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Abstract. Developing critical components, such as mission controllers
or embedded systems, is a challenging task. Reactive synthesis is a tech-
nique to automatically produce correct controllers. Given a high-level
specification written in LTL, reactive synthesis consists of computing
a system that satisfies the specification as long as the environment re-
spects the assumptions. Unfortunately, LTL synthesis suffers from high
computational complexity which precludes its use for many large cases.
A promising approach to improve synthesis scalability consists of de-
composing a safety specification into a smaller specifications, that can
be processed independently and composed into a solution for the orig-
inal specification. Previous decomposition methods focus on identifying
independent parts of the specification whose systems are combined via
simultaneous execution.
In this work, we propose a novel decomposition algorithm based on
modes, which consists on decomposing a complex safety specification
into smaller problems whose solution is then composed sequentially (in-
stead of simultaneously). The input to our algorithm is the original spec-
ification and the description of the modes. We show how to generate
sub-specifications automatically and we prove that if all sub-problems
are realizable then the full specification is realizable. Moreover, we show
how to construct a system for the original specification from sub-systems
for the decomposed specifications. We finally illustrate the feasibility of
our approach with multiple cases studies using off-the-self synthesis tools
to process the obtained sub-problems.

1 Introduction

Reactive synthesis [11] is the problem of constructing a reactive system auto-
matically from a high-level description of its desired behavior. A reactive system
interacts continuously with an uncontrollable external environment [12]. The
specification describes both the assumptions that the environment is supposed
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to follow and the goal that the system must satisfy. Reactive synthesis guaran-
tees that every execution of the system synthesized satisfies the specification as
long as the environment respects the assumptions.

Linear-Time Temporal Logic (LTL) [47] is a widely used formalism in verifi-
cation [44] and synthesis [48] of reactive systems. Reactive synthesis can produce
controllers which are essential for various applications, including hardware de-
sign [6] and control of autonomous robotic systems [36,17].

Many reactive synthesis tools have been developed in recent years [25,19] in
spite of the high complexity of the synthesis problem. Reactive synthesis for full
LTL is 2EXPTIME-complete [48], so LTL fragments with better complexity have
been identified. For example, GR(1)—general reactivity with rank 1—enjoys an
efficient (polynomial) symbolic synthesis algorithm [6]. Even though GR(1) can
express the safety fragment of LTL considered in this paper, translating our
specifications into GR(1) involves at least an exponential blow-up in the worst
case [32]. Better scalable algorithms for reactive synthesis are still required [38].

Model checking, which consists on deciding whether a given system satisfies
the specification, is an easier problem than synthesis. Compositional approaches
to model checking break down the analysis into smaller sub-tasks, which signifi-
cantly improve the performance. Similarly, in this paper we aim to improve the
scalability of reactive synthesis introducing a novel decomposition approach that
breaks down the original specification into multiple sub-specifications.

There are theoretical compositional approaches [21,39], and implementations
that handle large conjunctions [4,13,46]. For instance, Lisa [4] has successfully
scaled synthesis to significant conjunctions of LTL formulas over finite traces
(a.k.a. LTLf [14]). Lisa is further extended to handling prominent disjunctions
in Lydia [13]. These modular synthesis approaches rely heavily on the decomposi-
tion of the specification into simultaneous sub-specifications [24]. However, when
sub-specifications share multiple variables, these approaches typically return the
exact original specification, failing to generate smaller decompositions.

We tackle this difficulty by introducing a novel decomposition algorithm for
safety LTL specifications. We chose the safety fragment of LTL [52,40] because
it is a fundamental requirement language in many safety-critical applications.
Extending our approach to larger temporal fragments of LTL is future work.

To break down a specification we use the concept of mode. A mode is a sub-
set of the states in which the system can be during its execution which is of
particular relevance for the designer of the system. At any given point in the
execution, the system is in a single mode, and during an execution the system can
transition between modes. In requirement design, the intention of modes is often
explicitly expressed by the requirement engineers as a high-level state machine.
Using LTL reactive synthesis these modes are boiled down into additional LTL
requirements , which are then processed with the rest of the specification. In this
paper, we propose to exploit modes to decompose the specification into multiple
synthesis sub-problems.

Most previous decomposition methods [33,24] break specifications into inde-
pendent simultaneous sub-specifications whose corresponding games are solved
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independently and the system strategies composed easily. In contrast, we pro-
pose sequential games, one for each mode. For each mode decomposition, we
restrict the conditions under which each mode can “jump” into another mode
based on the initial conditions of the arriving mode. From the point of local
analysis of the game that corresponds to a mode, jumping into another mode
is permanently winning. We show in this paper that our decomposition ap-
proach is sound—meaning that given a specification, system modes and initial
conditions—if all the sub-specifications generated are realizable, then the original
specification is realizable. Moreover, we show a synthesis method that efficiently
constructs a system for the full specification from systems synthesized for the
sub-specifications. An additional advantage of our method is that the automaton
that encodes the solution is structured according to the modes proposed, so it
is simpler to understand by the user.

Related Work. The problem of reactive synthesis from temporal logic speci-
fications has been studied for many years [20,48,2,6]. Given its high complexity
(2EXPTIME-complete [48]) easier fragments of LTL have been studied. For ex-
ample, reactive synthesis for GR(1) specifications can be solved in polynomial
time [6]. Safety-LTL has attracted significant interest due to its algorithmic sim-
plicity compared to general LTL synthesis [53], but the construction of deter-
ministic safety automaton presents a performance bottleneck for large formulas.

For the model-checking problem, compositional approaches improve the scal-
ability significantly [50], even for large formulas. Remarkably, these approaches
break down the analysis into smaller sub-tasks [48]. For model-checking, Dureja
and Rozier [18] propose to analyze dependencies between properties to reduce
the number of model-checking tasks. Recently, Finkbeiner et al. [24] adapt this
idea to synthesis, where the dependency analysis is based on controllable vari-
ables, which makes the decomposition impossible when the requirements that
form the specification share many system (controlled) variables. We propose an
alternative approach for dependency analysis in the context of system specifi-
cation, by leveraging the concept of mode to break down a specification into
smaller components. This approach is a common practice in Requirements En-
gineering (RE ) [28,27] where specifications typically contain a high-level state
machine description (where states are called modes) and most requirements are
specific to each mode. Furthermore, this approach finds widespread application
in various industries, employing languages such as EARS [45] and NASA’s FRET
language [26]. Recently, a notion of context is introduced by Mallozi et al [43]
in their recent work on assume-guarantee contracts. Unlike modes, contexts de-
pend solely on the environment and are not part of the elicitation process or the
system specification.

Software Cost Reduction (SCR) [31,28,27] is a well-establish technique that
structures specifications around mode classes and modes. A mode class refers
to internally controlled variables that maintain state information with a set of
possible values known as modes.
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We use modes here provided by the user to accelerate synthesis, exploiting
that in RE modes are comonly provided by the engineer during system specifica-
tion. Recently, Balachander et al. [3] proposed a method to assist the synthesis
process by providing a sketch of the desired Mealy machine, which can help to
produce a system that better aligns with the engineer’s intentions. This approach
is currently still only effective for small systems, as it requires the synthesis of
the system followed by the generation of example traces to guide the search for
a reasonable solution. In contrast our interest is in the decomposition of the
synthesis process in multiple synthesis sub-tasks.

Other compositional synthesis approaches aim to incrementally add require-
ments to a system specification during its design [39]. On the other hand, [23]
and [24] rely extensively on dropping assumptions, which can restrict the ability
to decompose complex real-world specifications.

2 Motivating Example

We illustrate the main ideas of our decomposition technique using the following
running example of a counter machine (CM ) with a reset. The system must
count the number of ticks produced by an external agent, unless the reset is
signaled—also by the environment—in which case the count is restarted. When
the count reaches a specific limit, the count has to be restarted as well and an
output variable is used to indicate that the bound has been reached. Fig. 1 shows
a specification for this system with a bound of 20. This example is written in
TLSF (see [34]), a well-established specification language for reactive synthe-
sis, which is widely used as a standard language for the synthesis competition,
SYNTCOMP [1]. Even for this simple specification, all state-of-the-art synthesis
tools from the synthesis competition SYNTCOMP [1], including Strix [46], are
unable to produce a system that satisfies CM .

Recent decomposition techniques [24,33] construct a dependency graph con-
sidering controllable variable relationships, but fail to decompose this speci-
fication due to the mutual dependencies among output variables. Our tech-
nique breaks down this specification into smaller sub-specifications, grouping
the counter machine for those states with counter value 1 and 2 in a mode,
states with counter 3 and 4 in a second mode, etc, as follows:

cnt1start cnt2 cnt3 cnt4 cnt5 cnt20
start

reset
¬reset

reset

¬reset

reset

¬reset

reset

Smaller controllers are synthesized independently, which can be easily combined
to satisfy the original specification 1. In the example, we group the states in pairs
for better readability, but it is possible to use larger sizes. In fact, for N = 20
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the optimal decomposition considers modes that group four values of the counter
(see Section 5). The synthesis for each mode is efficient because in a given mode
we can ignore those requirements that involve valuations that belong to other
modes, leading to smaller specifications.

PARAMETERS { N = 20;}
INPUTS {reset;start;} OUTPUTS {counter[N+1];trigger;}
INITIALLY{ (!reset && !start);} ASSUMPTIONS{ G !(reset && start);}
PRESET{counter[0] && (&&[1 <= i <=N]!counter[i]);}
DEFINITIONS {

mutual(b) = G ||[0 <= i < n](b[i] && &&[j IN {0, 1 .. (n-1)} (\) {i}] !
b[j]);}}

GUARANTEES
mutual(counter); G (reset → X counter[0]);
G ((counter[0] && start) → X (counter[1] || reset));
G ((counter[1] && !reset) → X (counter[2] || reset));
...
G ((counter[N-1] && !reset) → X (counter[N] || reset));
G (counter[N] → X counter[0]);
G (counter[N] → trigger); G (!counter[N] → !trigger);

Fig. 1: Counter machine specification.

// common part to all projections.
INPUTS {reset;start;} INITIALLY (!reset && !start); ASSUMPTIONS G !(reset

&& start);

[Projection under m1]
OUTPUTS {counter_0, counter_1; trigger; jump2; sφ; done}
GUARANTEES

G (!done → (counter_0 || counter_1));
G (!done → (reset → X counter_0));
G (!done → (counter_0 && start) → X (counter_1 || reset));
G (!done → ((counter_1 && !reset) → sφ));
G (!done → (sφ && !done) → X FALSE);
G (!done → !trigger);
G (done → X done);
G (jump2 → X done);
G (!jump2 → (!done → X !done));

[Projection under m2]
...

Fig. 2: Counter-Machine projection.
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In this work, we refer to these partitions of the state space as modes. In
requirements engineering (RE ) it is common practice to enrich reactive LTL
specifications with a state transition system based on modes, which are also
used to describe many constraints that only apply to specific modes.

Software cost reduction (SCR) uses modes in specifications and has been
successfully applied in requirements for safety-critical systems, such as an air-
craft’s operational flight program [31], a submarine’s communication system [30],
nuclear power plant [51], among others [5,35]. SCR has also been used in the
development of human-centric decision systems [29], and event-based transition
systems derived from goal-oriented requirements models [41].

Despite the long-standing use of modes in SCR, state-of-the-art reactive
synthesis tools have not fully utilized this concept. The approach that we in-
troduce in this paper exploits mode descriptions to decompose specifications
significantly reducing synthesis time. For instance, when decomposing our mo-
tivating example CM using modes, we were able to achieve 90% reduction in
the specification size, measured as the number of clauses and the length of the
specification (see Section 5). Fig. 2 shows the projections with a bound N = 4
for mode m1 = (counter0 ∨ counter1). In each sub-specification, we introduce
new variables (controlled by the system). These variables encode mode transi-
tions using jump variables. When the system transitions to a new mode, the
current sub-specification automatically wins the ongoing game, encoded by the
done variable A new game will start in the arriving mode. Furthermore, the
system can only jump to new modes if the arriving mode is prepared, i.e., if its
initial conditions—as indicated by the sφ variables—can satisfy the pending
obligations. The semantics of these variables is further explained in the next
section.

In this work, we assume that the initial conditions are also provided man-
ually as part of the mode decomposition. While modes are common practice
in requirement specification, having to manually provide initial conditions is
the major current technical drawback of our approach. We will study in the
future how to generate these initial conditions automatically. In summary, our
algorithm receives the original specification S, a set of modes and their corre-
sponding initial conditions. Then, it generates a sub-specification for each mode
and discharges these to an off-the-self synthesis tool to decide their realizability.
If all the sub-specifications are realizable, the systems obtained are then com-
posed into a single system for the original specification, which also shares the
structure of the mode decomposition.

3 Preliminaries

We consider a finite set of AP of atomic propositions. Since we are interested in
reactive systems where there is an ongoing interaction between a system and its
environment, we split AP into those propositions controlled by the environment
X and those controlled by the system Y, so X ∪ Y = AP and X ∩ Y = ∅. The
alphabet induced by the atomic propositions is Σ = 2AP. We use Σ∗ for the set
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of finite words over Σ and Σω for the set of infinite words over Σ. Given σ ∈ Σω

and i ∈ N, σ(i) represents the element of σ at position i, and σi represents the
word σ′ that results by removing the prefix σ(0) . . . σ(i − 1) from σ, that is σ′

s.t. σ′(j) = σ(j − 1) for j ≥ i. Given u ∈ Σ∗ and v ∈ Σω, uv represents the
ω-word that results from concatenating u and v. We use LTL [47,44] to describe
specifications. The syntax of LTL is the following:

φ ::= true
∣∣ a ∣∣ φ ∨ φ

∣∣¬φ ∣∣φ ∣∣ φ U φ
∣∣φ

where a ∈ AP, and ∨, ∧ and ¬ are the usual Boolean disjunction, conjunction
and negation, and  is the next temporal operator (a common derived operator
is false= ¬true). A formula with no temporal operator is called a Boolean
formula, or predicate. We say φ is in negation normal form (NNF), whenever all
negation operators in φ are pushed only in front of atoms using dualities. The
semantics of LTL associate traces σ ∈ Σω with formulae as follows:

σ ⊨ true always holds
σ ⊨ a iff a ∈ σ(0)
σ ⊨ φ1 ∨ φ2 iff σ ⊨ φ1 or σ ⊨ φ2

σ ⊨ ¬φ iff σ ̸⊨ φ
σ ⊨ φ iff σ1 ⊨ φ
σ ⊨ φ1 U φ2 iff for some i ≥ 0 σi ⊨ φ2, and for all 0 ≤ j < i, σj ⊨ φ1

σ ⊨ φ iff for all i ≥ 0 σi ⊨ φ

A Syntactic Fragment for Safety. A useful fragment of LTL is LTLX where
formulas only contain  as a temporal operator. In this work, we focus on a
fragment of LTL we called GX0:

α→ (β ∧ ψ)

where α, β and ψ are in LTLX .
This fragment can only express safety properties [44,10] and includes a large

fragment of all safety properties expressible in LTL. This format is supported
by tools like Strix [46] and is convenient for our reactive problem specification.

Definition 1 (Reactive Specification). A reactive specification S = (A,G)
is given by A = (Ie, φe) and G = (Is, φs) (all LTLX formulas), where Ie and Is
are the initial conditions of the environment and the system, and φe and φs are
called assumptions and guarantees. The meaning of S is the GX0 formula:

(Ie → (Is ∧(φe → φs)))

In TLSF Ie and Is are represented as INITIALLY and PRESET, resp.

Reactive Synthesis. Consider a specification φ over AP = X ∪ Y. A trace
σ is formed by the environment and the system choosing in turn valuations
for their propositions. The specification φ is realizable with respect to (X ,Y)
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if there exists a strategy g : (2X )+ → 2Y such that for an arbitrary infinite
sequence X = X0, X1, X2, . . . ∈ (2X )ω, φ is true in the infinite trace ρ = (X0 ∪
g(X0)), (X1 ∪ g(X0, X1)), (X2 ∪ g(X0, X1, X2)), . . . A play ρ is winning (for the
system) if ρ ⊨ φ.

Realizability is the decision problem of whether a specification has a winning
strategy, and synthesis is the problem of computing one wining system (strategy).
Both problems can be solved in double-exponential time for an arbitrary LTL
formula [48]. If there is no winning strategy for the system, the specification is
called unrealizable. In this scenario, the environment has at least one strategy
to falsify φ for every possible strategy of the system. Reactive safety synthesis
considers reactive synthesis for safety formulas.

We encode system strategies using a deterministic Mealy machine W =
(Q, s, δ, L) where Q is the set of states, s is the initial state, δ : Q × 2X → Q
is the transition function that given valuations of the environment variables it
produces a successor state and L : Q × 2X → 2Y is the output labeling that
given valuations of the environment it produces valuations of the system. The
strategy g encoded by a machine W : (Q, s, δ, L) is as follows:

– if e ∈ 2X , then g(e) = L(s, e)
– if u ∈ (2X )+ and e ∈ 2X then g(ue) = L(δ∗(s, u), e) where δ∗ is the usual

extension of δ to (2X )∗.

It is well known that if a specification is realizable then there is Mealy machine
encoding a winning strategy for the system.

4 Mode Based Synthesis

We present now our mode-based solution to reactive safety synthesis. The start-
ing point is a reactive specification as a GX0 formula written in TLSF. We define
a mode m as a predicate over X ∪ Y, that is m ∈ 2X∪Y . A mode captures a
set of states of the system during its execution. Given a trace σ = s0, s1, . . ., if
si ⊨ m we say that m is the active mode at time i. In this paper, we consider
mutually exclusive modes, so only one mode can be active at a given point in
time. As part of the specification of synthesis problems the requirement engineer
describes the modes M = {m1, . . . ,mn}, partially expressing the intentions of
the structure of the intended system. A set of modes M = {m1,m2, . . . ,mn} is
legal if it partitions the set of variable valuations, that is:
– Disjointness: for all i ̸= j, (mi →¬mj) is valid.
– Completeness:

∨
imi is valid.

Within a trace σ there may be instants during execution there are transitions
between modes. We will refer to the modes involved in this transition as related
modes. Formally:

Definition 2 (Related Modes). Consider a trace σ = σ(0)σ(1)σ(2) . . . and
two modes m1,m2 ∈M . We say that m1 and m2 as related, denoted as m1 ≺ m2

if, at some point i: (σ(i) ⊨ m1) and (σ(i+ 1) ⊨ m2).



9

Fig. 3: Overview of MoBy

A key element of our approach is to enrich the specification of the synthesis
sub-problem corresponding to modemi forbidding the system to jump to another
mode mj unless the initial condition of mode j satisfying the pending “obliga-
tions” at the time of jumping. To formally capture obligations we introduce fresh
variables for future sub-formulas that appear in the specification.

Definition 3 (Obligation Variables). For each sub-formula ψ in the spec-
ification, we introduce a fresh variables sψ to encodes that the system is obliged
to satisfy ψ.

These variables will be controlled by the system and their dynamics will be
captured by sψ → ψ introduced in every mode (unless the system leaves
the mode, which will be allowed only if the arriving system satisfy ψ). These
variables are similar to temporal testers [49] and allow a simple treatment of
obligations that are left pending after a mode jump. We also introduce variables
jumpj which will encode (in the game and sub-specification corresponding to
mode mi) whether the system decides to jump to mode mj (see Alg. 2 below).

4.1 Mode Based Decomposition

We present now the MoBy algorithm, which decomposes a reactive specification S
into a set of (smaller) specificationsΠ = {S1, . . . , Sn}, using the provided system
modes M = {m1, . . . ,mn} and initial mode-conditions I = {I1, . . . , In}. Fig. 3
shows an overview of MoBy. Particularly, MoBy receives a specification together
with modes and one initial condition per mode. The algorithm decompose the
specification into smaller sub-specifications one per mode.

The main result is that the decomposition that MoBy performs guarantees
that if each projection Si ∈ Π is realizable then the original specification is
also realizable, and that the systems synthesized independently for each sub-
specification can be combined into an implementation for the original specifica-
tion S (See Lemma 1 and Corollary 1).

We first introduce some useful notation before presenting the main algorithm.
We denote by φ[ϕ\ψ] the formula that is obtained by replacing in φ occurrences
of ϕ by ψ. We assume that all formulas have been converted to NNF, where 
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operators have been pushed to the atoms. It is easy to see that a formula in
NNF is a Boolean combination of sub-formulas of the form ip where p ∈ AP
and sub-formulas ψ that do not contain any temporal operator. We use some
auxiliary functions:
– The first function is ASF(φ), which returns the set of sub-formulas ψ of φ

such that (1) ψ does not contain  (2) ψ is either φ or the father formula of
ψ contains . We call these formulas maximal next-free sub-formulas of φ.

– The second function is NSF(φ), which returns the set of sub-formulas ψ such
that (1) the root symbol of ψ is  and (2) either ψ is φ, or the father of ψ
does not start with . It is easy to see that all formulas returned by NSF
are of the form ip for i > 0, and indeed are the sub-formulas of the form
ip not contain in other formulas other sub-formulas of these forms. We call
these formulas the maximal next sub-formulas of φ.

For example, let φ = p → (q ∧ r), which is in NNF. ASF(φ) = {r}, as
r is the only formula that does not contain  but its father formula does.
NSF(φ) = {p,q}. We also use the following auxiliary functions:
– Simpl(φ), which performs simple Boolean simplifications, including true ∧
φ 7→ φ, false ∧ φ 7→ false, true ∨ φ 7→ true, false ∨ φ 7→ φ, etc.

– RmNext, which takes a formula of the form iφ and returns i−1φ.
– Var, which takes a formula of the form iφ and returns the obligation

variable siφ. This function also accepts a proposition p ∈ AP in which case
it returns p itself.

The output of Simpl(φ) is either true or false, or a formula that does not contain
true or false at all. The simplification performed by Simpl is particularly useful

Algorithm 1 Simplify (remove)
1: function RmModes(φ,m)
2: for each f ∈ ASF(φ) do
3: if (m→ f) is valid then
4: φ← φ[f\True]
5: if (m→¬f) is valid then
6: φ← φ[f\False]
7: return Simpl(φ)

simplifying (false → ψ) to true, because
given a requirement of the form C → D,
if C is simplified to false in a given mode
then C → D will be simplified to true ignor-
ing all sub-formulas within D. We introduce
RmModes(φ,m) on the left, which given a
mode m and a formula φ simplifies φ under
the assumption that the current state satis-
fies m, that is, specializes φ for mode m.

Example 1. Considerm1 : (counter1 ∧¬counter2), and φ1 : ¬counter2 → ¬trigger
and φ2 : (counter1 ∧ ¬reset) → (counter2 ∨ reset). Then,

RmModes(φ1,m1) = ¬trigger
RmModes(φ2,m1) = ¬reset → (counter2 ∨ reset)

Finally, Var(ψ) = sψ.

4.2 The Mode-Base Projection Algorithm MoBy

As mentioned before our algorithm takes as a input a reactive specification S an
indexed set M = {m1, . . . ,mn} of modes and an indexed set I = {I1, . . . , In} of
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initial conditions, one for each mode. We first add to each Ii the predicate ¬done,
to encode that in its initial state a sub-system that solves the game for mode mi

has not jumped to another mode yet. For each mode mi, MoBy specializes all
guarantee formulas calling RmModes, and then adds additional requirements
for the obligation variables and to control when the system can exit the mode.
Alg. 2 presents MoBy in pseudo-code.

Line 5 simplifies all requirements specifically for mode mi, that is, it will only
focus on solving all requirements for states that satisfy mi. Line 7 starts the goals
for mode i establishing that unless the system has jumped to another mode, the
mode predicate mi must hold in mode i. Lines 8 to 10 substitute all temporal
formulas in the requirements with their obligation variables, establishing that
all requirements must hold unless the system has left the mode. Lines 11 to 12
establish the semantics of obligation variables, forcing their temporal behavior
as long as the system stays within the mode (¬done). Lines 13 to 15 precludes
the system to jump to another mode mj if mj cannot fulfill pending promises.
Lines 16 to 18 establish that once the system has jumped the game is considered
finished, and that the system is only finished jumping to some other mode.
Finally, line 19 limits to jump to at most one mode.

Algorithm 2 MoBy: Mode-Based Projections.
1: Inputs: S : (A,G),M : {m1, . . . ,mn}, I : {I1, . . . , In}.
2: Outputs: Pr = [Π1, . . . , Πn].
3: function ComputeProjection(S,M, I)
4: for each mode index i ∈ {1 . . . n} do
5: G′ ← Reduce(G,mi)
6: Oblig← NSF(G′)
7: Gi = {¬done→ mi}
8: for each requirement ψ ∈ G′ do
9: ψ′ ← replace f for Var(f) in ψ (for all f ∈ Oblig)

10: Gi.add((¬done)→ ψ′)

11: for each obligation subformula f ∈ Oblig do
12: Gi.add((¬done ∧ Var(f))→ Var(RmNext(f)))
13: for each mode j ̸= i such that mi ≺ mj and for every f ∈ Oblig do
14: if (Ij → RmNext(f)) is not valid then
15: Gi.add(jumpj → ¬Var(f))

16: Gi.add(done→ done)
17: Gi.add( (

∨
j jumpj)→ done)

18: Gi.add((¬
∨

j jumpj)→ (¬done→ ¬done))
19: Gi.add(

∧
j ̸=k jumpj → ¬jumpk)

20: Pr[i]← (A,Gi)

21: return Pr
22: function Reduce(Φ,m)
23: return {RmModes(φ,m) | φ ∈ Φ}
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Example 2. We apply MoBy to the example in Fig. 1 for N = 2, with three
modes M = {m1 : {counter0},m2 : {counter1},m3 : {counter2}}. The initial
conditions only establish the variable of the mode is satisfied I1 = m1, I2 =
m2, I3 = m3 (only forcing ¬done as well). The MoBy algorithm computes the
following projections:

INPUTS reset; start;
ASSUMPTIONS G !(reset && start); INITIALLY (!reset && !start) || reset
[Projection_1]
OUTPUTS counter_0; trigger; sφ; jump2; done
GUARANTEES
G (!done → (counter_0))
G (!done → (reset → X counter_0));
G (!done → (start → sφ));
G (!done → ((sφ && !done) → X FALSE));
G (!done → (!trigger));
G (done → X done);
G (jump2 → X done);
G (!jump2 → (!done → X !done));

[Projection_2]
OUTPUTS counter_1; trigger; jump1, jump3 sφ; sφ1;
GUARANTEES
G !done → (counter_1)
G !done → (reset → sφ);
G !done → (sφ && !done → X FALSE);
G !done → (!reset → sφ1);
G !done → (sφ1 && !done → X FALSE);
G !done → (!trigger);
G ((sφ || sφ1) → X done);
G jump1 → !sφ1;
G jump3 → !sφ;
G (!(sφ || sφ1) → (!done → X !done));

[Projection_3]
OUTPUTS counter_2; trigger; jump1; sφ jump1
GUARANTEES
G (!done → (counter_2))
G (!done → (reset → sφ))
G (!done → (sφ && !done → X FALSE));
G (!done → (counter_2 → sφ));
G (!done → (trigger));
G (jump1 → X done);
G (!jump1 → (!done → X !done));



13

4.3 Composing solutions

After decomposing S into a set of projections Pr = {Π1, . . . ,Πn} using MoBy,
Alg. 3 composes winning strategies for the system obtained for each mode into
a single winning strategy for the original specification S.

Lemma 1 (Composition’s correctness). Let M = {m1, . . . ,mn} and I =
{I1, . . . , In} be a set of valid mode descriptions for a specification S, and let
St = {W1, . . . ,Wn} be a set of winning strategies for each projection p ∈ Pr =
{Π1, . . . ,Πn} Then, the composed winning strategy W obtained using Alg. 3 is
a winning strategy for S.

Proof. Let S be a specification, M = {m1,m2, . . . ,mn} and I = {I1, . . . , In}
a mode description. Also, let’s consider Pr = {Π1, . . . ,Πn} be the projection
generated by Alg. 2. We assume that all sub-specifications are realizable. Let
St = {W1, . . . ,Wn} be winning strategies for each of the sub-specifications and
let W : (Q, s, δ, L) be the strategy for the original specifications generated by
Alg. 3. We will show now that W is a winning strategy. The essence of the proof
is to show that if a mode mj starts at position i and the system follows W , this
corresponds to follow Wj . In turn, this guarantees that Pr[j] holds until the next
mode is entered (or ad infinitum if no mode change happens), which guarantees
that S holds within the segment after the new mode enters in its initial state.
By induction, the result follows.

By contradiction, assume that W is not winning and let ρ ∈ 2X∪Y be a play
that is played according to W that is loosing for the system. In other words,
there is position i such that ρi violates some requirement in S. Let i be the first
such position. Let mj be the mode at position i and let i′ < i be the position
at which mj is the mode at position i′ and either i′ = 0 or the mode at position
i′ − 1 is not mj .

Algorithm 3 Composition of Winning Strategies
1: Input: A winning strategy Wi = (Qi, si, δi, Li) for each projection pi ∈ Pr.
2: Output: A composed winning strategy W = (Q, s, δ, L).
3: function Compose(W1, . . . ,Wn)
4: Q←

⋃n
i=1Qi

5: s← s1
6: δ ← ∅
7: for each mode index i ∈ {1 . . . n} do
8: (Qi, si, δi, Li)←Wi

9: for each (q, a) ∈ Qi × 2X do
10: L(q, a)← Li(q, a)
11: if δi(s, a) ⊨ jumpj for some j then
12: δ(q, a)← sj
13: else ▷ jumpj /∈ δi(q, a) for any j
14: δ(q, a)← δi(q, a)

15: return W : (Q, s, δ, L)
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– If i′ = 0, between 0 and i, W coincides with Wj . Therefore, since Wj is
winning Π[j] must hold at i, which implies that S holds at i, which is
contradiction.

– Consider now the case where i′−1 is not mj , but some other mode ml. Then,
since in ml is winning Wl, it holds that Pr[l] holds at i′ − 1 so, in particular
all pending obligations are implied by Ij . Therefore, the suffix trace ρi

′
is

winning for Wj . Again, it follows that S holds at i, which is a contradiction.
Hence, the lemma holds. ⊓⊔

The following corollary follows immediately.

Corollary 1 (Semi-Realizability). Given a specification S, a set M of valid
system modes and a set I of initial conditions. If all projections generated by
MoBy are realizable, then S is also realizable.

5 Empirical Evaluation

We implemented MoBy in the Java programming language using the well-known
Owl library [37] to manipulate LTL specifications. MoBy integrates the LTL sat-
isfiability checker Polsat [42], a portfolio consisting of four LTL solvers that run
in parallel. To perform all realizability checks, we discharge each sub-specification
to Strix [46]. All experiments in this section were run on a cluster equipped with
a Xeon processor with a clock speed of 2.6GHz, 16GB of RAM, and running the
GNU/Linux operating system.

We report in this section an empirical evaluation of MoBy. We aim to empir-
ically evaluate the following research questions:
– RQ1: How effective is MoBy in decomposing mode-based specifications?
– RQ2: Does MoBy complement state of the art synthesis tools?
– RQ3: Can MoBy be used to improve the synthesis time?

To address them, we analyzed specifications from published literature, eval-
uation of RE tools, and case studies on SCR specification and analysis:
– our counter machine running example CM with varying bounds.

Case #A - #G #Modes #In #Out
10-Counter-Machine 2-15 [2,5,10] 2 12
20-Counter-Machine 2-25 [2,5,10,20] 2 22
50-Counter-Machine 2-55 [2,5,10,50] 2 52
100-Counter-Machine 2-105 [2,5,10,50,100] 2 102

Minepump 3-4 [2] 300 5
Sis(n) 2-7 [3] (2+n) 7

Thermostat(n) 3-4 [3] (31+n) 4
Cruise(n) 3-15 [4] (5+n) 8

AltLayer(n) 1-9 [3] n 5
Lift(n) 1-187 [3] n (4+n)

Fig. 4: Assumptions (A), Guarantees (G), Modes, Variables
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Specification #Modes Synthesis Time (s) Specification Size

Monolithic MoBy
Monolithic MoBy

#Clauses Length #Clauses Length

CM10
2

26
0.32

48 252
28 117

5 0.67 8 30
10 0.58 8 39

CM20
2

Timeout

3.62

88 672

48 252
5 1.15 24 96

10 2.06 16 60
20 1.08 8 49

CM50
2

Timeout

2.56

208 3132

136 1036
5 19 48 256

10 3 28 117
50 1.67 8 79

CM100

2

Timeout

Timeout

408 11232

208 3132
5 5.12 88 672

10 4 48 252
50 9 19 57

100 3.23 8 129
Minepump 2 140 90 11598 21365 5800 10685
Sis-250 3 18 2 521 1072 133 287
Sis-500 3 96 4 1021 2072 258 538
Sis-1000 3 Timeout 11 2021 4072 508 1035
Sis-1500 3 Timeout 20 3021 6072 758 1538
Sis-2000 3 Timeout 38 4021 8072 1258 2300
Sis-4000 3 Timeout 157 8021 16072 2678 3560
Sis-4500 3 Timeout 172 9020 18040 3006 4002
Sis-5000 3 Timeout 268 10020 20040 3340 4447
Thermostat-10 3 1 1 73 151 42 97
Thermostat-20 3 Timeout 1 172 276 75 152
Thermostat-100 3 Timeout 10 4032 4416 1375 1652
Thermostat-200 3 Timeout 48 12132 12916 4075 4619
Cruise-150 4 75 63 15339 15855 6824 7067
Cruise-200 4 132 100 30039 30756 10025 10294
Cruise-500 4 Timeout 770 118239 120153 39425 40097
AltLayer-50 3 15 9 3685 4147 1234 1395
AltLayer-100 3 41 25 8885 9747 2968 3269
AltLayer-150 3 153 100 30685 31947 10234 10699
AltLayer-200 3 Timeout 269 52485 54147 17500 18064
Lift-5 3 1 2 310 884 122 355
Lift-10 3 34 9 1585 4014 597 1522
Lift-15 3 Timeout 162 4560 10844 1672 3989
Lift-20 3 Timeout 789 6394 14948 3597 8255

Fig. 5: Comparision between MoBy and Monolithic
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– Minepump: A mine pump controller [7,9,15,41], which manages a pump with
sensors that detect high water levels and methane presence.

– Thermostat(n): A thermostat [22] that monitors a room temperature con-
trols the heater and tracks heating duration.

– Lift(n): A simple elevator controller for n floors [1].
– Cruise(n): A cruise control system [35] which is in charge of maintaining the

car speed on the occurrence of any event.
– Sis(n): A safety injection system [16], responsible for partially controlling a

nuclear power plant by monitoring water pressure in a cooling subsystem.
– AltLayer(n): A communicating state machine model [8].

Fig. 4 shows the number of input/output variables, assumptions (A), guar-
antees (G), and the number of modes for each case.

Fig. 6: Speed of MoBy vs monolithic synthesis. The figure above shows the time
taken by a monolithic synthesis tool and the time taken by MoBy. The figure be-
low normalizes the monolithic time to 100 for those that did not reach Timeout.



17

Experimental Results. To address RQ1 we compare the size of the origi-
nal specification with the size of each projection measured by the number of
clauses and the formula length. To determine the formula’s length, we adopt
the methodologies outlined in [7,9]. Additionally, we compared the running time
required for synthesizing the original specification with the time taken for each
projection, note that we report the aggregated time taken to synthesize the sys-
tems for each projection, when they can be solved independently and in parallel
to potentially improve efficiency. The summarized results can be found in Fig. 5.
We also provide additional insights in Fig.6, which highlights the significance of
MoBy in enhancing the synthesis time.

Our analysis demonstrates that MoBy successfully decomposes 100% of the
specifications in our corpus, which indicates that MoBy is effective in handling
complex specifications. Furthermore, MoBy consistently operates within the 25-
minute timeout limit in all cases. In contrast, other relevant simultaneous de-
composition methods [24,23] failed to decompose any of the specifications in our
benchmark. This can be attributed to the intricate interdependencies between
variables in our requirements, as elaborated in Section 1. This observation not
only supports the effectiveness of MoBy but also validates RQ2.

Expanding on the impact of MoBy, our results show an average reduction of
64% in specification size and a 65% reduction in the number of clauses. These
reductions underscore the advantages of employing MoBy in synthesizing imple-
mentations for LTL specifications that are beyond the capabilities of monolithic
synthesizers. Additionally, MoBy’s ability to achieve faster synthesis times for
feasible specifications positions it as a compelling alternative to state-of-the-art
synthesis tools. This suggests the validity of RQ3.

6 Conclusion and Future Work

We presented mode based decomposition for reactive synthesis. As far as we
know, this is the first approach that exploits modes to improve synthesis scal-
ability. Our method takes an LTL specification, along with a set of modes rep-
resenting different stages of execution, and a set of initial conditions for each
mode. Our method computes projection for each mode ensuring that if all of
them are realizable, then the original specification is also realizable.

We performed an empirical evaluation of an implementation of MoBy on sev-
eral specifications from the literature. Our evaluation shows that MoBy success-
fully synthesizes implementations efficiently, including cases for which monolithic
synthesis fails. These results indicate that MoBy is effective for decomposing
specifications and can be used alongside other decomposition tools.

Even though modes are natural in RE, the need to specify initial conditions
is the major drawback of our technique. We are currently investigating how to
automatically compute the initial conditions, using SAT based exploration. We
are also investigating the assessment of the quality of the specifications generated
using MoBy.
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