
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Improving Blockchain Scalability with the Setchain Data-type

MARGARITA CAPRETTO, IMDEA Software Institute, Spain and Universidad Politécnica de Madrid,

Spain

MARTÍN CERESA, IMDEA Software Institute, Spain

ANTONIO FERNÁNDEZ ANTA, IMDEA Networks Institute, Spain

ANTONIO RUSSO, IMDEA Networks Institute, Spain and Universidad Carlos III de Madrid, Spain

CÉSAR SÁNCHEZ, IMDEA Software Institute, Spain

Blockchain technologies are facing a scalability challenge, which must be overcome to guarantee a wider

adoption of the technology. This scalability issue is due to the use of consensus algorithms to guarantee the

total order of the chain of blocks (and of the transactions within each block). However, total order is often not

fully necessary, since important advanced applications of smart-contracts do not require a total order among

all operations. A much higher scalability can potentially be achieved if a more relaxed order (instead of a total

order) can be exploited.

In this paper, we propose a novel distributed concurrent data type, Setchain, which significantly improves

scalability. A Setchain implements a grow-only set whose elements are not ordered, unlike conventional

blockchain operations. When convenient, the Setchain allows forcing a synchronization barrier that assigns

permanently an epoch number to a subset of the latest elements added, agreed by consensus. Therefore, two

operations in the same epoch are not ordered, while two operations in different epochs are ordered by their

respective epoch number. We present different Byzantine-tolerant implementations of Setchain, prove their

correctness and report on an empirical evaluation of a prototype implementation. Our results show that

Setchain is orders of magnitude faster than consensus-based ledgers, since it implements grow-only sets with

epoch synchronization instead of total order.

Since the Setchain barriers can be synchronized with the underlying blockchain, Setchain objects can

be used as a sidechain to implement many decentralized solutions with much faster operations than direct

implementations on top of blockchains.

Finally, we also present an algorithm that encompasses into a single process the combined behavior of

the Byzantine servers, which simplifies correctness proofs by encoding the general attacker in a concrete

implementation.

CCS Concepts: • Theory of computation→ Distributed algorithms; Logic and verification; • Comput-
ing methodologies→ Distributed algorithms; • Security and privacy→ Formal methods and theory
of security.

Additional Key Words and Phrases: Distributed systems, blockchain, Byzantine distributed objects, consensus,

Setchain.

Authors’ addresses: Margarita Capretto, margarita.capretto@imdea.org, IMDEA Software Institute, Campus de Monte-

gancedo s/n, 28223, Pozuelo de Alarcón, Madrid, Spain and Universidad Politécnica de Madrid, C. de los Ciruelos, 28660,

Boadilla del Monte, Madrid, Spain; Martín Ceresa, martin.ceresa@imdea.org, IMDEA Software Institute, Campus de Monte-

gancedo s/n, 28223, Pozuelo de Alarcón, Madrid, Spain; Antonio Fernández Anta, antonio.fernandez@imdea.org, IMDEA

Networks Institute, Av. Mar Mediterráneo, 22, 28918, Leganés, Madrid, Spain; Antonio Russo, antonio.russo@imdea.org,

IMDEA Networks Institute, Av. Mar Mediterráneo, 22, 28918, Leganés, Madrid, Spain and Universidad Carlos III de Madrid,

Av. de la Universidad, 30, 28911, Leganés, Madrid, Spain; César Sánchez, cesar.sanchez@imdea.org, IMDEA Software Institute,

Campus de Montegancedo s/n, 28223, Pozuelo de Alarcón, Madrid, Spain.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Association for Computing Machinery.

XXXX-XXXX/2025/3-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: March 2025.

HTTPS://ORCID.ORG/0000-0003-2329-3769
HTTPS://ORCID.ORG/0000-0003-4691-5831
HTTPS://ORCID.ORG/0000-0001-6501-2377
HTTPS://ORCID.ORG/0000-0003-3795-3000
HTTPS://ORCID.ORG/0000-0003-3927-4773
https://orcid.org/0000-0003-2329-3769
https://orcid.org/0000-0003-4691-5831
https://orcid.org/0000-0001-6501-2377
https://orcid.org/0000-0003-3795-3000
https://orcid.org/0000-0003-3927-4773
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Capretto et al.

ACM Reference Format:
Margarita Capretto, Martín Ceresa, Antonio Fernández Anta, Antonio Russo, and César Sánchez. 2025.

Improving Blockchain Scalability with the Setchain Data-type. 1, 1 (March 2025), 28 pages. https://doi.org/10.

1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
1.1 The Problem
Distributed ledgers (also known as blockchains) were first proposed by Nakamoto in 2009 [22]

in the implementation of Bitcoin, as a method to eliminate trustable third parties in electronic

payment systems. Modern blockchains incorporate smart contracts [29, 34], which are immutable

state-full programs stored in the blockchain that describe functionality of transactions, including

the exchange of cryptocurrency. Smart contracts allow to describe sophisticated functionality,

enabling many applications in decentralized finances (DeFi)
1
, decentralized governance, Web3, etc.

The main element of all distributed ledgers is the “blockchain,” which is a distributed object

that contains, packed in blocks, the totally ordered list of transactions performed on behalf of the

users [14, 15]. The Blockchain object is maintained by multiple servers without a central authority

using consensus algorithms that are resilient to Byzantine attacks.

A current major obstacle for a faster widespread adoption of blockchain technologies is their

limited scalability, due to the limited throughput inherent to Byzantine consensus algorithms [9, 32].

Ethereum [34], one of the most popular blockchains, is limited to less than 4 blocks per minute, each

containing less than two thousand transactions. Bitcoin [22] offers even lower throughput. These

figures are orders of magnitude slower than what many decentralized applications require, and can

ultimately jeopardize the adoption of the technology in many promising domains. This limit in the

throughput increases the price per operation, due to the high demand to execute operations. Conse-

quently, there is a growing interest in techniques to improve the scalability of blockchains [21, 36].

Approaches include: developing faster consensus algorithms [33]; implementing parallel techniques,

like sharding [11]; application-specific blockchains with Inter-Blockchain Communication capabil-

ities [20, 35]; executing smart contracts off-chain with the minimal required synchronization to

preserve the guarantees of the blockchain— known as a “layer 2” (L2) approaches [18]. Different

L2 approaches are (1) the off-chain computation of Zero-Knowledge proofs [2], which only need

to be checked on-chain (hopefully more efficiently) [1], (2) the adoption of limited (but useful)

functionality like channels (e.g., Lightning [23]), or (3) the deployment of optimistic rollups (e.g.,

Arbitrum [19]) based on avoiding running the contracts in the servers (except when needed to

annotate claims and resolve disputes).

In this paper, we propose an alternative approach to increase blockchain scalability that exploits

the following observation. It has been traditionally assumed that cryptocurrencies require total

order to guarantee the absence of double-spending. However, many useful applications and func-

tionalities (including some uses of cryptocurrencies [17]) can tolerate more relaxed guarantees,

where operations are only partially ordered. We propose here a Byzantine-fault tolerant implemen-

tation of a distributed grow-only set [6, 28], equipped with an additional operation for introducing

points of barrier synchronization (where all servers agree on the contents of the set). Between

barriers, elements of the distributed set can be temporarily known by some but not all servers. We

call this distributed data structure Setchain. A blockchain B implementing Setchain (as well as

blocks) can align the consolidation of the blocks of B with barrier synchronizations, obtaining a

1
As of December 2021, the monetary value locked in DeFi was estimated to be around $100B, according to Statista

https://www.statista.com/statistics/1237821/defi-market-size-value-crypto-locked-usd/.

, Vol. 1, No. 1, Article . Publication date: March 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.statista.com/statistics/1237821/defi-market-size-value-crypto-locked-usd/

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Improving Blockchain Scalability with the Setchain Data-type 3

very efficient set object as side data type, with the same Byzantine-tolerance guarantees that B
itself offers.

Two extreme implementations of sets with epochs in the context of blockchains are:

A Completely off-chain implementation. The major drawback of having a completely off-chain

implementation is that from the point of view of the underlying blockchain the resulting imple-

mentation does not have the trustability and accountability guarantees that blockchains offer.

One example of this approach are mempools. Mempools (short for memory pools) are a P2P data

type used by most blockchains to maintain the set of pending transactions. Mempools fulfill two

objectives: (1) to prevent distributed attacks to the servers that mine blocks and (2) to serve as a

pool of transaction requests from where block producers select operations. Nowadays, mempools

are receiving a lot of attention, since they suffer from lack of accountability and are a source of

attacks [26, 27], including front-running [10, 25, 31]. Our proposed data structure, Setchain, offers

a much stronger accountability, because it is resilient to Byzantine attacks and the elements of the

set that Setchain maintains are public and cannot be forged.

Completely on-chain solution. Consider the following implementation (in a language similar to

Solidity), where add is used to add elements, and epochinc to increase epochs.

contract Epoch {

uint public epoch = 0;

set public the_set = emptyset;

mapping(uint => set) public history;

function add(elem data) public {

the_set.add(data);

}

function epochinc () public {

history [++ epoch] = the_set.setminus(history);

}

}

One problem of this implementation is that every time we add an element, the_set gets bigger,

which can affect the required cost to execute the contract. A second more important problem is

that adding elements is slow—as slow as interacting with the blockchain—while our main goal is to

provide a much faster data structure than the blockchain.

Our approach is faster, and can be deployed independently of the underlying blockchain and

synchronized with the blockchain nodes. Thus, Setchain lies between the two extremes described

above.

For a given blockchain B, we propose an implementation of Setchain that (1) is much more

efficient than implementing and executing operations directly inB; (2) offers the same decentralized

guarantees against Byzantine attacks than B, and (3) can be synchronized with the evolution of B,
so contracts could potentially inspect the contents of the Setchain. In a nutshell, these goals are

achieved by using faster operations for the coordination among the servers for non-synchronized

element insertions, and using only consensus style algorithms for epoch changes.

1.2 Applications of Setchain
The potential applications that motivate the development of Setchain include:

1.2.1 Mempool. Most blockchains store transaction requests from users in a “mempool” before

they are chosen by miners, and once mined the information from the mempool is lost. Recording

and studying the evolution of mempools would require an additional object serving as a reliable

, Vol. 1, No. 1, Article . Publication date: March 2025.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Capretto et al.

mempool log system, which must be fast enough to record every attempt of interaction with the

mempool without affecting the performance of the blockchain. Setchain can server as such trustable

log system, in this case requiring no synchronization between epochs and blocks.

1.2.2 Scalability by L2 Optimistic Rollups. Optimistic rollups, like Arbitrum [19], exploit the fact

that computation can be performed outside the blockchain, posting on-chain only claims about the

effects of the transactions. In this manner Arbitrum maintainers propose the next state reached

after executing several transactions. After some time, an arbitrator smart contract that is installed

on-chain assumes that a proposed step is correct because the state has not been challenged, and

executes the annotated effects. A conflict resolution algorithm, also part of the contract on-chain,

is used to resolve disputes. This protocol does not require a strict total order, but only a record of

the actions proposed. Moreover, conflict resolution can be reduced to claim validation, which could

be performed by the maintainers of the Setchain, removing the need for arbitration.

1.2.3 Sidechain Data. Finally, Setchain can also be used as a generic side-chain service used to

store and modify data in a manner that is synchronized with the blocks. Applications that require

only to update information in the storage space of a smart contract, like digital registries, can

benefit from having faster (and therefore cheaper) methods to manipulate the storage without

invoking expensive blockchain operations.

1.3 Contributions
In summary, the contributions of the paper are the following:

• the design and implementation of a side-chain data structure called Setchain;

• several implementations of Setchain, providing different levels of abstraction and algorithmic

implementation improvements;

• an empirical evaluation of a prototype implementation, which suggests that Setchain is

several orders of magnitude faster than consensus;

• a client protocol that describes how Setchain can be used as a distributed object which

requires good clients to contact several servers for adding elements and for obtaining a

correct view of the Setchain;

• a protocol that describes a much more efficient Setchain optimistic service that requires

clients to contact only one server both for addition and for obtaining a correct state;

• a reduction from the combined behavior of several Byzantine servers to a single non-

deterministic process that simplifies reasoning about the combined distributed system.

The rest of the paper is organized as follows. Section 2 contains preliminary model and assump-

tions. Section 3 describes the intended properties of Setchain. Section 4 describes three different

implementations of Setchain where we follow an incremental approach. Alg. Basic and Slow are

required to explain how we have arrived to Alg. Fast, which is the fastest and most robust. Section 5

proves the correctness of our three algorithms. Section 6 discusses an empirical evaluation of our

prototype implementations of the different algorithms. Section 7 shows client protocols to correctly

use Setchain under the presence of Byzantine servers. Section 8 presents a non-deterministic

algorithm that simulates Byzantine behaviour. Finally, Section 9 concludes the paper.

2 PRELIMINARIES
We present now the model of computation and the building blocks used in our Setchain algorithms.

2.1 Model of Computation
A distributed system consists of processes—clients and servers—with an underlying communication

network with which each process can communicate with every other process. The communication

, Vol. 1, No. 1, Article . Publication date: March 2025.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Improving Blockchain Scalability with the Setchain Data-type 5

is performed using message passing. Each process computes independently and at its own speed,

and the internals of each process remains unknown to other processes. Message transfer delays

are arbitrary but finite and also remain unknown to processes. The intention is that servers

communicate among themselves to implement a distributed data type with certain guarantees and

clients can communicate with servers to exercise the data type.

Processes can fail arbitrarily, but the number of failing (Byzantine) servers is bounded by 𝑓 , and

the total number of servers, 𝑛, is at least 3𝑓 +1. We assume reliable channels between non-Byzantine

(correct) processes, so no message is lost, duplicated or modified. Each process (client or server)

has a pair of public and private keys. Public keys were distributed reliably to all the processes that

may interact with each other. Therefore, we discard the possibility of spurious or fake processes.

We assume that messages are authenticated so messages corrupted or fabricated by Byzantine

processes are detected and discarded by correct processes [8]. As result, communication between

correct processes is reliable but asynchronous by default. However, the set consensus service we

use as a basic building block requires partial synchrony [7, 16] (see Section 2.2.4). Partial synchrony

is only required for messages and computations of the protocol implementing set consensus. Finally,

we assume that there is a mechanism for clients to create “valid objects” that servers can check

locally. In the context of blockchains, this is implemented using public-key cryptography.

2.2 Building Blocks
We use four building blocks to implement Setchain:

2.2.1 Byzantine Reliable Broadcast (BRB). BRB services [3, 24] allow to broadcast messages to a

set of processes guaranteeing that messages sent by correct processes are eventually received by

all correct processes and all correct processes eventually receive the same set of messages. A BRB

service provides a primitive BRB.Broadcast(𝑚) for sending messages and an event BRB.Deliver(𝑚)
for receiving messages. We list the relevant properties of BRB required to prove properties of

Setchain (Section 5):

• BRB-Validity: If a correct process 𝑝𝑖 executes BRB.Deliver(𝑚) then𝑚 was sent by a correct

process 𝑝 𝑗 which executed BRB.Broadcast(𝑚) in the past.

• BRB-Termination(Local): If a correct process executes BRB.Broadcast(𝑚), then it executes
BRB.Deliver(𝑚).
• BRB-Termination(Global): If a correct process executes BRB.Deliver(𝑚), then all correct

processes eventually execute BRB.Deliver(𝑚).
Note that BRB services do not guarantee the delivery of messages in the same order to two different

correct participants.

2.2.2 Byzantine Atomic Broadcast (BAB). BAB services [12] extend BRB with an additional guar-

antee: a total order of delivery of the messages. BAB services provide the same operation and

event as BRB, which we rename as BAB.Broadcast(𝑚) and BAB.Deliver(𝑚). However, in addition

to validity and termination, BAB services also provide:

• Total Order: If two correct processes 𝑝 and 𝑞 both execute BAB.Deliver(𝑚) and
BAB.Deliver(𝑚′), then 𝑝 delivers𝑚 before𝑚′ if and only if 𝑞 delivers𝑚 before𝑚′.

BAB has been proven to be as hard as consensus [12], and thus, is subject to the same limitations [16].

2.2.3 Byzantine Distributed Grow-only Sets (DSO) [6]. Sets are one of the most basic and fundamen-

tal data structures in computer science, which typically include operations for adding and removing

elements. Adding and removing operations do not commute, and thus, distributed implementations

require additional mechanisms to keep replicas synchronized to prevent conflicting local states.

, Vol. 1, No. 1, Article . Publication date: March 2025.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Capretto et al.

One solution is to allow only additions. Hence, a grow-only set is a set in which elements can only

be added but not removed, which is implementable as a conflict-free replicated data structure [28].

Let𝐴 be an alphabet of values. A grow-only set GS is a concurrent object maintaining an internal

set GS.𝑆 ⊆ 𝐴 offering two operations for any process 𝑝:

• GS.add(𝑟) : adds an element 𝑟 ∈ 𝐴 to the set GS.𝑆 .
• GS.get() : retrieves the internal set of elements GS.𝑆 .

Initially, the set GS.𝑆 is empty. A Byzantine distributed grow-only set object (DSO) is a concurrent

grow-only set implemented in a distributed manner tolerant to Byzantine attacks [6]. We list the

properties relevant to Setchain (Section 5):

• Byzantine Completeness: All get() and add(𝑟) operations invoked by correct processes

eventually complete.

• DSO-AddGet: All add(𝑟) operations will eventually result in 𝑟 being in the set returned by

all get().
• DSO-GetAdd: Each element 𝑟 returned by get() was added using add(𝑟) in the past.

2.2.4 Set Byzantine Consensus (SBC). SBC, introduced in RedBelly [7], is a Byzantine-tolerant

distributed problem, similar to consensus. In SBC, each participant proposes a set of elements (in

the particular case of RedBelly, a set of transactions). After SBC finishes, all correct servers agree

on a set of valid elements which is guaranteed to be a subset of the union of the proposed sets.

Intuitively, SBC efficiently runs binary consensus to agree on the sets proposed by each participant,

such that if the outcome is positive then the set proposed is included in the final set consensus. We

list the properties relevant to Setchain (Section 5):

• SBC-Termination: every correct process eventually decides a set of elements.

• SBC-Agreement: no two correct processes decide different sets of elements.

• SBC-Validity: the decided set of transactions is a subset of the union of the proposed sets.

• SBC-Nontriviality: if all processes are correct and propose an identical set, then this is the

decided set.

The RedBelly algorithm [7] solves SBC in a system with partial synchrony: there is an unknown

global stabilization time after which communication is synchronous. (Other SBC algorithms may

have different partial synchrony assumptions.) Then, [7] proposes to use SBC to replace consensus

algorithms in blockchains, seeking to improve scalability, because all transactions to be included in

the next block can be decided with one execution of the SBC algorithm. In RedBelly every server

computes the same block by applying a deterministic function that totally orders the decided set of

transactions, removing invalid or conflicting transactions.

Our use of SBC is different from implementing a blockchain. We use it to synchronize the barriers

between local views of distributed grow-only sets. To guarantee that all elements are eventually

assigned to epochs, we need the following property in the SBC service used.

• SBC-Censorship-Resistance: there is a time 𝜏 after which, if the proposed sets of all

correct processes contain the same element 𝑒 , then 𝑒 will be in the decided set.

In RedBelly, this property holds because after the global stabilization time, all set consensus rounds

decide sets from correct processes [7, Theorem 3].

3 THE SETCHAIN DISTRIBUTED DATA STRUCTURE
The main contrivution of this paper is Setchain, a distributed Byzantine-fault tolerant data structure,

that implementing an efficient grow-only set together with synchronization barriers. A key concept

of Setchain is the epoch number, which is a global counter that the distributed data structure

maintains. The synchronization barrier is realized as an epoch change: the epoch number is

, Vol. 1, No. 1, Article . Publication date: March 2025.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Improving Blockchain Scalability with the Setchain Data-type 7

increased and the elements in the grow-only set that have not been assigned to a previous epoch

are stamped with the new epoch number.

3.1 The Way of Setchain
Before presenting the API of the Setchain, we reason about the expected path an element should

travel in the Setchain and the properties we want the structure to have. The main goal of the

Setchain side-chain data structure is to exploit the efficiency opportunity of the lack of order within

a set using a fast grow-only set so users can add records (uninterpreted data), and thus, have

evidence that such records exist. Either periodically or intentionally, users trigger an epoch change

that creates an evidence of membership or a clear separation in the evolution of the Setchain.

Therefore, the Setchain offers three methods: add, get and epoch_inc.
In a centralized implementation, we expect to find inserted elements immediately after issuing

an add. In other words, after an add(𝑒) we expect that the element 𝑒 is in the result of get. In a

distributed setting, such a restriction is too strong, and we instead expect elements to eventually be

in the set. Additionally, implementations have to guarantee consistency between different correct

nodes, i.e. they cannot contradict each other.

3.2 API and Server State of the Setchain
We consider a universe 𝑈 of elements that client processes can inject into the set. We also assume

that servers can locally validate an element 𝑒 ∈ 𝑈 . A Setchain is a distributed data structure where

a collection of server nodes, D, maintain: a set the_set ⊆ 𝑈 of elements added; a natural number

epoch ∈ N; a map history : [1..epoch] → P(𝑈) describing sets of elements that have been

stamped with an epoch number (P(𝑈) denotes the power set of𝑈).

Each server node 𝑣 ∈ D supports three operations, available to any client process:

• 𝑣 .add(𝑒): requests to add 𝑒 to the_set;
• 𝑣 .get(): returns the values of the_set, history, and epoch, as perceived by 𝑣2;

• 𝑣 .epoch_inc(ℎ) triggers an epoch change (i.e. a synchronization barrier) if ℎ = epoch + 1.
Informally, a client process 𝑝 invokes a 𝑣 .get() operation on node 𝑣 to obtain (𝑆, 𝐻,ℎ), which is

𝑣 ’s view of set 𝑣 .the_set and map 𝑣 .history, with domain [1 . . . ℎ]. Process 𝑝 invokes 𝑣 .add(𝑒)
to insert a new element 𝑒 in 𝑣 .the_set, and 𝑣 .epoch_inc(ℎ + 1) to request an epoch increment.

At server 𝑣 , the set 𝑣 .the_set contains the knowledge of 𝑣 about elements that have been added,

including those that have not been assigned an epoch yet, while 𝑣 .history contains only those

elements that have been assigned an epoch. A typical scenario is that an element 𝑒 ∈ 𝑈 is first

perceived by 𝑣 to be in the_set, to eventually be stamped and copied to history in an epoch

increment. However, as we will see, some implementations allow other ways to insert elements, in

which 𝑣 gets to know 𝑒 for the first time during an epoch change. Operation epoch_inc initiates
the process of collecting elements in the_set at each node and collaboratively decide which ones

are stamped with the current epoch.

Initially, both the_set and history are empty and epoch = 0 in every correct server. Client

processes can insert elements to the_set through operation add, but only servers decide how to

update history, which client processes can only influence by invoking operation epoch_inc.
At a given point in time, the view of the_set may differ from server to server. The algorithms

we propose only provide eventual consistency guarantees, as defined in the next section.

2
In practice, we would have other query operations since values returned by get() operation may grow large.

, Vol. 1, No. 1, Article . Publication date: March 2025.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Capretto et al.

3.3 Desired Properties
We specify now properties of correct implementations of Setchain. We provide first a low-level

specification that assumes that clients interact with a correct server. Even though clients cannot be

sure of whether the server they are contacting is correct, we use these properties in Section 7 to

build two correct clients: a pessimistic client contacting many servers to guarantee that sufficiently

many are correct, and an optimistic client contacting only one server (hoping it will be a correct

one) and can later check whether the operation was successful.

We start by requiring from a Setchain that every add, get, and epoch_inc operation issued on a

correct server eventually terminates. We say that element 𝑒 is in epoch 𝑖 in history 𝐻 (e.g., returned

by a get invocation) if 𝑒 ∈ 𝐻 (𝑖). We say that element 𝑒 is in 𝐻 if there is an epoch 𝑖 such that

𝑒 ∈ 𝐻 (𝑖). The first property states that epochs only contain elements coming from the grow-only

set.

Property 1 (Consistent Sets). Let (𝑆, 𝐻,ℎ) = 𝑣 .get() be the result of an invocation to a correct
server 𝑣 . Then, for each 𝑖 ≤ ℎ, 𝐻 (𝑖) ⊆ 𝑆 .

The second property states that every element added to a correct server is eventually returned

in all future gets issued on the same server.

Property 2 (Add-Get-Local). Let 𝑣 .add(𝑒) be an operation invoked on a correct server 𝑣 . Then,
eventually all invocations (𝑆, 𝐻,ℎ) = 𝑣 .get() satisfy 𝑒 ∈ 𝑆 .

The next property states that elements present in a correct server are propagated to all correct

servers.

Property 3 (Get-Global). Let 𝑣 and𝑤 be two correct servers, let 𝑒 ∈ 𝑈 and let (𝑆, 𝐻,ℎ) = 𝑣 .get().
If 𝑒 ∈ 𝑆 , then eventually all invocations (𝑆 ′, 𝐻 ′, ℎ′) = 𝑤.get() satisfy that 𝑒 ∈ 𝑆 ′.

We assume in the rest of the paper that at every point in time, there is a future instant at

which operation epoch_inc is invoked and completed. This is a reasonable assumption in any real

practical scenario since it can be easily guaranteed using timeouts. Then, the following property

states that all elements added are eventually assigned an epoch.

Property 4 (Eventual-Get). Let 𝑣 be a correct server, let 𝑒 ∈ 𝑈 and let (𝑆, 𝐻,ℎ) = 𝑣 .get(). If
𝑒 ∈ 𝑆 , then eventually all invocations (𝑆 ′, 𝐻 ′, ℎ′) = 𝑣 .get() satisfy that 𝑒 ∈ 𝐻 ′.

The previous three properties imply the following property.

Property 5 (Get-After-Add). Let 𝑣 .add(𝑒) be an operation invoked on a correct server 𝑣 with
𝑒 ∈ 𝑈 . Then, eventually all invocations (𝑆, 𝐻,ℎ) = 𝑤.get() on correct servers𝑤 satisfy that 𝑒 ∈ 𝐻 .

An element can be in at most one epoch, and no element can be in two different epochs even if

the history sets are obtained from get invocations to two different (correct) servers.

Property 6 (Uniqe Epoch). Let 𝑣 be a correct server, (𝑆, 𝐻,ℎ) = 𝑣 .get(), and let 𝑖, 𝑖′ ≤ ℎ with
𝑖 ≠ 𝑖′. Then, 𝐻 (𝑖) ∩ 𝐻 (𝑖′) = ∅.

All correct server processes agree on the epoch contents.

Property 7 (ConsistentGets). Let 𝑣,𝑤 be correct servers, let (𝑆, 𝐻,ℎ) = 𝑣 .get() and (𝑆 ′, 𝐻 ′, ℎ′) =
𝑤.get(), and let 𝑖 ≤ min(ℎ,ℎ′). Then 𝐻 (𝑖) = 𝐻 ′ (𝑖).

Property 7 states that the histories returned by two get invocations to correct servers are one

the prefix of the other. However, since two elements 𝑒 and 𝑒′ can be inserted at two different correct

, Vol. 1, No. 1, Article . Publication date: March 2025.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Improving Blockchain Scalability with the Setchain Data-type 9

Algorithm Central Single server implementation.

1: Init: epoch← 0, history← ∅
2: Init: the_set← ∅
3: function Get()

4: return (the_set, history, epoch)
5: function Add(𝑒)

6: assert 𝑣𝑎𝑙𝑖𝑑 (𝑒)
7: the_set← the_set ∪ {𝑒}
8: function EpochInc(ℎ)

9: assert ℎ ≡ epoch + 1
10: proposal← the_set \⋃epoch

𝑘=1
history(𝑘)

11: history← history ∪ {⟨ℎ, proposal⟩}
12: epoch← epoch + 1

servers—which can take time to propagate—, the the_set part of get obtained from two correct

servers may not be contained in one another.

Finally, we require that every element in the history comes from the result of a client adding the

element.

Property 8 (Add-before-Get). Let 𝑣 be a correct server, (𝑆, 𝐻,ℎ) = 𝑣 .get(), and 𝑒 ∈ 𝑆 . Then,
there was an operation𝑤.add(𝑒) in the past in some server𝑤 .

Properties 1, 6, 7 and 8 are safety properties. Properties 2, 3, 4 and 5 are liveness properties.

4 IMPLEMENTATIONS
In this section, we describe implementations of Setchain that satisfy the properties defined in

Section 3. We describe a centralized sequential implementation to build up intuition and three

distributed implementations. The first distributed implementation is built using a Byzantine dis-

tributed grow-only set object (DSO) to maintain the_set and Byzantine atomic broadcast (BAB) for

epoch increments. The second distributed implementation is also built using DSO, but we replace

BAB with Byzantine reliable broadcast (BRB) to announce epoch increments and set Byzantine

consensus (SBC) for epoch changes. Finally, we replace DSO with local sets, use BRB for broadcast-

ing elements and epoch increment announcements, and SBC for epoch changes, resulting in the

fastest implementation.

4.1 Sequential Implementation
Alg. Central shows a solution, which maintains two local sets, the_set—to record added elements—

and history, which keeps a collection of pairs ⟨ℎ,𝐴⟩ where ℎ is an epoch number and 𝐴 is a set of

elements. We use history(ℎ) to refer to the set 𝐴 in the pair ⟨ℎ,𝐴⟩ ∈ history. A natural number

epoch is incremented each time there is a new epoch. The operations are: Add(𝑒), which checks

that element 𝑒 is valid and adds it to the_set, and Get, which returns (the_set, history, epoch).
There is only one way to add elements, through the use of operation Add. Since Alg. Central

does not maintain a distributed data structure, but a centralized one, there are no Byzantine nodes.

Therefore, every time clients interact with the (only) correct server.

The following implementations are distributed, and thus, they must incorporate some mechanism

to prevent Byzantine nodes from manipulating the Setchain.

, Vol. 1, No. 1, Article . Publication date: March 2025.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Capretto et al.

Algorithm Basic Server 𝑖 implementation using DSO and BAB

1: Init: epoch← 0, history← ∅
2: Init: the_set←DSO.Init()
3: function Get()

4: return (the_set.Get() ∪ history, history, epoch)
5: function Add(𝑒)

6: assert valid(𝑒)
7: the_set.Add(𝑒)
8: function EpochInc(ℎ)

9: assert ℎ ≡ epoch + 1
10: proposal← the_set.Get() \⋃epoch

𝑘=1
history(𝑘)

11: BAB.Broadcast(epinc(ℎ, proposal, 𝑖))

12: upon (BAB.Deliver(epinc(ℎ, proposal, 𝑗))
13: from 2𝑓 + 1 different servers 𝑗 for the same ℎ) do
14: assert ℎ ≡ epoch + 1
15: 𝐸 ← {𝑒 : 𝑒 ∈ proposal for at least 𝑓 + 1 different j}
16: history← history ∪ {⟨ℎ, 𝐸⟩}
17: epoch← epoch + 1

4.2 Distributed Implementations
4.2.1 First approach. DSO and BAB. Alg. Basic uses two external services: DSO and BAB. We

denote messages with the name of the message followed by its content as in “epinc(ℎ, proposal, 𝑖)”.
The variable the_set is not a local set anymore, but a DSO initialized empty with Init() in line 2.

The function Get() invokes the DSO Get() function (line 4) to fetch the set of elements. The function

EpochInc(ℎ) triggers the mechanism required to increment an epoch and reach a consensus on

the elements belonging to epoch ℎ. The consensus process begins by computing a local proposal
set, of those elements added but not stamped (line 10). The proposal set is then broadcasted using

the BAB service alongside the epoch number ℎ and the server node id 𝑖 (line 11). Then, server 𝑖

waits to receive exactly 2𝑓 + 1 proposals and keeps the set of elements 𝐸 present in at least 𝑓 + 1
proposals, which guarantees that each element 𝑒 ∈ 𝐸 was proposed by at least one correct server.

The use of BAB guarantees that every message sent by a correct server eventually reaches every

other correct server in the same order, so all correct servers have the same set of 2𝑓 + 1 proposals.
Therefore, all correct servers arrive at the same conclusion and the set 𝐸 is added as epoch ℎ in

history in line 16.

Alg. Basic, while easy to understand and prove correct, is not efficient. First, in order to complete

an epoch increment, it requires at least 3𝑓 + 1 calls to EpochInc(ℎ) to different servers, so at least

2𝑓 + 1 proposals are received (the 𝑓 Byzantine severs may not propose anything). Another source of

inefficiency comes from the use of off-the-shelf building blocks. For instance, every time a DSO Get

is invoked, many messages are exchanged to compute a reliable local view of the set [6]. Similarly,

every epoch change requires a DSO Get in line 10 to create a proposal. Additionally, line 13 requires

waiting for 2𝑓 + 1 atomic broadcast deliveries to take place. The most natural implementations of

BAB services solve one consensus per message delivered (see Fig. 7 in [5]), which makes Alg. Basic

very slow. We solve these problems in two alternative algorithms.

4.2.2 Second approach. Avoiding BAB. Alg. Slow improves the performance of Alg. Basic as follows.

First, it uses BRB to propagate epoch increments. Second, the use of BAB and wait for the arrival of

, Vol. 1, No. 1, Article . Publication date: March 2025.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Improving Blockchain Scalability with the Setchain Data-type 11

Algorithm Slow Server 𝑖 implementation using DSO, BRB and SBC.

7: . . . ⊲ Get and Add as in Alg. Basic

8: function EpochInc(ℎ)

9: assert ℎ ≡ epoch + 1
10: BRB.Broadcast(epinc(ℎ))

11: upon (BRB.Deliver(epinc(ℎ)) and ℎ < epoch + 1) do
12: drop
13: upon (BRB.Deliver(epinc(ℎ)) and ℎ ≡ epoch + 1) do
14: assert 𝑝𝑟𝑜𝑝 [ℎ] ≡ 𝑛𝑢𝑙𝑙
15: 𝑝𝑟𝑜𝑝 [ℎ] ← the_set.Get() \⋃epoch

𝑘=1
history(𝑘)

16: SBC[ℎ].Propose(𝑝𝑟𝑜𝑝 [ℎ])
17: upon (SBC[ℎ].SetDeliver(𝑝𝑟𝑜𝑝𝑠𝑒𝑡) and ℎ ≡ epoch + 1) do
18: 𝐸 ← {𝑒 : 𝑒 ∈ 𝑝𝑟𝑜𝑝𝑠𝑒𝑡 [𝑗], 𝑣𝑎𝑙𝑖𝑑 (𝑒) ∧ 𝑒 ∉ history}
19: the_set← the_set.𝐴𝑑𝑑 (𝐸)
20: history← history ∪ {⟨ℎ, 𝐸⟩}
21: epoch← epoch + 1

Algorithm Fast Server implementation using a local set, BRB and SBC.

1: Init: epoch← 0, history← ∅
2: Init: the_set← ∅
3: function Get()

4: return (the_set, history, epoch)
5: function Add(𝑒)

6: assert 𝑣𝑎𝑙𝑖𝑑 (𝑒) and 𝑒 ∉ the_set
7: BRB.Broadcast(add(e))

8: upon (BRB.Deliver(add(𝑒))) do
9: assert 𝑣𝑎𝑙𝑖𝑑 (𝑒)
10: the_set← the_set ∪ {𝑒}
11: function EpochInc(ℎ)

12: assert ℎ ≡ epoch + 1
13: BRB.Broadcast(epinc(ℎ))

14: upon (BRB.Deliver(epinc(ℎ)) and ℎ < epoch + 1) do
15: drop
16: upon (BRB.Deliver(epinc(ℎ)) and ℎ ≡ epoch + 1) do
17: assert 𝑝𝑟𝑜𝑝 [ℎ] ≡ ∅
18: 𝑝𝑟𝑜𝑝 [ℎ] ← the_set \⋃epoch

𝑘=1
history(𝑘)

19: SBC[ℎ].Propose(𝑝𝑟𝑜𝑝 [ℎ])
20: upon (SBC[ℎ].SetDeliver(𝑝𝑟𝑜𝑝𝑠𝑒𝑡) and ℎ ≡ epoch + 1) do
21: 𝐸 ← {𝑒 : 𝑒 ∈ 𝑝𝑟𝑜𝑝𝑠𝑒𝑡 [𝑗], 𝑣𝑎𝑙𝑖𝑑 (𝑒) ∧ 𝑒 ∉ history}
22: the_set← the_set ∪ 𝐸
23: history← history ∪ {⟨ℎ, 𝐸⟩}
24: epoch← epoch + 1

2𝑓 + 1 messages in line 13 of Alg. Basic is replaced by using a SBC algorithm, which allows solving

several consensus instances simultaneously.

Ideally, when an EpochInc is triggered unstampped elements in the local the_set of each correct

server should be stamped with the new epoch number and added to the set history. However,

, Vol. 1, No. 1, Article . Publication date: March 2025.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Capretto et al.

we need to guarantee that for every epoch the set history is the same in every correct server.

Alg. Basic enforces this using BAB and counting sufficient received messages. Alg. Slow uses

SBC to solve several independent consensus instances simultaneously, one on each participant’s

proposal. Line 10 broadcasts an invitation to an epoch change, which causes correct servers to

build a proposed set and propose this set using the SBC. There is one instance of SBC per epoch

change ℎ, identified by SBC[ℎ]. The SBC service guarantees that each correct server decides the

same set of proposals (where each proposal is a set of elements). Then, every node applies the same

function to the same set of proposals reaching the same conclusion on how to update history(ℎ).
The function preserves elements that are valid and unstampped. This opens the opportunity to add

elements directly by proposing them during an epoch change without broadcasting them before.

This optimization is exploited in Section 6 to speed up the algorithm even further. As a final note,

Alg. Slow allows a Byzantine server to bypass operation Add to propose elements, which will be

accepted as long as the elements are valid. This is equivalent to clients proposing elements using

operation Add, which are then successfully propagated in epoch changes. Alg. Slow still triggers

one invocation of the DSO operation Get at each server to build the local proposal.

4.2.3 Final approach. BRB and SBC without DSOs. Alg. Fast avoids the cascade of messages that

DSO operation Get calls require by dissecting the internals of the DSO and incorporating the

internal steps in the Setchain algorithm directly. This idea exploits the fact that a correct Setchain
server is a correct client of the DSO and there is no need for the DSO to be defensive. This observation

shows that using Byzantine resilient building blocks do not compose efficiently, but exploring this

general idea is out of the scope of this paper.

Alg. Fast implements the_set using a local set (line 2). Elements received in Add(𝑒) are propa-
gated using BRB. At any given point in time, two correct servers may have different local sets (due

to pending BRB deliveries) but each element added in one server will eventually be known to all

others. The local variable history is only updated in line 23 as a result of a SBC round. Therefore,

all correct servers will agree on the same sets formed by unstamped elements proposed by some

servers. Additionally, Alg. Fast updates the_set to account for elements that are new to the server

(line 22) , guaranteeing that all elements in history are also in the_set.

5 PROOF OF CORRECTNESS
We prove the correctness of the distributed algorithms presented in Section 4 with regard to the

desired properties introduced in Section 3.

We first introduce lemmas to reason about how elements are stamped. These lemmas directly

imply Property 4 (Eventual-Get), Property 6 (Unique Epoch) and Property 7 (Consistent Gets),
respectively. We prove that our algorithms satisfy these lemmas in the following subsections.

Lemma 1. Let 𝑣 and𝑤 be correct servers. If 𝑒 ∈ 𝑣 .the_set. Then, eventually 𝑒 is in𝑤.history.

Lemma 2. Let 𝑣 be a correct server and ℎ, ℎ′ two different epoch numbers. If 𝑒 ∈ 𝑣 .history(ℎ) then
𝑒 ∉ 𝑣 .history(ℎ′).

Lemma 3. Let 𝑣 and𝑤 be correct servers. Let ℎ be such that ℎ ≤ 𝑣 .epoch and ℎ ≤ 𝑤.epoch. Then
𝑣 .history(ℎ) = 𝑤.history(ℎ).

It is easy to see that Property 5 (Get-After-Add) follows directly from Properties 2, 3 and 4.

5.1 Correctness of Alg. Basic
Property 1 (Consistent Sets) holds for Alg. Basic as the response of operation Get (line 4) is the

tuple (the_set.get()𝑐𝑢𝑝history, history, epoch)). Property 2 (Add-Get-Local) follows directly

, Vol. 1, No. 1, Article . Publication date: March 2025.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Improving Blockchain Scalability with the Setchain Data-type 13

from Property DSO-AddGet, as this property verses about how elements are added to the_set
implemented as a DSO.

Before proving that Alg. Basic satisfies the remaining properties, we prove the following auxiliary

Lemma 4, which states that all elements stamped were proposed by a correct server.

Lemma 4. Let 𝑣 be a correct server and 𝑒 an element such that 𝑒 ∈ 𝑣 .history(ℎ). Then, a correct
server proposed 𝑒 to be included in epoch ℎ.

Proof. Let 𝑣 be a correct server and 𝑒 an element in the history set of epoch ℎ of server 𝑣 . The

only point where the set 𝑣 .history is updated is at line 16, where 𝑣 .history(ℎ) is defined to contain
exactly the elements that were proposed for epoch ℎ by 𝑓 + 1 different servers. Therefore, given
that there are at most 𝑓 Byzantine servers, at least one correct server proposed a set containing 𝑒

for epoch ℎ. □

We show that every element present in correct servers comes from the result of a client adding

the element, which implies Property 8 (Add-before-Get)

Lemma 5. Let 𝑣 be a correct server and 𝑒 an element such that 𝑒 ∈ 𝑣 .the_set.get() ∪ 𝑣 .history.
Then, for some server𝑤 , operation𝑤.add(𝑒) was issued in the past.

Proof. Let 𝑣 be a correct server and 𝑒 an element such that 𝑒 ∈ 𝑣 .the_set.get() ∪ 𝑣 .history.
We split the proof into two cases, depending on whether the element 𝑒 is in the set 𝑣 .the_set
or in 𝑣 .history. If 𝑒 is in 𝑣 .the_set, then Property DSO-GetAdd guarantees that 𝑒 was added

using 𝑤.add(𝑒) in the past. On the other hand, if element 𝑒 is in 𝑣 .history, then by Lemma 4, 𝑒

was proposed by a correct server. Since correct servers take elements to propose from the_set, by
Property DSO-GetAdd, it follows that elements stamped were previously added by clients. In both

cases, there was an operation𝑤.add(𝑒) in the past. □

The combination of Property 8 (Add-before-Get) and Property DSO-AddGet implies that el-

ements present in a correct server are propagated to all correct servers, which is equivalent to

Property 3 (Get-Global).

Proposition 5.1. Lemmas 1, 2 and 3 hold for Alg. Basic.

We prove each lemma separately.

Proof of Lemma 3.

Proof. We show that every two correct servers agree on the contents of epochs. Let 𝑣 and𝑤 be

two correct servers and ℎ an epoch already processed by both. Since 𝑣 and𝑤 are correct servers

that computed history(ℎ) (line 16), both servers 𝑣 and 𝑤 received 2𝑓 + 1 different BAB.Deliver
messages proposing elements for epoch ℎ. Properties BAB-Termination(Global) and Total Order
guarantee that these are the same messages for both servers. Both 𝑣 and𝑤 filter elements in the

same way, by just keeping elements proposed by at least 𝑓 + 1 servers. Therefore, in line 16 both 𝑣

and𝑤 update history(ℎ) with the same elements. Hence, Lemma 3 holds for Alg. Basic. □

Proof of Lemma 1.

Proof. Let 𝑒 be an element in the set the_set of a correct server. It follows from properties

DSO-AddGet and DSO-GetAdd that there is a point in time 𝑡 after which 𝑒 is in the set returned

by all the_set.get() in all correct servers. We assume that there is always eventually a new epoch

increment, in particular, there is a new EpochInc(ℎ) after 𝑡 . If 𝑒 is already part of the history, i.e.

element 𝑒 already has been assigned an epoch, there is nothing to do. Otherwise, by Lemma 3, 𝑒 can

not be in the history set of any correct server for all previous epochs. Then, when computing the

, Vol. 1, No. 1, Article . Publication date: March 2025.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Capretto et al.

proposal for epoch ℎ (line 10) all correct servers will include 𝑒 in their set. To compute the epoch ℎ, a

correct server𝑤 waits until it receives 2𝑓 +1 BAB.Delivermessages of the form epinc(ℎ, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙, 𝑗)
from different servers (see line 13), and thus, server𝑤 collects at least 𝑓 + 1 messages from correct

servers. Therefore, at least 𝑓 + 1 of the proposals received contain 𝑒 , and thus, server𝑤 includes 𝑒

in its set history(ℎ). This shows Lemma 1 for Alg. Basic. □

Proof of Lemma 2.

Proof. The proof proceeds by contradiction. Let 𝑣 be a correct server and 𝑒 an element such

that element 𝑒 belongs to two different epochs in 𝑣 . Let ℎ and ℎ′ be two different epochs such

that 𝑒 ∈ 𝑣 .history(ℎ′) and 𝑒 ∈ 𝑣 .history(ℎ). Moreover, without losing generality, assume

ℎ < ℎ′. By Lemma 4, there is a correct server 𝑤 that proposed element 𝑒 to be included in

epoch ℎ′. Server𝑤 computed its proposed set of epoch ℎ′ (see line 10) as the set the_set.Get() \⋃ℎ′−1
𝑘=1

history(𝑘). However, by Lemma 3 and 𝑣,𝑤 correct server, both 𝑣 and 𝑤 have the same

epoch ℎ, i.e.𝑤.history(ℎ) = 𝑣 .history(ℎ), and thus, 𝑒 ∈ ⋃ℎ′−1
𝑘=1

history(𝑘) as ℎ < ℎ′. Therefore,

𝑒 can not be in set the_set.Get() \⋃ℎ′−1
𝑘=1

history(𝑘), meaning that 𝑒 was not proposed by𝑤 for

epoch ℎ′. This contradiction follows from assuming that element 𝑒 belongs to two different epochs

in a correct server. Then, Lemma 2 holds for for Alg. Basic. □

5.2 Correctness of Alg. Slow
Alg. Slow also satisfies Property 1 (Consistent Sets), Property 2 (Add-Get-Local), and Property 3

(Get-Global). The first two properties are showed following the same reasoning used for Alg. Basic.

Property 3 (Get-Global) follows from properties DSO-AddGet and DSO-GetAdd, which ensure

that elements added to the_set of correct servers are eventually added to the_set of all correct
servers and from Lemma 3 and Property SBC-Termination, which imply that elements stamped

in correct servers will eventually be stamped in all correct servers.

Next, we prove for Alg. Slow lemmas 1, 2 and 3 introduced at the beginning of this section

reasoning about how elements are stamped.

Proof of Lemma 1.

Proof. Elements added in correct servers will eventually be stamped in all correct servers. The

proof is analogous to the proof for Alg. Basic above, but instead of relying on enough messages

being BAB.Deliver, we rely on SBC-Censorship-Resistance guarantying element 𝑒 is in the

decided set. □

Proof of Lemma 2.

Proof. Lemma 2 for Alg. Slow follows directly from the fact that 𝑒 is not added to a new epoch

if it already belongs to the history of correct servers (see line 18). □

Proof of Lemma 3.

Proof. Let 𝑣 and 𝑤 be two correct servers. We show that 𝑣 and 𝑤 agree on the prefix of the

history they both computed. The proof proceeds by induction on the epoch number epoch. The
base case is epoch = 0, which holds since the history set in both correct servers is empty. The

inductive hypothesis is that both servers, 𝑣 and𝑤 , agree on the history up to epoch epoch, we show
that both of them compute the same epoch next. Variable epoch is only incremented by one in line 21,

only after history(epoch + 1) has been changed in line 20. In that line, servers 𝑣 and𝑤 are in the

same phase on SBC (for the same ℎ). By SBC-Agreement, servers 𝑣 and𝑤 receive the same propset,
both servers validate all elements and keep the same elements, because the history is the same up to

, Vol. 1, No. 1, Article . Publication date: March 2025.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Improving Blockchain Scalability with the Setchain Data-type 15

epoch. Therefore, in line 20, both servers 𝑣 and𝑤 compute the same history(epoch + 1) and, after
line 21, both servers computed the same epoch, i.e. 𝑣 .history(epoch+ 1) = 𝑤.history(epoch+ 1).
Hence, Lemma 3 holds for Alg. Slow. □

Finally, Alg. Slow does not satisfy Property 8 (Add-before-Get) as stated, so we prove a weaker

version that states that elements returned by operation Get are either added by operation Add, by

a the_set.Add, or injected during a set Byzantine consensus phase. Again, this can be seen from

the code and the use of SBC as a building block. However, elements can only be created by clients,

and thus, although Byzantine processes can injects elements, they can only inject elements that

valid clients wanted to inject in first place.

5.3 Correctness of Alg. Fast
We show that Alg. Fast is correct. Property 2 (Add-Get-Local) follows directly from the code of

function Add, line 4 of function Get and Property BRB-Termination(Local) of BRB. Moreover, all

stamped elements are in the_set, which implies Property 1 (Consistent Sets).

Lemma 6. For every correct server, the local set history is a subset of its local set the_set at the end
of each procedure of Alg. Fast.

Proof. Let 𝑣 be a correct server. The only way to add elements to 𝑣 .history is at line 23 preceded
by line 22 adding the same elements to 𝑣 .the_set. The other instruction that modifies 𝑣 .the_set
is line 10 which only makes the set grow. □

The following lemma states that elements in correct servers are eventually propagated to all

correct servers, which is equivalent to Property 3 (Get-Global).

Lemma 7. Let 𝑣 be a correct server and 𝑒 an element in 𝑣 .the_set. Then 𝑒 will eventually be in the
set the_set of every server.

Proof. Initially, the set 𝑣 .the_set is empty. There are twoways to add an element 𝑒 to 𝑣 .the_set:
(1) At line 10, so element 𝑒 is valid and was received via a BRB.Deliver(add(𝑒)). By Property BRB-

Termination (Global), every correct server𝑤 will eventually execute BRB.Deliver(add(𝑒)),
and then (since 𝑒 is valid),𝑤 will add it to𝑤.the_set in line 10.

(2) At line 22, so element 𝑒 is valid and was received as an element in one of the sets in propset
from SBC[ℎ] .SetDeliver(propset) with ℎ = 𝑣 .epoch + 1. By properties SBC-Termination and

SBC-Agreement, all correct servers agree on the same set of proposals. Then, every correct

server𝑤 will also eventually receive SBC[ℎ] .SetDeliver(propset). Therefore, if 𝑣 adds 𝑒 then𝑤
either adds it or has it already in its𝑤.history which implies by Lemma 6 that 𝑒 ∈ 𝑤.the_set.

In either case, 𝑒 will eventually be in𝑤.the_set. □

Lemmas 1, 2 and 3 introduced at the beginning of the section are proved for Alg. Fast following

a similar reasoning used for Alg. Slow, but replacing properties DSO-AddGet and DSO-GetAdd
by Property 3 when proving Lemma 1.

Regarding Property 8 (Add-before-Get), Alg. Fast suffers from the same limitation as Alg. Slow

because Byzantine servers can inject valid elements. Alg. Fast also satisfies a weaker version of

(Add-before-Get) that states that elements returned by function Get were either added by function

Add, by a BRB.Broadcast, or injected during a set Byzantine consensus phase. This is supported by

our assumption that valid elements can only be created by clients.

, Vol. 1, No. 1, Article . Publication date: March 2025.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Capretto et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 7 10

E
p
o
ch

s
in

c
p
e
r

m
in

u
te

Number of servers

No Byzantine
1 Byzantine

2 Byzantines
3 Byzantines

 10000

 100000

 1x106

 1x107

4 7 10

E
le

m
e
n
ts

 a
d

d
e
d

 p
e
r

m
in

u
te

Number of servers

Slow
Slow with aggregation

Fast
Fast with aggregation

(a) Maximum epoch changes (b) Maximum elements added (no epochs)

 100

 1000

 10000

 100000

 1x106

4 7 10

E
le

m
e
n
ts

 a
d

d
e
d

 p
e
r

m
in

u
te

Number of servers

Slow
Slow with aggregation

Fast
Fast with aggregation

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

4 7 10

E
le

m
e
n
ts

 a
d

d
e
d

 p
e
r

m
in

u
te

Number of servers

No Byzantine
1 Byzantine

2 Byzantines
3 Byzantines

(c) Maximum elements added (with epochs) (d) Silent Byzantine effect in adds (Alg. Fast with aggregation)

0 200 400 600 800 1000 1200 1400 1600
time elapsed (s)

0

1

2

3

4

5

6

7

8

9

tim
e

to
 st

am
p

(s
)

max
avg
every 1000 epoch

0 200 400 600 800 1000 1200 1400 1600
time elapsed (s)

0

1

2

3

4

5

6

7

8

9

tim
e

to
 st

am
p

(s
)

max
avg
every 1000 epoch

(e) Time to stamp (Alg. Fast) (f) Time to stamp (Alg. Fast with aggregation)

Fig. 1. Experimental results. Alg. Slow with aggregation and Alg. Fast with aggregation are the versions of
the algorithms with aggregation. Byzantine servers are simply silent.

6 EMPIRICAL EVALUATION
We implemented the server code of Alg. Slow and Alg. Fast using our implementations of DSO,

BRB and SBC.
3

Our prototype is written in Golang [13] 1.16 with message passing style using ZeroMQ [30]

over TCP. Our testing platform used Docker running on a server with 2 Intel Xeon CPU processors

at 3GHz with 36 cores and 256GB RAM, running Ubuntu 18.04 Linux–64. Each Setchain server

was packed in a Docker container with no limit on CPU or RAM usage. Alg. Slow implements

Setchain and DSO as two standalone executables that communicate using remote procedure calls

on the internal loopback network interface of the Docker container. The RPC server and client are

taken from the Golang standard library. Alg. Fast resides in a single executable. We evaluated two

3
The code is available open-source at https://github.com/imdea-software/setchain-basic

, Vol. 1, No. 1, Article . Publication date: March 2025.

https://github.com/imdea-software/setchain-basic

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Improving Blockchain Scalability with the Setchain Data-type 17

Algorithm Fast with aggregation Server implementation using a local set, BRB and SBC.

1: Init: epoch← 0, history← ∅
2: Init: the_set← ∅, to_broadcast← ∅
3: function Get()

4: return (the_set, history, epoch)
5: function Add(𝑒)

6: assert 𝑣𝑎𝑙𝑖𝑑 (𝑒) and 𝑒 ∉ the_set
7: to_broadcast← to_broadcast ∪ {𝑒}
8: upon (BRB.Deliver(add(𝑠))) do
9: assert 𝑣𝑎𝑙𝑖𝑑 (𝑠)
10: the_set← the_set ∪ 𝑠
11: to_broadcast← to_broadcast \ 𝑠
12: . . . ⊲ EpochInc and BRB.Deliver(epinc(ℎ)) as in Alg. Fast

24: upon (SBC[ℎ].SetDeliver(𝑝𝑟𝑜𝑝𝑠𝑒𝑡) and ℎ ≡ epoch + 1) do
25: 𝐸 ← {𝑒 : 𝑒 ∈ 𝑝𝑟𝑜𝑝𝑠𝑒𝑡 [𝑗], 𝑣𝑎𝑙𝑖𝑑 (𝑒) ∧ 𝑒 ∉ history}
26: history← history ∪ {⟨ℎ, 𝐸⟩}
27: the_set← the_set ∪ 𝐸
28: to_broadcast← to_broadcast \ 𝐸
29: when (|to_broadcast| > 1000000 or to_broadcast.𝑜𝑙𝑑𝑒𝑠𝑡 > 5𝑠) do
30: BRB.Broadcast(add(to_broadcast))
31: to_broadcast← ∅

versions of each algorithm, one where each element insertion causes a broadcast and another where

servers aggregate locally the elements inserted until a maximum message size (of 10
6
elements) or

a maximum element timeout (of 5s) is reached. Elements have a size of 116-126 bytes in all cases.

Alg. Fast with aggregation implements the aggregated version of Alg. Fast.

We evaluated empirically the following hypotheses:

• (H1): The maximum rate of elements that can be inserted is much higher than the maximum

epoch rate.

• (H2): Alg. Fast performs better than Alg. Slow.

• (H3): Aggregated versions perform better than their basic counterparts.

• (H4): Silent Byzantine servers do not affect dramatically the performance of Setchain.

• (H5): Performance does not degrade over time.

To evaluate hypotheses H1 to H5, we carried out the experiments described below reported in

Fig. 1. In all cases, operations are injected by clients running within the same Docker container.

Resident memory was always enough such that in no experiment the operating system needed to

recur to disk swapping. All experiments consider deployments with 4, 7, or 10 server nodes, and

each running experiment reported is taken from the average of 10 executions.

We tested first how many epochs per minute our Setchain implementations can handle. In these

runs, we did not add any element and we incremented the epoch rate to find out the smallest

latency between an epoch and the subsequent one. We run it with 4, 7, and 10 nodes, with and

without silent Byzantines servers. The outcome is reported in Fig. 1(a).

In our second experiment, we estimated empirically howmany elements per minute can be added

using our four different implementations of Setchain (Alg. Slow and Alg. Fast with and without

aggregation), without any epoch increment. This is reported in Fig. 1(b). In this experiment, Alg. Slow

and Alg. Fast perform similarly. With aggregation Alg. Slow and Alg. Fast also perform similarly,

but one order of magnitude better than the same algorithm without aggregation, confirming (H3).

, Vol. 1, No. 1, Article . Publication date: March 2025.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Capretto et al.

Fig. 1(a) and (b) together suggest that sets are three orders of magnitude faster than epoch changes,

confirming (H1).

The third experiment compares the performance of our implementations combining epoch

increments and insertion of elements. We set the epoch rate at 1 epoch change per second and

calculated the maximum ratio of Add operations. The outcome is reported in Fig. 1(c), which shows

that Alg. Fast outperforms Alg. Slow. In fact, Alg. Fast even outperforms Alg. Slow with aggregation

by a factor of roughly 5 for 4 nodes and by a factor of roughly 2 for 7 and 10 nodes. Alg. Fast with

aggregation can handle 8 times the elements added by Alg. Fast for 4 nodes and 30 times for 7 and

10 nodes. The benefits of Alg. Fast with aggregation over Alg. Fast increase as the number of nodes

increase because Alg. Fast with aggregation avoids broadcasting of elements which generates a

number of messages that is quadratic in the number of nodes in the network. This experiment

confirms (H2) and (H3). The difference between Alg. Fast and Alg. Slow was not observable in

the previous experiment (without epoch changes) because the main difference is in how servers

proceed to collect elements to vote during epoch changes.

The next experiment explores how silent Byzantine servers affect Alg. Fast with aggregation. We

implement silent Byzantine servers and run for 4, 7 and 10 nodes with an epoch change ratio of 1

epoch per second, calculating the maximum add rate. This is reported in Fig. 1(d). Silent Byzantine

servers degrade the speed for 4 nodes as in this case the implementation checks upon the silent

server very frequently in the validation phase, but it can be observed that this effect is much smaller

for larger number of servers, validating (H4).

In the final experiment, we run 4 servers for a long time (30 minutes) with an epoch ratio of 5

epochs per second and add requests to 50% of the maximum rate. We compute the time elapsed

between the moment in which clients request an add and the moment at which elements are

stamped. Fig. 1(e) and (f) show the maximum and average times for elements inserted in the last

second. In the case of Alg. Fast, the worst case during the 30 minutes experiment was around

8 seconds, but the majority of elements were inserted within 1 sec or less. For Alg. Fast with

aggregation the maximum times were 5 seconds repeated in many occasions during the long run (5

seconds was the timeout to force a broadcast). This happens when an element fails to be inserted

using the set consensus and ends up being broadcasted. In both cases, the behavior does not degrade

with long runs, confirming (H5).

Considering that epoch changes are essentially set consensus, our experiments suggest that

inserting elements in a Setchain is three orders of magnitude faster than performing consensus.

However, a full validation of this hypothesis would require to implement Setchain on performant

gossip protocols and compare it with similar consensus implementations, which is left as future

work.

7 CLIENT PROTOCOLS
Client protocols encapsulate the details of the distributed system to the clients. All properties

described in Section 5 assume clients contact correct servers, but the implementations in Section 4

do not provide any guarantee to clients about whether the server their are contacting is correct.

Therefore, clients cannot know if they are interacting with a Byzantine or a correct server.

In this section we describe two client protocols to interact with Setchains to ensure the correct

exercise of its interface. First, we present a client protocol inspired by the DSO clients in [6], where

clients contact several servers per operation. Later, we present a more efficient “optimistic” solution,

based on try-and-check, that requires a simple change in the Setchain algorithms.

, Vol. 1, No. 1, Article . Publication date: March 2025.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Improving Blockchain Scalability with the Setchain Data-type 19

Algorithm 5 Correct client protocol for DPO (for Alg. Slow and Fast).

1: function DPO.Add(𝑒)

2: call Add(𝑒) in 𝑓 + 1 different servers.
3: function DPO.Get()

4: call Get() in at least 3𝑓 + 1 different servers.
5: wait 2𝑓 + 1 responses 𝑠 .(the_set, history, epoch)
6: 𝑆 ← {𝑒 |𝑒 ∈ 𝑠 .the_set in at least 𝑓 + 1 servers 𝑠}
7: 𝐻 ← ∅
8: 𝑖 ← 1

9: 𝑁 ← {𝑠 : 𝑠 .epoch ≥ 𝑖}
10: while ∃𝐸 : |{𝑠 ∈ 𝑁 : 𝑠 .history(𝑖) = 𝐸}| ≥ 𝑓 + 1 do
11: 𝐻 ← 𝐻 ∪ {⟨𝑖, 𝐸⟩}
12: 𝑁 ← 𝑁 \ {𝑠 : 𝑠 .history(𝑖) ≠ 𝐸}
13: 𝑁 ← 𝑁 \ {𝑠 : 𝑠 .epoch = 𝑖}
14: 𝑖 ← 𝑖 + 1
15: return (𝑆, 𝐻, 𝑖 − 1)
16: function DPO.EpochInc(ℎ)

17: call EpochInc(ℎ) in 𝑓 + 1 different servers.

7.1 Setchain as a Distributed Partial Order Object (DPO)
Alg. 5 shows the first client protocol. Intuitively, clients interact with a sufficient number of servers

to guarantee that enough servers perform the desired operation correctly [6]. In functions Add and

EpochInc, clients send 𝑓 + 1 requests to different servers, which gurantees that at least one of them

is a correct server. Each request to a correct server trigger a BRB.Broadcast producing a cascade of

messages that is quadratic on the number of servers.

Function Get begins by contacting 3𝑓 + 1 Setchain servers and waits for at least 2𝑓 + 1 responses
(𝑓 Byzantine servers may refuse to respond). Each response is a triple of (the_set, history, epoch).
The set the_set is computed as the set of elements known to be in the sets the_set of at least

𝑓 + 1 servers, which includes at least one correct server answer. To compute the history, the code

proceeds incrementally epoch by epoch, stopping at the first epoch 𝑖 for which less than 𝑓 + 1
servers agree on the set of elements. Note that if 𝑓 + 1 servers agree on the set of elements in epoch

𝑖 , this set is indeed the set at epoch 𝑖 . Clients also remove from the list of servers those servers that

either do not know an epoch (either slow processes or Byzantine servers) or that disagree with at

least 𝑓 + 1 servers. Once this process ends, the protocol returns the set the_set, the history, and
the last epoch computed.

7.2 A Fast Optimistic Client
In this second approach, we modify correct servers to sign, using cryptographic signatures, each

epoch number along with the hash of the set of elements of that epoch. This signature is inserted

in the Setchain itself as an element, as shown in Alg. 6. We assume that the hash function is

deterministic given a set of elements, so this ensures that all correct servers compute the same

hash for each epoch. It follows that if enough signatures are collected, one can perform a local

check and confirm the correctness of an epoch.

The new elements added by the servers do no produce a significant overhead in the Setchain.

The number of new elements added to the Setchain per epoch is linear in the number of servers,

and each epoch contains orders of magnitudes more elements than the number of servers.

Alg. 7 shows the optimistic client protocol. To insert an element 𝑒 to the Setchain, the optimistic

client performs a single Add(𝑒) request to one server hoping that such server is correct. After

, Vol. 1, No. 1, Article . Publication date: March 2025.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Capretto et al.

Algorithm 6 Extend Alg. Fast adding the new epoch’s hash cryptographically signed.

22: . . . ⊲ previous lines as in Alg. Fast

23: upon (SBC[ℎ].SetDeliver(𝑝𝑟𝑜𝑝𝑠𝑒𝑡) and ℎ ≡ epoch + 1) do
24: 𝐸 ← {𝑒 : 𝑒 ∈ 𝑝𝑟𝑜𝑝𝑠𝑒𝑡 [𝑗], 𝑣𝑎𝑙𝑖𝑑 (𝑒) ∧ 𝑒 ∉ history}
25: history← history ∪ {⟨ℎ, 𝐸⟩}
26: the_set← the_set ∪ 𝐸
27: epoch← epoch + 1
28: Add(𝑒𝑝𝑜𝑐ℎ_𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (ℎ, 𝑠𝑖𝑔𝑛(⟨ℎ,ℎ𝑎𝑠ℎ(𝐸)⟩)))

Algorithm 7 Optimistic client protocol for DPO (for Alg. 6).

1: function AddAndCheck(𝑒)

2: call Add(𝑒) in 1 server.

3: wait Δ𝑔
4: call Get() in 1 server.

5: wait resp (the_set, history, epoch)
6: if ∃𝐸, 𝑖 : history(𝑖) = 𝐸 ∧ 𝑒 ∈ 𝐸 ∧ (ℎ,ℎ𝑎𝑠ℎ(𝐸))
7: signed by 𝑓 + 1 different servers is in the_set then
8: return OK.

9: else
10: return Fail.

waiting for some time, the optimistic client invokes a Get from a single server (which again can be

correct or Byzantine) and checks whether element 𝑒 is in some epoch whose hash is signed by (at

least) 𝑓 + 1 different servers. Note that receiving one history in which element 𝑒 is in an epoch

is not enough to guarantee that 𝑒 has been added to the setchain, since the server that provided

history can be Byzantine and lie. However, cryptographic signatures cannot be forged, and thus,

if 𝑓 + 1 servers sign the hash of an epoch, this means that at least one correct server certifies the

content of such an epoch.

7.3 Comparisson between clients
The two clients implemented in this section exploit a trade-off between latency and throughput.

Optimistic clients may experience higher latency because after adding an element, they need to

wait to check if the element has been inserted or retry the process. However, in the case optimistic

clients contact a correct server, they only require one message per Add and one message per Get,

dramatically reducing the number of messages exchanged.

Optimistic clients open the door to a whole class of optimizations, where one may ask what the

best strategy for clients to get information from the Setchain is. Studying this question requires

to reason about the probability of interacting with correct servers and determining the optimal

frequency at which optimistic (or maybe other) clients need to contact different servers when not

obtaining the desired outcome. In our setting, the worst Byzantine behavior is to hide information

that guarantees that an element is in the Setchain. A systematic study of the best strategies and the

trade-off involved is out of the scope of this work.

8 MODELLING BYZANTINE BEHAVIOR
In this section we introduce a non-deterministic process (see Alg. 8) that abstracts the combined

behavior of all Byzantine processes (Alg. Fast). Formally proving properties
4
of Byzantine tolerant

4
Proving here refers to rigorous machine reproducible or checkable proofs.

, Vol. 1, No. 1, Article . Publication date: March 2025.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Improving Blockchain Scalability with the Setchain Data-type 21

distributed algorithms is a very challenging task. Part of the difficulty comes from describing

precisely what Byzantine processes can do. Our technique reduces the standard scenario with

𝑛 − 𝑓 correct servers and 𝑓 Byzantine servers into an equivalent scenario with 𝑛 − 𝑓 correct

servers and one non-deterministic server. This allows us to leverage many recent techniques for

formally proving properties of (non-Byzantine) distributed algorithms. Our non-deterministic

process abstracts away the behaviour of all Byzantine processes combined, even for Byzantine

processes that enjoy instantaneous communication among themselves to coordinate attacks.

Byzantine processes share information between them. Setchain assumes that Byzantine processes

can not forge valid elements (Section 2.1). Byzantine servers only become aware of the existence of

valid elements when correct servers communicate these elements or when they are inserted by

clients. We assume that as soon as a Byzantine process receives a valid element all other Byzantine

processes know that element too. To model the information Byzantine processes can gather from

the network, we add a new primitive SBC[ℎ] .Inform(prop) exposing information from the set

Byzantine consensus protocol. This primitive is triggered when servers call SBC[ℎ] .Propose(prop)
and satisfies the following property:

• SBC-Inform-Validity: if a process executes SBC[ℎ] .Inform(prop) then some other process

executed SBC[ℎ] .Propose(prop) in the past.

Byzantine servers can discover elements proposed by correct servers during set consensus, before

they are assigned an epoch. Moreover, Byzantine servers can return those elements in response to

a Get, because they may be aware of their existence. To facilitate formal verification we have added

the primitive SBC[ℎ] .Inform in the model of computation to denote this potential knowledge.

Each possible action of Byzantine processes is modeled with the following non-deterministic

functions: havoc_subset, havoc_partition, havoc_element, havoc_number, and havoc_invalid_elems.
These functions generate, respectively, a random subset, element and partition from a given set; a

random number, and random invalid elements. We do not focus on the semantics of these functions,

we just use them to model Byzantine processes producing arbitrary sets of elements taken from a

set of known values.

We model the collective behaviour of all Byzantine processes in Alg. 8. Alg. 8 maintains a local

set knowledge to record all valid elements that the collective “Byzantine” process we model is aware

of. This process exposes the same interface as Alg. Fast with an additional function Start. The

function Start is invoked when the process starts and non-deterministically emits messages at

arbitrary times (lines 21-27), using BRB and SBC primitives, as these are the only messages that

are processed by correct servers. These messages can contain valid or invalid elements, but valid

elements must be already known to the non-deterministic process. Similarly, when clients invoke

function Get, Alg. 8 returns (𝑠𝑣 ∪ 𝑠𝑖 , partition(𝑠′𝑣 ∪ 𝑠′𝑖), ℎ), where 𝑠𝑣 and 𝑠′𝑣 are sets of valid elements

from knowledgewhile 𝑠𝑖 and 𝑠′𝑖 are sets of invalid elements (lines 2-4). Upon receiving a message, the

non-deterministic process annotates all newly discovered valid elements in its local set knowledge.
We show that any execution of Setchain maintained by 𝑛 servers implementing Alg. Fast out of

which at most 1 ≤ 𝑓 < 𝑛/3 are Byzantine can be mapped to an execution of Setchain maintained by

𝑛 − 𝑓 correct servers implementing Alg. Fast and one server implementing Alg. 8 and vice versa.

Events. We represent with the following events the different interactions clients and servers can

have with a Setchain plus the internal events of the Setchain reaching consensus.

• get() represents the invocation of function Get(),
• add(𝑒) represents the invocation of function Add(𝑒),
• BRB.Broadcast(𝑥) represents the broadcast of add or epinc messages through the network,

with 𝑥 = add(𝑒) or 𝑥 = epinc(ℎ) respectively,
• BRB.Deliver(𝑥) represents the reception of message 𝑥 ,

, Vol. 1, No. 1, Article . Publication date: March 2025.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Capretto et al.

Algorithm 8 Collective Byzantine Behaviour

1: Init: knowledge← ∅
2: function Get()

3: return (havoc_subset(knowledge ∪ generate_invalid_elems()),
4: havoc_partition(havoc_subset(knowledge ∪ generate_invalid_elems())), havoc_number())
5: function Add(𝑒)

6: assert 𝑣𝑎𝑙𝑖𝑑 (𝑒)
7: knowledge← knowledge ∪ {𝑒}
8: upon (BRB.Deliver(add(𝑒))) do
9: assert 𝑣𝑎𝑙𝑖𝑑 (𝑒)
10: knowledge← knowledge ∪ {𝑒}
11: function EpochInc(ℎ)

12: return
13: upon (BRB.Deliver(epinc(ℎ))) do
14: nothing
15: upon (SBC[ℎ].SetDeliver(𝑝𝑟𝑜𝑝𝑠𝑒𝑡)) do
16: knowledge← knowledge ∪ {𝑒 : 𝑒 ∈ 𝑝𝑟𝑜𝑝𝑠𝑒𝑡 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑒)}
17: upon (SBC[ℎ].Inform(𝑝𝑟𝑜𝑝)) do
18: knowledge← knowledge ∪ {𝑒 : 𝑒 ∈ 𝑝𝑟𝑜𝑝 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑒)}
19: function Start

20: while true do
21: BRB.Broadcast(𝑎𝑑𝑑 (havoc_element(knowledge ∪ generate_invalid_elems())))
22: | |
23: BRB.Broadcast(𝑒𝑝𝑖𝑛𝑐 (havoc_number()))
24: | |
25: SBC[havoc_number()] .Propose(havoc_subset(knowledge ∪ generate_invalid_elems()))
26: | |
27: nothing

• EpochInc(ℎ) represents the invocation of function EpochInc(ℎ),
• SBC[ℎ] .Propose(prop) represents that the proposal prop was made for the ℎ instance of

SBC,

• SBC[ℎ] .Inform(prop) represents the reception of proposal prop,
• SBC[ℎ] .SetDeliver(propset) represents that propset is the result of the ℎ instance of SBC,

• SBC[ℎ] .Consensus(propset) is the internal event that denotes that consensus for epoch ℎ is

reached, and that set propset was decided for that epoch,

• nop represents an event where nothing happens.

All events, except Consensus and nop, happen in a particular server, and thus, they have an

attribute server that returns the corresponding server where they were triggered.

Network. We model the network Δ as a map from servers to tuples of the form (sent, pending,
received). For a server 𝑠 , Δ(𝑠).sent is the sequence of messages sent from server 𝑠 to other servers,

Δ(𝑠) .pending is a multiset that contains all messages sent to 𝑠 that it has not processed yet, and

Δ(𝑠) .received is the sequence of messages received and processed by server 𝑠 . The state of the

network is modified when servers send or receive messages. Functions send() and receive() model

such changes in the network. When server 𝑠 sends a message𝑚 using BRB.Broadcast(𝑚), send()
adds𝑚 to the sent sequence of 𝑠 and to the pending multiset of all other servers. Similarly, when

server 𝑠 proposes set prop in the ℎ instance of SBC, send() adds message 𝑚 = (ℎ, 𝑝𝑟𝑜𝑝) to the

, Vol. 1, No. 1, Article . Publication date: March 2025.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Improving Blockchain Scalability with the Setchain Data-type 23

sent sequence of 𝑠 and to the pending multiset of all servers. When servers receive a message𝑚,

receive() removes𝑚 from their pending multiset and inserts𝑚 in their received sequence.

We denote with Γ themodel that represents the execution of a Setchain maintained by 𝑛 processes

implementing Alg. Fast out of which 1 ≤ 𝑓 < 𝑛/3 are Byzantine servers.
A configuration Φ = (Σ,Δ, 𝐻, 𝐾) for model Γ consists of: a state Σ mapping correct process to

their local state; a network Δ containing messages exchanged between processes; a partial map 𝐻

from epoch numbers to sets of elements (the consented history reached so far), and a set of valid

elements 𝐾 that have been disclosed to a Byzantine process.

The initial configuration Φ0 = (Σ0,Δ0, 𝐻0, 𝐾0) is such that Σ0 (𝑠) is the initial state of every correct
process 𝑠 , Δ0 is the empty network, 𝐻0 is the empty map, and 𝐾0 is the empty set.

An event ev is considered enabled in configuration (Σ,Δ, 𝐻, 𝐾) based on the following conditions:

• get() and nop are always enabled,

• add(𝑒) is enabled if 𝑒 is valid and either 𝑠 = add(𝑒).server is a Byzantine server or 𝑒 ∉

Σ(𝑠).𝑆 ,
• BRB.Broadcast(𝑥) is enabled if BRB.Broadcast(𝑥).server is a Byzantine server and either

𝑥 = epinc(ℎ) or 𝑥 = add(𝑒) with 𝑒 ∈ 𝐾 or 𝑒 invalid,

• BRB.Deliver(add(𝑒)) is enabled if add(𝑒) ∈ Δ(𝑠).pending and 𝑒 is valid,

• EpochInc(ℎ) is enabled if either 𝑠 = EpochInc(ℎ).server is a Byzantine server or ℎ =

Σ(𝑠).epoch + 1,
• BRB.Deliver(epinc(ℎ)) is enabled if epinc(ℎ) ∈ Δ(𝑠).pending and either

𝑠 = BRB.Deliver(epinc(ℎ)) .server is a Byzantine server, ℎ < Σ(𝑠).epoch + 1, or ℎ =

Σ(𝑠).epoch + 1 plus 𝑠 has not proposed anything for the ℎ instance of SBC (i.e., no message

of the form (ℎ, prop) is in Δ(𝑠).sent),
• SBC[ℎ] .Propose(prop) is enabled if SBC[ℎ] .Propose(prop).server is a Byzantine server

and all valid elements in prop are known by Byzantine servers: {𝑒 ∈ prop : 𝑣𝑎𝑙𝑖𝑑 (𝑒)} ⊆ 𝐾 ,
• SBC[ℎ] .Inform(prop) is enabled if (ℎ, 𝑝𝑟𝑜𝑝) ∈ Δ(𝑠).pending,
• SBC[ℎ] .SetDeliver(propset) is enabled if 𝐻 (ℎ) = propset and either 𝑠 = ev.server is a

Byzantine server or ℎ = Σ(𝑠).epoch + 1,
• SBC[ℎ] .Consensus(propset) is enabled if𝐻 (ℎ− 1) is defined,𝐻 (ℎ) is undefined, at least one
process proposed a set before (∃𝑠, ℎ, prop : (ℎ, prop) ∈ Δ(𝑠) .sent), and propset is a subset
of the union of all elements proposed for the ℎ instance of SBC (propset ⊆ ⋃

𝑟 {𝑝 : (ℎ, 𝑝) ∈
Δ(𝑟).sent}).

The effect of an enabled event ev on a configuration (Σ,Δ, 𝐻, 𝐾) results in the configuration

(Σ′,Δ′, 𝐻 ′, 𝐾 ′). The updates for each component are as follows:

• For the set𝐾 ′, if ev.server is a Byzantine server, then𝐾 ′ = 𝐾∪valid_elements(ev); otherwise
𝐾 ′ = 𝐾 . Where function valid_elements(ev) calculates the set of valid elements related to

the event ev.
• For network Δ′, updates depend on the type of event ev:

– If event ev is add(𝑒) and 𝑠 = ev.server is a correct server, then Δ′ = send(Δ, add(𝑒), 𝑠);
– if event ev is BRB.Deliver(add(𝑒)), then Δ′ = receive(Δ, add(𝑒), ev.server);
– If event ev is EpochInc(ℎ) and 𝑠 = ev.server is a correct server, then

Δ′ = send(Δ, epinc(ℎ), 𝑠);
– If event ev is BRB.Deliver(epinc(ℎ)) and 𝑠 = ev.server is a Byzantine server or

ℎ < Σ(𝑠).epoch + 1, then Δ′ = receive(Δ, epinc(ℎ), 𝑠)
– If event ev is BRB.Deliver(epinc(ℎ)) and 𝑠 = ev.server is a correct server and ℎ =

Σ(𝑠).epoch + 1 then let 𝑝𝑠 be the set of elements in 𝑠 without an epoch, 𝑝𝑠 = Σ(𝑠).𝑆 \⋃ℎ−1
𝑘

Σ(𝑠).𝐻 (𝑘), in the new network Δ′ = send(receive(Δ, epinc(ℎ), 𝑠), (ℎ, 𝑝𝑠), 𝑠)

, Vol. 1, No. 1, Article . Publication date: March 2025.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Capretto et al.

– If event ev is BRB.Broadcast(𝑚), then Δ′ = send(Δ,𝑚, ev.server);
– If event ev is SBC[ℎ] .Propose(𝑝𝑟𝑜𝑝), then Δ′ = send(Δ, (ℎ, 𝑝𝑟𝑜𝑝), ev.server);
– If event ev is SBC[ℎ] .Inform(𝑝𝑟𝑜𝑝), then Δ′ = receive(Δ, (ℎ, 𝑝𝑟𝑜𝑝), ev.server);
– otherwise Δ′ = Δ.

• For the state map Σ′, updates depend on whether the event ev.server is Byzantine or

correct:

– If event ev.server is Byzantine then Σ′ = Σ.
– If event 𝑠 = ev.server is a correct server, the state is updated according to the type of

event:

∗ ev = BRB.Deliver(add(𝑒)), then Σ′ = Σ ⊕ {𝑠 ↦→ (Σ(𝑠).𝑆 ∪ {𝑥 : 𝑥 = 𝑒 ∧
valid(𝑥)}, Σ(𝑠).𝐻, Σ(𝑠).epoch)}.
∗ ev = SBC[ℎ] .SetDeliver(propset) then Σ′ = Σ ⊕ {𝑠 ↦→ (Σ(𝑠).𝑆 ∪ 𝐸, Σ(𝑠).𝐻 ∪
{⟨ℎ, 𝐸⟩}, ℎ)} with 𝐸 = {𝑒 : 𝑒 ∈ propset, valid(𝑒) ∧ 𝑒 ∉ Σ(𝑠).𝐻 }
∗ otherwise Σ′ = Σ.

• For the epoch map 𝐻 ′:
– If the event is SBC[ℎ] .Consensus(propset), then𝐻 ′ (ℎ) = propset and𝐻 ′ (𝑥) = 𝐻 (𝑥) for
𝑥 ≠ ℎ.

– otherwise 𝐻 ′ = 𝐻 .

If event ev is enabled at configuration (Σ,Δ, 𝐻, 𝐾) and (Σ′,Δ′, 𝐻 ′, 𝐾 ′) is the resulting configura-

tion after applying the effect of ev to (Σ,Δ, 𝐻, 𝐾), then we write (Σ,Δ, 𝐻, 𝐾) ev−→ (Σ′,Δ′, 𝐻 ′, 𝐾 ′).

Definition 1 (Valid Trace in Γ). Avalid trace inmodel Γ is an infinite sequence (Σ0Δ0, 𝐻0, 𝐾0)
ev0−−→

(Σ1,Δ1, 𝐻1, 𝐾1)
ev1−−→ . . . such that (Σ0,Δ0, 𝐻0, 𝐾0) is the initial configuration.

We denote with Γ′ the model that represents the execution of a Setchain that is maintained by

𝑛− 𝑓 correct servers implementing Alg. Fast and one server 𝑏 implementing Alg. 8. A configuration

in model Γ′ is a tuple (Σ,Δ, 𝐻,T) where T is the local state of server 𝑏, and Σ, Δ and 𝐻 are

defined as in model Γ. The local state of server 𝑏 consists in storing the knowledge harnessed by all

Byzantine processes in model Γ.
The initial configuration Φ′

0
= (Σ0,Δ0, 𝐻0,T0) is such that Σ0 (𝑠) is the initial state of every correct

process, T0 is the empty set, Δ0 is the empty network, and 𝐻0 is the empty map.

A valid configuration in Γ′ follows the same principles as in model Γ. For correct processes, we
have the same rules as in the previous model. The rules for process 𝑏 are similar to the ones for

Byzantines processes in the previous model. The difference is that here when process 𝑏 consumes

an event, all valid elements contained in the event are stored in 𝑏’s local state T , so it can use valid

elements to produce events non-deterministically.

The effect of an event in Γ′ is defined as follows. Given a configuration (Σ,Δ, 𝐻,T) where event
ev is enabled in (Σ,Δ, 𝐻,T), the effect of ev is a configuration (Σ′,Δ′, 𝐻 ′,T ′) such that:

• For Δ′, Σ′ and 𝐻 ′ the effect is as in Γ.
• For T ′:

– If event ev.server = 𝑏 then T ′ = T ∪ valid_elements(ev)
– otherwise T = T ′.

Note that the only “Byzantine” process now only annotates all elements that it discovers. The

definition of valid trace is analogous as for Γ.

Definition 2 (Valid Trace in Γ′). A valid trace in model Γ′ is an infinite sequence (Σ0,Δ0, 𝐻0,T0)
ev0−−→ (Σ1,Δ1, 𝐻1,T1)

ev1−−→ . . . such that (Σ0,Δ0, 𝐻0,T0) is the initial configuration.

, Vol. 1, No. 1, Article . Publication date: March 2025.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Improving Blockchain Scalability with the Setchain Data-type 25

The main difference between Def 1 and Def. 2 is that now we as capturing what a “Byzantine”

process could do (Alg. 8) and we update its state accordingly.

We aim to show that models Γ and Γ′ are observational equivalent, meaning that external

users cannot distinguish both models under the assumption that Byzantine processes may share

information.

In order to prove this equivalence, we show that for each valid trace in one model, there is a

valid trace in the other model such that corresponding configurations are indistinguishable. Two

configurations Φ = (Σ,Δ, 𝐻, 𝐾) and Φ′ = (Σ′,Δ′, 𝐻 ′,T ′) are observational equivalent, denoted
Φ ∼ Φ′, if and only if (1) every correct process has the same local state in both configurations, (2)

the network are observational equivalents
5
, (3) T and 𝐾 contain the same elements, and (4) the

histories reached by consensus are the same in both configurations.

The main idea is that since Byzantine processes share their knowledge outside the network,

we can replace them by one non-deterministic process (𝑏 in model Γ′) capable of taking every

possible action that Byzantine processes can take. Hence, our definition of observational equivalent

are based on mapping every Byzantine action in model Γ to possible an action of process 𝑏 in

model Γ′. Additionally, we map every single 𝑏 action in model Γ′ to a sequence of actions for

the Byzantine processes in model Γ (one for each Byzantine process). To that end, we define the

stuttering extension of a trace 𝜎 as the trace 𝜎𝑠𝑡 which adds 𝑓 − 1 events nop after each event in 𝜎 .

Theorem 8.1. For every valid trace in model Γ there exists a valid trace in model Γ′ such that the
corresponding configurations are indistinguishable.

Proof. The proof consists on, given a valid trace 𝜎 in model Γ, construct a valid trace 𝜎 ′ in Γ′6.
The construction of 𝜎 ′ is done by induction, ensuring that at each step the corresponding configu-

rations are observational equivalent. In symbols, 𝜎𝑖 ∼ 𝜎 ′𝑖 for all 𝑖 ≥ 0. The initial configurations in

both models are already equivalent.

The inductive step is done through a case analysis in the events that happen in 𝜎 . The inductive

hypothesis assumes that for 𝑛 ≥ 0, 𝜎 ′ is defined up to 𝑛 and 𝜎𝑖 ∼ 𝜎 ′𝑖 for 0 ≤ 𝑖 < 𝑛. Consider the

event ev𝑛 such that 𝜎𝑛
ev𝑛−−→ 𝜎𝑛+1. We will show that exists an event ev′𝑛 and a configuration 𝜎 ′𝑛+1

such that 𝜎 ′𝑛
ev′𝑛−−→ 𝜎 ′𝑛+1 and 𝜎

′
𝑛+1 ∼ 𝜎𝑛+1.

If ev𝑛 happens in a correct server 𝑠 , then ev′𝑛 = ev𝑛 is also enabled in 𝜎 ′𝑛 , since whether an event

that happens in a correct server is enabled or not in a given configuration depends only on the local

state of 𝑠 , the network related to 𝑠 and the history of consensus reached, and all these components

are the same in 𝜎𝑛 and 𝜎 ′𝑛 . Since both models run the same algorithm, events that happen in correct

servers preserve the observational equivalence between configurations (see [4, Lemma 9]). Thus,

the new configurations are also observational equivalent.

If ev𝑛 happens in a Byzantine process then we consider the same event except that ev′𝑛 happens at

process 𝑏. Depending on configuration𝜎 ′𝑛 , two cases arises: either ev′𝑛 is enabled in 𝜎 ′𝑛 or not. In the

former case, the effect of these events is to extend the Byzantine knowledge in each configuration

with the valid elements discovered in the event, and apply the same combination of functions

receive and send to each network. Thus, the new configurations are also observational equivalent

(see [4, Lemma 10]). In the latter case, it must be the case that ev𝑛 represents the reception of

message that is pending in server ev𝑛 .server in configuration 𝜎𝑛 but not in server𝑏 in configuration
𝜎 ′𝑛 . This means that 𝑏 already consumed that message and knows about its valid elements. Thus,

5
Intuitively, two networks are observational equivalent when they are the same for correct processes, and if a Byzantine

process consumes (or sends) an event as long as process 𝑏 also consumes (or sends) the same event. A formal definition can

be found in [4].

6
A more detailed proof can be found in [4].

, Vol. 1, No. 1, Article . Publication date: March 2025.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Capretto et al.

configuration 𝜎𝑛+1 is also observational equivalent to configuration in 𝜎 ′𝑛 (see [4, Lemma 11]). Then,

we define ev′𝑛 as the nop event that is enabled in all configurations and does not have any effect.

If ev𝑛 is a Consensus event, then ev′𝑛 = ev𝑛 is enabled in configuration 𝜎 ′𝑛 since the history

of consensus reached is the same as the one for 𝜎𝑛 and the observational equivalence between

networks guarantee that if some server made a proposal in one configuration another server made

the same proposal in the other configuration. The new configurations in both model extend the

history of consensus reached in the same way, therefore they remain observational equivalent.

Finally, if the event is nop, then it is also enabled in configuration 𝜎 ′𝑛 , and it does not have any

effect in both model. Thus, the new configurations remain observational equivalent. □

We prove now the other direction.

Theorem 8.2. For every valid trace 𝜎 ′ in model Γ′ there exists a valid trace 𝜎 in model Γ such that
each configuration in 𝜎 is indistinguishable with corresponding state in the stuttering extension of 𝜎 ′ .

Proof. The proof is by induction on the valid trace 𝜎 ′ and follows a reasoning similar to the

one in the previous theorem. The main difference is that here for each event in 𝜎 ′ we have to find 𝑓
events in model Γ, as we are considering the stuttering extension of 𝜎 ′. We again proceed by case

analysis in the events in 𝜎 ′. There are two cases:

(1) If the event represents the reception of a message in process 𝑏, then we consider 𝑓 events.

Each event represents the reception of the message in one of the Byzantines processes in model Γ.
Since the networks are observationally equivalent, events pending in process 𝑏 are also pending

in all Byzantine processes, therefore the events are also enabled in the configuration in model Γ.
The effect of each event is to move messages from the pending multiset to the received list of the

process where it happens and to annotate new valid elements discovered in the process. Thus, the

corresponding configurations are observational equivalent.

(2) Otherwise, we consider the same event in model Γ followed by 𝑓 − 1 nop events. With

an analysis analogous to the one in the previous theorem, it can be shown that the considered

events are enabled in the corresponding configurations, and that the resulting configurations are

observational equivalent in both models. □

The main result of this section is that properties for model Γ hold if and only if they also hold

in model Γ′. That is, one can prove properties for traces in model Γ′ where all components are

well-defined with only one Byzantine process and the result directly translate to traces in model Γ
with multiple Byzantine processes with instantaneous communication. Our modeling and these

results opens the door to apply mechanized formal verification to prove correctness properties of

the Setchain algorithms.

9 CONCLUDING REMARKS AND FUTUREWORK
We presented in this paper a novel distributed data-type, called Setchain, that implements a grow-

only set with epochs and tolerates Byzantine server nodes. We provided a low-level specification of

desirable properties of Setchains and three distributed implementations, where the most efficient

one uses Byzantine Reliable Broadcast and RedBelly Set Byzantine Consensus. Our empirical

evaluation suggests that the performance of inserting elements in Setchain is three orders of

magnitude faster than consensus. Also, we proved that the behavior of the Byzantine server nodes

can be modeled by a collection of simple interactions with BRB and SBC and we introduced a

non-deterministic process that encompasses these interactions. This modeling paves the way to

use formal reasoning that is not equipped for Byzantine reasoning to reason about Setchain.

Future work includes developing the motivating applications listed in the introduction, including

mempool logs using Setchains and L2 faster optimistic rollups. Setchain can also be used to alleviate

, Vol. 1, No. 1, Article . Publication date: March 2025.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Improving Blockchain Scalability with the Setchain Data-type 27

front-running attacks. The mempool stores the transactions requested by users, so observing the

mempool allows us to predict future operations. Front-running is the action of observing transaction

request and maliciously inject transactions to be executed before the observed ones [10, 31] (by

paying a higher fee to miners). Setchain can be used to detect front-running since it can serve as a

basic mechanism to build a mempool that is efficient and serves as a log of requests. Additionally,

Setchains can be used as a building block to solve front-running where users encrypt their requests

using a multi-signature encryption scheme, and participant decrypting servers decrypt requests

after they are chosen for execution by miners once the order has already been fixed.

We will also study how to equip blockchains with Setchain (synchronizing blocks and epochs) to

allow smart-contracts to access the Setchain as part of their storage.

An important remaining problem is how to design a payment system for clients to pay for the

usage of Setchain (even if a much smaller fee than for the blockchain itself). Our Setchain exploits a

specific partial orders that relaxes the total order imposed by blockchains. As future work, we will

explore other partial orders and their uses, for example, federations of Setchain, and one Setchain

per smart-contract.

ACKNOWLEDGMENTS
We would like to than the anonymous reviewers for their useful comments. This work was funded

in part by PRODIGY Project (TED2021-132464B-I00)—funded by MCIN/AEI/10.13039/501100011033/

and the European Union NextGenerationEU/PRTR—by DECO Project (PID2022-138072OB-I00)—

funded by MCIN/AEI/10.13039/501100011033 and by the ESF+—and by a research grant from

Nomadic Labs and the Tezos Foundation.

REFERENCES
[1] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.

2014. Zerocash: Decentralized Anonymous Payments from Bitcoin. In Proc. of S&P’14. 459–474. https://doi.org/10.

1109/SP.2014.36

[2] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Succinct Non-Interactive Zero Knowledge

for a von Neumann Architecture. In Proc. of USENIX Sec.’14. USENIX, 781–796. https://www.usenix.org/conference/

usenixsecurity14/technical-sessions/presentation/ben-sasson

[3] Gabriel Bracha. 1987. Asynchronous Byzantine Agreement Protocols. Inf. Comput. 75, 2 (1987), 130–143. https:

//doi.org/10.1016/0890-5401(87)90054-X

[4] Margarita Capretto, Martín Ceresa, Antonio Fernández Anta, Antonio Russo, and César Sánchez. 2022. Improving

Blockchain Scalability with Setchain data-type. arXiv (2022).

[5] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable Failure Detectors for Reliable Distributed Systems. J. ACM
43, 2 (mar 1996), 225–267. https://doi.org/10.1145/226643.226647

[6] Vicent Cholvi, Antonio Fernández Anta, Chryssis Georgiou, Nicolas Nicolaou, Michel Raynal, and Antonio Russo.

2021. Byzantine-tolerant Distributed Grow-only Sets: Specification and Applications. In Proc. of FAB’21. 2:1–2:19.
[7] Tyler Crain, Christopher Natoli, and Vincent Gramoli. 2021. Red Belly: A Secure, Fair and Scalable Open Blockchain.

In Proc. of S&P’21. 466–483. https://doi.org/10.1109/SP40001.2021.00087

[8] F. Cristian, H. Aghili, R. Strong, and D. Volev. 1995. Atomic Broadcast: from simple message diffusion to Byzantine

agreement. In 25th Int’l Symp. on Fault-Tolerant Computing. 158–179. https://doi.org/10.1109/FTCSH.1995.532668

[9] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, Andrew Miller, Prateek Saxena,

Elaine Shi, Emin Gün Sirer, Dawn Song, and Roger Wattenhofer. 2016. On Scaling Decentralized Blockchains. In

Financial Crypto. and Data Security. Springer, 106–125.
[10] Philip Daian, Steven Goldfeder, T. Kell, Yunqi Li, X. Zhao, Iddo Bentov, Lorenz Breidenbach, and A. Juels. 2020. Flash

Boys 2.0: Frontrunning in Decentralized Exchanges, Miner Extractable Value, and Consensus Instability. Proc. of
S&P’20 (2020), 910–927.

[11] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin, and Beng Chin Ooi. 2019. Towards

Scaling Blockchain Systems via Sharding. In Proc. of SIGMOD’19. ACM, 123—-140. https://doi.org/10.1145/3299869.

3319889

, Vol. 1, No. 1, Article . Publication date: March 2025.

https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1145/226643.226647
https://doi.org/10.1109/SP40001.2021.00087
https://doi.org/10.1109/FTCSH.1995.532668
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1145/3299869.3319889

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Capretto et al.

[12] Xavier Défago, André Schiper, and Péter Urbán. 2004. Total Order Broadcast and Multicast Algorithms: Taxonomy

and Survey. ACM Comput. Surv. 36, 4 (dec 2004), 372–421. https://doi.org/10.1145/1041680.1041682

[13] Alan A.A. Donovan and Brian W. Kernighan. 2015. The Go Programming Language. Adison-Wesley.

[14] Antonio Fernández Anta, Chryssis Georgiou, Maurice Herlihy, andMaria Potop-Butucaru. 2021. Principles of Blockchain
Systems. Morgan & Claypool Publishers.

[15] Antonio Fernández Anta, Kishori Konwar, Chryssis Georgiou, and Nicolas Nicolaou. 2018. Formalizing and imple-

menting distributed ledger objects. ACM Sigact News 49, 2 (2018), 58–76.
[16] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of Distributed Consensus with One

Faulty Process. JACM 32, 2 (1985), 374–382. https://doi.org/10.1145/3149.214121

[17] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-Adrian Seredinschi. 2019. The Consensus

Number of a Cryptocurrency. In Proc. of PODC’19. ACM, 307–316. https://doi.org/10.1145/3293611.3331589

[18] Maxim Jourenko, Kanta Kurazumi, Mario Larangeira, and Keisuke Tanaka. 2019. SoK: A Taxonomy for Layer-2

Scalability Related Protocols for Cryptocurrencies. Cryptology ePrint Archive, Paper 2019/352. https://eprint.iacr.org/

2019/352.

[19] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S. MatthewWeinberg, and Edward W. Felten. 2018. Arbitrum: Scalable,

private smart contracts. In 27th USENIX Security Symposium. USENIX Assoc., 1353–1370. https://www.usenix.org/

conference/usenixsecurity18/presentation/kalodner

[20] Jae Kwon and Ethan Buchman. 2019. Cosmos whitepaper. https://cosmos.network/resources/whitepaper.

[21] Zamani Mahdi, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain: Scaling Blockchain via Full Sharding.

In Proc. of CSS’18 (Toronto, Canada). ACM, 931—-948. https://doi.org/10.1145/3243734.3243853

[22] Satoshi Nakamoto. 2009. Bitcoin: a peer-to-peer electronic cash system.

[23] Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments.

https://lightning.network/lightning-network-paper.pdf.

[24] Michel Raynal. 2018. Fault-Tolerant Message-Passing Distributed Systems: An Algorithmic Approach. Springer Cham,

Switzerland. https://doi.org/10.1007/978-3-319-94141-7

[25] Robinson, Dan and Konstantopoulos, Georgios. 2020. Ethereum is a Dark Forest. https://medium.com/@danrobinson/

ethereum-is-a-dark-forest-ecc5f0505dff

[26] Muhammad Saad, Laurent Njilla, Charles Kamhoua, Joongheon Kim, DaeHun Nyang, and Aziz Mohaisen. 2019.

Mempool optimization for Defending Against DDoS Attacks in PoW-based Blockchain Systems. In Proc. of ICBC’19.
285–292. https://doi.org/10.1109/BLOC.2019.8751476

[27] Muhammad Saad, My T. Thai, and Aziz Mohaisen. 2018. POSTER: Deterring DDoS Attacks on Blockchain-Based

Cryptocurrencies through Mempool Optimization. In Proc. of ASIACCS’18. ACM, 809––811. https://doi.org/10.1145/

3196494.3201584

[28] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Convergent and Commutative Replicated

Data Types. Bulletin- European Association for Theoretical Computer Science 104 (June 2011), 67–88. https://hal.inria.

fr/hal-00932833

[29] Nick Szabo. 1996. Smart Contracts: Building Blocks for Digital Markets. Extropy 16 (1996).

[30] The ZeroMQ authors. 2021. ZeroMQ. https://zeromq.org https://zeromq.org.

[31] Christof Ferreira Torres, Ramiro Camino, and Radu State. 2021. Frontrunner Jones and the Raiders of the Dark

Forest: An Empirical Study of Frontrunning on the Ethereum Blockchain. In Proc of USENIX Sec.’21. 1343–1359.
https://www.usenix.org/conference/usenixsecurity21/presentation/torres

[32] Shobha Tyagi and Madhumita Kathuria. 2021. Study on Blockchain Scalability Solutions. ACM, 394–401. https:

//doi.org/10.1145/3474124.3474184

[33] Ke Wang and Hyong S. Kim. 2019. FastChain: Scaling Blockchain System with Informed Neighbor Selection. In Proc.
of IEEE Blockchain’19. 376–383. https://doi.org/10.1109/Blockchain.2019.00058

[34] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper,

151.

[35] Gavin Wood. 2016. Polkadot: Vision for a heterogeneous multi-chain framework. White Paper.

[36] Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. 2021. SlimChain: Scaling Blockchain Transactions through off-Chain

Storage and Parallel Processing. Proc. VLDB Endow. 14, 11 (jul 2021), 2314–2326. https://doi.org/10.14778/3476249.

3476283

, Vol. 1, No. 1, Article . Publication date: March 2025.

https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3293611.3331589
https://eprint.iacr.org/2019/352
https://eprint.iacr.org/2019/352
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://cosmos. network/resources/whitepaper
https://doi.org/10.1145/3243734.3243853
https://lightning.network/lightning-network-paper.pdf
https://doi.org/10.1007/978-3-319-94141-7
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff
https://doi.org/10.1109/BLOC.2019.8751476
https://doi.org/10.1145/3196494.3201584
https://doi.org/10.1145/3196494.3201584
https://hal.inria.fr/hal-00932833
https://hal.inria.fr/hal-00932833
https://zeromq.org
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://doi.org/10.1145/3474124.3474184
https://doi.org/10.1145/3474124.3474184
https://doi.org/10.1109/Blockchain.2019.00058
https://doi.org/10.14778/3476249.3476283
https://doi.org/10.14778/3476249.3476283

	Abstract
	1 Introduction
	1.1 The Problem
	1.2 Applications of Setchain
	1.3 Contributions

	2 Preliminaries
	2.1 Model of Computation
	2.2 Building Blocks

	3 The Setchain Distributed Data Structure
	3.1 The Way of Setchain
	3.2 API and Server State of the Setchain
	3.3 Desired Properties

	4 Implementations
	4.1 Sequential Implementation
	4.2 Distributed Implementations

	5 Proof of Correctness
	5.1 Correctness of Alg. Basic
	5.2 Correctness of Alg. Slow
	5.3 Correctness of Alg. Fast

	6 Empirical Evaluation
	7 Client Protocols
	7.1 Setchain as a Distributed Partial Order Object (DPO)
	7.2 A Fast Optimistic Client
	7.3 Comparisson between clients

	8 Modelling Byzantine Behavior
	9 Concluding Remarks and Future Work
	Acknowledgments
	References

