
Pipekit: a Deployment Tool with advanced scheduling and Inter-Service
Communication for Multi-Tier Applications

Pablo Chico de Guzmán
IMDEA Software Institute, Spain

pablo.chico@imdea.org

Felipe Gorostiaga
IMDEA Software Institute,Spain

felipe.gorostiaga@imdea.org

César Sánchez
IMDEA Software Institute, Spain

cesar.sanchez@imdea.org

This is a post-peer-review, pre-copyedit version of an article published at the 2018 IEEE International Conference on Web
Services, IEEE, 2018. The final authenticated version is available online at: https://doi.org/10.1109/ICWS.2018.00066

Abstract—Modern cloud applications are based on microser-
vice architectures. The deployment of these microservice based
applications often requires that every constituent service starts
after all its dependencies are configured and running properly.
It is also common that these dependencies generate dynamic
data that needs to be supplied to other services too at
starting time. More complex scenarios require additionally
interchanging data in other phases of the microservices life-
cycle.

One alternative to solve these dependencies is to describe
the deployment of microservice applications manually—using
scripts—which allows IT operators to precisely define when a
service is ready to start serving other components. However,
synchronization by scripting is tedious, error prone and hard to
maintain. Other solutions offer specific languages to describe
service dependencies, along with tool support that interpret
scripts in these languages to take care of starting services in
the proper order. These tools are either very rich but complex
to use, or fail in providing sophisticated ways to describe what
it means for a service to be ready.

Moreover, the communication layer between services, if
supplied, is based on intermediate entities and non-trivial
network protocols.

This paper proposes pipekit as a solution, by offering a
container orchestration language which focuses on simplicity
(pipekit is similar to Docker Compose) and is equipped with
directives to define when a service is ready. The pipekit tool
provides a communication layer for moving data between ser-
vices, implemented using shared storage. This shared storage
provides a very simple interface to move artifacts between
services, and greatly simplifies the synchronization logic of
pipekit by using semaphores at the file system level.

Keywords-orchestration; microservices; deployment; syn-
chronization;

I. INTRODUCTION

Microservice architectures are becoming increasingly
popular, so large monolithic implementations are being
replaced by smaller independent and reusable services that
collaborate together [6], [12]. Even though (micro)services
are designed as standalone components, more often than
not these services need to interact with each other to work

as intended for the general combined application. This
combination entails a set of dependencies between services,
which has to be taken into account when the application is
deployed. One important case is starting a service only when
those services upon which it depends have started and are
ready. The set of coordination activities necessary to deploy
a microservice application is usually known as cloud service
orchestration1 [11].

One possibility is to describe the activities involved in
starting the application via a launching script crafted by
hand. This script must take care of organizing the booting
times, postponing the execution of a service until all the
services it dependes on are up and ready to provide the
required functionality. This approach offers complete fine
grain control over the deployment steps. However, synchro-
nization via scripting tends to be tedious, error prone and
very difficult to maintain and debug, specially when many
services are involved and the application is susceptible to
suffer changes.

Many tools have been proposed to deal with this problem
in the context of containers [9], [13], such as Docker
Compose [1] or Helm [3]. These solutions typically offer
a declarative language that allows describing the important
information to boot and connect services as well as their
dependencies. These solutions also offer a tool—which inter-
prets deployment descriptions written in the corresponding
declarative languages—and launches the microservices in
the order described. However, even if a container imple-
menting a certain service has been launched this does not
necessarily mean that the service is ready in terms of the
application logic. For starters, there is typically a non-
negligible initialization phase after the server boots. During
this phase, the service is not ready to attend requests, po-
tentially leading to a race condition if any of the dependent

1Even though the term orchestration can refer to a more general notion
of describing the whole control flow of service oriented applications.

https://doi.org/10.1109/ICWS.2018.00066

services tries to communicate too soon. Even worse, the
service might fail to initialize successfully, a situation that
could go unnoticed by its client services cascading the error
and producing a failing trace that is very difficult to diagnose
and manage. The diagnosis is difficult to perform because
the symptoms may be detected in different components than
the root cause (the service that failed to initialize properly).

One solution, suggested for example by Docker Compose,
is to install additional code inside the dependent service
(alongside the application code) to check whether a service
is ready, which pollutes the service codebase (the service
true functionality) with orchestration details and infrastruc-
ture management logic. Moreover, this approach introduces
a new source of potential bugs, forces developers to handle
non-business issues, and spreads significant part of the
orchestration logic across all components.

This paper proposes pipekit, an alternative for defining
service bootstrap orchestration. One of the key design prin-
ciples of pipekit is to minimize the learning curve to aid its
adoption. In particular, pipekit extends Docker Compose by
adding a more precise way to specify what it means for a
service to be ready using a novel “depends on” clause. By
doing so, a larger part of the booting logic remains in the
hands of the orchestration tool, and the description of the
orchestration and the service functionality remains properly
separated. The pipekit orchestrator starts the services in
the order described, delaying their execution until all the
respective dependency conditions have been met. If any of
the conditions is taking too long, pipekit can be instructed to
timeout and abort the deployment reporting the issue. Then,
the IT operator can inspect the pipekit logs (which do not
contain application logic but only orchestration messages)
to diagnose the error and quickly identify the offending
component as the root cause of the failure.

Additionally, the deployment of microservice archirec-
tures often requires the exchange of data between dif-
ferent services for initial configuration. This problem can
be managed by configuration tools such as Puppet [8] or
Chef [10], but these tools involve the management of a
centralized entity to communicate this data using non-trivial
network protocols. This approach is unsuitable in many of
cases, such as moving a dynamic secret. Instead, the pipekit
orchestrator provides a very simple communication layer
between services by mounting a shared storage layer in
every service. This communication layer can be also used
for developing complex continuous integration [7] tasks that
require moving artifacts between different execution steps,
where each execution runs on a different machine, possibly
concurrently. This communication layer based on shared
storage greatly simplifies the implementation of pipekit by
allowing the usage of synchronization mechanisms imple-
mented at the file system level, which is more secure and
easily traceable.

Section II introduces pipekit by an example. Section III

Password generator

DatabaseWeb backend

Figure 1. Example of Multi-Tier Application.

describes the pipekit communication layer. Section IV shows
the value of pipekit by solving a complex continuous inte-
gration task.

II. PIPEKIT BY AN EXAMPLE

In order to improve the learning curve of pipekit, the
syntax of its configuration file has been chosen to be similar
to that of Docker Compose. A pipekit configuration file is a
yaml file where the services that are composed for a given
application are listed and named. For each of them, the file
specifies the docker image that the service container must
run, a set of signals that expose the milestones through
which the service goes, and a set of conditions that have
to be witnessed before the service is started. Other fields
from the Docker Compose format such as ports, environment
variables or labels are also supported by pipekit, but we will
focus here on the signals and depends_on clauses,
since they are the novelty of pipekit.

A signal is defined by a name, that must be unique in
the scope of the service defining it, and a signal constructor
from the set of constructors that are available in the pipekit
tool. The supported constructors at the time of writing are:

• Grep(fd, string): scans the file descriptor passed
as the first argument and looks for a match of the string
supplied as the second argument against the input from
the descriptor.

• Exists(path): becomes true when the path sup-
plied as the argument corresponds to an existing file.
The path is relative to the shared storage layer mount
point.

For example, to create a signal that fires when a ser-
vice generates the log ”Database is ready” to the stan-
dard output, we can create the signal Grep(stdout,
"Database is ready"). This kind of interaction is
very common. For example, when a database like mysql
finishes initialization and is ready to listen to requests on a
port, it sends a message to the log which can be scanned.
In order to wait for a configuration file to be generated, we
could issue the signal Exists("path_to_file").

Optionally, every signal can receive an additional argu-
ment specifying a maximum timeout. For example, if we
want to fail the orchestration if the ”Database is ready” log
is not generated after 30 seconds, we could write the signal
Grep(stdout, "Database is ready"):30.

Consider an application consisting of three services: web,
database and password-generator, with the dependencies

v e r s i o n :"2"
s e r v i c e s :

password−genera tor :
image:password−g e n e r a t o r

database :
image:mysql
s i g n a l s :

ready :Grep (s t d o u t ,"Database is ready") :30
depends on :

- password−genera tor . ExitCode (0)
web:

image:web−backend
depends on :

- password−genera tor . ExitCode (0)
- db . ready

Figure 2. pipekit yaml example.

depicted in Fig 1. A correct orchestration has to make sure
that password-generator—which is responsible of generat-
ing a secret password—boots first. Afterwards, the secret
is consumed by database for initialization of access creden-
tials, and by web for configuring the connection to database.
The database initialization might take some time after the
container is spawned, when the initial phases of the database
take place. During this time, web should not try to connect
to database. Finally, the orchestration finishes by starting
web.

The orchestration directives to deploy such application can
be written in pipekit via a yaml description file shown in
Fig. 2. Each service defines the signals that other services
can consume for synchronization. For example, the database
service defines a ready signal indicating that it can start
accepting connections. The signal ready is implemented by
using the directive Grep. In our example, the ready signal
will be canceled if it takes longer than 30 seconds to fire.
The ready signal is consumed by web using a depends_on
clause. This way, web will not be started until the signal
ready is fired, ensuring that database is ready to receive
connections before web is started.

By default, pipekit implicitly defines an ExitCode signal
for every service to easy the definition of sequential depen-
dencies. The parameter of the ExitCode signal is the exit
code of the service. ExitCode is used by database and web
to force that these services are only started after password-
generator has successfully finished its execution. Note that
the secret is directly accessible by database and web because
it is saved in the shared storage layer that pipekit configures
between every service.

The pipekit algorithm will start password-generator first
because it has no dependencies. If password-generator
finishes successfully, pipekit will start database since it
satisfies all its conditions. After a few seconds, if database
is initialized properly the code injected in database for the
Grep constructor will activate the ready signal. At this time,

FUNCTION pipekit(path_to_yaml_file):
fired:=[]
waiting:=GetAllServices(path_to_yaml_file)
ready,waiting:=GetReadyServices(waiting,fired)
Deploy(ready);
computing:=GetSignals(ready)
WHILE(computing||waiting):

signal:=select(computing);
computing:=computing-signal;
IF timeout(signal): CONTINUE;
fired:=fired+signal;
ready,waiting:=GetReadyServices(waiting,fired);
IF ready!=[]:
Deploy(ready);
computing:=GetSignals(ready)

RETURN waiting!=[]

Figure 3. pipekit pseudo-code.

the orchestration can finish by starting web. The pseudo-code
for the pipekit algorithm is shown in Figure 3.

III. PIPEKIT COMMUNICATION LAYER

The pipekit tool provides an out of the box inter service
communication layer, implemented by mounting a shared
file system in every service. A file system offers a very
simple interface to read and write dynamic data generated
at deployment time by different services.

We consider two different scenarios for running pipekit:
(a) in a single-host environment; (b) a multi-host environ-
ment. When pipekit runs in a single-host environment, for
example, in a developer machine, a shared file system is pro-
vided by a Docker Volume, which is simply a shared mount
point in the machine file system. The case when pipekit
runs in a multi-host environment is more complicated. Some
Container Cluster Management tools, such as Kubernetes [4]
or Docker Swarm [2] offer Docker Volume plugins to
support distributed storage layers, but this technology is
not mature and reliable yet. Instead, the current pipekit
implementation integrates with i2kit [5], a deployment tool
that transforms every service into its own set of virtual
machines, in order to simplify the integration of containers
with cloud vendor technologies such as virtual networking
or load balances. The current i2kit implementation supports
AWS deployments. AWS offers EFS, an elastic file system
implementation that can be mounted by thousands of virtual
machines, which pipekit uses for providing a shared file
system for every service.

The pipekit tool organizes the shared storage layer in
different folders, using the name of each service as the
folder’s name, to simplify the access to the data generated
by each service. Also, any service can access a .env file
in the folder of any other service, populating the variables
included in the file as environment variables. Following
the password-generator example, the password-generator
service could write the line PASSWORD=secret-value

Compiler

Commit

Testing deployment Static analyzer

Figure 4. Continuous Integration Pipeline.

into database/.env and web/.env, and the environment vari-
able PASSWORD=secret-value would be populated to
both services, database and web. This mechanism avoids
polluting the container logic with code to read data from
the communication layer. Moreover, most of the containers
available nowadays receive their input data via environment
variables.

IV. PIPEKIT CONTINUOUS INTEGRATION EXAMPLE

Many times, the definition of a continuous integration
pipeline requires artifacts to be passed among components.
For example, the pipeline shown in Fig. 4 gets executed
when code is committed to a branch of a repository. This
pipeline starts two services, compiler and static-analyzer.
The service compiler is responsible of generating the appli-
cation binaries, and static-analyzer performs a static analysis
on the source code to detect, for example, type errors
and other statically-checkable errors and warnings. Once
the binaries are generated, the compiled code is passed
to testing-deployment, a service responsible of deploying
the application in a single machine. This machine can be
used, for example, by product managers to validate that the
functionality added by the code commit works as expected.

The pipekit tools make it very simple to synchronize the
pipeline execution, by adding compiler.ExitCode(0)
and static-analyzer.ExitCode(0) as dependen-
cies of the testing-deployment service. Additionally, note
that each service has a very different infrastructure re-
quirements. The service compiler is network intensive, in
order to download the code dependencies, and its execution
might take several minutes. The service static-analyzer is
highly CPU intensive, and its execution might last for hours.
Finally, testing-deployment requires little CPU and network
bandwidth, but its execution might last for several days.

Ideally, compiler and static-analyzer should run in large
machines to reduce their execution time, but testing-
deployment can run on a very small machine to reduce
costs. In order to take advantage of running each service
in different machines, the binaries and the static analysis
reports need to be passed to the testing-deployment service.
We argue that it is over killing to implement a complex
communication layer to support a typical scenario like this.
In contrast, the pipekit shared file system allows providing
this functionality out-of-the-box.

V. CONCLUSIONS AND FUTURE WORK

Docker has recently “democratized” the container tech-
nology. Containers are a great solution to execute processes
in a portable manner, and distribute these processes along
different machines. However, native Docker orchestration
tools, such us Docker Compose, are not expressive enough
to support complex deployment scenarios. There are other
solutions, designed before the container era, that solve this
problem, such us Puppet or Chef, but the learning curve of
these tools is highly non-negligible.

In contrast, pipekit follows the Docker Principle of sim-
plicity. The input to pipekit is designed as an extension of
the Docker Compose format for easy adoption. The imple-
mentation of the communication layer as shared storage is
simple, powerful and more importantly, it requires no pre-
configuration steps.

Future work includes evolving the current pipekit imple-
mentation from a proof of concept to a tool usable in produc-
tion. We are also working on adding more directives, such as
checking if a port is open, and also providing the ability for
extending with user custom directives. Other research line
is to provide support for other parts of the application life
cycle (beyond deployment). For example, error handlers for
service failures, or the description of controlled shut down of
the system would be valuable extensions. Finally, we plan to
work on a modeling the semantics of the pipekit algorithm
in order to apply formal techniques like model checking
and runtime verification. These techniques would enable,
for example, designing algorithms that generate diagnosis
reports to provide concise explanations of run-time errors at
the orchestration of the deployment.

REFERENCES

[1] Docker compose. https://docs.docker.com/compose/overview.

[2] Docker Swarm. https://github.com/docker/swarm.

[3] Helm. https://helm.sh.

[4] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, omega, and kubernetes.
Commun. ACM, 59(5):50–57, April 2016.

[5] Pablo Chico de Guzmán, Felipe Gorostiaga, and Cesar
Sanchez. i2kit: A tool for immutable infrastructure deploy-
ments based on lightweight virtual machines specialized to
run containers. CoRR, abs/1802.10375, 2018.

[6] Martin Fowler. Microservices a def-
inition of this new architectural term.
http://martinfowler.com/articles/microservices.html.

[7] Martin Fowler. Continuous integration, 2016.
https://martinfowler.com/articles/continuousIntegration.html.

[8] Jes Fraser. Puppet. Linux J., 2011(207), July 2011.

[9] Dirk Merkel. Docker: Lightweight linux containers for
consistent development and deployment. Linux J., 2014(239),
March 2014.

[10] Stephen Nelson-Smith. Chef: The Definitive Guide. O’Reilly
Media, Inc., 2013.

[11] Chris Peltz. Web services orchestration and choreography.
Computer, 36(10):46–52, October 2003.

[12] Johannes Thönes. Microservices. IEEE Software, 32(1):113–
116, 2015.

[13] Chenxi Wang. Lxc and docker explained.
http://www.infoworld.com/article/3072929/linux/containers-
101-linux-containers-and-docker-explained.html.

	Introduction
	Pipekit by an Example
	Pipekit Communication Layer
	Pipekit Continuous Integration Example
	Conclusions and Future Work
	References

