
Multi: a Formal Playground for1

Multi-Smart Contract Interaction2

Martín Ceresa #�3

IMDEA Software Institute, Madrid4

César Sánchez #�5

IMDEA Software Institute, Madrid6

Abstract7

Blockchains are maintained by a network of participants, miner nodes, that run algorithms designed8

to maintain collectively a distributed machine tolerant to Byzantine attacks. From the point of view9

of users, blockchains provide the illusion of centralized computers that perform trustable verifiable10

computations, where all computations are deterministic and the results cannot be manipulated or11

undone.12

Every blockchain is equipped with a crypto-currency. Programs running on blockchains are13

called smart-contracts and are written in a special-purpose programming language with deterministic14

semantics1. Each transaction begins with an invocation from an external user to a smart contract.15

Smart contracts have local storage and can call other contracts, and more importantly, they store,16

send and receive cryptocurrency.17

Once installed in a blockchain, the code of the smart-contract cannot be modified. Therefore, it18

is very important to guarantee that contracts are correct before deployment. However, the resulting19

ecosystem makes it very difficult to reason about program correctness, since smart-contracts can be20

executed by malicious users or malicious smart-contracts can be designed to exploit other contracts21

that call them. Many attacks and bugs are caused by unexpected interactions between multiple22

contracts, the attacked contract and unknown code that performs the exploit.23

Moreover, there is a very aggressive competition between different blockchains to expand their24

user base. Ideas are implemented fast and blockchains compete to offer and adopt new features25

quickly.26

In this paper, we propose a formal playground that allows reasoning about multi-contract27

interactions and is extensible to incorporate new features, study their behaviour and ultimately28

prove properties before features are incorporated into the real blockchain. We implemented a model29

of computation that models the execution platform, abstracts the internal code of each individual30

contract and focuses on contract interactions. Even though our Coq implementation is still a31

work in progress, we show how many features, existing or proposed, can be used to reason about32

multi-contract interactions.33

2012 ACM Subject Classification Theory of computation → Program reasoning; Theory of compu-34

tation → Program constructs; Theory of computation → Abstract machines35

Keywords and phrases blockchain, formal methods, theorem prover, smart-contracts36

Digital Object Identifier 10.4230/OASIcs...37

Funding This work was funded in part by the Madrid Regional Government under project “S2018/TCS-38

4339 (BLOQUES-CM)‘’ and by a research grant from Nomadic Labs and the Tezos Foundation.39

1 Introduction40

Smart-contract manipulate cryptocurrency, which has a corresponding value as money. Since41

smart-contracts cannot be modified once installed and their computations cannot be undone42

1 Although the behaviour of smart-contracts may depend on values to be known at runtime, i.e. block
number; hashes; etc, their behaviour is deterministic.

© Martín Ceresa and César Sánchez;
licensed under Creative Commons License CC-BY 4.0

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.ceresa@imdea.org
https://orcid.org/ 0000-0003-4691-5831
mailto:cesar.sanchez@imdea.org
https://orcid.org/ 0000-0003-3927-4773
https://doi.org/10.4230/OASIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

XX:2 Multi: a Formal Playground for Multi-Smart Contract Interaction

(“the contract is the law”), all interactions with the contract are considered valid. Therefore,43

there is an incentive for malicious users to take advantage from unexpected behaviors and44

interactions. Also, errors in contracts can result in losses and cryptocurrency being locked45

indefinitely, even when used but by well-intentioned users. We focus in this paper on46

the computational notion of correctness, and not on the real legal implications resulting47

from interactions in the blockchain or the use of smart-contracts to enforce legally binding48

contracts [8].49

One important reason why it is very difficult to reason about smart contracts is that50

they live in an open universe. Even though the code of a given smart-contract C cannot be51

modified once installed, other contracts that call and are called from C can be programmed52

and deployed after malicious users study C. Therefore, programmers and auditors of contract53

C did not have to analyze all possible code that can invoke or be invoked from C.54

At the same time, users demand blockchains to implement new features. Since there is55

a big competition between blockchains, this puts pressure on architects of blockchains on56

the time to market of new features. And each new feature potentially increases the attack57

surface of smart contracts.58

There are different kinds of errors found in smart-contracts.59

Logical problems are related to errors in the logic of the smart-contract. Usually, attackers60

detect a corner case that can be exploited to generate an unwanted behaviour.61

Low-level execution problems that arise from a misunderstanding on details of the low-62

level execution platform. Examples include underflow, overflow or exploiting unexpected63

behavior after the stack limit is reached.64

Programmer can also employ bad idioms that they are familiar with from other areas65

of software applications, but which may be dangerous in interactive platforms like66

blockchains, where all data (including the state of the contracts) is public and verifiable.67

Most bugs are related to multi-contract interactions. For example, the infamous DAO attack68

where malicious code legally exploited the machinery of the Ethereum blockchain creating69

unexpected re-entrant calls from remote contracts led to the loss of $60 million [14].70

In this article, we present a formalization in Coq of a general blockchain model of71

computation that allows us to study new multi-contract interactions as well as new features.72

We aim to develop a formal and rigorous way to analyze the possible interactions between73

contracts and also to study how new features affect contracts before they are implemented and74

deployed. Our Coq library allows simulating the execution of smart-contracts, abstracting75

away the internal code of the contract. Our abstraction is based on the Tezos blockchain,76

but it is general enough to cover other blockchains like Ethereum. We model smart-contract77

(almost) as pure functions from the current storage and state of the blockchain into (possibly)78

a list of operations to do next plus changes in the storage.79

2 Motivation80

After successful attacks like DAO [14] there is a growing interest in formal methods for81

smart-contracts. First, there is an interest in verifying that a contract satisfies a specification82

so certain properties can be guaranteed, e.g. the owner will be able to fetch all funds or that83

a bidder will either gain the bidding or recover the funds. Second, it is also important to84

formally study different mechanisms and features proposed for a given blockchain before85

they are offered so new attacks can be prevented. Some of these mechanisms are proposed to86

allow users to use more effective defensive programming idioms.87

For example, by analyzing the DAO attack [9] proposed a property called effectively88

Martín Ceresa and César Sánchez XX:3

callback free which restricts the interactions within smart-contracts disabling these attacks.89

Later on, the Tezos blockchain [1] implements such property by construction: smart-contracts90

are functions that either fail or returning a list of operations to be executed plus a new91

storage. Therefore, the storage is updated before the operations are executed, which prevents92

attacks like the DAO using this programming style.93

In order to prevent these attacks, the Tezos blockchain followed a conservative scheduling94

strategy. In Tezos, as is the general case, every transaction begins with a request by an95

external user indicating the smart-contract to invoke, method and arguments, and balance96

of the initial operation. Assume user Alice starts a transaction invoking method f of97

smart-contract C, and that, after executing C.f we have a list of operations [o0, . . . , on]. To98

compute the result of the transaction, the blockchain will execute each operation oi in order,99

until the gas is exhausted or the list of pending operations is empty. The order in which the100

operations are executed affects the outcome of the transaction. Two conventional strategies101

are: (1) to insert the new list of operations at the beginning of the list of pending operations102

(DFS) (2) to insert the new list of operations at the end (BFS). The first one, DFS, allows103

us to implement a call-and-return flow of computation and it is the more conventional in104

most blockchains. The second one, BFS, prevents call injection attacks by construction105

as one can guarantee that two operations are executed back-to-back and was used until106

version 8 of Tezos (Protocol Edo) [5]. In our example, assuming that executing o1 generates107

bs operations, the result of the previous execution would be [o2, . . . , on] · bs. While in DFS,108

the result would be bs · [o2, . . . , on], and thus, the instructions in bs will be executed before109

o2, . . . , on. However, BFS suffers from other classes of problems.110

Assume a bank contract that holds money for a customer and the bank contract is willing111

to send money as long as the balance stays above threshold threshold. In a solidity like112

language, the contract could be as follows:113

contract Bank {
uint threshold;
address owner;
constructor(uint _threshold, address _owner) public {

threshold = _threshold;
owner = _owner;

}
function deposit() payable public{

return([]);
}
function withdraw(uint ret) public {

if (sender = owner) then
if (balance - ret > threshold) then

return ([transfer(owner.Receive, ret)])
else

fail("breaking invariant")
else

fail("not owner")
}

}

Normal usage of a such a bank contract can be:114

contract GoodClient{

XX:4 Multi: a Formal Playground for Multi-Smart Contract Interaction

address bank;
// ...
function askMoney(uint m){ // Requests m from the vault

return([bank.withdraw(m)]);
}

}

On the other hand, the following is a simple attack exploiting the bank contract:115

contract Bad{
address bank;
//...
function rob(uint n, uint m){ // BFS attack to the vault!

return(ntimes n [bank.withdraw(m)])
}

}

The new method called rob generates a list of invocations to the vault. Assume the vault116

contract has a threshold of 9 and that is in a state in which it stores 15 units of cryptocurrency.117

A simple examination suggests that the vault will send money back to its owner whenever118

its balance is greater than 9, effectively allowing only one withdrawal. However, consider the119

following execution starting from [rob(3,5))]. After executing the operations, we would120

have the following pending queue:121

[(Bad, vault.withdraw(5)), (Bad, vault.withdraw(5)), (Bad, vault.withdraw(5))]122

Then the BFS sequence of executions leads to the following sequence of pending operations:123

[(Bad, vault.withdraw(5)), (Bad, vault.withdraw(5)), (Bad, vault.withdraw(5))] ⇝
[(Bad, vault.withdraw(5)), (Bad, vault.withdraw(5)), (Vault, Bad.Receive())] ⇝
[(Bad, vault.withdraw(5)), (Vault, Bad.Receive()), (Vault, Bad.Receive())] ⇝
[(Vault, Bad.Receive()), (Vault, Bad.Receive()), (Vault, Bad.Receive())] ⇝
[(Vault, Bad.Receive()), (Vault, Bad.Receive())] ⇝
[(Vault, Bad.Receive())] ⇝
[]

124

First, the operation sending the money back to contract Bad is added at the end, as125

dictated by BFS. Second, according to the semantics of feature “transfer” in the Tezos126

blockchain, funds are subtracted from the sending contract Vault after the transfer is127

executed. Therefore, the second withdraw request does not see the effect of attending the128

first one. The combined effect is that all three requests are attended resulting in a total129

extraction of 15 units leaving 0 in contract Vault without noticing the attack. The attack130

is based on the separation between the creation of a transfer and its execution. The lesson131

is that even though a BFS order prevents injection attacks, it allows attacks based on the132

delayed effect of emitted operation. The contract Vault can be easily fixed by encoding in133

a variable in the storage the balance that has been compromised with a future transfer. If134

necessary, withdraw can create two operations (1) the transfer, and (2) an invocation to135

a new private method in Vault whose purpose is to note that the compromised balance136

created by a withdraw has been effectively arrived.137

Another lesson is that relying on the balance of contracts is considered a bad smart-138

contract programming practice. Assume now that programmers would like the architects of139

the blockchain to implement not only balance but also pending_balance, which accounts for140

Martín Ceresa and César Sánchez XX:5

transfers sent but not executed. Moreover, assume also that the blockchain also implements141

the feature of views, an apparently innocent feature that simply returns information about142

the storage of a contract without any effect. We illustrate that these two features combined143

can lead to undesirable effects. For example, if we would like to maintain the invariant that144

at every moment the amount of combined funds between a collection of contracts is constant,145

the combination of pending_balance and views can break such an invariant.146

For example, consider three smart-contract A, B, C, and the following pending queue of147

operations:148

[A1, . . . , Ao︸ ︷︷ ︸
A

, C1, . . . , Cm︸ ︷︷ ︸
C

, B1, . . . , Bn︸ ︷︷ ︸
B

]149

where A sends money to B—in operations that are going to be executed after C but that150

update A pending balance. This leaves C in a difficult position. If C observes (using views)151

the balances of A and B there is going to be a mismatch with their real balances, because C152

will see the pending compromised balance but not the pending receives, which may induce153

bad behaviour in C. If C depends on A.balance + B.balance, for example, to buy some NFT154

it may incorrectly fail to take the right decision. A possible solution is to introduce yet155

another feature that captures pending receives.156

In our line of work, we aim to build a formal playground where different features and157

mechanisms can be encoded and reasoned about easily and formally, while also simulating158

the execution of multiple contracts.159

3 Previous Work160

In our work, we follow a static verification approach where contracts and features are analyzed161

before deployment. The idea is to encode how blockchains are implemented and study the162

behavior of contracts and features by formally proving properties. Several approaches have163

been suggested for testing, model checking and functional and temporal verification of164

smart-contracts. We review the most relevant.165

Mi-Cho-Coq. Mi-Cho-Coq is the first verification tool implemented in Coq for the Tezos166

blockchain ecosystem [4]. The main difference between Mi-Cho-Coq and our effort (Multi) is167

that Mi-Cho-Coq focuses on the analysis of the code of a single contract (or collection of168

calling contracts for which the code is available). We say that Mi-Cho-Coq implements small-169

step semantics to prove functional properties, which requires to have a concrete specification170

of a smart-contract and either its code or a higher level specification.171

The main difference with Mi-Cho-Coq is that our goal is to prove properties emerging172

from interactions between smart-contracts. Our tool is a complementary effort to lower-level173

verification tools as Mi-Cho-Coq.174

Concert. Concert [3] is another framework written in Coq to prove formal properties of smart-175

contracts, and in this case, they accept multi-contract interaction [11]. The fundamental176

idea of Concert is to model of smart-contracts as agents and computation as interaction177

(message passing) between these agents. They also implement specific mechanisms, for178

example, they implement delegation primitives in the Tezos blockchain. Moreover, Concert179

has an extraction mechanism to extract high-level smart-contracts written in Ligo [10].180

Our main difference is that we implement a very flexible framework with the idea of181

encoding new potential blockchain features and prove properties of how different features182

interact with each other. Including BFS and DFS scheduling in the Tezos blockchain, but183

there may be other scheduling strategies.184

XX:6 Multi: a Formal Playground for Multi-Smart Contract Interaction

Concert implements blockchains in a generic way using specific features of Coq (class185

system) and meta-programming features to easily embed blockchain smart-contract languages.186

Concert also builds proofs by inspecting the trace representing the evolution of the blockchain187

observed by a small step relation.188

Implementing new blockchain features relating to how smart-contracts are executed is189

an important feature in our framework, and moreover, we want to be able to reason and190

prove properties about such features. For example, what would happen if smart-contracts191

can inspect runtime information as the stack call (what the next operations or pending192

operations are). Another difference is that (so far) we observe the state of the blockchain193

comparing just the state of the blockchain before a transaction begins and after a transaction194

ends. We are also able to inspect intermediate transition steps, but we are not exploiting195

that feature yet.196

Scilla. Scilla is a smart-contract language embedded in Coq [16] that allows some temporal197

reasoning (see [17]). Scilla is an embedded domain-specific language in Coq which also198

abstracts smart contracts as functions returning a list of operations. The main difference199

between Multi and Scilla is that we do not present a language to write smart-contract but use200

Coq functions directly. We share the point where the effects of executing smart-contracts are201

simple a list of operations that are propagated by the executer. As Concert, we have a clean202

separation between the language of smart-contracts and the machinery required to execute203

smart-contracts. However, in our case, we decoupled the scheduler from the execution of204

single instructions, and thus, we can implement different scheduling strategies independently205

of the set of operations.206

VerX. VerX is an automatic software verification tool that checks custom functional properties207

of smart-contract entrypoints. VerX works on a similar level to Mi-Cho-Coq, in the sense208

that they prove functional properties of smart-contracts, but it is built to be completely209

automatic and also to handle some multi-contract interactions. The interaction between210

smart-contracts comes from performing analysis on the possible onchain behaviours of a set211

of smart-contracts. VerX restricts the analysis to a set of smart-contracts, S, that have a212

condition called effectively external callback free contracts, which states that any behaviour213

generated by an interaction between smart-contracts in set S that has an external call is214

equivalent to a one without external calls [13]. This follows the lines of [9]. Because of that215

restriction, they can reason about smart-contract, proving PastLTL specifications, but it also216

restricts them to work in a close universe.217

SmartPulse. SmartPulse [18] is another automatic verification tool for smart-contracts. The218

main goal is to verify temporal properties including some simple liveness properties. This219

tool is similar to VerX but it is focused on proving liveness properties of a single contract in220

a closed universe. They do not support multi-contract interaction.221

4 Model of Computations222

Blockchain Model. We ignore the internals of the infrastructure of blockchain implementa-223

tions (like cryptographic primitives, consensus algorithms or mempools) and focus exclusively224

on the model of computation that blockchains offer to external users. The blockchain is225

then abstracted by a partial map from addresses to smart-contracts. Smart-contracts are226

programs with some structure:227

Storage: a segment of memory that can only be modified by the smart-contract.228

Martín Ceresa and César Sánchez XX:7

Balance: an attribute of contracts that indicates the amount of cryptocurrency stored in229

the contract.230

The program code: a well-formed program that represents the implementation of the231

smart-contract.232

The state of a smart-contract is a proper value of its storage plus the balance its stores.233

The model of computation consists of the sequential execution of transactions, each of which234

is started by the invocation of an operation. In the current version, we ignore how gas or fees235

are paid or how new currency is created during the evolution of the blockchain to pay the236

bakers. Smart-contracts can be executed upon request from an external user that initiates a237

transaction or by the invocation from a running contract. Upon invocation, the blockchain238

evaluates the result of executing the smart-contracts program following a given semantics239

producing effects on the blockchain (further invocations) and changes on the smart-contracts’240

storage or they may fail.241

Open Universe. We introduce now the concept of universe of computation. Once a smart-242

contract has been installed on a blockchain, every other entity in the blockchain can interact243

with it. The smart-contract itself can invoke or be invoked by older or newer contracts. The244

case of smart-contracts invoking just older and well known contracts can be useful sometimes245

but in general smart-contracts may not know a priori who they are going to interact with.246

This differs from conventional software where components are built from well-known trustable247

components and the surface of interaction with potentially malicious usage is small and248

well defined. The classical way of programming exposes the internals of complex software249

and leaves open attack vectors. For example, to guarantee certain behaviour high-level250

smart-contracts invoke low-level smart-contracts following a protocol to logically guarantee251

a result. However, malicious software may not follow such protocols possibly breaking252

or leaving low-level smart-contracts in an incorrect state. This open universe model of253

computation forces smart-contracts to implement defensive mechanisms to prevent undesired254

executions.255

Most verification techniques and frameworks mentioned previously do not take into care256

such assumption. They operate under the idea that smart-contracts behave the way they257

are supposed to, in the sense, that either they avoid external call invocations by removing258

interactions or by assuming they are interacting with good smart-contracts. However, this is259

not the case, the blockchain is an aggressive environment, a so called dark forest [15]. In260

this paper, we study this problem attempting to formalize properties of smart-contracts261

operating under a more realistic (and pessimistic) view of the world and also to develop new262

mechanisms or features to explicitly guarantee that we are working under a safe environment.263

Such mechanisms could be implemented inside smart-contracts, but not every mechanism264

can be implemented using current blockchain technologies, like transaction monitors [6, 7].265

5 Formalization266

In this section, we describe the building blocks of our Coq library implementation that allows267

us to reason about different blockchain execution mechanisms. Our goal is to study how268

smart-contracts interact with other smart-contracts, and thus, we abstract away the internal269

execution of the instructions of the smart-contract. Moreover, we need a framework flexible270

enough to implement new features (i.e. different execution models, scheduling strategies, etc)271

and, additionally, a formal system to prove and verify properties of interactions between272

smart-contracts implementing and using such features. In short, we implemented a formal273

playground simulating the model of computation of blockchains.274

XX:8 Multi: a Formal Playground for Multi-Smart Contract Interaction

We abstracted blockchains following the model described in Section 4 in the proof-assistant275

Coq. We interpret smart-contracts as pure functions in the host language Coq and every276

additional feature is implemented on top of pure functions.277

Smart-contracts are implemented as a structure with three fields (Listing 1): a storage, a278

balance, and a pure function implementing the smart-contracts code.

Structure SmartContract (Ctx Param Storage Error Result : Type) : Type :=
mkSmartContract {

(* Storage *) _Sst : Storage ;
(* Balance *) _Sbalance : N ;
(* Computation that result in an element of type Result *)
_Sbody : Ctx → Param → Storage → Error + (Result * Storage)

}.

Listing 1 Smart contract Definition

279

Note that structure SmartContract is highly parametric:280

Parameter Ctx represents what smart-contracts can observe about the blockchain and281

the execution model as: current block level, the total balance of the transaction, who the282

sender and source are, etc.283

Parameter Param represents the parameters the body of the smart-contract expects to284

receive; using Param we model the different entrypoints of a contract.285

Parameter Storage represents the storage of the smart-contract.286

Parameter Error represents the type of errors that can result from the execution of the287

smart-contract.288

Parameter Result represents the resulting type of smart contracts, which in the Tezos289

model is a list of further operations.290

The type SmartContract represents the most basic structure of a smart-contract. It is simply291

a structure with some storage, balance and a body.292

The Smart-contracts body is modeled as a pure functions from the current state of the293

blockchain and its storage to a sequence of operations. In this way, we abstract away concrete294

blockchain programming languages or implementations. Even though our formalization is295

based on the semantics of method invocations in the Tezos blockchain, different programming296

language can be modeled in this paradigm using standard compiler techniques (essentially297

dividing a complex function with effects into its basic blocks that are pure functions as298

modeled here).299

5.1 Execution300

The execution of a smart-contracts, aside from changes in the storage, also produces a301

sequence of operations to be executed. Therefore, we have to take care of two things: how to302

execute these operations, and how to order the execution. We split the execution model into303

two main pieces: a scheduler and an executor.304

Scheduler. The scheduler is in charge of the order of execution, adding new operations the305

pending queue (either at the beginning or the end, etc). The scheduler is also in charge of306

creating new contexts. Finally, it is in charge of building the graph/tree of transactions,307

every information that descendants of an operation may share is kept and organized by the308

scheduler.309

Executer. The executer is in charge of executing an operation in a given context, and it is the310

Martín Ceresa and César Sánchez XX:9

same independently of the evaluation order. The most basic operation of an executor is smart-311

contract invocation, which requires that the executor collects and builds the environment312

in which such invocation should be executed. The context is the blockchain state from the313

point of view of the contract execution. Another operation is smart-contract creation, which314

in this case it is going to generate a modification to the blockchain, and communicate it to315

the scheduler.316

Operations. We assume the blockchain has a simple set of operations. We start from a317

minimal set of operations that is simple enough to enable smart-contracts interaction, and318

later add new operations as needed afterward.319

We begin our implementation with two operations: Transfer and Create_Contract.320

Operation Transfer performs an invocation to a given address while also sending money.321

Operation Create_Contract installs a new smart-contract at an indicated address with322

an initial amount of balance and storage.323

Inductive EnvOps : Type :=
| Transfer : forall (T : Mich_Type),

(* Parameter *) (Type_Interpret T) →
(* Amount to transfer *) Mutez →
(* Contract address to invoke *) (Type_Interpret (ContractT T)) →
EnvOps

| Create_Contract : forall (PTy StTy : Mich_Type),
(* Pre-computed Address *) Address →
(* Initial amount *) Mutez →
(* Initial Storage *) (Type_Interpret StTy) →
(* Body *) MichBodyTy PTy StTy (list EnvOps) →
EnvOps.

Where Mich_Type is an enumeration type of the different data structures supported by the324

blockchain, i.e. natural numbers, strings, etc. In our case, since we are working close to325

the implementation of the Tezos blockchain, we implement most of its data structures, and326

we represent them as an inductive type Mich_Type. Using the previous operations, we can327

define smart-contracts simply as the following structure:328

Structure MichContract : Type := mkMich {
(* Contract parameter type *) _Param : Mich_Type ;
(* Storage type *) _Storage : Mich_Type;
(* Contract body*)
_Soul : SmartContract

(TzCtxt _Param)
(Type_Interpret _Param)
(Type_Interpret _Storage)
OError
WritingContext;

}.

Essentially, we capture smart-contracts as their body plus information about their types.329

Hiding away the type information forces us to implement a lot of type matching clauses when330

it comes to the execution of smart-contracts. However, it enables us to represent the state of331

the blockchain simply as a (partial) map of addresses to smart-contract.332

XX:10 Multi: a Formal Playground for Multi-Smart Contract Interaction

Definition TezosEnvironment := string → option MichContract.

Given an operation, the executer is in charge of building the required information to execute.333

In the case of an invocation to an address addr, the executer looks up the address addr into334

the current environment to see if there is a smart-contract matching the expected type at335

that address, and in that case, executes its body to obtain either a new storage and further336

operations or a fail. In the case of a smart-contract creation operation, the executer is in337

charge of checking that the address is actually free and updating the environment adding338

such smart-contract. Finally, the executer is also in charge of checking that smart-contracts339

have enough balance to perform transactions and update the current environment with the340

new balances.341

We can characterize our executer as follows:342

Definition ExecuterTy : Type :=
(* Input context information *) (ctx : ExecutionContext)

→ (* Operation to execute *) (o : EnvOps)
→ (* Current state *) (env : BCEnvironment)
→ MFail (* possibly returning: *)

(option(
(* Address emitting new operations, next sender *) Address *
(* Effects generated (new operations) *) WritingContext)
* (* Updates to the environment *)
(list (Address * MichContract))).

Different executers exercising type ExecuterTy can interpret operations in different ways.343

Executers receive two arguments, ctx and env, representing the execution context and the344

environment of the blockchain, respectively, and in return, provide the modifications to the345

environment and possibly a list of new operations. Note that ExecuterTy leaves some proofs346

obligations if we want to simulate current blockchains, i.e. we need to show that ExecuterTy347

does not modifies or upgrades exiting smart-contracts’ code (see Section 5.2).348

Schedulers are in charge of gluing together the effects generated by the execution of349

operations in the current blockchain. We model them in Coq as a type listed in Listing 2350

where SchedulingStrategy implements the execution order to follow. In other words,351

schedulers keep track of the evolution of the state of the blockchain while managing the352

pending queue of operations. Schedulers take the first operation on the pending queue,353

build the information required by the executor, and pass everything to an executer. When354

executers return, schedulers take the resulting operations and updates to the current state of355

the blockchain.356

Definition Scheduler : Type
:= (* Strategy *) SchedulingStrategy
→ (* External user *) Address
→ (* Executor *) ExecuterTy
→ (* Current environment *) BCEnvironment
→ (* Time *) Timestamp
→ (* Pending Execution list *) list (list EnvOps * ExecutionContext)
→ (MFail BCEnvironment * Timestamp).

Listing 2 Schedulers type

The computation of a transaction begins with an external user (outside the blockchain)357

posting one or more operations to be executed, defined in Listing 3. The initial transaction358

Martín Ceresa and César Sánchez XX:11

Structure SignedTrans : Type := mkSignedTrans {
_author : Address; _trans : list EnvOps

}.

Listing 3 Signed transactions definition.

is given to the scheduler, which also receives a scheduler strategy, an executer, and a context359

to compute the transaction and its descendants operations. The result is a pair composed of360

a possible new environment and the next timestamp. We need timestamps to represent the361

passage of time, and thus, time progresses even in the case that a transaction is reverted. In362

practice, the scheduler strategy is fixed for a given blockchain.363

Since blocks in the blockchain are just sequences of signed transactions, SignedTrans,364

we can generate arbitrary traces with systems like QuickChick [12]. Given a logical program365

(reflected in a set of smart-contracts), we can codify the possible logical operations in an366

inductive type in Coq. Therefore, we can generate a sequence of actions translating the367

logical steps into transactions in the blockchain and verify that the smart-contracts do not368

reach an invalid state.369

5.2 Proof of Correctness370

We can define a specification of how a proper blockchain should behave and check that371

our implementation follows the specification. For example, a basic property is no-double372

spending which states that transfers (remote contract invocations) are paid once, i.e. the373

sender is not charged twice for the same operation. We can go even further and prove that374

executing a transfer does exactly what it is supposed to do (Listing 4), i.e. invokes another375

smart-contract, executes its code, deduce the expected amount from the sender’s account,376

and adds it to the destination’s account, or fail (in which case the transfer has no effect).377

Lemma SimpleTransferCheck :
forall callerContract calleeContract parameterTy BCCtxt send

(parameter : Type_Interpret parameterTy)
(storage storage' : Type_Interpret (_Storage calleeContract))
(contractContext : TzCtxt parameterTy),
successWith (ops, (caller', callee'))

(SimpleTransfer callerContract send calleeContract)
→ _st calleeContract ≡ storage
→ successWith (ops, storage') (exec calleContract BCCtxt parameter)
∧ ((_balance callerContract) - send) ≡ _balance caller'
∧ ((_balance calleeContract) + send) ≡ _balance callee'
∧ _st callee' ≡ storage'.

Listing 4 Transfer is correct.

An alternative approach would be to define a small step inductive relation defining378

how blockchains should behave and prove that the scheduler follows it step by step. The379

framework Concert [3] follows that approach.380

5.3 Multi-Contract Interaction Proofs381

The most important part of our framework is that we can simulate executions of smart-382

contracts and inspect the effects generated by smart-contract interactions. In other words, we383

XX:12 Multi: a Formal Playground for Multi-Smart Contract Interaction

have a big-step semantics of blockchain operations where we can study how smart-contracts384

using different mechanisms (i.e. BFS/DFS, etc) interact with each other. We can build proofs385

either by observing the evolution of the transaction execution operation by operation, or386

analyzing its final state after the transaction terminates. In other words, we have a definition387

of observational equivalence of smart contracts modulo the particular blockchain employed388

as evaluator.389

This is extremely useful because we can abstract away entire smart-contracts and event390

simulate the more realistic scenario: a demonic environment. Either we know the code391

of smart-contract and we can predicate over these code during the proof, or we do not392

have these code, which requires reasoning with universal quantification over all possible393

smart-contracts. In other words, to prove that smart-contracts are prepared to operate394

properly in the open universe of the blockchain requires to reason about the interactions395

with all possible contracts.396

We can model angelic computations by expanding our known universe of smart-contracts397

simply by implementing smart-contract on our framework and having them installed in the398

blockchain inside a simulation.399

6 Conclusion400

In this paper, we present Multi, a formal playground to reason about smart multi-contract401

interaction and to study features of the blockchain before deployment. Additional features402

and mechanisms are described in Appendix C and Appendix B where we introduce the idea403

of Bundles of operations: semantic restrictions on the execution of a sequence of operations.404

Our framework, based on the Tezos blockchain, is very general and allows us to reason about405

different execution orders, abstracting away each operation on a contract by a pure function406

whose output is either a failure or the changes in the local storage plus further operations.407

Future work includes:408

Examples and study cases: implement and study complex use cases.409

Integrate Multi to the Tezos formal ecosystem and study interactions with Concert and410

Mi-Cho-Coq.411

Implement additional features, e.g. transaction monitors, views, etc, and study how they412

interact between each other.413

Design and implement a DSL to easily encode specific smart-contracts easing the transla-414

tion from existing languages into Coq functions.415

Write more expressive smart contract types following the steps of Concert since Coq416

functions are more general than the contracts accepted by most blockchains (like Tezos).417

Implement complex features as tickets/NFT using some mechanisms (like monads) to418

better capture the space of functions that represent smart-contracts.419

Finally, we aspire to implement a richer specification language using ATL [2] to describe420

the interaction between smart-contracts and fully verify their specification in Coq. The idea421

consists in describing programs as interactions between agents (i.e. smart-contracts) where422

agents cooperatively guarantee certain properties or exercise certain rights. At the semantic423

level, we would connect the evaluation of smart-contracts in a blockchain with their semantic424

given by ATL and concurrent games. In other words, with Multi, we can interact between a425

rich specification language of smart-contracts and their behaviour defined by the execution426

of blokchains.427

Martín Ceresa and César Sánchez XX:13

References428

1 Victor Allombert, Mathias Bourgoin, and Julien Tesson. Introduction to the tezos blockchain,429

2019. URL: https://arxiv.org/abs/1909.08458, doi:10.48550/ARXIV.1909.08458.430

2 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.431

J. ACM, 49(5):672–713, sep 2002. doi:10.1145/585265.585270.432

3 Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. Concert: a smart contract certifica-433

tion framework in coq. Proceedings of the 9th ACM SIGPLAN International Conference on Cer-434

tified Programs and Proofs, Jan 2020. URL: http://dx.doi.org/10.1145/3372885.3373829,435

doi:10.1145/3372885.3373829.436

4 Bruno Bernardo, Raphaël Cauderlier, Zhenlei Hu, Basile Pesin, and Julien Tesson. Mi-cho-437

coq, a framework for certifying tezos smart contracts. CoRR, abs/1909.08671, 2019. URL:438

http://arxiv.org/abs/1909.08671, arXiv:1909.08671.439

5 Tezos Blockchain. Tezos agora: Florence, no ba (psflorena), 2021-12-24. URL: https:440

//agora.tezos.com/period/46.441

6 Margarita Capretto, Martin Ceresa, and Cesar Sanchez. Transaction monitoring of smart con-442

tracts, 2022. URL: https://arxiv.org/abs/2207.02517, doi:10.48550/ARXIV.2207.02517.443

7 Alberto Cuesta Cañada, Fiona Kobayashi, fubuloubu, and Austin Williams. Eip-3156: Flash444

loans. URL: https://eips.ethereum.org/EIPS/eip-3156.445

8 Joshua Ellul, Jonathan Galea, Max Ganado, Stephen Mccarthy, and Gordon J. Pace. Regulating446

blockchain, dlt and smart contracts: a technology regulator’s perspective. ERA Forum,447

21(2):209–220, Oct 2020. doi:10.1007/s12027-020-00617-7.448

9 Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky, Mooly449

Sagiv, and Yoni Zohar. Online detection of effectively callback free objects with applications450

to smart contracts. Proc. ACM Program. Lang., 2(POPL), dec 2017. doi:10.1145/3158136.451

10 Ligo. Ligo: A friendly smart contract language for tezos, 2022. URL: https://ligolang.org/.452

11 Jakob Botsch Nielsen and Bas Spitters. Smart contract interactions in coq. In FM Workshops453

(1), volume 12232 of Lecture Notes in Computer Science, pages 380–391. Springer, 2019.454

12 Zoe Paraskevopoulou, Cătălin HriŢcu, Maxime Dénès, Leonidas Lampropoulos, and Ben-455

jamin C. Pierce. Foundational property-based testing. In Christian Urban and Xingyuan Zhang,456

editors, Interactive Theorem Proving, pages 325–343, Cham, 2015. Springer International457

Publishing.458

13 Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and Martin459

Vechev. Verx: Safety verification of smart contracts. In 2020 IEEE Symposium on Security460

and Privacy (SP), pages 1661–1677, 2020. doi:10.1109/SP40000.2020.00024.461

14 Daian Phil. Analysis of the dao exploit, 2016. URL: https://hackingdistributed.com/462

2016/06/18/analysis-of-the-dao-exploit/.463

15 Dan Robinson and Georgios Konstantopoulos. Ethereum is a dark forest, 2020. URL:464

https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest.465

16 Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Scilla: a smart contract intermediate-466

level language, 2018. URL: https://arxiv.org/abs/1801.00687, doi:10.48550/ARXIV.1801.467

00687.468

17 Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Temporal properties of smart contracts. In469

Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Meth-470

ods, Verification and Validation. Industrial Practice, pages 323–338, Cham, 2018. Springer471

International Publishing.472

18 Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil473

Dillig. Smartpulse: Automated checking of temporal properties in smart474

contracts. In 42nd IEEE Symposium on Security and Privacy. IEEE,475

May 2021. URL: https://www.microsoft.com/en-us/research/publication/476

smartpulse-automated-checking-of-temporal-properties-in-smart-contracts/.477

https://arxiv.org/abs/1909.08458
https://doi.org/10.48550/ARXIV.1909.08458
https://doi.org/10.1145/585265.585270
http://dx.doi.org/10.1145/3372885.3373829
https://doi.org/10.1145/3372885.3373829
http://arxiv.org/abs/1909.08671
http://arxiv.org/abs/1909.08671
https://agora.tezos.com/period/46
https://agora.tezos.com/period/46
https://agora.tezos.com/period/46
https://arxiv.org/abs/2207.02517
https://doi.org/10.48550/ARXIV.2207.02517
https://eips.ethereum.org/EIPS/eip-3156
https://doi.org/10.1007/s12027-020-00617-7
https://doi.org/10.1145/3158136
https://ligolang.org/
https://doi.org/10.1109/SP40000.2020.00024
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
https://arxiv.org/abs/1801.00687
https://doi.org/10.48550/ARXIV.1801.00687
https://doi.org/10.48550/ARXIV.1801.00687
https://doi.org/10.48550/ARXIV.1801.00687
https://www.microsoft.com/en-us/research/publication/smartpulse-automated-checking-of-temporal-properties-in-smart-contracts/
https://www.microsoft.com/en-us/research/publication/smartpulse-automated-checking-of-temporal-properties-in-smart-contracts/
https://www.microsoft.com/en-us/research/publication/smartpulse-automated-checking-of-temporal-properties-in-smart-contracts/

XX:14 Multi: a Formal Playground for Multi-Smart Contract Interaction

A Angelic/Demonic478

Given the open universe nature of blockchains, smart-contracts are forced to identify who are479

they interacting with. Programmers when they are designing complex software do not think480

that they are in a dangerous and aggressive environment, as it is now, and simply think that481

smart-contracts will interact with good pieces of software doing what they are supposed to482

do. However, as we saw before, this may not be true.483

In this section, we present a new characterization when it comes to classifying the484

interaction between multiple smart-contracts. We call this characterization Angelic/Demonic485

where we mark smart-contracts as angelic when they do what they are supposed to do, or486

as demonic when we cannot assume anything about their behaviour, and thus, we cannot487

predict nor predicate about their behaviour. Note that this is not a property enforced by488

blockchains, but it is more of a mindset at the moment of designing complex software that is489

going to run on the blockchain.490

There are essentially two basic models to reason about multi-contract interaction:491

Closed World Assumption: every smart-contract knows and trusts the smart-contracts that492

it is invoking (directly and transitively). In particular, every smart-contract C only493

invokes contracts that are older than C and whose properties are known.494

Open World Assumption: every contract C runs in an adversarial environment and smart-495

contracts should protect against possible evil smart-contracts.496

A closed world assumption is feasible on many occasions because of the public and497

immutable2 character of the blockchain. Since everything is public and smart-contracts498

do not change, as smart-contract developers, we can observe the state and code of smart-499

contracts that we are going to interact with and decide if they are angelic, i.e. if they do500

what they are supposed to do.501

Note that “the angelic state” is fragile and it may change. For example, assume we invoke502

a smart-contract B that in turn invokes another smart-contract whose address addr is stored503

in B’s storage. As we are about to submit our smart-contracts to the blockchain, we can504

explore and decide that B and the current addr are angelic. However, eventually, B may505

change it to another smart-contract addr′ that may also be angelic to B, or B is protected506

towards possible attacks from addr′, but it may open an attack on our smart-contract.507

The second option, an open world assumption, is a more real situation and sometimes the508

only possible case for certain smart-contracts. One of the most prominent cases is exchange509

houses: let Dex be a smart-contract that is always willing to exchange token A for token510

B for a certain fee in behave of a set of investors. In this case, the smart-contract Dex is511

doomed to interact with unknown addresses.512

Another example is that we can implement a call-and-return model using continuation513

passing style between smart-contracts in BFS blockchains. However, implementing such514

interactions between smart-contracts requires to assume that every smart-contracts is going515

to behave accordingly, and thus, we are under an angelic assumption. Therefore, we need a516

framework that can handle angelic and demonic assumptions.517

2 Although it is possible to implement mutable and upgradable smart-contracts, this is not the general
case, and even if the nature of the smart-contract was to mutate this would be known by the invoker.

Martín Ceresa and César Sánchez XX:15

B Bundles of Operations518

In this section, we introduce the concept of bundles of operations high level restrictions on519

how we want a sequence of operations to be executed. For example, we can abstract away520

what is important about a scheduler following a BFS strategy: atomicity of a sequence of521

operations. In other words, the operations generated by a smart-contract are going to be522

executed one after another without other smart-contracts injecting operations between them.523

A bundle is a semantic condition (or restriction) on the execution of a sequence of524

operations. Instead of forcing the whole blockchain to use a particular execution order, we525

theorize on having a domain-specific language (DSL) describing how we would want to526

execute a set of operations. In other words, we would like to predicate on how operations527

are to be executed explicitly, either by assuming a BFS/DFS or other mechanisms.528

B.1 Atomic Sequence529

Given a sequence of operations ⟨s0, s1, . . . , sn⟩, we want them to be executed atomically530

without interleaving operations independently of the execution order followed by the scheduler.531

BFS schedulers respect such bundle by definition, while DFS schedulers should check that532

the effects generated by each si with i ≤ n does not affect the rest of the smart-contracts.533

B.2 Contexts534

The call and return pattern enables us to reason about units of functionality, in the sense, that535

when we invoke a method in a smart-contract is because we expect a result independently of536

how many other functions that method is invoking. When we program smart-contracts under537

the demonic assumption, where giving control to other (possibly unknown) smart-contract538

may result in an attack, we want to encapsulate their behaviour while still interacting with539

them to obtain some functionality.540

Independently of the execution order, we can devise an encapsulation mechanism enabling541

us to reason about the functionality of external invocations in a context. The general idea542

is to encapsulate the execution of smart-contracts and all of its descendant operations in543

a context. Instead of having a pending queue of operations, we would have a sequence of544

pending queues, each one representing an encapsulated context. Operationally, each context545

is completely executed before passing to the next. Contexts give us the ability to invoke546

functions and execute them as if they were the only procedures being executed in the machine,547

i.e. in a completely isolated context.548

▶ Example 1. Let A and B be two smart-contracts such that the result of executing A is549

two operations [A1, A2], while the result of executing B is just [B1]. Moreover, operations550

A1, A2 do not generate new operations.551

Assuming we have a pending queue formed by a context invocation to A followed by a552

normal invocation to B, we will have the following execution sequence:553

[[A], B]⇝ [[A1, A2], B]⇝ [[A2], B]⇝ [[], B] ≡ [B]⇝ . . .554

Implementing contexts is easy and very useful to encapsulate functionality. However, this555

brings some questions: how are contexts created? who creates them? From the point of view556

of defense programming, we have two possible answers:557

Caller contextual call: upon invoking a remote procedure, the caller can specify the execution558

to be encapsulated in a context. This mechanism protects the callee since the new559

XX:16 Multi: a Formal Playground for Multi-Smart Contract Interaction

procedure cannot inject operations interleaving the ones already on the pending queue560

(as a DFS blockchain would do).561

Callee contextual call: when invoked, the callee internally decides if its functions are to be562

executed in a context. This mechanism enables the function being called to assume that563

the pending execution queue is empty and nothing is going to modify it aside from itself564

or the invoked smart-contracts.565

C Restricting Smart-Contracts Interaction566

We implemented two kinds of restrictions: one where the blockchain enters into a mode567

where the smart-contract interactions are not allowed, and another where we can reduce the568

set of addresses that can be invoked.569

End of Interactions. The executor only accepts transactions from and to the same smart-570

contract.571

Address Universe. We can dynamically restrict the universe of addresses that smart-contracts572

(and their descendants) can invoke, either by restricting the known universe of addresses or573

by specifying addresses that cannot be invoked. In other words, we would have two sets of574

addresses:575

Allow addresses: the set of addresses that can be invoked during execution. Invoking an576

address outside this set will force the transaction to fail.577

Block addresses: the set of addresses that cannot be invoked during execution. Invoking578

one of these addresses will force the transaction to fail.579

Both mechanisms suggest the addition of a shared state between a smart-contract and580

its descendants during the execution of smart-contracts. If we see transaction executions as581

trees, we can add restrictions to such tree. Moreover, we can analyze transaction trees to582

restrict or predict the behaviour of smart-contracts.583

	1 Introduction
	2 Motivation
	3 Previous Work
	4 Model of Computations
	5 Formalization
	5.1 Execution
	5.2 Proof of Correctness
	5.3 Multi-Contract Interaction Proofs

	6 Conclusion
	A Angelic/Demonic
	B Bundles of Operations
	B.1 Atomic Sequence
	B.2 Contexts

	C Restricting Smart-Contracts Interaction

