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Abstract. Blockchains are modern distributed systems that provide de-
centralized financial capabilities with trustable guarantees. Smart con-
tracts are programs written in specialized programming languages run-
ning on a blockchain and govern how tokens and cryptocurrency are
sent and received. Smart contracts can invoke other contracts during the
execution of transactions initiated by external users.
Once deployed, smart contracts cannot be modified and their pitfalls can
cause malfunctions and losses, for example by attacks from malicious
users. Runtime verification is a very appealing technique to improve the
reliability of smart contracts. One approach consists of specifying unde-
sired executions (never claims) and detecting violations of the specifi-
cation on the fly. This can be done by extending smart contracts with
additional instructions corresponding to monitor specified properties, re-
sulting in an onchain monitoring approach.
In this paper, we study transaction monitoring that consists of detect-
ing violations of complete transaction executions and not of individual
operations within transactions. Our main contributions are to show that
transaction monitoring is not possible in most blockchains and propose
different execution mechanisms that would enable transaction monitor-
ing.

1 Introduction

Distributed ledgers (also known as blockchains) were first proposed by Nakamoto
in 2009 [16] in the implementation of Bitcoin, as a method to eliminate trustable
third parties in electronic payment systems. Modern blockchains incorporate
smart contracts [24,25], which are state-full programs stored in the blockchain
that describe the functionality of blockchain transactions, including the exchange
of cryptocurrency. Smart contracts allow us to describe sophisticated function-
ality enabling many applications in decentralized finances (DeFi), decentralized
governance, Web3, etc.

Smart contracts are written in high-level programming languages for smart
contracts, like Solidity [2] and Ligo [4] which are then typically compiled into
low-level bytecode languages like EVM [25] or Michelson [1]. Even though smart
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contracts are typically small compared to conventional software, writing smart
contracts has been proven to be notoriously difficult. Apart from conventional
software runtime errors (like underflow and overflow), smart contracts also suffer
from new attack patterns [19] or from attacks towards the blockchain infrastruc-
ture itself [20]. Smart contracts store and transfer money, and are openly exposed
to external users directly and through caller smart contracts. Once installed the
code of the contract is immutable and the effect of running a contract cannot be
reverted (the contract is the law).

There are two classic approaches to achieve software reliability, and there are
attempts to apply them to smart contracts:

– static techniques using automatic techniques like static analysis [23] or
model checking [18], or deductive software verification techniques [3,17,8,12],
theorem proving [7,5,21] or assisted formal construction of programs [22].

– dynamic verification[13,6,15] attempting to dynamically inspect the exe-
cution of a contract against a correctness specification.

In this paper, we follow a dynamic monitoring technique. Monitors are a de-
fensive mechanism where developers write properties that must hold during the
execution of the smart contracts. If a monitored property fails the whole trans-
action is aborted. Otherwise, the execution finishes normally as stipulated by
the code of the contract.

Most of the monitoring techniques inject the monitor into the smart contract
as additional instructions [13,6,15], which is called inline monitoring [14]. The
property to be monitored for a method of a given contract A is typically de-
scribed as two parts: Abegin , that runs at the beginning of each call, and Aend ,
which is checked at the end. This monitoring code can inspect the storage of con-
tract A and read and modify specific monitor variables. For example, monitors
can compare the balance at the beginning and end of the invocation. However,
monitors can only see the contents of A and cannot inspect or invoke other con-
tracts. We call these monitors operation monitors as they allow us to inspect a
single operation invocation. In this paper, we study a richer notion of monitoring
that can inspect information across the running transaction, illustrated by our
running example.

Running example: Flash Loans The aim of a flash loan contract is to allow other
contracts to borrow balance without any collateral, provided that the borrowed
money is repaid in the same transaction (perhaps with some interest) [10]. A
simple way to specify the correctness of a flash loan contract A is by the following
two informal properties:

FL-safety No transaction can decrease the balance of A
FL-progress A request must be granted unless FL-safety is violated

Fig. 1(a) shows a simple smart contract attempting to implement a flash
loan lender. Function lend checks that the lender contract has enough tokens to
provide the requested loan, saves the initial balance to later check that the loan
has been repaid completely, and transfers the amount requested to the borrower.
Upon return, lend checks that the loan has been paid back. Note that in this
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contract Lender {

function lend(address payable dest , uint amount) public {

require(amount <= this.balance);

uint initial_balance = this.balance;

dest.transfer(amount);

assert(this.balance >= initial_balance);

}

}

begin

end

(a) A flash loan implementation attempt

contract Client {

Lender l1, l2;

function borrowAndInvest () public {

l1.lend (100);l2.lend (200);

invest (300);

l1.transfer (100);l2.transfer (200);

}

}

(b) A flash loan client

contract MaliciousClient {

Lender l;

function borrowAndInvest () public {

l.lend (100);

invest (100);

}

}

(c) A malicious flash loan client

Fig. 1. Pseudocode for contracts Lender, Client and MaliciousClient.

smart contract every instruction except the transfer to the borrower is part of
the operation monitor. In particular, checking that the balance is enough and
saving its value is what we call Abegin while checking that the loan has been
repaid is Aend .

Unfortunately, the lender smart contract in Fig. 1(a) does not fulfill property
FL-progress. Consider a client, for example Fig. 1(b), that borrows money from
different lenders, then invests the borrowed money to obtain a profit and finally
pays back to the lenders. In other words, the contract Client in Fig. 1(b) collects
all the money upfront before investing it and then pays back the lenders. The
contract Client will not successfully borrow from the lender in Fig. 1(a), be-
cause contract Lender expects to be paid back within the scope of method lend.
However, the contract Client exercises correctly FL-safety and FL-progress,
and returns the borrowed tokens before the transaction finishes. The problem
is that contract Lender is too defensive and only allows repayments within the
control flow of function lend and not in arbitrary points within the enclosing
transaction. Alternatively, a lender contract could lend funds with the hope that
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contract Lender {

function lend(address payable dest , uint amount) public {

require(amount <= this.balance);

dest.transfer(amount);

}

} with monitor {

uint initial_balance;

init { initial_balance = this.balance; }

term { assert(this.balance >= initial_balance); }

}

Fig. 2. A correct flash loan implementation using transaction monitors

the client returns the loan before the end of the transaction, but then a malicious
contract, like in Fig. 1(c), would violate FL-safety easily. We cannot solve this
problem with operation monitors because both Abegin and Aend are executed
inside lend and it is not possible within the scope of lend to successfully predict
or guarantee whether the loan will be repaid within the transaction.

In this article, we propose to extend monitors with two additional functions:
Ainit , which executes before the first call to A in a given transaction; and Aterm ,
which executes after the last call to A (equivalently, at the end of the transac-
tion). As for Abegin and Aend , Ainit and Aterm have access to the storage and can
fail but cannot be called from other contracts or emit operations. Both Abegin

and Aend can be injected into the smart contract code as additional instruc-
tions, and therefore, are executed at every invocation of A. On the contrary
Ainit and Aterm are special functions that are invoked (by the runtime system
in charge of executing the smart contracts) at the beginning and at the end of
every transaction in which A is called, respectively. We call these monitors trans-
action monitors since they can check properties of the whole transaction. With
transaction monitors, we implement a lender contract that satisfies FL-safety
and FL-progress by saving the balance at the beginning of a transaction in
init and comparing it with the final balance in term as shown in Fig. 2.

As for future work, we envision even more sophisticated monitors that guar-
antee properties that involve two or more contracts—like checking that the com-
bined balance of A and B does not decrease—or even that predicating about all

Global monitors future work
Multicontract monitors future work
Transaction monitors this paper
Operation Monitors [6,13,15]

Fig. 3. Monitors hierarchy

contracts participating in a transac-
tion of the whole blockchain. We refer
to them as multicontract monitors and
global monitors, respectively, but they
are out of the scope of this paper, where
we focus on transaction monitors. Fig. 3
shows the monitoring hierarchy.

In summary, the contributions of the paper are the following:

– The notion of transaction monitors and its formal definition.
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– A proof that current blockchains cannot implement transaction monitors,
and a list of simple mechanisms that allow their implementation.

– An exhaustive study of how the proposed mechanisms interact with each
other and the basic building blocks to implement full-fledged transaction
monitors.
The rest of the paper is organized as follows. Section 2 describes the model of

computation. Section 3 studies transaction monitors. Section 4 introduces new
execution mechanisms, and in Section 5, we study how these new mechanisms
implement transaction monitors. Finally, Section 6 concludes.

2 Model of Computation

We introduce now a general model of computation that captures the evolution
of smart contract blockchains.

An Informal Introduction. Blockchains are a public incremental record of the
executed transactions. Even though several transactions are packed in “blocks”—
which are totally ordered—, transactions within a block are also totally ordered.
Therefore, we can interpret blockchains as totally ordered sequences of transac-
tions.

Transactions are in turn composed of a sequence of operations where the
initial operation is an invocation from an external user. Each operation invokes
a destination contract (where contracts are identified by their unique address).
Operations also contain the name of the invoked method, arguments and balance
(in the cryptocurrency of the underlying blockchain), and an amount of gas3.
The execution of an operation follows the instructions of the program (the smart
contract) stored in the destination address.

Given the arguments and state of the blockchain, the code of every smart
contract is deterministic which makes the blockchain predictable and amenable
to validation. We model smart contracts as pure computable functions taking
their input arguments and the current local storage of the contract, and return-
ing (1) the changes to be performed in the local storage; (2) a list of further
operations to be executed. No effect takes place in their local storage until the
end of the operation. This abstraction does not impose any restriction since ev-
ery imperative program can be split into a collection of basic pure code blocks
separated by the instructions with effects.

The execution of a transaction consists of iteratively executing pending op-
erations, computing their effects (including updating the pending operations)
until either (1) the queue of pending operations is empty, or (2) some operation
fails or the gas is exhausted. In the former case, the transaction commits and all
changes are made permanent. In the latter case, the transaction aborts and no
effect takes place (except that some gas is consumed).

3 The notion of gas is introduced to make all operations terminate because each indi-
vidual instruction consumes gas and once the initial operation is invoked no more
gas can be added to the transaction.
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Model of Computation. We now formally model the state of a blockchain
during the execution of the operations forming a transaction. We represent a
blockchain configuration as a pair (Σ,∆) where:

Blockchain state Σ is a partial map between addresses and the storage and
balance of smart contracts,

Blockchain context ∆ contains additional information about the blockchain,
such as block number, current time, amount of money sent in the transaction,
etc.

Blockchain contexts may vary since different blockchains carry different informa-
tion, but either implicitly or explicitly, every blockchain maintains a blockchain
state. The computation of a successful transaction begins with an external op-
eration o from a configuration (Σ,∆) and either aborts or finishes into a final
configuration (Σ′, ∆′).

We model a smart contract as a partial map A : ∆× IP× S× IN ⇀ (S× [O])
where IP is the set of all possible parameters of A, S the set of all possible
storage states, O the set of operations and [·] is a set operator representing lists
of elements of a given set. Smart contracts written in imperative languages with
effects can be modeled as sequences of pure blocks where effects happen at the
end in the standard way.

Operations. An operation is a record containing the following fields:

– dest the address to invoke;
– src the address initiating the operation;
– param parameters expected by the smart contract at address dest;
– money the amount of crypto-currency sent in the operation.

We use standard object notation to access each field, so o.dest is the destination
address, o.src is the source address, o.param the parameters and o.money the
amount transferred.

Transactions. A transaction results from the execution of a sequence of op-
erations starting from an external operation placed by an external user. If an
operation fails the transaction fails and the blockchain state remains unchanged.
A successful operation o results in a new storage and a list of new operations ls.
The blockchain updates the storage of smart contract o.dest and balance of both
smart contracts o.dest and o.src generating a new blockchain configuration and
the list ls is added to the current pending queue of operations. Operations are
executed one at a time modifying the blockchain configuration until some opera-
tion fails or there is no more operations on the pending queue. In the second case,
the transaction is successful and the last blockchain configuration consolidates.

We assume there is an implicit partial map from addresses to smart contracts
G : Addr ⇀ SmartContract. Moreover, we assume map G does not change since
we assume that smart contracts cannot install new contracts.
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Operation Execution. Let o be an operation and (Σ,∆) a blockchain configura-
tion. The evaluation of o from (Σ,∆) results in a new configuration and a list

of operations ls, which we denote (Σ,∆)
o−→ (Σ′, ∆′, ls) whenever:

1. The source smart contract has enough balance, Σ(o.src) ≥ o.money
2. The invocation to the smart contract is successful:

G(o.dest)(∆, o.param, Σ(o.dst).st, Σ(o.dst).balance) = (st′, ls)

The new blockchain configuration state Σ′ is the result of: 1) adding o.money
into the balance of o.dest and subtracting it from o.src, and 2) updating the stor-
age as Σ′(o.dest).st = st′. Note that we leave the evolution of ∆ unspecified as it
is system dependant. In Section 5, we implement different additional blockchain
features by inspecting (and possibly modifying) the blockchain context. For fail-

ing evaluation of operations, we use (Σ,∆)
o
−×.

Execution Order. The execution can proceed in different ways. We consider two
execution orders: new operations are added to the beginning of the pending
queue (a DFS strategy) and new operations added to the end of the pending
queue (a BFS strategy). This results in the following transition rules:

(Σ,∆)
o
−×

(Σ,∆, o :: os) ̸⇝a

(Σ,∆)
o−→ (Σ′, ∆′, ls)

(Σ,∆, o :: os)⇝dfs (Σ
′, ∆′, ls++ os)

(Σ,∆)
o−→ (Σ′, ∆′, ls)

(Σ,∆, o :: os)⇝bfs (Σ
′, ∆′, os++ ls)

The execution starting from an external operation o is a sequence of steps (⇝a)—
with a fixed to be either dfs or bfs—until the pending operation list is empty or
the execution of the next operation fails. Beginning from a blockchain configu-
ration (Σ,∆) and an initial operation o, a transaction execution is a sequence
of operation executions: (Σ,∆, [o]) ⇝a (Σ1, ∆1, os1) ⇝a . . . ⇝a (Σn, ∆n, []) or
that (Σ,∆, [o])⇝a (Σ1, ∆1, os1)⇝a . . .⇝a (Σn, ∆n, osn) ̸⇝a

A transaction can fail either because of gas exhaustion or an internal oper-
ation has failed, and in that case, we have a sequence of ⇝a leading to a final
step marked as ̸⇝a following the failing operation.

Finally, after every successful execution, the blockchain takes the last config-
uration and upgrades its global system.

The model of computation described in this section does not follow exactly a
call-and-return model like the Ethereum blockchain does [25]. However, it is easy
to see that it can be simulated in our model by having each contract explicitly
keeping its stack of returned values.

3 Transaction Monitors

We now introduce transaction monitors and show that it is not possible to
implement them in current blockchains. We present different extensions that
allow us to implement transaction monitors.
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3.1 Transaction Monitors

Transaction monitors allow us to reason about properties of transactions. Each
smart contract A is equipped with a monitor storage and four especial methods
Ainit , Abegin , Aend and Aterm . These new methods cannot emit operations or
modify smart contract storage, however, they have their own monitor storage.
We assume that these new methods are interpreted by the blockchain and if one
of these methods fail the whole transaction fails. Otherwise, the effect in the
blockchain is the same as if it was executed without monitors. The functions
Ainit and Aterm can read the storage and balance of the smart contract and
read and write the monitor storage. Function Ainit is executed before the first
time A is invoked in the transaction and function Aterm is invoked after the last
interaction to A finished in the transaction, and does not modify the monitor
storage. Functions Abegin and Aend are executed at the beginning and at the end
of each operation that is executed in A, as in operation monitors [13] (note that
Abegin and Aend can be easily implemented by inlining their code around the
methods of A). The method Abegin takes the same arguments as any A operation
plus the monitor storage, while function Aend has access to the result of the
operation (list of the operation emitted and the new storage) plus the monitor
storage. We call the resulting smart contracts monitored smart contracts.

Operation Monitors. We first extend the model of computation to include opera-
tion monitors. A monitored operation execution is a normal operation execution
where the corresponding operation monitor is executed before and after the op-
eration is executed.

We define (
o−−−→

mon
) modifying (

o−→) as follows. Before executing o, (1) proce-

dure G(o.dest).begin is invoked, then (2) operation o is executed, and (3) finally
G(o.dest).end runs. That is, operation monitors are simply restricted functions
executed before and after each operation. We can then specialize ⇝a with op-
eration monitors, that is, use relation (

o−−−→
mon

) instead of relation (
o−→) to obtain

transaction executions that use operation monitors.
Procedures begin and end can only modify the private monitor storage and

fail, and thus, they cannot interfere in the normal execution of smart contracts
(except by failing more often).

Transaction Monitors. We redefine transaction monitors execution as a restric-
tion of the transaction execution relation so transactions invoke init and term
when required. In this case, init can change the monitor storage, and thus, can
modify the blockchain state. We define a new relation ↠a the smallest relation
defined by the following inference rules:

Ainit(Σ(A)) = Σ′

(Σ,∆, os)↠a(Σ
′, ∆, os)

Aterm(Σ(A))

(Σ,∆, [])↠a(Σ,∆, [])

(Σ,∆, o :: os)⇝a(Σ
′, ∆′, os′)

(Σ,∆, o :: os)↠a(Σ
′, ∆′, os′)

Note that we sacrifice a deterministic operational semantics in favor of a
clearer set of rules. As before, we use (−×) to represent failing transactions.
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(Σ,∆)
o
−×

(Σ,∆, os)−×
Ainit(Σ(A))−×
(Σ,∆, os)−×

Aterm(Σ(A))−×
(Σ,∆, [])−×

Finally, we define a monitored trace of a transaction same as before, given a
blockchain configuration (Σ,∆) and an external operation o:

(Σ,∆, [o])↠a(Σ1, ∆1, os1)↠a(Σ2, ∆2, os2)↠a . . .↠a(Σn, ∆n, [])

To remove the non-determinism we add a new relation that restricts the
legal runs. This relation knows the set of visited addresses (smart contracts),
and invokes an initialization method, and at the very end of the evaluation of a
transaction uses the same set to invoke their corresponding term method.

(Σ,∆, os)↠o
a(Σ

′, ∆′, os′) o.dest ∈ E

E ⊢ (Σ,∆, o :: os) ⇒a E ⊢ (Σ′, ∆′, os′)

(Σ′′, ∆, os)⇝o
a (Σ′, ∆′, os′) o.dest /∈ E (Σ,∆, os)↠Ainit

a (Σ′′, ∆, os)

E ⊢ (Σ,∆, o :: os) ⇒a E ∪ {o.dest} ⊢ (Σ′, ∆′, os′)

(Σ,∆, [])↠Aterm
a (Σ,∆, os) e ∈ E

E ⊢ (Σ,∆, []) ⇒a E \ {e} ⊢ (Σ,∆, [])

As result, we only accept traces generated by relation (⇒a), beginning with a
blockchain configuration (Σ,∆) and an external operation o resulting in failure
or a new blockchain configuration (Σ′, ∆′): ∅ ⊢ (Σ,∆, [o]) ⇒a . . . ⇒a ∅ ⊢
(Σ′, ∆′, []).

3.2 Transaction Monitors in BFS/DFS

Unfortunately, transaction monitors cannot be implemented in blockchains that
follow DFS or BFS evaluation strategies. We show now a counter-example. Con-
sider a transaction monitor for A that fails when smart contract A is called
exactly once in a transaction. The monitor storage contains a natural number
to keep track of how many times A has been invoked in the current transaction.
Function init sets this counter to 0, begin adds one to the counter, end does
nothing, and term fails if the monitor storage is exactly one.

Now let (Σ,∆) be a blockchain configuration, and let A and B be two smart
contracts, where A is being monitored for the “only once” property. Consider
the following two executions of external operations from (Σ,∆):

– o1 invokes B.f which then invokes oA1 in A,
– o2 invokes B.g which then invokes oA1 and oA2 in A.

The monitor for “only once” must reject the transaction beginning with o1, but
accept the transaction beginning with o2.
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Consider a DFS strategy. Starting from o1, the execution trace is

(Σ,∆, [o1])⇝dfs (Σ1, ∆2, [oA1])⇝dfs (Σ2, ∆2, as1)

with corresponding sequence of pending operations [o1], [oA1], as1. Starting from
o2 the sequence of pending operations is [o2], [oA1; oA2], as1 ++ [oA2],. . . ,[oA2],
as2. It is not possible to distinguish between the traces generated by o1 and o2,
as anything that operation oA1 and its descendants as1 do will happen before
the execution of oA2 in the second transaction. In other words, oA1 and all the
operations that can be generated by it or its descendants cannot know that some
other invocation to A is pending. Therefore, A cannot fail during the execution
of oA1 or its descendants, as this implies that also a failure in the execution of
o2. At the same time oA1 is the only chance in A to make the first transaction
fail because there is no other operation in A. Consequently, the two runs are
identical up to the end of oA1 but one must fail and the other must not fail.

A BFS scheduler can distinguish between the execution of operations o1 and
o2 by using a recurring operation. Basically, a recurring operation is just a reg-
ular function that either terminates or reinserts itself in the pending queue of
operations. Since new operations are added to the end of the pending queue, A
can inject a recurring operation that check the state of A and conditionally, if the
test that would make term fail is true, reinjects itself again. This recurring oper-
ation will be invoked at the end of all other functions in A. If the condition that
makes term accept is never met, the transaction fails because the recurring oper-
ation injects itself ad-infinitum, exhausting gas. In Section 5.1 we use recurring
operations thoroughly. However, a simple variation of this example that includes
comparing with a third transaction where A is invoked three times shows that
BFS cannot implement “only once” either (as BFS cannot distinguish between
the third invocation to A and a first invocation to A in a transaction following
the one originated by o2). For a detailed proof see [9].

4 Execution Mechanisms

We propose new mechanisms and study if they help to implement transaction
monitors. However, adding features to blockchains is potentially dangerous since
it can introduce unwanted behaviour[19]. We focus on simple mechanisms that
are easy to implement and are backwards compatible.

Since Abegin and Aend can already be implemented using inlining, we focus
on mechanisms that allow executions at the beginning and end of transactions,
which can aid to implement Ainit and Aterm . It is worth noting that in most
modern blockchain smart contracts are normal functions that also manage to-
kens. That is, smart contracts can modify their local memory (storage), invoke
another functions, fail and also transfer tokens. However, smart contracts are
oblivious to the notion of transactions: they cannot tell if a new transaction has
started, if two invocations belong to the same transaction or not, or when a
transaction has finished. The mechanisms that we introduce in this Section will
help to distinguish these situations.
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We present two kinds of mechanisms, ones that introduce a new instruction,
and others that add a new special method to smart contracts. In the next section,
we compare their relative power and if they can implement transaction monitors.

Mechanisms that Add New Instructions. The first four mechanisms add
new instructions and can be easily implemented by bakers/miners collecting the
information required in the context ∆.
– First. We consider a new instruction, first, which returns true if the cur-

rent operation is the first invocation to the smart contract in the current
transaction. The context ∆ can be extended to contain the set of contracts
F that have already run an operation in the current transaction, which al-
lows us to implement first as A ̸∈ F , where A is the smart contract that
executes first.

– Count. We introduce now a new instruction, count that returns how many
invocations have been performed to methods of the contract in the current
transaction. Again, the context ∆ can easily count how many times each
contract has been invoked.

– Fail/NoFail. This mechanism equips each contract with a new flag fail

that can be assigned during the execution of the contract (and that is false
by default). The semantics is that at the end of the transaction, the whole
transaction would fail if some contract has the fail bit to true. For example,
the failing bit allows us to implement flash loans as follows. A lender smart
contract can set fail to true when is lending money and change it to false
only when the money is returned.

– Queue info. We add a new operation, queue, indicating if there is no more
interaction between smart contracts. Or equivalently, if the only operations
permitted in the pending queue are recurrent operations (which can only
inject operations to the same contract). These operations must also be spe-
cially qualified in the contract, and the runtime system must make sure that
they only generate operations to the same contract.

Mechanisms that Add New Methods or Storage. The following mecha-
nisms modify the definition of smart contracts either by adding new methods
that are executed at particular moments in a transaction or by adding special
storage/memory.
– Transaction Memory. Smart contracts are equipped with a special volatile

memory segment that exists only during the execution of a transaction and
which is created and initialized at the beginning of the transaction. We add a
new segment in the smart contract indicating the initial values to be assigned.
In concrete, each contract A indicates a new storage type for the transaction
memory and a procedure that initializes it (which can read but not change
the conventional storage). We use trmem to refer to this mechanism.

– Storage Hookup, Bounded and Unbounded. The idea is to equip smart con-
tracts with a new method that updates the storage after the last local op-
erations in the transaction. These methods can only modify the storage but
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not invoke other methods. A bounded version of this mechanism is restricted
to terminating non-failing functions (for example, by restricting the class of
programs). In addition, the unbounded version is arbitrary code that can
fail. We use bstore and ustore to refer to these mechanisms.

For space purposes correct flash loan implementations using these mechanisms
are not included here but can be found in [9].

5 Implementing Transaction Monitors

We say a mechanismM implements another mechanismN whenever every smart
contract executing in a blockchain with N can be simulated by a smart contract
in a blockchain with M . Here, simulation means that all observable effect (in
terms of failure behavior, storage changes and token transfers) are identical. We
say that two mechanisms are equivalent if and only if they can implement each
other. In this paper we disregard gas consumption so we implicitly assume that
one can always assign sufficient gas to a contract.

Theorem 1. The following are equivalent: trmem, first, count, and bstore.

If contracts can know when their first invocation in the transaction occurs,
they can set the storage in different ways simulating count and trmem. Also,
count and trmem can simulate first, by checking if the count is 0 and initializing
a volatile bit to true. More interesting is that first can simulate bounded
storage hookup by applying the effect on the storage of bounded storage hookup
at the beginning of the next transaction. Detailed proofs are included in the
longer version of this paper [9].

Lemma 1. Mechanism ustore implements bstore and fail.

Proof. Mechanism ustore implements bstore trivially as it is just less restric-
tive. For fail we add in the storage of A a new field, fl to represent the failing
bit which is initialized to false when the contract is installed and updated to
simulate the fail instruction. At the end of the transaction, the ustore hookup
checks if fl is true and fail. Otherwise, it does nothing. ⊓⊔

It can be proven that the other direction is not always possible. Fig 4 shows
graphically the previous results where an arrow indicates that one mechanism
implements another. In this diagram, an absence of an arrow does not neces-
sarily imply impossibility but perhaps that the result depends on the execution
order. For example, in BFS blockchains first can implement ustore, but this
is impossible with DFS.

Since first, count, bstore and trmem are all equivalent, from now on we
only refer to mechanism first. It is easy to see that this mechanism is enough
to implement init .

To implement term, we can either implement fail or ustore, where fail is
simpler, and ustore is more powerful but requires a bigger change to blockchains.
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Transaction
Memory
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first
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Fig. 4. Relation between mechanisms for any scheduler. An arrow from mechanism M
to mechanism N means that M implements N.

ustore Transaction Monitorsfirst + fail

Fig. 5. Relation between mechanisms and transaction monitor for any scheduler.

Theorem 2. Mechanisms first + fail implement transaction monitors.

Proof. Let B be a blockchain that implements first and fail. Given a moni-
tored smart contract A, we want to implement A in blockchain B. We define a
new smart contract A′ extending its storage to also contains A’s monitor storage.
Then, we equip A′ with a new method f ′ for every method f in A, such that, f ′

first checks first and executes Ainit if needed. Then, before exiting, f
′ executes

Aterm with the current state but instead of failing explicitly f ′ set the failing
bit. Function Ainit is executed exactly once and Aterm may be executed multi-
ple times, but it does not modify the contract storage and it does not generate
operations. The last execution of Aterm in A′ will simulate Aterm in A. If the
semantics of the blockchain were such that the balance of pending outgoing op-
eration would subtract balance from A when it executes, then these calculations
can be made in the monitor storage when the operations are generated. ⊓⊔

Since ustore implements first and fail, it follows that ustore implements
transaction monitors.

Corollary 1. ustore implements transaction monitors but transaction moni-
tors cannot implement ustore.

Transaction monitors can only make contracts fail but not change the storage.
Our results are summarized in Fig. 5.

5.1 BFS Blockchains

We now study more in detail the mechanism for BFS based blockchains. The
first result is that unless equipped with further mechanisms, BFS blockchains
cannot implement transaction monitors. The essence of the proof is to create
two transactions on a monitored contract A (like in “only once”) in which corre-
sponding invocations to the same contract A receive identical information, and
one must fail and the other commit.
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Theorem 3. A BFS blockchain does not implement transaction monitors.

A BFS blockchain guarantees that new operations are executed after all
pending operations, which enables the implementation of fail using recurring
operations. A recurring operation is a private function that can read and write
the storage and that either terminates or reinjects itself again to the pending
queue. Since every time the operation is executed the blockchain consumes gas,
and eventually, failure follows from an attempt to inject itself ad-infinitum.

Lemma 2. Recurring operations in BFS blockchain allow to implement fail.

Since transaction monitors cannot be implemented within a BFS blockchain
(see [9]), we conclude that fail does not implement transaction monitors in BFS
blockchains. The missing element is first which allows to implement ustore.
And, since ustore implements transaction monitors (Corollary 1), first can
also implement transaction monitors.

Lemma 3. Mechanism first implements ustore in BFS blockchains.

Proof. Assume a BFS blockchain implementing first. Let A be a smart con-
tract. We modify A to contain a second copy S′ of its storage. Upon the first
call of A, we update the current storage using the values in S′. We add a new
private method hookup in A that mimics the code of ustore but (1) it applies
the changes in S′, and (2) instead of failing (if ustore fails) it calls itself as a
recurring operation. Finally, we modify A so that function hookup is invoked at
the end of each method in A. In effect, hookup is preventively evaluating ustore

on the side memory S′, and simulating the failure as a recurring operation (when
ustore fails). Therefore, if the operation is the last one on the contract and it
does not fail, then S′ contains the correct storage, which will then be copied at
the beginning of the next transaction. ⊓⊔

In the previous proof, we split mechanism ustore into two parts: one in charge
of updating the storage, the other in charge of failing. If we also add queue,
we can implement ustore without failing by gas exhaustion because now the
hookup executed recurrently can know if there are only recurrent operations and
then execute the ustore code (including the failure).

Lemma 4. Mechanism queue implements ustore in BFS blockchains.

In a BFS blockchain, ustore implements transaction monitors (Corollary 1),
and thus, by the previous lemma, queue also implements transaction monitors.
Next, we will show that queue cannot be implemented with ustore when a BFS
strategy is used. Intuitively, mechanism queue adds a way for smart contracts to
know the state of the blockchain, i.e. if there is still interaction between smart
contracts, and thus, smart contracts can take different actions based on the state
of the blockchain, while mechanism ustore adds a way to execute a procedure
at the end of transactions, but smart contracts are oblivious about interactions
between smart contracts. Since ustore implements all other mechanisms, we
have that no other mechanism can implement queue.
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∞

Transaction Monitors

BFS + failBFS + ustore

BFS + queue BFSBFS + first

∞

Fig. 6. Relation between mechanisms and transaction monitor in BFS blockchains. A
black arrow from mechanism M to mechanism N means that M can implement N . The
∞ symbol represents the use of an infinite recursion to provoke a failure. A red arrow
with a cross from mechanism M to mechanism N means that M cannot implement N .

Lemma 5. In BFS blockchains ustore cannot implement queue.

The main idea is to create two executions that are identical unless one can
inspect the pending operation queue, and in which one operation must fail if
queue returns that the queue of pending operations is empty. The complete proof
is in [9]. Fig 6 summarizes the relations between mechanisms and transaction
monitor in BFS blockchains.

5.2 DFS Blockchains

We now study DFS blockchains, that is, when the resulting list of operations
from smart contracts execution are appended at the beginning of the list. This
is the most conventional execution order in most blockchains, like Ethereum. We
now prove several impossibility results.

Mechanisms ustore and first plus fail implement transaction monitors
(Corollary 1 and Thoerem 2). In a DFS blockchain, those are the only two
ways using our mechanisms to implement transaction monitors. We show that
transaction monitors cannot be implemented by combining queue with either
first or fail, and as a consequence none of these mechanisms on their own
can implement transaction monitors.

Lemma 6. A DFS blockchain implementing queue and first does not imple-
ment transaction monitors.

Proof. Let B be a DFS blockchain and A a smart contract installed in B. Con-
sider the “only once” monitor that fails if and only if the smart contract A is
called exactly once. We show that this monitor cannot be implemented in DFS
even with first and queue.

Let B,C be two other smart contracts. We analyze the pending queue of
execution of two possible external operations originated by B:
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1. o1 where B calls A once and then C
2. o2 where B calls A twice and then C
We assume that there are no additional invocations to A aside from the described
above. When we execute both operations in a (Σ,∆) blockchain system, we have
the following two traces:

• t1 : (Σ,∆, [o1])⇝dfs (Σ
′, ∆′, [a1, c1]) . . .

• t2 : (Σ,∆, [o2])⇝dfs (Σ
′, ∆′, [a1, a2, c1]) . . .

Note that the presence of operation c1 in the pending execution queue is forcing
mechanism queue to return false. Since the occurrence of operation a1 in both
cases execute in the same configuration, the behavior must be the same. The
transaction executing o1 must fail because A is called only once, but this will
make the second transaction fail as well. ⊓⊔

We can conclude that neither queue nor first alone would implement transac-
tion monitors.

Lemma 7. Under DFS queue and fail cannot implement transaction moni-
tors.

The main difference between these mechanisms and transaction monitors
is that the latter can execute functions without a contract being invoked at
particular moments in the execution of transactions. Take for example procedure
init , neither queue nor fail can simulate init , as there is no way for these
mechanisms to distinguish the first execution of a smart contract in a given
transaction.

Combining fail with first one can implement transaction monitors in any
execution order, including DFS (Theorem 2), but fail is not enough to imple-
ment transaction monitors in DFS. Therefore, we conclude that DFS blockchains
do not implement first. Moreover, putting all previous lemmas together, we
conclude that a DFS blockchains cannot implement any of the mechanisms listed
in Section 4 directly.

Corollary 2. DFS blockchains cannot implement first, fail, ustore or queue.

All proofs are in [9].

6 Conclusion and Future Work

We have studied transaction monitors for smart contracts. Transaction monitors
are a defense mechanism enabling smart contracts to explicitly state wanted
or unwanted behaviour at the transactional level. This kind of properties are
motivated by contracts like flash loans, which are not implementable in their full
generality in current blockchains. We propose a solution based on adding new
mechanisms to the blockchain. Transaction monitors can be incorporated directly
into contracts or simulated if some of these mechanisms are implemented. This
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could be preferable since some of these mechanisms are very simple and backward
compatible, while others extend the functionality of smart contracts. We have
studied how some mechanisms simulate each other, both for any execution order,
and specifically for BFS and DFS blockchains. The conclusion is that the simplest
mechanism that allows us to implement transaction monitors is the combination
of first and fail.

Nevertheless, the main contribution of this paper is purely theoretical. Future
work includes implementing transaction monitors and practically interesting fea-
tures from Section 4 in a real blockchain and implement illustrative transaction
monitors.

For simplicity, we have neglected a specific analysis of gas consumption, ex-
cept for recurrent operations that purposefully fail by exhausting gas. Even
though transaction monitors will consume additional gas which can influence
the failure of the transaction (as with operation monitors), we claim that for all
our development there is an amount of gas that can be calculated which will not
make accepting transactions fail. However, we leave a detailed study for future
work.

Other avenues of future work include the study of new features, particularly
views that allows contracts to inspect the state of other contracts. We are also
performing a thorough study of how exposing new mechanisms to contracts—
that can use them for implementing functionality—can break (or not) imple-
mentations of monitors that are correct without adding the mechanisms. Finally,
since proofs in this paper are “pencil and paper” and the interplay of different
mechanisms can be counter-intuitive, we plan to formalize all proofs here in an
existing smart-contract formal “playgound” (libraries in theorem provers that
enable mechanical proofs), e.g. [11].

References

1. Michelson: the language of smart contracts in Tezos. https://tezos.gitlab.io/
whitedoc/michelson.html.

2. Ethereum. Solidity documentation — release 0.2.0. http://solidity.

readthedocs.io/, 2016.

3. W. Ahrendt and R. Bubel. Functional verification of smart contracts via strong
data integrity. In Proc. of ISoLA (3), LNCS, pages 9–24. Springer, 2020.

4. G. Alfour. LIGO: a friendly smart-contract language for Tezos. https://ligolang.
org, 2020. last accessed: 2022-05-03.

5. D. Annenkov, J. B. Nielsen, and B. Spitters. ConCert: a smart contract certification
framework in Coq. In Proc. of the 9th ACM SIGPLAN Int’l Conf. on Certified
Programs and Proofs (CPP’20), pages 215–218. ACM, 2020.

6. S. Azzopardi, J. Ellul, and G. J. Pace. Monitoring smart contracts: ContractLarva
and open challenges beyond. In Proc. of the 18th International Conference on
Runtime Verification (RV’18), volume 11237 of LNCS, pages 113–137. Springer,
2018.

7. B. Bernardo, R. Cauderlier, Z. Hu, B. Pesin, and J. Tesson. Mi-Cho-Coq, a frame-
work for certifying Tezos smart contracts. arXiv, abs/1909.08671, 2019.

https://tezos.gitlab.io/whitedoc/michelson.html
https://tezos.gitlab.io/whitedoc/michelson.html
http://solidity.readthedocs.io/
http://solidity.readthedocs.io/
https://ligolang.org
https://ligolang.org


18 Capretto, Ceresa and Sánchez

8. K. Bhargavan, A. Delignat-Lavaud, C. Fourneta, A. Gollamudi, G. Gonthier,
N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, and S. Z.
Béguelin. Formal verification of smart contracts: Short paper. In Proc. of Workshop
on Programming Languages and Analysis for Security (PLAS@CCS’16), pages 91–
96. ACM, 2016.

9. M. Capretto, M. Ceresa, and C. Sánchez. Transaction monitoring of smart con-
tracts. arXiv, abs/2207.02517, 2022.
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12. S. Conchon, A. Korneva, and F. Zäıdi. Verifying smart contracts with Cubicle. In
Proc. of the 1st Workshop on Formal Methods for Blockchains (FMBC’19), volume
12232 of LNCS, pages 312–324. Springer, 2019.

13. J. Ellul and G. J. Pace. Runtime verification of Ethereum smart contracts. In
Proc. of the 14th European Dependable Computing Conference (EDCC’18), pages
158–163. IEEE Computer Society, 2018.

14. M. Leucker. Teaching runtime verification. In Proc. of RV’11, number 7186 in
LNCS, pages 34–48. Springer, 2011.

15. A. Li, J. A. Choi, and an. Long. Securing smart contract with runtime validation.
In Proc. of ACM PLDI’20, pages 438–453. ACM, 2020.

16. S. Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2009.
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