=(σ,p)

[
ϕ
s−(time(σ(p))−firstΠ),π
σ,time(σ(p))

]
π
.

Finally, we are ready to construct a synchronous formula ψ̂ that is equiv-
alent to a bounded synchronous formula A.ψ. From Prop. 1, the satisfaction
of ψ by an assignment Π only depends on the values in the interval I =
[first(Π),first(Π) + Tψ]. Given the values of an assignment Π in the interval
I, one can algorithmically check if Π |=s A.ψ. More precisely, there are only
finitely many τ ’s that are relevant within I, hence, by iterating over these τ ’s,
and using the semantics of |=a, one can effectively check Π, τ |=a ψ. Given a
natural number s, let Πs be the set of all assignments that are s-conformant
with Π. Note that s-conformance is an equivalence relation on the set of as-
signments with finite index. Let Rep(Π, s) denote a finite set of representative
assignments for each equivalence class. Further, let Sat(ψ,Π, s) denote those el-
ements of Rep(Π, s) that correspond to satisfying assignments for ψ. Then ψ̂ is
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given by the disjunction of ϕsΠ for all Π ∈ Sat(ψ,Π, s). Note that Sat(ψ,Π, s) is
computable, and hence, ψ̂ (which does not contain asynchronous sub-formulas)
is effectively constructible.

Lemma 1. Given a bounded asynchronous formula ψ and an assignment Π,
the Π |=s A.ψ if and only if Π |=s ψ̂.

Synchronous HyperMTL to HyperLTL. We show now how to transform a syn-
chronous HyperMTL formula α to a HyperLTL formula α̂ such that the set of
timed traces and timed assignments satisfying α is the same as the set of the
corresponding untimed traces and assignments satisfying α̂. Then we reduce the
model-checking problem of α with respect to a (timed) Kripke structure to that
of α̂ with respect to an untimed Kripke structure.

Given a timed trace, its untiming refers to a sequence that contains an event
at every time instant obtained by repeating an actual event until the next actual
event in the time trace. Given a letter a ∈ Σ, let ā be a fresh letter (not in Σ),
used in the filled events between two actual occurrences. We also use the fresh
special symbol ε 6∈ Σ. Given a timed trace σ = (a0, t0)(a1, t1) · · · , we define
untime(σ) to be the trace b0b1 · · · , where for each j ≥ 0, bj = ai if j = ti for
some i, and bj = āi if ti < j < ti+1, and bj = ε if 0 ≤ j < t0. For instance,
if σ = (a, 2)(b, 5)(b, 7)(a, 9) · · · , untime(σ) = εεaāābb̄bb̄a · · · . For a Π, we define
untime(Π) to be the trace assignment, where Dom(Π) = Dom(untime(Π)) and
for every π ∈ Dom(Π), untime(Π)(π) = (untime(σ),now(Π)), where Π(π) =
(σ, p).

Next, given a synchronous HyperMTL formula ϕ, we define a transformed
formula U(ϕ) inductively as follows. Here, Eventϕ corresponds to the occurrence
of an event, and is defined as Eventϕ =

∨
π∈Var(ϕ),a∈AP aπ.

U(true) = true U(aπ) = aπ ∨ āπ
U(ϕ1 ∨ ϕ2) = U(ϕ1) ∨ U(ϕ2) U(¬ϕ) = ¬U(ϕ)
U(ϕ1 UI ϕ2) = (Event ! U(ϕ1)) UI (Event ∧ U(ϕ2)) U(Q.α) = Q.U(α)

Lemma 2. Given a synchronous formula α, a set of timed traces W and an
assignment Π, (W,Π) |= α if and only if (untime(W ), untime(Π)) |= U(α).

The above lemma can be proved by induction on the structure of α.
Given a Kripke structure M and a synchronous HyperMTL formula α, our

objective is to check if L(M), Π∅ |= α. Lemma 2 states that it is equivalent to
checking untime(L(M)), untime(Π∅) |= U(α). It is straightforward to construct
an M̂ that generates untime(M) from M by replacing transitions in M, say,
from a state s to a state s′ with delay d, by sequence of d−1 intermediate states
whose labels are ā, where a is the label of s.

6 Related Work

There has been a lot of recent progress in automatically verifying [24,23,22,15]
and monitoring [2,21,8,7,20,33,26] HyperLTL specifications, including a growing
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set of tools, like the model checker MCHyper [24,15], the satisfiability check-
ers EAHyper [19] and MGHyper [17], and the runtime monitoring tool RVHy-
per [20]. Synthesis techniques for HyperLTL has been studied in [18] and in [6].

Comparatively, much less attention has been put to timed hyperproperties.
The work in [30] introduces HyperSTL, which extends STL by allowing quantifica-
tion over real-valued signals, and proposes a monitoring algorithm for HyperSTL
formulas. The work in [27] introduces the temporal logic timed HyperLTL, which
adds one type of timing constraint to the until operator in the synchronous se-
mantics of HyperLTL. This covers some timed hyperproperties, but it falls short in
expressing requirements such as timing side-channels as presented in Section 4.
Our formulation allows the execution times in different traces to be similar (i.e.,
[0,∞),[0,1](rπ∧rπ′)), rather than just within a prescribed time bound as in [27]).
Also, the proposed logic operates only in the HyperLTL synchronous semantics,
meaning that all evaluations are conducted in the same trace positions.

Another recent work on timed hyperproperties is [28], which proposes an
alternative definition to HyperMTL also distinguishing synchronous and asyn-
chronous semantics, but there are fundamental differences. The synchronous
semantics is similar to that of the one proposed in [27], and forces all traces to
include events at the same instants, with the global time-stamp as an additional
value. The asynchronous semantics in [27] is similar to our synchronous seman-
tics, which keeps a global clock in the evaluation and proceeds in a total order.
In comparison, our asynchronous semantics is based on the existence of a trajec-
tory and allows to compare traces that evolve at different speeds, which cannot
be captured in [28]. Additionally, most of the fragments of the logic in [28] are
undecidable. Finally, the logic in [28] does not incorporate framing and suffers
from many logical anomalies. For example, ∀πb.(pπb U qπb) is not equivalent to
∀πa.∀πb.(pπb U qπb) in spite of πa not occurring in the inner formula (see [28] p.
16:6). Also, it is possible in the logic in [28] that for a given model M and for-
mula ϕ, neither M |= ϕ nor M |= ¬ϕ. All these anomalies are fixed by framing
introduced here, but the formal proof is out of the scope of this paper.

7 Conclusion and Future Work

We introduced the temporal logic HyperMTL for timed hyperproperties. Even
though our logic can be easily extended to richer models of time, we described
here a discrete-time domain that guarantees a decidable model-checking prob-
lem. We showed that HyperMTL can elegantly express important properties such
as countermeasures to a rich class of side-channel timing attacks, SLA, and
properties of CPS such as robustness and overshoot detectability. To automate
the verification task, we proposed a model checking algorithm by reducing the
problem to model checking HyperLTL. As future work, we plan to implement our
algorithm, build tools, and conduct case studies in the areas mentioned in Sec-
tion 4. Other important research directions include foundational problems such
as satisfiability, verification, monitoring, and synthesis for different fragments of
HyperMTL, as well as extensions to richer time domains.
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