
i2kit: A Deployment Tool with the Simplicity of
Containers and the Security of Virtual Machines

?

Pablo Chico de Guzmán, Felipe Gorostiaga, and César Sánchez

IMDEA Software Institute, Madrid, Spain

Abstract. Container virtualization technologies, like Docker, are be-
coming increasingly popular. Containers provide exceptional developer
experience because containers offer lightweight isolation and ease of soft-
ware distribution. Containers also solve a fundamental code portability
problem.
In contrast, container virtualization is basically insecure when compared
to virtualization based on hypervisors. Virtual machines are also better
integrated with the rest of the cloud ecosystem. Sum it all, virtual ma-
chines are more suitable for production environments. However, virtual
machines impose a non-negligible memory footprint and suffer longer
boot times, which is impractical for local development. So far, there is
no deployment infrastructure that allows both the developer experience
of containers and the maturity and isolation capabilities of virtual ma-
chines.
We solve this problem in this paper by introducing i2kit , an orchestration
tool that enjoys the best of both worlds: (1) the development workflow is
untouched, containers can be used as usual; (2) at time of deployment,
containers are transformed into virtual machines, keeping code portabil-
ity, but providing better security and better integration with other cloud
services. The tool i2kit creates virtual machines using Linuxkit. Lin-
uxkit alleviates the drawback in size that using virtual machines would
otherwise entail because the footprint of our Linuxkit distributions is
only about 60MB. The attack surface of the application is reduced since
Linuxkit only installs the minimum set of OS dependencies to run con-
tainers. Finally, we report an empirical study using i2kit that allows us
to conclude that i2kit is a promising technology for VM deployment of
applications developed using containers.

Keywords: virtualization, orchestration; security; resource utilization;

1 Introduction

Docker containers [1] have popularized the use of lightweight virtualization tech-
nologies such as LXC [2]. Some large companies report running all of their ser-

? This research has been partially supported by: the EU H2020 project Elastest (num.
731535), by the Spanish MINECO Project “RISCO (TIN2015-71819-P)” and by the
EU ICT COST Action IC1402 ARVI (Runtime Verification beyond Monitoring).



ServerServer

Host OS Host OS

Guest Guest Guest
OS OS

Hypervisor

OS

LibsLibs

LibsLibs Libs

Libs

Docker

App1 App2 App3

App1 App2 App3

Fig. 1. Virtual Machines vs. Containers.

vices in containers (e.g. [3]), and Container as a Service (CaaS) products are
available from the main cloud players including Amazon EC2 Container Service,
Azure Container Service, and Google Container Engine Service.

There are good reasons for the popularity of containers: containers provide
extremely fast instantiation times, small per-instance memory footprints, high
density on a single host and ease of software distribution. Fig. 1 illustrates the
differences between virtual machines and containers. Containers are lightweight
because the operating system layer is not replicated for every application run-
ning on the same server. Developers are able to run third-party dependencies
such as databases, message brokers, proxies,. . . each in its own container. Addi-
tionally, everything is easily integrated with the application under development
with enough isolation and density of containers to run many small services in
the developer’s local machine. In fact, containers have popularized the so-called
micro-service architectures [4, 5].

At deployment time, containers solve a fundamental code portability prob-
lem. Containers are packaged with all the dependencies and libraries they need
to run, making them portable between distributions. However, although the high
density of containers is of great value in a local environment or for continuous
integration (CI) jobs, it introduces new challenges in production environments.
First, containers are poorly integrated with the rest of the cloud offering, such
as auto-scalability, fault tolerance, load balancing, service discovery or network-
ing. Container cluster management tools—like Kubernetes [6], Docker Swarm [7]
and Mesos [8]—provide similar services at the cost of adding a new control plane
layer, which requires additional setup steps, adds redundancy and might become
hard to debug. [9] extends on the complexity of Kubernetes.

But the main challenge introduced by containers is security [10]. Container
isolation is based on concepts like namespaces, cgroups, seccomp technologies,
the user core Linux permission model or root user capabilities. These mechanisms
provide an additional defense on top of application security, but it only takes
a single kernel bug to bypass all these mechanisms and escape the container



isolation model (see [11] for some vulnerabilities). Some use cases require a higher
level of isolation, like sandboxes for running vulnerable or untrusted code, or
multi-tenant environments in the case of hosted services. Note that trusted but
vulnerable applications running on the same server might become an entry point
for malicious agents.

Hypervisors, such as KVM [12], VMware ESXi [13], or Microsoft Hyper-V [14]
are proven and mature technology that solved this problem years ago. Following
the Linux philosophy of Do one thing and do it well, we propose a separation
of concerns to provide the security of virtual machines, but the portability and
simplicity of containers. In our approach, each container1 is deployed in its own
virtual machine. This container virtual machine (CM) is only meant to provide
isolation between containers, and can be reduced to a minimum footprint. The
current implementation of i2kit is based on Linuxkit [15], which is able to gen-
erate Linux distributions specialized to run containers with a memory footprint
of approximately 60MB. Smaller distributions also entail:

(a) the reduced attack surface of the system by having less software pre-installed;
(b) faster booting times since booting times are roughly linear in the size of the

distribution.

Note that since CMs run containers, code portability and ease of software dis-
tribution is maintained.

CMs is the main concept behind i2kit , a container orchestrator introduced in
this paper which uses the CM as the unit of deployment. The name i2kit stands
for immutable infrastructure kit. Immutable infrastructure [16], also known as
i2, is an approach to managing software deployments wherein the servers (where
components run) are replaced rather than changed or modified in every software
update. The tool i2kit recreates every CM on every deployment, following a
pure immutable infrastructure approach. The i2kit orchestrator is inspired by
Kubernetes, where applications are defined in a declarative way using a YAML
Manifest File. The tool i2kit provides out of the box solutions for auto scalability,
fault tolerance, load balancers, service discovery, rolling upgrades or networking,
but instead of reimplementing these services (as Kubernetes does), i2kit reuses
proven, mature and efficient cloud technology like auto scalability groups, load
balancers or DNS services. In a nutshell, compared to containers, CMs provide
better security and integration with the rest of the cloud offering.

The rest of the paper is organized as follows: Section 2 introduces the i2kit
principles and explains how to integrate CMs with the rest of the cloud offering
to provide common features available in other orchestrators like Kubernetes.
Section 3 describes how CMs are generated from containers. Section 4 describes
the implementation of the i2kit orchestrator. Section 5 measures the impact of
i2kit on different metrics such as booting times, networking and cluster memory
consumption. Finally, Section 6 concludes and describes some research lines for
future work.

1 In this paper, we refer to containers or pods indistinctly. A pod is a group of strongly
related containers that get deployed as a unit.



2 The Design of i2kit

The i2kit tool is open source, and it is actively under development at the IMDEA
Software Institute2. The i2kit tool is a container orchestrator whose unit of
deployment is the container virtual machine (CM). CMs are built using Linuxkit
(see Section 3 for a detailed description). i2kit is inspired by Kubernetes and
follows the best principles in the container ecosystem. Kubernetes is an evolution
of the Borg [17] and Omega [18] cluster manager tools, adapted for containers,
where applications are defined using a declarative model.

For example, Fig. 2 shows a simplified Kubernetes Deployment Manifest
input (which we borrow as the input format for i2kit), and Fig. 3 represents the

name: myapp

replicas: 3

containers:

nginx:

image: nginx:1.7.9

ports:

- 80

api:

image: myapp:1.0

Fig. 2. i2kit Manifest File.

deployment of this Deployment Manifest in
Kubernetes. Pods are the unit of deployment
in Kubernetes, which are essentially a sand-
box that allows running containers inside. In-
formally, a Pod fences an area of the host OS,
builds a network stack, creates the necessary
kernel name-spaces, and runs one or more con-
tainers. A Replica Set builds on top of a set
of Pods. A Replica Set takes a Deployment
Manifest and instantiates the desired num-
ber of replicas of the Pod. Replica Sets also
instantiate a background reconciliation loop
that ensures that the right number of replicas
are always running, forcing the reconciliation
between the desired state and the current state. The K-Proxy is responsible for
forwarding traffic between Pods, providing load balancing capabilities, based on
the ports defined in the Deployment Manifest. Finally, the Service creates a re-
liable endpoint based on the Deployment Manifest name field resolving to the
running Pods.

2 i2kit is available at www.github.com/pchico83/i2kit.

PodPodPod ...Replica
Set

Service

nginx nginx nginx

K-Proxy

apiapi api

Fig. 3. A high-Level view of a Kubernetes Deployment.



CM ...Autoscalibility
Group

ELB

nginx nginx nginx
CM CM

DNS Record

api api api

Fig. 4. A high-Level view of a i2kit Deployment.

The architecture of i2kit is similar than Kubernetes, but i2kit replaces the
Pod by the CM as the unit of deployment. The current implementation of i2kit is
integrated with Amazon Web Services, although support for other cloud vendors
is under development, and provides similar concepts than replica sets, k-proxy,
and service by integrating the deployment of CMs directly with the rest of the
cloud vendor offering. Fig. 4 shows how the Deployment Manifest presented in
Fig. 2 looks like in i2kit . The Autoscalabity Group [19] is the equivalent to
Replica Sets. It ensures that three CMs are always running, recreating CMs if
they become unreachable. The Elastic Load Balancer (ELB) [20] is responsible
for forwarding traffic between CMs, providing load balancing capabilities. The
DNS Record creates a reliable endpoint based on the Deployment Manifest name
field resolving to the running CMs for service discovery capabilities. In a nut-
shell, i2kit mimics the Kubernetes architecture but using proven cloud vendor
technology thanks to the better integration that virtual machines have compared
to containers. We explain these concepts in the next subsections.

Declarative Model A declarative model of i2kit works as follows:

– The user declares the desired state of his deployment in, for example, a
YAML Deployment Manifest that includes a description of which container
images to run, the ports exposed by each container, the number of replicas,
the commands to execute, or how to instantiate environment variables.

– The orchestrator issues workloads to run the deployment in the cloud, in a
manner that is completely transparent to the user.

– The orchestrator also watches the deployment state in order to restore the
desired state in the event of a failure. For example, if a CM becomes un-
reachable for whatever reason, it is replaced by a new CM running the same
containers.

There is a significant difference between the declarative approach described
above and an imperative language to describe control planes. In an imperative
model, the user issues a procedure with specific commands to reach the desired



state. A declarative description is usually much shorter and simpler than a long
sequence of imperative commands and describes the details of how to create and
coordinate the different resources.

Fig. 2 shows an example of an i2kit Deployment Manifest. Note that the
i2kit declarative model supports the execution of several containers on the same
CM, as Pods do. There are advanced use-cases that justify the run of multiple
containers inside a single CM, for example:

– a log scraper tailing the output of the user container to a centralized logging
service.

– a stats collector sending metrics to perform analytics.
– a sidecar container providing features for the user container.

Failure Tolerance and Autoscalability In Kubernetes a Replica Set en-
sures that a fixed number of Pod instances are always running. Replica Sets also
replace Pods that get unreachable. Not surprisingly, in the realm of virtual ma-
chines, there are solutions that perfectly map this behavior under the assumption
of using the CM as the unit of deployment. Amazon Web Services offers Ama-
zon Auto Scalability Groups (similar services exists in the rest of cloud vendors).
AWS Auto Scalability Groups help to maintain the health and availability of a
fleet of Amazon virtual machines, ensuring that the desired number of CMs is
always running. If a CM becomes unhealthy, it gets replaced by a new CM run-
ning the same container versions. In addition, Auto Scalability Groups can be
used to scale the application up and down under certain situations, such as high
CPU or memory usage, or an increment in incoming requests. This allows very
flexible deployments only consuming resources on demand, without the need of
guessing infrastructure capacity in advance.

Note that in the event of a rolling update, new CMs are generated, and
the Auto Scalability Group replaces every existing virtual machine by the new
ones. The tool i2kit does follow a pure immutable infrastructure approach by
design. In contrast, Kubernetes reuses the same cluster between deployments.
Kubernetes Nodes might leak memory and become unreachable after a number
of deployments. For example, it is very common that Kubernetes Nodes be-
come unhealthy due to the lack of storage resources, for example by the garbage
accumulated by old docker images from previous deployments. In contrast, fol-
lowing a pure immutable approach like i2kit brings important advantages. For
example, in the event of a full system failure, applications can be recreated in
a different availability zone with a single deploy command on the Deployment
Manifest. Guessing the state of a Kubernetes cluster or recreating this state is
more difficult and time-consuming.

Load Balancing CMs are mortal and, in practice, it is not unusual that a
given CM becomes unreachable due to networking issues or other software or
hardware failures. On failure, Autoscalability Group replaces the dying CM with
a new one, which probably is assigned a different IP. Moreover, when performing



rolling updates the new CMs have different IPs than the old ones. Therefore,
the application logic cannot rely on CM IPs.

The solution to this problem is the use of load balancers, which provide
a reliable networking endpoint for a set of CMs. Amazon Web Services offers
Elastic Load Balancers (similar services exists in the rest of cloud vendors).
Elastic Load Balancers, not only provides a reliable networking endpoint for a
set of CMs but also, as their name suggests, balance the incoming traffic between
these CMs. Complex policies can be defined to customize how the traffic load is
balanced. The port configuration of the AWS Load Balancer is created based on
the information contained in the i2kit Deployment Manifest.

Service Discovery The reliable networking endpoint provided by Elastic Load
Balancers is not configurable, and it is randomly created at deployment time.
This is not compatible with the idea of providing a Service Discovery mechanism
based on the name property of Deployment Manifests.

Our solution is to use Amazon Web Services Route 53, which provides DNS
as a service (similar services exists in the rest of cloud vendors). The approach
of i2kit is to create a Route 53 Domain CNAME entry that resolves the name
field of the Deployment Manifest File to the AWS Load Balancer endpoint that
is proxying incoming traffic between the different CMs. In this manner, i2kit can
provide the same service discovery mechanism—based on names—as Kubernetes.

3 Container Machine Generation

The main drawback of container virtual machines (CM) is a loss of performance
because in principle a virtual machine imposes a non-negligible overhead on in-
frastructure resources compared to a container or Pod. However, there are tools
that allow creating minimal Linux distributions specifically crafted to run con-
tainers. The current footprint of these distributions can get as small as 60MB, a
size comparable to container technology. The tool i2kit is built on the assump-
tion that the overhead of running a container per virtual machine is acceptable.
Moreover, it is to be expected that this figure will keep improving as leaner
Linux distributions are developed (this is discussed in detail in Section 6).

The current implementation of i2kit uses Linuxkit [15], a toolkit for building
custom minimal, immutable Linux distributions. 3 Linuxkit reads YAML tem-
plates that describe how to build a Linux distribution. The container information
presented in an i2kit Deployment Manifest is transformed by i2kit into a Lin-
uxkit template, in order to generate a minimal Linux distribution specialized in
running these deployment containers. The result is shown in Fig. 5. From every
container in the i2kit Deployment Manifest, i2kit extracts the container relevant
information (such as container image, run command, environment variables) and
adds an entry in the services section of the Linuxkit template.

In our example, this information is:

3 We are also exploring how to support alternative technologies to Linuxkit.



kernel:

image: linuxkit/kernel:4.9.63

cmdline: "console=tty0"

init:

- linuxkit/init

- linuxkit/runc

- linuxkit/containerd

- linuxkit/ca -certificates

onboot:

- name: sysctl

image: linuxkit/sysctl

- name: rngd1

image: linuxkit/rngd

command: ["/sbin/rngd", "-1"]

- name: dhcpcd

image: linuxkit/dhcpcd

- name: metadata

image: linuxkit/metadata

services:

- name: getty

image: linuxkit/getty

env: [INSECURE=true]

- name: sshd

image: linuxkit/sshd

- name: nginx

image: nginx:1.7.9

capabilities: [all]

- name: api

image: myapp:1.0

capabilities: [all]

trust:

org: [linuxkit , library]

Fig. 5. Linuxkit template.

services:

- name: nginx

image: nginx:1.7.9

capabilities: [all]

- name: api

image: myapp:1.0

capabilities: [all]

Note that the value all is used for the capabilities of the user containers,
which is a limitation of the current i2kit implementation. Future work includes
equipping i2kit with an analysis that limits the capabilities associated with every
container.



The remaining fields in the Linuxkit template are pre-generated and are
identical for every deployment. The filesystem of every custom distribution is
currently initialized from the docker image linuxkit/kernel:4.9.63. Also, every
custom distribution installs the init process, runc, and containerd to be able
to run containers, and ca-certificates to be able to manage certificates. At boot-
time, the following containers are executed in sequence order: sysctl, rngb, dhcpcd
and metadata. These are basic services required by any software application. Note
that metadata is installed to be able to manage Amazon Metadata from the CM
itself (in this case, supporting other cloud vendors would require to changes).
Then, the containers in the services section run as daemons in parallel, in par-
ticular getty, sshd and the containers defined in the i2kit Deployment Manifest.
Finally, i2kit uses content-trust-delivery for images coming from the linuxkit and
the library organizations.

Once the Linuxkit template has been generated, i2kit builds the minimal
Linux distribution and uploads it as an Amazon Machine Image, which is then
available to be consumed by the i2kit orchestrator. The next section explains
the implementation of the i2kit orchestrator.

4 The i2kit Orchestrator

The current i2kit implementation supports deployments in Amazon Web Ser-
vices, but support for other cloud vendor is work in progress. The Amazon Web
Services driver makes use of the AWS Cloud Formation Service [21] to create the
different resources. Cloud Formation receives JSON manifest files to create and
manage a collection of related AWS resources, provisioning and updating them
in an ordered and predictable fashion. Cloud Formation templates can specify
rolling updates policies to be applied when the template is modified, allowing
the simulation of Kubernetes rolling updates.

The i2kit orchestrator transforms i2kit Deployment Manifest into Cloud For-
mation templates once the Container Machine Image has been generated using
LinuxKit. For example, assume the Amazon Image ami-XXXXX has been gen-
erated from the Deployment Manifest in Fig. 2 following the process explained
in Section 3. Then, a simplified version of the Cloud Formation generated by
i2kit is shown in Fig. 6.

The Cloud Formation template defines four different resources: LaunchConfig,
ASG, ELB, and DNSRecord. The resource LaunchConfig defines how virtual ma-
chines will be created. In our case, each CM will run the AMI created by the
process explained in Section 3. The next resource is ASG, an Auto Scalability
Group which use the LaunchConfigurationName created above in order to cre-
ate CMs. The minimum and the maximum number of CMs matches the number
of replicas in the i2kit Deployment Manifest. Every CM generated by the Auto
Scalability Group is associated with an Elastic Load Balancer defined also in
the Cloud Formation template. ELB stands for the Elastic Load Balancer that
takes the name from the Deployment Manifest name field. The Listeners infor-
mation matches the ports section of the i2kit Deployment Manifest, where the



AWSTemplateFormatVersion: 2010 -09 -09

Resources:

LaunchConfig:

Type: AWS::AutoScaling::LaunchConfiguration

Properties: { ImageId: ami -XXXXX }

ASG:

Type: AWS::AutoScaling::AutoScalingGroup

Properties:

LaunchConfigurationName:

Ref: LaunchConfig

MaxSize: 3

MinSize: 3

LoadBalancerNames: { Ref: ELB }

ELB:

Type: AWS::ElasticLoadBalancing::LoadBalancer

Properties:

LoadBalancerName: myapp

Listeners:

LoadBalancerPort: 80

InstancePort: 80

Protocol: HTTP

DNSRecord:

Type: AWS::Route53::RecordSet

Properties:

HostedZoneName: i2kit.com

Name: myapp.i2kit.com

ResourceRecords:

- Fn::GetAtt:("ELB", "DNSName")

Type: CNAME

Fig. 6. Cloud Formation template for the i2kit Manifest File.

Protocol is inferred from the port number. Finally, the DNSRecord resource is a
CNAME entry for the Route 53 Domain i2kit.com. This domain is received as a
parameter of the i2kit tool. The CNAME entry is created based on the i2kit De-
ployment Manifest name field. It resolves to the ELB endpoint, providing service
discovery for other deployments. Note that every CM deployed by i2kit adds a
DNS SEARCH entry in every container pointing to i2kit.com. This way, containers
will resolve the name of any i2kit deployment without the need of specifying the
full domain name (ending in i2kit.com).

5 Empirical Evaluation

This section compares i2kit versus the native Kubernetes implementation based
on three different metrics: booting times, memory consumption and network
performance.



Pods 1 10 20 30 40

i2kit 78 MB 0.78 GB 1.56 GB 2.34 GB 3.12 GB

K8 1.94 GB 2.09 GB 2.27 GB 2.44 GB 2.62 GB
Table 1. Total memory footprint of i2kit vs Kubernetes running the example in Fig 2.

Booting Times The creation of a virtual machine running i2kit Linuxkit dis-
tributions in AWS takes about one minute while creating a Pod in Kubernetes
takes only seconds (depending on the size and the local availability of docker
images). Even though this booting time difference can be very relevant in lo-
cal environments, it is less relevant in production environments. For example, it
is a common practice to introduce a delay of at least 30 seconds between Pod
creations during a rolling update, in order for load balancers to have enough
time to be updated. Using this common practice induces a comparable delay to
the time required to create i2kit CMs. Therefore, even though i2kit is slower
than Kubernetes in terms of booting times, we argue that difference is not very
relevant in production environments.

Note also that though we use AWS for deploying the Virtual Machines, these
are not the “usual” virtual machines but much smaller specialized machines
generated using Linuxkit.

Memory Consumption The overhead that i2kit imposes for every Pod cre-
ation is a consequence of the overhead of the CM running the Linuxkit distri-
bution. It is linear on the number of Pod instances. In contrast, the Kubernetes
overhead for running a Pod is due to the overhead of running the Worker Node
components, which are shared by several Pods. It is constant on the number of
Pod instances.

Table 1 displays the memory comparison between i2kit and Kubernetes for
running the Deployment Manifest shown in Fig. 2 using different numbers of
replicas. Table 1 shows that for a low number of replicas, i2kit requires signif-
icantly less memory than Kubernetes. Even though the growth in the memory
required is faster for i2kit than for Kubernetes, i2kit is more memory efficient
when running less than (approx.) 30 containers in the same Worker Node. Note
that the Kubernetes web page [22] does not recommend running more than 30
Pods per Worker Node. Therefore, we can conclude that the memory consump-
tion of i2kit behaves better than that of Kubernetes for standard workloads.
In fact, we were not able to create with Kubernetes more than 42 Pods on the
same Worker Node running on a t2.xlarge AWS EC2 Instance. Moreover, the
data reported in Table 1 does not take into account the memory consumption of
Master Nodes or the Kubernetes Distribute Storage Layer, which would report
an even more favorable comparison to i2kit .

Finally, sharing a host between several containers imposes performance side
effects on the containers running on the same host. Although some research has
been done in this area, [23, 24], it is a more mature approach to have resources
affecting performance isolated at the hypervisor level.



Pods 1 5 25

i2kit 129.86 Mbps 128.191 Mbps 128.58 Mbps

K8-1 129.17 Mbps 25.92 Mbps -

K8-5 108.44 Mbps 108.36 Mbps 21.73 Mbps

K8-25 97.95 Mbps 98.11 Mbps 97.84 Mbps
Table 2. Network of i2kit vs Kubernetes.

Network Performance Table 2 shows the network performance comparison
between i2kit and different Kubernetes cluster sizes. The experiment uses iperf2
to measure the average network bandwidth consumed by each replica, where
each replica runs an iperf2 server. On the other hand, the i2kit configuration
runs every iperf2 server in its own CM using a t2.large AWS EC2 Instance. In
the table, K8-N stands for a Kubernetes cluster with N Worker Nodes, where
every Worker Node runs on a t2.large AWS EC2 Instance. In order to be able
to measure the consumed bandwidth, every experiment runs a large amount of
iperf2 clients, where each client runs on its own VM. These clients first send
traffic to warm the load balancers up and then synchronize to sending traffic at
the same time for 3 minutes.

Table 2 indicates that i2kit scales linearly on the number of replicas, as
expected. The network overhead of using an AWS Load Balancer is negligible.
Note that the limit of the virtual machine incoming traffic is 130 Mbps. The
row K8-1 in Table 2 shows that the overhead imposed by Kubernetes when
running on a single node is not very relevant (less than 2%). Since K8-1 runs
all Pod replicas on the same server, running more than one Pod replica quickly
hits the VM incoming bandwidth limit, distorting the experiment for the case
of 5 replicas. Moreover, we were not able to successfully run 25 Pods on a single
Worker Node. The row K8-5 shows that Kubernetes imposes an overhead of
about 20% when the Kube-Proxy needs to forward traffic between five different
Worker Nodes. As expected, the overhead grows with the cluster size, as we can
see in the K8-25 row, which accounts for a 30% network overhead. K8-5 also
shows how the traffic is dramatically affected by the virtual machine incoming
bandwidth limit when running 25 Pod replicas.

This experiment exposes some side effects of running the additional con-
trol plane of Kubernetes on top of cloud vendor technology. In this case, the
functionality provided by the K-Proxy is redundant as it is already provided
by the AWS Load Balancers, and consequently this additional control plan im-
poses unneeded performance overheads. This experiment also illustrates that
containers are poorly integrated with the rest of the cloud offering. For exam-
ple, running more than one Pod per VM hits the VM incoming traffic limit.
This issue does not happen in i2kit—which runs each replica in its own virtual
machine—because virtual machines are better integrated with the networking
capabilities of the cloud vendor.



6 Conclusions and Future Work

This paper has presented i2kit , a deployment tool that pursues the following
main goals: (1) to preserve the docker development workflow untouched, as con-
tainers are a great fit for local environments; (2) to transform containers into
lightweight virtual machines upon deployment for better isolation; (3) to pro-
vide fault tolerance, load balancing or service discovery without reimplementing
these features in a new layer thanks to the better integration of virtual machines
with the rest of the cloud offering.

The tool i2kit follows the Linux principle of “Do one thing and Do it well.”
The responsibility of virtual machines is to provide workload isolation and secu-
rity. The responsibility of containers is to offer portability and ease of container
image distribution. The drawback of using virtual machines for container iso-
lation is higher resource utilization, but i2kit is specifically designed to exploit
Linxkit to generate virtual machines with low memory footprint. The results in
Section 5 suggest that the memory consumption of i2kit is better than the one
of Kubernetes for standard workloads.

Note also that there is a very active research effort targeting VM optimiza-
tion which i2kit can potentially leverage in terms of memory usage to get even
better results. Kata Containers [25] fulfills similar goals than i2kit in terms of
security, building lightweight virtual machines that feel like containers but pro-
vide the isolation level of virtual machines. The main difference is that Kata
Containers are conceived to be a container runtime [26] instead of integrating
with the rest of the cloud offering. LightVM [27] is a new virtualization solution
based on Xen that is optimized to offer fast boot-times regardless of the num-
ber of active VMs. LightVM features a complete redesign of Xen’s control plane
reducing the hypervisor to a minimum. LightVM can boot a VM in 2.3ms, com-
parable to fork/exec on Linux (1ms), and two orders of magnitude faster than
Docker. LightVM can pack thousands of LightVM guests on modest hardware
with memory and CPU usage comparable to that of processes. The current i2kit
implementation uses Linuxkit instead of LightVM because it is easily integrable
with the AWS cloud offering. LightVM is based on Unikernels [28], which are
also very promising on this area. Exploiting VM optimizations and Unikernels
to improve i2kit further is a line of current and future work. Finally, another re-
search line is to analyze synergies between i2kit and serverless architectures [29]
provided by cloud vendors.

Section 5 also shows that the Kubernetes control plane introduces redundan-
cies that can affect network performance (and probably other metrics). As we
show with i2kit in this paper, containers can be integrated with the rest of the
cloud offering without the need of adding a complex control plane for container
orchestration. Also, Kubernetes is not a cloud native technology. First, Kuber-
netes requires a Distributed and Reliable Store Cluster. The most common solu-
tion to this end is etcd [30], a Key-Value Store based on the Raft [31] protocol.
Kubernetes also requires a cluster of Master Nodes. Master Nodes execute three
different components: Api, Scheduler, and Replication Controller. Also, every
Worker Node requires the Kubelet (responsible of executing the tasks assigned



by the Scheduler) and the Kube-Proxy (responsible for service discovery and load
balancing in a high-density container environment). Even further, users need to
take into account that the components in the Kubernetes Control Plane are a
runtime dependency for the applications. An error in the Kubernetes Control
Plane is not only difficult to debug, but it also disturbs running applications by
affecting, for example, service discovery. Managing a large cluster infrastructure
and optimizing the scheduling of containers all backed by a complex distributed
state store is counter to the premise of the cloud. Cloud vendors let users utilize
resources as they go, without guessing capacity, and providing deep operational
control without operational burden. The tool i2kit allows developers to write
their code and have it run, without having to worry about configuring complex
management tools. As a result, i2kit turns containers into a secure and cloud
native technology.

Cloud native containers is also the goal of AWS Fargate. [32] Some differences
are: (1) the i2kit declarative model is cleaner and allows the execution of several
containers per VM, which is very valuable in advanced uses cases like sidecars
or log/stats collectors.; (2) i2kit future work conceives the option to install OS
dependencies on the Linuxkit distribution. For example, tools like Sysdig [33]
needs to be installed as a kernel module. (3) i2kit is open source and more
flexible than AWS Fargate on controlling the runtime technology. Multi cloud
vendor support is currently implemented for i2kit .

References

1. D. Merkel, “Docker: Lightweight linux containers for consistent development and
deployment,” Linux Journal, vol. 2014, no. 239, Mar. 2014.

2. C. Wang, “LXC and docker explained,” http://www.infoworld.com/article/3072929/linux/containers-
101-linux-containers-and-docker-explained.html.

3. J. Clark, “EVERYTHING at google runs in a container,” http://www.theregister.
co.uk/2014/05/23/google containerization two billion/.

4. J. Lewis and M. Fowler, “Microservices: a definition of this new architectural term,”
http://martinfowler.com/articles/microservices.html.

5. J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 113–116, 2015.
6. B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, omega,

and kubernetes,” Commun. ACM, vol. 59, no. 5, pp. 50–57, Apr. 2016.
7. Docker Swarm, https://github.com/docker/swarm.
8. B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,

S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource sharing
in the data center,” in Proc. of NSDI’11. USENIX Assoc., 2011, pp. 295–308.

9. J. Moiron, IsK8s Too Complicated?, http://jmoiron.net/blog/is-k8s-too-
complicated/.

10. A. Mouat, “Five security concers when using docker,”
https://www.oreilly.com/ideas/five-security-concerns-when-using-docker.

11. Linux Kernel Security Vulnerabilities, https://www.cvedetails.com/vulnerability-
list.php.

12. I. Habib, “Virtualization with kvm,” Linux J., vol. 2008, no. 166, Feb. 2008.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1344209.1344217

http://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
http://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
http://dl.acm.org/citation.cfm?id=1344209.1344217


13. D. Mishchenko, VMware ESXi: Planning, Implementation, and Security, 1st ed.
Boston, MA, United States: Course Technology Press, 2010.

14. A. Velte and T. Velte, Microsoft Virtualization with Hyper-V, 1st ed. New York,
NY, USA: McGraw-Hill, Inc., 2010.

15. LinuxKit, https://github.com/linuxkit/linuxkit.
16. C. Fowler, Trash Your Servers and Burn Your Code: Immutable Infrastructure

and Disposable Components. [Online]. Available: http://chadfowler.com/2013/06/
23/immutable-deployments.html

17. A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,
“Large-scale cluster management at Google with Borg,” in Proc. of EuroSys’15.
ACM, 2015.

18. M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega: flexible,
scalable schedulers for large compute clusters,” in Proc. of EuroSys’13. ACM,
2013, pp. 351–364.

19. Auto Scalability Groups, https://aws.amazon.com/autoscaling/.
20. Elastic Load Balancing, https://aws.amazon.com/elasticloadbalancing/.
21. Cloud Formation, https://aws.amazon.com/cloudformation/.
22. Building Large Kubernetes Clusters, https://kubernetes.io/docs/admin/cluster-

large/.
23. C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-aware cluster

management,” SIGARCH Comput. Archit. News, vol. 42, no. 1, pp. 127–144, 2014.
24. J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Souffa, “Bubble-up: Increasing

utilization in modern warehouse scale computers via sensible co-locations,” in Proc.
of MICRO’11. ACM, 2011.

25. Kata Containers, https://katacontainers.io.
26. E. Ernst, “Kata containers doesnt replace kubernetes,” 2018,

https://katacontainers.io/posts/why-kata-containers-doesnt-replace-kubernetes/.
27. F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata,

C. Raiciu, and F. Huici, “My VM is lighter (and safer) than your container,” in
Proc. of SOSP ’17. ACM, 2017, pp. 218–233.

28. A. Madhavapeddy and D. J. Scott, “Unikernels: Rise of the virtual library operat-
ing system,” Queue, vol. 11, no. 11, pp. 30:30–30:44, Dec. 2013.

29. Serverless Architectures, https://martinfowler.com/articles/serverless.html.
30. Etcd, https://github.com/coreos/etcd.
31. D. Ongaro and J. Ousterhout, “In search of an understandable consensus algo-

rithm,” in Proc. of USENIX ATC’14. USENIX Assoc., 2014, pp. 305–320.
32. AWS Fargate, https://aws.amazon.com/fargate/.
33. G. Borello, “System and application monitoring and troubleshooting with sysdig.”

Washington, D.C.: USENIX Association, 2015.

http://chadfowler.com/2013/06/23/immutable-deployments.html
http://chadfowler.com/2013/06/23/immutable-deployments.html

	i2kit: A Deployment Tool with the Simplicity of Containers and the Security of Virtual Machines 

