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Abstract. In this paper, we present offchain runtime verification, a dy-
namic analysis technique to inspect blockchain executions without af-
fecting the blockchain itself.
Runtime verification (RV) is a technique that analyzes traces of system
execution based on monitors created from system specifications. There
are two flavors of RV: online and offline. In online RV, monitors run
in tandem with the system, either with their own resources or as code
inlined in the system implementation. In offline RV, monitors have a
dump of the system trace available. Examples of offline monitoring in-
clude post-mortem analysis and log inspection.
We present a novel notion of monitors running offchain while fetching
information about the blockchain evolution and its agents (e.g. external
users, bakers) to assess security and fairness, assign blame, and compute
explanations. Our monitoring infrastructure is both online—as the moni-
tors can receive new blocks incrementally—and offline since the monitors
can query the history of the blockchain. Online queries are necessary be-
cause monitors are created after the blockchain has been running and
relevant information is discovered online (e.g. who interacted in the past
with an address recently discovered to be malicious). We describe in
this paper an RV infrastructure for offchain monitoring for the Tezos
Blockchain.

1 Introduction

Blockchains [22] running smart contracts [32, 33] provide a trusted third party
where transactions are persistent and permanent. Smart contracts are immutable
pieces of code (the code is the contract) that govern the interaction between
agents using a blockchain without requiring a trusted centralized authority. We
can use smart contracts to describe sophisticated functionality, enabling many
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applications like decentralized finances (DeFi), decentralized governance, and
Web3. Smart contracts are deterministic, i.e. the effects of executing smart
contracts are uniquely determined by the blockchain state and the transac-
tions parameters. Since smart contracts are immutable and they govern the
blockchain evolution (including the cryptocurrency exchanged), the correctness
of smart contracts is crucial and errors and vulnerabilities can lead to huge losses
(e.g. [27]). Both static [1, 6, 7, 10, 23, 26, 31]and dynamic techniques [3, 8, 12, 21]
have been proposed to approach the problem of smart contract correctness. Dy-
namic techniques analyze the evolution of the blockchain. Specifications describe
correctness criteria for smart contracts and monitoring code is generated which
extends the code of the contract. At runtime, monitors inspect smart contract
invocations, detecting violations and reverting illegal executions. This onchain
monitoring approach requires monitors to be deployed on-chain as part of smart
contracts themselves, because otherwise, once smart contracts commit their ef-
fects cannot be reverted. Onchain monitoring, in turn, affects the normal execu-
tion of smart contracts as monitors consume some gas.

In this paper, we explore an alternative monitoring technique where monitors
are deployed in a running system. Additionally, we seek non-intrusive monitors,
so that the execution of smart contracts is completely unaffected by the ex-
ecution of monitors. In these scenarios, monitors only observe a suffix of the
system original trace. There are three possible approaches to cope with this lack
of past observability: (1) ignore the missing past so monitors operate as if they
were observing the whole history, which is the simplest approach but can lead
to inaccurate results; (2) encode the lack of knowledge by modifying the specifi-
cation [19]; (3) access a log system to fetch the missing past and then continue
monitoring online with future events. We propose in this paper to follow the
third approach by combining offline and online monitoring.

Runtime verification (RV) is a formal method for analyzing execution traces,
one at a time. Traces are evaluated against monitors built from a given formal
specification [5,20]. Formal specifications are described using different languages
implementing different logics like linear temporal logic [28]. Most RV languages
describe a monolithic monitor that processes input events. Another approach is
dynamic parametrization, also known as parametric trace slicing, which quan-
tifies over objects and spawns monitors that follow independently the objects
observed as in Quantified Event Automata (QEA) [4]. One can think of it as
grabbing a magnifying glass when required.

Our approach is based on Stream Runtime Verification (SRV), pioneered by
Lola [11], which relates output streams of verdicts to input streams of obser-
vations. Originally designed for testing synchronous hardware, SRV has since
extended to other applications, including asynchronous and real-time systems
(e.g. [15]). HLola [9, 16, 18] is an implementation of Lola as an embedded DSL
in Haskell, which simplifies the specification development and runtime system.
HLola leverages Haskell data types for Lola streams. Our main technical con-
tribution is the extension of HLola with functionalities for retroactive dynamic
parametrization, where parametrized specifications can be specialized with infor-
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mation discovered dynamically (parametrization) and specifications can revisit
past events to obtain missing information (retroactivity).

The inspection of the blockchain evolution is a perfect application of retroac-
tive dynamic parametrization. The blockchain state, that is, the state of each
smart contract and wallet, is connected to the next state and monitors can
observe the whole execution history of the system. The challenge is to design
efficient monitoring runtime systems that compute only what is necessary to
produce a verdict.

Previous works have already inspected the blockchain evolution, mostly for
security concerns within blockchain ecosystems [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,
?, ?, ?]In general, these works focus on specific problems and are tailored for
performance but not correctness. In contrast, our framework is designed to be
applied to several scenarios, and it allows writting diverse specifications ensuring
that the monitors generated are correct with regard to the specification.

Running Example: Sandwich attacks. We introduce our running example,
a blockchain vulnerability known as sandwich attack. Decentralized Exchanges
(exchanges from now on) are a common application ofy blockchains to decentral-
ized finances (DeFi) where users trade tokens directly without intermediaries.
Sandwich attacks exploit the delay between transaction submission and trans-
action execution. When transactions are submitted for execution in blockchains
they are first added as requests to a distributed service, known as mempools,
containing transaction requests that have not yet been executed. The mempool
content is visible to all agents in the blockchain, including malicious actors which
inspect the mempool searching for victim transactions. In a sandwich attack, a
victim tries to trade a large amount of token A for B in an exchange which will
cause an increase in the price of token B. A malicious actor tries to “sandwich”
the victim transaction with two additional transactions to profit from the future
value increase of B. The first transaction, known as the frontrunning transac-
tion, buys tokens B and is scheduled before the victim transaction. In the second
transaction, known as the backrunning transaction, the malicious actor sells the
purchased tokens B at a major price obtaining a profit.

The frontrunning transaction increases the price of token B causing the victim
transaction to purchase B at a higher price than expected. Since token prices
often fluctuate, the price of a given token when a transaction is submitted might
differ from the actual transaction execution. Hence, most exchanges offer a way
to define price ranges where token purchases can occur, which limits the amount
of tokens B that the malicious actor can buy in the frontrunning transaction.
This limits malicious actor’s profits, but it does not prevent sandwich attacks
from happening.

Consider a user trading a large amount of Tezos (XTZ) for USDT on an
exchange. A malicious account can perform a sandwich attack purchasing USDT
with XTZ in the same exchange right before the victim’s transaction, and then
selling USDT for XTZ right after.

In the remainder of the paper, we focus on detecting sandwich attacks against
a specific account, denoted by a. We say that an account is malicious if it per-
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forms a sandwich attack to account a. We also identify suspicious wallets as
those that interacted directly with malicious accounts.

We implemented retroactive dynamic parametrization in HLola and report
the result of applying our implementation to detect sandwich attacks in the Tezos
blockchain [14]. An early prototype of this technique [25] was already used to
efficiently detect distributed denial of service attacks in realistic network traffic.
The contributions of this paper are:

– A new monitoring technique and its application for inspecting blockchain
histories, described in Section 3.

– A demonstration of how to apply the features of our framework to detect
sandwich attacks, identify involved actors, and compute attackers’ profits
and victims’ losses, shown in Section 4.

– Further applications of our monitoring framework, presented in Section 5.

2 Preliminaries

We introduce now necessary concepts of Blockchains and SRV.

Blockchains. Blockchains [22] were introduced as distributed infrastructures
that eliminate the need of trust third parties in electronic payment systems. Mod-
ern blockchains incorporate smart contracts [32,33], stateful programs stored in
blockchains controlling the functionality of blockchain transactions. Users inter-
act with blockchains by invoking smart contracts. Blockchain “actors” (users and
smart contracts) are identified by their account. We refer to accounts managed
by end-users as wallets.

A node is a machine that stores a copy of the blockchain (or at least a portion
of it) and keeps its local copy updated by regularly communicating with other
nodes in a peer-to-peer network. Public blockchains allow anyone to launch a
fully functional node. While nodes hold the entire history of the blockchain,
searching this data directly can be slow and resource-intensive. Therefore, there
is an ecosystem of tools, called indexers, that retrieve information from nodes
and process it to allow efficient search. Indexers crawl the whole blockchain
and store its data plus some additional information about the evolution of the
blockchain, offering an API to query this information. Each API restricts the
vision of the blockchain to what can be retrieved by such API language.

Stream Runtime Verification. Stream Runtime Verification (SRV) enriches
monitoring algorithms from runtime verification to handle arbitrary data. SRV
separates the logic of how data relates over time from the specific operations
of each datatype. In this paper, we use the extensible tool HLola [9, 16, 18], an
implementation of Lola [11] developed as an embedded DSL in Haskell.

Lola specifications consist of a set of typed input and output streams that
represent the input events observed by the monitor and the intermediate obser-
vations and outputs of the monitor, respectively. Specifications are defined as
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equations that declaratively describe the intended values of every output stream
variable in terms of the input and output streams. The set of stream expressions
of a given type is built from constants and function symbols as constructors, and
from offset expressions of the form s[k|d] where s is a stream variable, k is an
integer number and d is a default value of the type of s.

For example, offset expression balanceA[-1|0] represents the value of stream
balanceA in the previous step of time with 0 as the value used at the initial
instant. We define a stream balA_ok which checks that the balance of account A
is always above a predefined threshold of 100 tokens:

1 input Int balanceA
2 output Bool balA_ok = balanceA[now] > 100

Given values of the input streams, the formal semantics of a Lola specification
is defined denotationally as the unique collection of streams of values satisfying
all equations.

One of the benefits of the extensible tool HLola is its ability to define tem-
plates for stream definitions using static parametrization. These templates act
as abstractions, hiding specific concrete values, which are instantiated in static
time by the compiler. Following the previous example, we can define a more
generic version of the stream balA_ok as follows:

1 input Int balanceA
2 output Bool balA_checker <Int threshold> = balanceA[now] > threshold
3 output Bool balA_ok = (balA_checker 100)[now]

However, static parametrization cannot handle parameters whose values are dis-
covered at runtime. The values of all parameters must be determined before
the monitor starts executing. Users must ensure that the resulting specification
contains a finite number of streams.

3 System Architecture

Our solution is composed of a monitor generated from an HLola specification
and an external component interfacing with Tezos nodes and indexers called
adapter. When monitors start execution, we start an adapter process in charge
of receiving data from the Tezos blockchain and formatting it for the monitor
input. Once the monitor is online, up and running, it can send parametrized
queries to the adapter to fetch subtraces of the blockchain history. The adapter
can perform complex requests to the Tezos indexer, i.e. filtering and formatting
the received data before redirecting the result to the monitor. Through the use of
the adapter, monitors efficiently obtain newly relevant data that was previously
omitted or they can process blocks that were added to the blockchain before
the monitor was launched. The adapter allows monitors to be agnostic to the
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Fig. 1. Offchain monitoring system architecture

blockchain used, the indexer and the format of the data, so this architecture can
be used (adapting the adapter) to other blockchains like Ethereum. Fig. 1 shows
this architecture.

4 Features

In this section, we present the features of our framework and demonstrate how
to apply them for effective monitoring, including to detect sandwich attacks,
identify malicious and suspicious actors, and calculate attackers’ profits.

4.1 Monitor Side Features

Nested monitors. Nested monitors [17] allow using SRV specifications as data
functions inside other specifications. Nested specifications are created and ex-
ecuted dynamically. A nested monitor receives a finite subtrace of the system
original trace as input, typically obtained using HLola operator s[:n], which
creates a list with the next n values of stream s.

To define a nested specification, we need to provide a name so we can refer
to it later on and add an extra clause: return x when y where x is a stream of
any type and y is a Boolean stream. The type of the stream x determines the
type of the value returned when the specification is invoked dynamically. The
Boolean stream y dictates when the nested specification finishes. The nested
monitor returns the value of x at the first instant at which y becomes true
(without needing to inspect the rest of the list), or the last value of x if y is
never true. Nested specifications can be parametric, parameters are declared
after its name. We can execute nested specifications by using the HLola function
runSpec specifying the parameters and the input streams with which the nested
monitor will be executed.

Example 1. The following specification calculates whether a transaction in the
input stream tx is the frontrunning transaction of a sandwich attack against
account a.

Blockchain traces may contain many trading operations involving the same
pair of tokens. In a sandwich attack, the frontrunning and backrunning trans-
actions must occur close in time to the victim transaction. For simplicity, we
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consider an operation to be part of a potential sandwich attack if both the sus-
pected frontrunning and backrunning transactions occur within 10 transactions
apart from the victim transaction. We define a stream frontruns which first
checks if tokens are traded in the transaction using function tradeTokens. If so,
the monitor invokes the nested specification frontrunspec with the current trans-
action (tx[now]) as the parameter ftx, and the next 20 events of tx (tx[:20])
as the input stream tx of the nested monitor.

1 use innerspec frontrunspec
2 input Transaction tx
3 output Bool frontruns = if tradeTokens tx[now]
4 then runSpec (frontrunspec tx[now] tx[:20])
5 else False

We use if · then · else · instead of the Boolean operator (&&) to stress the
fact that the nested specification is only executed when tokens are traded. The
nested specification frontrunspec defines three streams.
– Stream counter counts the number of transactions processed. We use it to

guarantee that the victim transaction is among the first 10 transactions, and
that the backrunning transaction occurs within 10 transactions of the victim
transaction.

– Stream victim stores the position in the input trace of a potential victim
transaction (a transaction where account a trades tokens in the same ex-
change as the frontrunning transaction).

– Stream attack indicates if an attack occurred (the client from the fron-
trunning transaction swapped tokens back at most 10 transactions after the
victim transaction).

1 innerspec Bool frontrunspec <Transaction ftx>
2 input Transaction tx
3 const a = "tz123"
4 output Int counter = counter[-1|0] + 1
5 output Int victim =
6 if counter[now] < 11 && tradeTokens tx[now]
7 && exchange tx[now] == exchange ftx && client tx[now] == a
8 && token1 tx[now] == token1 ftx && token2 tx[now] == token2 ftx
9 then counter[now]
10 else -1
11 output Bool attack =
12 victim[now] != -1 && counter[now] < victim[now] + 11
13 && tradeTokens tx[now] && exchange tx[now] == exchange ftx
14 && client tx[now] == client ftx
15 && token1 tx[now] == token2 ftx && token2 tx[now] == token1 ftx
16 return attack when attack
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In a transaction where tokens are traded, the client of a transaction is the ac-
count that traded the tokens, the exchange of a transaction is the exchange
where the trade happened, and token1 and token2 of a transaction are the
traded tokens. We can further extend the above specification with a stream
called malicious to track accounts that performed sandwich attacks against a.

6 output (Set Account) malicious = if frontruns[now]
7 then insert (client tx[now]) malicious[-1|empty]
8 else malicious[-1|empty]

Retroactive Nested monitors. Although nested monitors can detect sand-
wich attacks, this approach can be very inefficient. In a blockchain history, the
number of times account a trades tokens (and can be victim of a sandwich at-
tack) is significantly smaller than the total number of transactions where tokens
are traded. This leads to a large number of unnecessary nested monitors be-
ing created. To address this inefficiency, we propose creating nested monitors
only when account a trades tokens. This implies ignoring relevant transactions
and later accessing them to search for potential frontrunning transactions. We
achieve this retroactive search by implementing a function pastRetriever that
invokes the adapter (see Section 3) to retrieve a specified number of past events.

The following specification checks whether the current transaction corre-
sponds to address a trading tokens, and triggers the finer analysis of the sur-
rounding transactions when necessary.

1 use innerspec tradersSpec
2 input Transaction tx
3 const a = "tz123"
4 output Bool attacked =
5 if tradeTokens tx[now] && client tx[now] == a then
6 let fRunners = runSpec ((tradersSpec e t1 t2) (pastRetriever 10))
7 bRunners = runSpec ((tradersSpec e t2 t1) tx[:10]) in
8 not (null (intersection fRunners bRunners))
9 else False
10 where e = exchange tx[now]
11 t1 = token1 tx[now]
12 t2 = token2 tx[now]

Within the 10 previous transactions, nested specification tradersSpec com-
putes all accounts that made the same trade as a. On the subsequent 10 trans-
actions, nested specification tradersSpec computes all accounts that did the
opposite trade. Finally, the specification checks whether any account appears in
both sets. We use if · then · else False (&&) to stress the fact that the nested
specification is executed only when a trades tokens.

The nested specification tradersSpec identifies all accounts that trade two
specific tokens in a given exchange, as follows:
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1 innerspec (Set Account) tradersSpec <Account e> <Token t1> <Token t2>
2 input Transaction tx
3 output (Set Account) traders =
4 if tradeTokens tx[now] && exchange tx[now] == e
5 && token1 tx[now] == t1 && token2 tx[now] == t2
6 then insert (client tx[now]) traders[-1|emptySet]
7 else traders[-1|emptySet]
8 return traders when False

The above specification finds all transactions that are victims of a sandwich
attack at most 10 transactions after it happens. Also, the nested monitors in this
example are created, executed and destroyed only for every transaction where a
exchanges tokens.

(Forward) Dynamic Parametrization. Since we have an efficient way of
detecting sandwich attacks and malicious accounts, we can move on to identifying
suspicious wallets, defined as those that interact with the malicious account
performing the sandwich attack. The following specification computes all wallets
that interact with a given account:

1 input Transaction tx
2 output (Set Wallet) fellows <Account a> =
3 union (wallets a tx[now]) fellows[-1|empty]

The auxiliary function wallets a tx returns all wallets that sent tokens to ac-
count a during the execution of transaction tx. To identify all suspicious wallets,
we need to instantiate the parametrized stream fellows with all malicious ac-
counts. However, malicious accounts are only found after they perform a sand-
wich attack, which cannot be determined statically.

We can instantiate a parametric stream over values discovered dynamically
while processing the input trace using the HLola operator over. The over op-
erator takes two arguments: (1) a parametric stream strm, and (2) a stream
params of sets of values. The resulting expression is a map where at any point
in time the keys are the elements in params[now], and the value associated to
each key is the instantiation of strm over the key. For a complete description on
how this operator is implemented in the tool HLola, see [25]. In our case, we can
parametrize the parametric stream fellows over the values of stream malicious:

1 output (Set Wallets) suspicious = foldl union empty
2 (elems (fellows ‘over‘ malicious))

Here, elems m returns the list of values in map m, and function foldl f l aggre-
gates the elements in list l using f to combine them. To compute all suspicious
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wallets, we join the suspicious wallets related to each malicious account. This
specification follows each account independently.

When a new value is added to the set of parameters (the stream malicious in
our case), we spawn a new monitor parametrized with the discovered value. The
newly created nested monitor executes alongside the monitor that created it, as
long as its associated parameters remain part of the set represented by stream
malicious.

The nested monitors used for forward dynamic parametrization process the
same events as the root monitor, but it is often the case that only some of the
events are relevant to a specific parametrized stream. We can use subtracing to
redefine stream suspicious as follows:

1 output (Set Wallets) suspicious = foldl union empty
2 (elems (fellows ‘over‘ malicious ‘updating‘ (accounts tx[now])))

where accounts returns the set of all accounts involved in a transaction. The
updating operator lets us specify the parameters of the monitors that have to
process the current event.

In the example above, the monitor follows the dynamically parametrized
stream once the parameter has been discovered (like in Lola2.0 [13] or in quan-
tified event automata QEA [4]). However, monitoring a stream only after its
parameter is discovered has its limitations, for example that the beginning pre-
fix of the trace is ignored. In our example, this means that the monitor cannot
discover wallets that interacted with a malicious account before the malicious
account is identified, e.g. before a sandwich attacker reveals its identity.

We could still use forward dynamic parametrization to identify all wallets
that ever interacted with malicious accounts, regardless of when the interaction
happened. To achieve this, we need to follow all created accounts, tracked by
stream allaccounts, and then, at every instant, keep only the wallets related to
the malicious accounts discovered so far, using the stream malicious.

1 output (Set Account) allaccounts =
2 union (createdAccounts tx[now]) allaccounts[-1|empty]

3 output (Set Wallet) suspicious = foldl union empty
4 (elems (filterWithKey ismalicious
5 (suspicious ‘over‘ allaccounts ‘updating‘ (accounts tx[now]))))
6 where ismalicious k _ = member k malicious[now]

The function filterWithKey p m filters all the key-values in map m that satisfy
the predicate p. Although this specification is correct, if most accounts are not
malicious, this forward monitor follows many accounts unnecessarily.

However, as part of our infrastructure we have the node and indexer storing
the past events of the trace, so we can combine retroactive nested monitors
with dynamic parametrization when a new parameter is discovered, effectively
implementing retroactive dynamic parametrization.
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Retroactive Dynamic Parametrization. Retroactive dynamic parametriza-
tion [25] is a technique that allows monitors to revisit the past of the trace
whenever a new parameter is discovered, initialize the parametric stream with
the retrieved information and continue monitoring online from that point on-
ward. This nested monitor behaves exactly as a forward parametrized monitor
where an oracle had correctly guessed which parameters would be found to be
useful and which parameters can be ignored. Retroactive dynamic parametriza-
tion is implemented by adding a new clause withInit to the over operator. This
clause allows specifying an initializer, which initializes the nested monitor with
events taken from the trace up to the current point. Typically, an initializer in-
volves calling an external program (see Section 3) that interacts with an offline
infrastructure to efficiently retrieve relevant past trace elements based on the
discovered parameter.

We can use retroactive monitoring to only create the dynamic parameters
when the corresponding account is malicious, and use the retroactive capability
to inspect the past of the trace and see which wallets interacted with them in
the past. We redefine the stream suspicious accordingly.

1 output (Set Wallets) suspicious = foldl union empty
2 (elems (suspicious ‘over‘ malicious ‘updating‘ accs ‘withInit‘ initer))
3 where accs = accounts tx[now]

The new over expression specifies an initializer initer (whose definition is not
shown in the specification) that calls the adapter to retrieve the past of the
corresponding parameter. The adapter uses the indexer to efficiently retrieve
only the events in the past relevant to the current account.

4.2 Execution Simulation

To further analyze sandwich attacks, one could be interested in determining
the profit obtained by the attacker. This requires reasoning about what would
have happened if the invocations to the blockchain had been different. In our
example, we are interested in comparing what did happen (in particular the
legitimate exchange invocation) with what would have happened if the attack
had not existed. For these questions, our monitoring infrastructure introduces a
simple simulation framework.

The blockchain state is public and the code of smart contracts code is avail-
able, and evaluation frameworks are typically provided by the blockchain devel-
opers (using the exact same code that bakers execute). We use the official Tezos
interpreter in our monitoring infrastructure to perform a small-step execution
machine of alternative executions and observe the blockchain intermediate states.
We have developed two basic building blocks:
– Data crawler: for a given set of operations (blocks or groups) the data

crawler queries the blockchain extracting which contracts were involved in
the set of transactions requested.
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– Simulation: given a set of contracts and their state, execute a sequence of
grouped transactions in order.

This allows monitors to simulate operations that happened in the blockchain
and also to explore alternative histories. To simulate operations that happened,
we first get the required information to execute the operations, that is, the
invoking smart contract and its state, plus all other invoked smart contracts and
their states. Since we know what happened because it is publicly available on
the blockchain node, we can determine the smart contracts involved in a given
transaction. Once we have the initial states of every contract involved, we can
just execute one transaction at a time replicating the behavior executed by the
blockchain.

If we diverge from transactions that happened, as it would happen if we
are executing hypothetical scenarios, we may get into missing some contract
states. To explore alternative histories, we first obtained the contracts that were
called during a possible execution. Then, we perform a hypothetical execution,
which may lead to the invocation of smart contracts whose storages were not
fetched. We detect the address of the missing contract, add it to the list of
required addresses for execution using the data crawler and iterate until we
finish execution.

We can extend our running example about detecting sandwich attacks com-
puting the damage suffered by the victim simulating an alternative execution in
which the sandwich attack does not exist and comparing the hypothetical and
the real balance of the victim.

1 input Transaction tx
2 input Double balanceA
3 const a = "tz123"

4 output Double stolen =
5 if attacked[now]
6 then (getBalance a (simulate txs’)) - balanceA[now]
7 else 0
8 where txs’ = filter (not frontruns) (pastRetriever 10)
9 frontruns t = client t /= a && exchange t == exchange tx[now]
10 && tokens1 t == tokens1 tx[now] && tokens2 t == tokens2 tx[now]

In the example above, we only expose the difference between the real and al-
ternative balances of the victim. To precisely quantify how much the attacker
stole, the monitor can also inspect manually the valuable items (as tokens) and
describe the computation as an arithmetic expression. In summary, previous
specifications detect and extract transactions causing sandwich attacks, filter
them and observe the state of the blockchain as if these transactions had not
been executed.
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Number of monitored blocks 50,000
Number of transactions in monitored blocks 2,624,594
Number of transactions since the beginning of the blockchain 288,705,340
Number of calls to 3route v4 2,278
Number of attacks 39
Number of malicious accounts 3
Number of suspicious accounts 97
Number of suspicious wallets 5

Fig. 2. Summary of sandwich attack monitoring.

5 Case Studies

1. Detecting Sandwich Attacks. We used our framework to implement a
retroactive dynamic monitor for the detection of sandwich attacks, identification
of malicious addresses and quantification of the losses incurred.

The monitor receives a stream of transactions from the Tezos blockchain
and searches for possible sandwich attacks. In this case study, we set the victim
account a to an exchange aggregator smart contract known as 3route v4.

We executed the monitor starting from block 5,200,000 in the Tezos main net
until block 5,250,000. Retroactive parametrization allows us to start the monitor
at any point in the blockchain and find fund transfers that happened before the
monitor was launched. The table in Fig. 2 sums up the results obtained. Thanks
to retroactive monitoring, we obtained the suspect accounts without analyzing
every transaction. Instead of following 288 million transactions, the monitor only
queries the adapter for the past transactions when a specific target is dynam-
ically obtained, in the infrequent event where a suspicious account is found.
Furthermore, the search for the frontrunning and backrunning transactions is
only performed when the monitor detects a call to the exchange aggregator,
which occurred only in 0,08% of the monitored transactions.

2. Clustering. In this case study, we consider that an address that performs
front-running is a malicious address, and we mark the addresses that transferred
cryptocurrency in the past to a malicious address as the potential source of funds
is a suspicious address. We leave out of the search addresses that transferred
funds to suspicious accounts.

When we start to follow indirectly related addresses, we find that they form
clusters of heavily-interacting accounts with prominent addresses that act as
interconnecting hubs between clusters. The flexibility of HLola allowed us to
develop several implementations of clustering algorithms to discover the degree
of suspiciousness of a wallet with respect to a malicious account based on how
many times they interact (directly or indirectly), how many funds they exchange
(directly or indirectly), and how many intermediaries are in their relation.
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3. Juster. Juster is a decentralized application that allows Tezos users to bet
on events that represent the changes of certain cryptocurrency prices within
a given time interval. Users get a reward if their predictions are correct and
lose their bet otherwise. For example, users can bet that the value of the Tezos
cryptocurrency XTZ will rise by 10% or more in the following day. The Juster
administrator opens events on which the users can bet and closes them after the
betting interval ends, distributing the earnings accordingly.

We define an HLola monitor for the Juster platform assessing that:
(1) all closed events were previously open and no open event is reopened;
(2) there are less than 100 open events at any given time.
The monitor receives events tagged with an identifier eventId and with the kind
of event which can be either Open or Close. We define the specification in HLola:

1 input EventId eventId
2 input Operation operation

3 define {EventId} open_events =
4 if operation[now] == Open
5 then insert(eventId[now], openevents[-1|{}])
6 else if operation[now] == Close
7 then delete(eventId[now], openevents[-1|{}])
8 else openevents[-1|{}]

9 output Bool few_events = size(openevents[now]) < 100

10 output Bool right_order =
11 (operation[now] == Close) == member(eventId[now], openevents[-1|{}])

4. BFS vs DFS in Tezos. Tezos is a self-amending blockchain that provides a
mechanism to change its rules through regular protocol upgrades. Protocol Flo-
rence [24], modified the execution order of operations between smart contracts,
switching from a breadth-first search (BFS) to a more conventional depth-first
search (DFS) algorithm. This change in the execution order can potentially im-
pact transactions outcomes. In this case study, we identified those transactions
that could have behaved differently under the two execution orders.

A naive approach is to simulate each transaction under both execution orders
and compare the results. However, this approach is very inefficient for the entire
blockchain because simulating requires access to all invoked smart contracts and
their states (see Section 4.2). Fortunately, most transactions are guaranteed to
behave the same under BFS and DFS without simulation, because the execution
order only affects if some smart contract is invoked twice and the order of the
calls differs between execution orders. This is because the state of a contract only
varies when the contract is invoked. The difference in the call order to a smart
contract can be detected by inspecting the transaction call graph (a directed
tree where nodes are labeled with smart contracts and edges represent calls).
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Unfortunately, indexers do not store the transactions call graph, but only the
call sequence. For each transaction, the monitor creates all possible call graphs
that can generate the given call sequence when traversed with the corresponding
execution order. If in one of the call graphs, the call order for a smart contract
differs between BFS and DFS, the monitor marks that the transaction must be
simulated.

For this case study, we considered all 34,856,986 transactions corresponding
to the years 2021 and 2022. We used the adapter to retrieve from the indexer only
those transactions in which some smart contract is called more than once, ob-
taining 1,260,145 transactions. For each transaction, then the adapter produces
only its identifier, call sequence, and the execution order used when executing
it. As the actual name and address of the smart contract invoked is irrelevant in
this case, to save space, the formater assigns to each smart contract in a given
transaction a unique small identifier. Finally, the monitor received all 1,260,145
transactions and detected that only 599,684 (out of 34,856,986) require simula-
tion to determine behavioral differences under the other execution order.

6 Conclusions

We presented in this paper a framework for the offchain runtime verification of
blockchains, and more specifically, for the Tezos Blockchain. Offchain monitoring
allows us to create monitors which receive new blocks (as in online monitoring)
and can perform retroactive queries to the past of the blockchain (as in offline
monitoring). The retroactive feature is useful both for requesting information
about the past, before the monitoring was created, and to lazily evaluate events
that most of the time are irrelevant for the monitor.

We described our implementation based on stream runtime verification, and
in particular on the HLola language, and several cases studies including the
detection of sandwich attacks. Future work includes more advanced case studies
and more quantitaitve evalutaion and comparison with other frameworks, which
was beyond the scope of this work. Additionally, we plan to make the monitoring
front-end available as a service, enabling its application for other blockchains.
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