
Decentralized Stream Runtime Verification?

Luis Miguel Danielsson1,2 and César Sánchez1

1 IMDEA Software Institute, Spain
2 Universidad Politécnica de Madrid (UPM), Spain
{luismiguel.danielsson,cesar.sanchez}@imdea.org

Abstract. We study the problem of decentralized monitoring of stream
runtime verification specifications. Decentralized monitoring uses dis-
tributed monitors that communicate via a synchronous network, a com-
munication setting common in many cyber-physical systems like auto-
motive CPSs. Previous approaches to decentralized monitoring were re-
stricted to logics like LTL logics that provide Boolean verdicts. We solve
here the decentralized monitoring problem for the more general setting
of stream runtime verification. Additionally, our solution handles net-
work topologies while previous decentralize monitoring works assumed
that every pair of nodes can communicate directly. We also introduce
a novel property on specifications, called decentralized efficient moni-
torability, that guarantees that the online monitoring can be performed
with bounded resources. Finally, we report the results of an empiri-
cal evaluation of an implementation and compare the expressive power
and efficiency against state-of-the-art decentralized monitoring tools like
Themis.

1 Introduction

We study the problem of decentralized runtime verification of stream runtime
verification (SRV) specifications. Runtime verification (RV) is a dynamic tech-
nique for software quality assurance that consists of generating a monitor from
a formal specification, that then inspects a single trace of execution of the sys-
tem under analysis. One of the problems that RV must handle is to generate
monitors from a specification. Early approaches for specification languages were
based on temporal logics [6, 11, 18], regular expressions [25], timed regular ex-
pressions [2], rules [3], or rewriting [23]. Stream runtime verification, pioneered
by Lola [10], defines monitors by declaring the dependencies between output
streams of results and input streams of observations. SRV is a richer formalism
that goes beyond Boolean verdicts, like in logical techniques, to allow specifying
the collection of statistics and the generation richer (non-Boolean) verdicts. Ex-
amples include counting events, specifying robustness or generating models or

? This work was funded in part by the Madrid Regional Government under project
“S2018/TCS-4339 (BLOQUES-CM)”, by EU H2020 project 731535 “Elastest” and
by Spanish National Project “BOSCO (PGC2018-102210-B-100)”.

2

quantitative verdicts. See [10,14,17] for examples illustrating the expressivity of
SRV languages.

Another important aspect of RV is the operational execution of monitors:
how to collect information and how to monitor incrementally. In this paper we
consider using a network of distributed monitors connected via a synchronous
network, together with periodic sampling of inputs. This problem is known as
decentralized monitoring. Our goal is to generate local monitors at each node that
collaborate to monitor the specification, distributing the computational load
while minimizing the network bandwidth and the latency of the computation
of verdicts. Apart from more efficient evaluation, decentralized monitoring can
provide fault-tolerance as the process can partially evaluate a specification with
the part of the network that does not fail.

Our Solution. In this paper we provide a solution to the decentralized monitor-
ing problem for Lola specifications for arbitrary network topologies and place-
ment of the local monitors. We assume a connected network topology where
nodes can only communicate directly with their neighbors. In general, messages
between two nodes require several hops, and all nodes have initially deployed
a local routing table that contains the next hop depending on the final des-
tination. We follow the synchronous distributed model of computation, where
computation (input readings from the system, message routing and local moni-
tor computations) proceeds in rounds. We also assume a reliable system: nodes
do not crash, and messages are not lost or duplicated. These assumptions are
realistic, for example in automotive CPSs like solutions based on a synchronous
BUS, like CAN networks [19] and Autosar [1]. In our solution, different parts
of the specification (modeled as streams), including input readings, will be de-
ployed in different nodes as a local monitor. Local monitors will communicate
when necessary to resolve the streams assigned to them, trying to minimize the
communication overhead.

A degenerated case of this setting is a centralized solution: nodes with mapped
observations send their sensed values to a fixed central node that is responsi-
ble of computing the whole specification. The SRV language that we consider
is Lola [10] including future dependencies. We will identify those specifications
that can be monitored decentralized with finite memory, independently of the
trace length.

Motivating Example. Our motivation is to build rich monitors for decen-
tralized synchronous networks, used in automotive CPSs [20] for example us-
ing the Autosar standard over the CAN network. This example is inspired

CH PTC TR

EN

Fig. 1. Autosar simplified topology

by the Electronic Stability Program (ESP)
and models the under steering to the left
scenario in an attempt to avoid an obsta-
cle. The ESP must detect the sudden turn
of the steering wheel and the deviation pro-
duced with the actual movement of the car
(yaw). When this deviation is perceived and

3

maintained over a period of time, the ESP must act on the brakes, the torque
distribution and the engine in order to produce the desired movement without
any lose of control over the vehicle. The topology is shown on the right. The
monitor in node CH (chassis) detects the under-steering and whether the ESP
must be activated. The monitor in EN (engine) checks that the throttle is ready
to react to the evasive maneuver. Our intention is to define the following streams:

– ESP on: represents whether there is under-steering or the wheel is slipping,

– req thr: the requested throttle,

– good thro: whether the throttle is correct

We achieve this by using input values, like yaw (the direction of the wheels), the
desired steering, drive wheel slip (whether the drive wheels are slipping),
and the throttle.

@Chassis{ input num yaw , steering , drive_wheel_slip

define num dev = steering - yaw

define bool under_steering_l = dev > 0 and dev > 0.2

output bool ESP_on = under_steering_left or drive_wheel_slip

}

@Engine{ input num throttle

output num req_thr = if ESP_on then req_thr[-1|0]-dev else 0

output bool good_thro = req_thr[-1|0]/ throttle <= 0.1

}

Related work. The work in [4] shows how monitoring Metric Temporal Logic
specifications of distributed systems (including failures and message reordering)
where the nodes communicate in a tree fashion and the root emits the final
verdict. Sen et al. [26] introduces PT-DTL, a variant of LTL logic for monitor-
ing distributed systems. The work in [16] uses slices to support node crashes
and message errors when monitoring distributed message passing systems with
a global clock. Bauer et al. [5] introduce a first-order temporal logic and trace-
length independent spawning automaton. Bauer et al. [7] shows a decentralized
solution to monitor LTL3 in synchronous systems using formula rewriting. This
is improved in [12, 13] using an Execution History Encoding (EHE). All these
approaches consider only Boolean verdicts. SRV can generate verdicts from ar-
bitrary data domains, but all previous SRV efforts, from Lola [10], Lola2.0 [14],
Copilot [21, 22] and extensions to timed event streams, like TeSSLa [8], RT-
Lola [15] or Striver [17] assume a centralized monitoring setting.

Contributions and structure. The main contribution of this paper is a so-
lution, described in Section 3, to the decentralized stream runtime verification
problem. A second contribution, included in Section 4, is the identification of a
fragment of specifications, called decentralized efficiently monitorable, that en-
sure that monitoring can be performed with bounded memory (independently
of the length of the input trace). A third contribution, detailed in Section 5, is
a prototype implementation and an empirical evaluation. Section 2 contains the
preliminaries and Section 6 concludes.

4

2 Preliminaries. Stream Runtime Verification

We recall now SRV briefly (see [10] and the tutorial [24]). The fundamental idea
of SRV, pioneered by Lola [10] is to cleanly separate the temporal dependen-
cies from the individual operations to be performed at each step, which leads to
generalization of monitoring algorithms for logics to the computation of richer
values. A Lola specification declares the relation between output streams and in-
put streams, including both future and past temporal dependencies. The streams
are typed using arbitrary multi-sorted first-order theories. A type has a collec-
tion of symbols used to construct expressions, together with an interpretation of
these symbols to evaluate ground expressions.

Lola Syntax. Given a set Z of (typed) stream variables the set of stream ex-
pressions consists of (1) variables from Z, (2) offsets v[k, d] where v is a stream
variable of type D, k is a natural number and d a value from D, and (3) function
applications f(t1, . . . , tn) using constructors f from the theories to previously
defined terms. Stream variables represent streams (sequences of values). The in-
tended meaning of expression v[−1, false] is the value of stream v in the previous
position of the trace (or false if there is no such previous position, that is, at the
beginning). We assume that all theories have a constructor if · then · else ·
that given an expression of type Bool and two expressions of type D constructs
a term of type D. We use TermD(Z) for the set of stream expressions of type D
constructed from variables from Z (and drop Z if clear from the context). Given
a term t, sub(t) represents the set of sub-terms of t.

Definition 1 (Specification). A Lola specification ϕ(I,O) consists of a set
I = {r1, . . . , rm} of input stream variables, a set O = {s1, . . . , sn} of output
stream variables, and a set of defining equations, si = ei(r1, . . . , rm, s1, . . . , sn)
one per output variable si ∈ O, from TermD(I ∪O) where D is the type of si.

A specification describes the relation between input streams and output streams.
We will use r, ri,. . . to refer to input stream variables; s, si, . . . to refer to output
stream variables; and u, v for an arbitrary input or output stream variable.
Given ϕ(I,O) we use appears(u) for the set of output streams that use u, that
is {si | u[−k, d] ∈ sub(ei) or u ∈ sub(ei)}. Also, ground(t) indicates whether
expression t is a ground (contains no variables or offsets) and can be evaluated
into a value.

Example 1. The property “sum the previous values in input stream y, but if the
reset stream is true, reset the count”, can be expressed as follows, where stream
variable root uses the accumulator acc and the input reset to compute the
desired sum:

input bool reset , int i

define int acc = i + root[-1|0]

output int root = if reset then 0 else acc

5

Lola semantics. At runtime, input stream variables are associated with input
streams (sequence of values of the appropriate type and of the same length M).
The intended meaning of a Lola specification is to associate output streams
to output stream variables (of the same length M) that satisfy the equations
in the specification. Formally, this semantics are defined denotationally. Given
input streams σI (one sequence per input stream variable) and given an output
candidate σO (one sequence per output stream) the semantics describe when the
pair (σI , σO) matches the specification, which we write (σI , σO) � ϕ. We use σr
for the stream in σI corresponding to input variable r and σr(k) for the value
at position k (with 0 ≤ k ≤M).

A valuation is a pair σ : (σI , σO). Given a valuation the evaluation JtKσ of a
term t is a sequence of length M of values of the type of t defined as follows:
– If t is a stream variable u, then JuKσ(j) = σu(j).
– If t is f(t1, . . . , tk) then Jf(t1, . . . , tk)Kσ(j) = f(Jt1Kσ(j), . . . , JtkKσ(j))
– If t is v[i, c] then Jv[i, c]Kσ(j) = JvKσ(j+ i) if 0 ≤ j+ i < M , and c otherwise.

Definition 2 (Evaluation Model). A valuation (σI , σO) satisfies a Lola spec-
ification ϕ whenever for every output variable si, JsiK(σI ,σO) = JeiK(σI ,σO). In this
case we say that σ is an evaluation model of ϕ and write (σI , σO) � ϕ.

This semantics capture when a candidate valuation is an evaluation model, but
the intention of a Lola specification is to compute the unique output streams
given input streams.

A dependency graph Dϕ of a specification ϕ(I ∪O) is a weighted multi-graph
(V,E) whose vertices are the stream variables V = I ∪ O, and E contains a

directed weighted edge u
w−→ v whenever v[w, d] is a subterm in the defining

equation of u. If a dependency graph Dϕ contains no cycles with 0 weight then
the specification is called well-formed, and it guarantees that for every σI there
is a unique σO such that (σI , σO) � ϕ. This is because the value of a stream at
a given position cannot depend on itself.

Given a stream variable u and position i ≥ 0 the instant stream variable (or
simply instant variable) u[i] is a fresh variable of the same type as u.

Definition 3 (Evaluation Graph). Given ϕ(I,O) and a trace length M the
evaluation graph Gϕ,M has as vertices the set of instant variables {u[k]} for
u ∈ I ∪ O and 0 ≤ k < M , and has edges u[k] → v[k′] if the dependency graph

contains an edge u
j−→ v and k + j = k′

For example, if the defining equations of u contains v[−1, d] then u[16] points to
v[15] in all evaluation graphs with M ≥ 16. In well-formed specifications there
are no cycles in any evaluation graph, which enables to reason by induction on
evaluation graphs.

Lola Online Monitoring. The Lola online monitoring algorithm [10,24] main-
tains two storages:
– R: for instant variables that have been resolved (that is, pairs (u[k], c) that

denote that u[k] is known to have value c);

6

– U : for instant variables u[k] whose value is not determined yet (that is, whose
instantiated equation still contains variables).

At instant k the equation ei for si gets instantiated as follows: every variable
u in ei is converted into u[k] and every offset u[j, d] is turned into u[k + j] (or
into d if k+ j falls out of bounds). After instantiating all equations, the monitor
substitutes instant variables by their value if these values are resolved (in R). If
the resulting equation is not ground then it remains in U . Eventually, all values
will be discovered and every term will be resolved and moved from U to R.

3 Decentralized Stream Runtime Verification

In this section we describe our solution to the decentralized SRV problem. Given
a well-formed Lola specification, the decentralized online algorithm that we
present here will incrementally compute a value for each output instant vari-
able, reading values from the input stream variables at every clock instant. The
starting point of the solution is a map that associates each variable in the speci-
fication to a network node. The node associated to an input variable corresponds
to the location where readings of new values are performed, and the node asso-
ciated to an output variable s is the node responsible to incrementally compute
the stream for s. Each node will run a local monitor, that will collaborate with
other monitors by exchanging messages to perform the global monitoring task.

The main correctness criteria is that the output produced by our network
of cooperating monitors corresponds to the denotational semantics. However,
the decentralized algorithm may compute some output values at different time
instants than the centralized version, due to the different location of the inputs
and the delays caused by the communication.

3.1 Problem Description

The description of the decentralized SRV monitoring problem consists of a spec-
ification, a network topology and a stream assignment.

Network. A network topology T : 〈N,→〉 is given by a set of nodesN connected
by directed edges →⊆ N ×N that represent communication links between the
nodes. We assume that the graph is connected. A route between two nodes n
and m is list of nodes [n0, . . . , nk] such that consecutive nodes are neighbors (i.e.
ni → ni+1), no node is repeated, and n = n0 and m = nk. We statically fix
routes between every two nodes with the following properties: (1) if two nodes
n,m are neighbors then they communicate directly (that is [n,m] is the route
from n to m); (2) if [n0, . . . , ni, . . . nk] is a route, then the route from ni to nk
is the sub-list [ni . . . nk]. These properties can be enforced easily in a connected
graph, and they imply that routing tables can be encoded locally in every node
by just encoding at every node the next hop for every destination.

We use nextn(m) for the next hop in the routing table of n for messages with
destination m, and dist(n,m) for the number of hops between n and m. This is

7

precisely the number of routing operations that are needed for a message from
n to arrive to m. Consider the topology in Fig. 1. A message inserted at time 17
in CH with destination EN will arrive to PTC at time 18, which will be routed,
arriving at EN at time 19.

We assume reliable unicast communication (no message loss or duplication)
over a synchronous network, from which we build a synchronous distributed
system where computation proceeds as a sequence of cycles. In this computa-
tional model, all nodes in the network execute in every cycle—in parallel and
to completion— the following actions: (1) read input messages, (2) perform a
terminating local computation, (3) generate output messages. We describe below
our decentralized monitoring solution as a synchronous distributed system. In
our solution we use two types of messages:
– Requests messages: (req, s[k], ns, nd) where s[k] is an instant variable, ns

is the source node and nd is the destination node of the message.
– Response messages: (resp, s[k], c, ns, nd) where s[k] is an instant variable,
c is a value, ns is the source node and nd is the destination node.

Let msg = (resp, s[k], c, ns, nd), then msg .src = ns, msg .dst = nd, msg .type =
resp, msg .stream = s[k] and msg .val = c (the analogous definitions apply for a
request message except that msg .val is not applicable). The intention of request
messages is that ns requests the value of s[k] from nd, which is the node in
charge of stream s. Response messages are used to inform of the actual values
read or computed.

Stream Assignment and Communication Strategies. Given a specifica-
tion ϕ(I,O) and a network topology T : 〈N,→〉 a stream assignment is a map
µ : I ∪ O → N that assigns a network node to each stream variable. The node
µ(r) for an input stream variable r is the location in the network where r is
sensed in every clock tick. At runtime, at every instant k new input values for
variables mapped to different nodes are read simultaneously. The node µ(s) for
an output stream variable s is the location whose local monitor is responsible
for resolving the values of s.

Additionally, each stream variable v can be assigned one of the following
two communication strategies to denote whether an instant value v[k] is auto-
matically communicated to all potentially interested nodes, or whether its value
is obtained on request only. Let v and u be two stream variables such that v
appears in the equation of u and let nv = µ(v) and nu = µ(u).
– Eager communication: the node nv informs nu of every value v[k] = c

that it resolves by sending a message (resp, v[k], c, nv, nu).
– Lazy communication: node nu requests nv the value of v[k] (in case nu

needs it to resolve u[k′] for some k′) by sending a message (req, v[k], nu, nv).
When nu receives this message and resolves v[k] to a value c, nu will respond
with (resp, v[k], c, nv, nu).

Each stream variable can be independently declared as eager or lazy. We use
two predicates eager(u) and lazy(u) (which is defined as ¬eager(u)) to indicate
the communication strategy of stream variable u. Note that the lazy strategy
involves two messages and eager only one, but eager sends every instant variable

8

resolved, while lazy will only sends those that are requested. In case the values
are almost always needed, eager is preferable while if values are less frequently
required lazy is preferred. We are finally ready to define the decentralized SRV
problem.

Definition 4. A decentralized SRV problem 〈ϕ, T , µ, eager〉 is characterized by
a specification ϕ, a topology T , a stream assignment µ and a communication
strategy for every stream variable.

3.2 Decentralized Stream Runtime Verification

Our solution consists of a collection of local monitors, one for each network node
n. A local monitor 〈Qn, Un, Rn, Pn,Wn〉 for n consists of an input queue Qn and
four storages:
– Resolved storage Rn, where n stores resolved instant variables (v[k], c).
– Unresolved storage Un, where n stores unresolved equations v[k] = e where
e is not a value, but an expression that contains other instant variables.

– Pending requests Pn, where n records instant variables that have been
requested from n by other monitors but that n has not resolved yet.

– Waiting for responses Wn, where n records instant variables that n has
requested from other nodes but has received no response yet.
When n receives a response from remote nodes, the information is added

to Rn, so future local requests for the same value can be resolved immediately.
The storage Wn is used to prevent n from requesting the same value twice while
waiting for the first request to be responded. An entry in Wn is removed when
the value is received, since the value will be subsequently fetched directly from
Rn and not requested through the network. The storage Pn is used to record
that a value that n is responsible for has been requested, but n does not know
the answer yet. When n computes the answer, then n sends the corresponding
response message and removes the entry from Pn.

Informally, in each cycle, the local monitor for n processes the incoming mes-
sages from its input queueQn. Then n reads the values for input streams assigned
to it and also instantiates for the current instant the output stream variables
that n is responsible for. After that, the equations obtained are simplified using
the knowledge acquired so far by n. Finally, new response and request messages
are generated and inserted in the queues of the corresponding neighbors.

More concretely, every node n will execute the procedure Monitor shown in
Algorithm 1, which invokes Step in every clock tick until the input terminates.
The procedure Finalize is used to resolve the pending values at the end of the
trace to their default. The procedure Step executes the following steps:

1. Process Messages: Lines 11-20 deal with the processing of incoming mes-
sages. First, Lines 13-14 route messages with a different destination. Lines
16-17 annotate requests in P , which will be later resolved and responded.
Lines 19-20 handle response arrivals, adding them to R and removing them
from W .

9

2. Read New Inputs and Outputs: Line 21 reads new inputs for current
time k, and line 22 instantiates the equation of every output stream that n
is responsible for.

3. Evaluate: Line 23 evaluates the unresolved equations using Evaluate.
4. Send Responses: Lines 24-27 send messages for all eager variables. Lines

28-31 deal with pending lazy variables. If a pending instant variable is now
resolved, the response message is sent and the entry is removed from Pn.

5. Send new Requests: Lines 32-35 send new request messages for all lazy
instant streams that are now needed, to the corresponding responsible nodes.

6. Prune: Line 37 prunes the set R from information that is no longer needed.

The pruning algorithm appears in Algorithm 2 and it is described in Section 4.
We now show that our solution is correct by proving that the output computed
is the same as in the denotational semantics, and that every output is eventually
computed.

Theorem 1. All of the following hold for every instant variable u[k]:
(1) If lazy(u) then all request messages for u[k] are eventually responded.
(2) If eager(u) then a response message for u[k] is eventually sent.
(3) The value of u[k] is eventually resolved.
(4) The value of u[k] is c if and only if (u[k], c) ∈ R at some instant.

The proof proceeds by induction in the evaluation graph, showing simultane-
ously in the induction step (1)-(4) as these depend on each other (in the previ-
ous inductive steps). Theorem 1 implies that every value of every defined stream
at every point is eventually resolved by our network of cooperating monitors.
Therefore, given input streams σI , the algorithm computes (by (4)) the unique
output streams σi one for each si. The element σi(k) is the value resolved for
si[k] by the local monitor for µ(si). The following theorem captures that Algo-
rithm 1 computes the right values (according to the denotational semantics) and
Theorem 1 that all values are eventually computed.

Theorem 2. Let ϕ be a specification, S = 〈ϕ, T , µ〉 be a decentralized SRV
problem, and σI an input. Then (σI , out(σI)) � ϕ.

3.3 Simplifiers

The evaluation of expressions in Algorithm 1 assumes that all instant variables in
an expression e are known (i.e., e is ground), so the interpreted functions in the
data theory can evaluate e. Sometimes, expressions can be partially evaluated
(or even the value fully determined) knowing only some of the instant variables.
A simplifier is a function f : TermD → TermD such that
– for every term t of type D, Vars(f(t)) ⊆ Vars(t)
– for every substitution ρ of Vars(t), Jt / ρK(σI ,σO) = Jf(t) / ρK(σI ,σO)

For example, the following are sound simplifications

if true then s[0] else t[1] 7→ s[0] 0 + s[7] 7→ s[7] true ∨ s[0] 7→ true
if false then s[0] else t[1] 7→ t[1] 1 · t[23] 7→ t[23] false ∨ s[0] 7→ s[0]

10

Simplifiers can dramatically affect the performance in terms of the instant at
which an instant variable is resolved and the number of messages exchanged.

It is easy to see that for every term t obtained by instantiating a defining
equation and for every simplifier f , JtKσI ,σO

= Jf(t)K(σI ,σO), because the values
of the variables in t and in f(t) are filled with the same values (from σI and σO).
The following also holds for every ϕ and valuation (σI , σO).

Lemma 1. Let e be an instant term and let ρ = {u[k] 7→ c} be the substitution
such that c = Ju[k]K(σI ,σO). Then, JeK(σI ,σO) = Je / ρK(σI ,σO).

Lemma 1 holds immediately because the substitution ρ is just the partial applica-
tion of one of the values of the variables that may appear in e. Now, consider ar-
bitrary simplifiers simp used in line 43 to simplify expressions. Let Un be the un-
resolved storage for node n and let u[k] be an instant variable with µ(u) = n. By
Algorithm 1 the sequence of terms (u[k], t0), (u[k], t1), . . . (u[k], tk) that Un will
store are such that ti+1 = simp(ti) or ti+1 = t1 / ρ where ρ = {vi[ki]← ci} cor-
responds to the substitution of values of instant variables that are discovered at
the given time step. By Lemma 1, it follows that JtiK(σI ,σO) = Jti+1K(σI ,σO) which
in particular when tk = c implies that the value computed is Ju[k]K(σI ,σO) = c.
The following theorem follows.

Theorem 3. The decentralized algorithm using simplifiers terminates and com-
putes the unique output for every well-formed specification ϕ.

In fact, it is easy to show that the algorithm using simplifiers obtains the value of
every instant variable no later than the algorithm that uses no simplifier. This is
because in the worst case every instant variable is resolved when all its depending
variables are known, and all response messages are sent at the moment they are
resolved.

4 Decentralized Efficient Monitorability

In this section we identify a fragment of specifications, called decentralized effi-
ciently monitorable, for which the local monitors only need bounded memory to
compute every output value. To guarantee that a given storage in a local moni-
tor for node n is bounded, one must provide a bound on both: (1) when a value
(u[k], c) in Rn can be removed; and (2) when it is guaranteed that an unresolved
value from Un is resolved. Note that if s[k] is resolved in bounded time then all
occurrences of s[k] in Wn and Pn are also removed in bounded time, because it
only takes a bounded amount of time for response messages to arrive.

Pruning the Resolved Storage. We show now that the memory necessary
in the resolve storage Rn can be bounded (for all specifications). If a stream
s is eager(s) then once s[k] is resolved it is sent to the potentially interested
remote nodes. However, the value of s[k] has to remain in Rn (and in Rm for
remote nodes that receive it) until it is no longer needed. For streams s that are
lazy(s), the value must remain in Rn until it is guaranteed that the value will
not be requested any more. This information is captured by the notion of back
reference.

11

Algorithm 1 Local monitoring algorithm at node n with 〈Qn, Un, Rn, Pn,Wn〉
1: procedure Monitor
2: Un, Rn, Pn,Wn ← ∅
3: k ← 0
4: while not END do
5: Step(k)
6: k ← k + 1

7: M ← k . Trace length M
8: Finalize(M)

9: procedure Step(k)
10: Rold ← Rn

11: for all msg ∈ Q do . Process incoming messages
12: Qn ← Qn \msg
13: if msg .dst 6= n then
14: route(msg)
15: else
16: if msg .type = req then
17: Pn ← Pn ∪msg
18: else
19: Rn ← Rn ∪ {(msg .stream,msg .val)}
20: W ←W \ {msg .stream}
21: Rn ← Rn ∪ {r[k],new(r, k) | r ∈ inputs(n)} . Read inputs
22: Un ← Un ∪ {s[k], instantiate(es, k) | s ∈ outputs(n)} . Instantiate outputs
23: Evaluate(Un, Rn)
24: for all (r[k′], c) ∈ Rn \Rold do . New knowledge
25: if eager(r) ∧ µ(r) = n then . Eager new knowledge
26: for all nd ∈ µ(appears(r)) such that n 6= nd do
27: send(resp, r[k′], c, n, nd)

28: for all msg ∈ Pn do . Pending lazy new knowledge
29: if (msg .stream, c) ∈ Rn then
30: send(resp,msg .stream, c, n,msg .src)
31: Pn ← Pn \ {msg}
32: for all (, e) ∈ U do
33: for all u[k′] ∈ sub(e) do
34: if lazy(u) ∧ u[k′] /∈Wn ∧ µ(u) 6= n then . Send needed new requests
35: send(req, u[k′], n, µ(u))
36: Wn ←Wn ∪ {u[k′]}
37: Prune(Rn)

38: procedure Evaluate(Un, Rn)
39: done ← false
40: while not done do
41: done ← true
42: for all (s[k], e) ∈ Un do
43: e′ ← Subst(e,Rn)
44: if ground(e′) then
45: done ← false
46: Un ← Un \ {(s[k], e)}
47: Rn ← Rn ∪ {(s[k], e′)}
48: else
49: Un ← Un \ {(s[k], e)} ∪ {(s[k], e′)}

12

Algorithm 2 Pruning Rn at node n at instant k

1: procedure Prune
2: for all (u[j], c) ∈ Rn do
3: if k ≥ j +∆(u) then . If u[j] will not be needed
4: Rn ← Rn \ {(u[j], c)} . Remove

Definition 5. Let ϕ be a Lola specification with dependency graph Dϕ. The back
reference of a stream s is

∆(s)
def
=

{
max(0, {−k | r k−→ s}) if eager(s)

max(0, {−k + dist(r, s) | r k−→ s}) if lazy(s)

Note that for lazy streams the request is guaranteed to be received after
dist(µ(r), µ(s)) steps of the instantiation of the correspondent instance of r.
Therefore, a node responsible for s will have received all requests for u[k] at
k +∆(u). Similarly, a fetch for u[k] in Rn locally at n is guaranteed to be done
no later than k +∆(u). Therefore, the following results holds.

Lemma 2. A value (u[k], c) ∈ Rn will not be fetched or requested after k+∆(u).

This implies that at every node n, all values of u[k] can be removed at instant k+
∆(s), which allows to implement the algorithm for pruning shown in Algorithm 2.
Therefore, the maximum size of Rn needed is bounded linearly by the maximum
∆(s) times the number of streams.

Time to resolve. In centralized SRV monitoring [10,24] a specification is effi-
ciently monitorable whenever all cycles in Dϕ have negative weight. This guar-
antees that the online algorithm can be performed in a trace length independent
way. However, this is not true for decentralized monitoring as illustrated in the
following example.

Example 2. Consider the following specification deployed in monitors 1 and 2
with dist(1, 2) = dist(2, 1) = 2:

@1{output num a eval = b[-1|0]}

@2{output num b eval = a[-1|0]}

It is easy to see that a[0] and b[0] will be resolved at time 0, a[1] and b[1] at time
2, and a[n] and b[n] at time 2n. Then, U1 and U2 will grow to contain a number
of equations that depends on the length the trace. ut

We introduce the notion of decentralized efficiently monitorable, that guarantees
an upper bound on the number of steps that it takes to resolve an equation in Un.
Note that Algorithm 1 removes an equation from Un and moves it into Rn once it
is resolved. In turn, this also gives a bound on the duration of the elements in Pn
and Wn. It follows that for decentralized efficiently monitorable specifications,
the monitoring process requires only a constant amount of memory (on the size
of the specification) independently of the length of the trace.

13

Definition 6 (Decentralized Efficiently monitoriable). A specification ϕ
is decentralized efficiently monitoriable whenever it is efficiently monitorable and
no cycle in Dϕ visits two streams r and s assigned to different nodes µ(r) 6= µ(s).

Note that since Lola is very expressive many decision problems for Lola specs
(well-formedness, equivalence, etc) are undecidable. However, well-definedness
(which guarantee that the monitoring algorithm always computes a verdict),
efficient monitorability and decentralized efficient monitorability are syntactic
properties which are very easy to check.

We now define the notion of look-ahead of a stream s, that bounds for decen-
tralized efficiently monitorable specifications the maximum between the moment
at which s[k] is inserted in Un and s[k] is resolved into a value. Note that a de-
centralized efficiently monitorable specification can be decomposed into a DAG
of sets of stream variables such that each set is mapped to a single node (because
cycles in the graph must belong to a single node). We use S(s) for the set of
streams that are grouped with s. In order to define the look-ahead distance ∇(s)
we use an auxiliary definition: ∇rem(s). This provides an upper-bound on the
time to receive from a remote node the value of an instant variable r[k′] that
s[k] directly depends on.

– If r is eager, this value depends on ∇(r) to guarantee that r[k′] is known at
k′ +∇(r) and the time dist(r, s) to communicate this value.

– If r is lazy, the instant at which the network node of r sends the value of
r[k′] is the later instant between k′ +∇(r) and the reception of the request,
that is k+dist(s, r). After receiving the request, the response takes dist(r, s)
to arrive to s.

Once ∇rem has been determined for all edges in the dependency graph that leave
a component S(s),∇(s) can be determined by the weight of the maximum simple
path in S(s) adding also the additional time to resolve the remote dependencies.
Note that the definition of ∇(s) is identical to the look-ahead in a centralized
specification with S(s) as streams that considers directly accessible streams r at
remote nodes as input streams. Formally:

Definition 7 (Look-ahead). The remote look-ahead distance ∇rem(s) of a

stream s is ∇rem(s)
def
= max(0, {delay(r

w−→ s) | µ(r) 6= µ(s)}, where

delay(r
w−→ s)

def
=

{
dist(r, s) + w +∇(r) if eager(r)

dist(r, s) + max(w +∇(r), d(s, r)) if lazy(r)

The look-ahead distance is ∇(s)
def
= max(0, {w+∇rem(r) | s w−→

∗
r with S(s) = S(r)})

The definition is well-defined because the graph is a DAG of components, each
of which is mapped to single network node. Intuitively, the remote look-ahead
∇rem(s) captures how long it takes to receive information from µ(r) that is
relevant to compute s[k]. Note that if the specification is centralized, then there
is a single component, ∇rem(s) is 0 and the look-ahead distance coincides with
the look-ahead for centralized Lola evaluation [24].

14

Lemma 3. Every unresolved s[k] = e in Un is resolved at most at k +∇(s).

Lemmas 2 and 3 imply that decentralized efficiently monitorable specifications
can be monitored with bounded resources. The bound depends only linearly on
the size of the specification and the diameter of the network.

5 Empirical Evaluation

We have implemented our solution in a prototype tool dLola, written in the Go
programming language (available at http://github.com/imdea-software/dLola).
We describe now (1) an empirical comparison of dLola versus Themis [13]—a
state-of-the-art tool for decentralized runtime verification of LTL specifications—
and (2) the effect on dLola of the network placement on richer specifications (not
supported by Themis).

Themis comparison. Themis can only monitor Boolean specifications while dLola
can monitor arbitrary values from richer domains. Also, Themis can only handle
a clique topology while dLola supports arbitrary connected networks. In this
comparison, we restrict to specifications and topologies that Themis can han-
dle, and we translate directly LTL formulas to Lola specifications. We evaluate
both tools against 213, 196 synthesized input tests in a network with 5 nodes.
The results from Themis where obtained from the database provided openly
at https://gitlab.inria.fr/monitoring/themis. Our tool reached a final verdict on
all cases, which coincided with Themis on all experiments for which Themis
had a verdict in the database (85% of our input cases). Fig. 2 report metrics
collected using these experiments. We compared our centralized setting (with
decentralized observation) with the Themis’ Orchestration algorithm and our
decentralized setting with Themis’ Choreography algorithm. Fig. 2(a) shows the
number of messages exchanged to compute the final verdict. In the best case

min avg max
dLola

Themis
dLola

Themis
dLola

Themis
Lazy Eager Lazy Eager Lazy Eager

decentr 6.00 12.00 0.00 564.19 332.50 6751.12 4201.00 2101.00 66000.00

centr 1.00 9.00 0.00 98.33 140.88 7085.40 1001.00 801.00 48400.00

(a) Number of messages exchanged

decentr 139.50 279.00 0.00 13186.87 7792.24 60743.17 97862.00 49074.50 594000.00

centr 24.50 204.50 0.00 2208.38 3171.91 83833.05 82759.45 22462.00 576950.00

(b) Payload size (in bits)

decentr 2.00 1.00 0.00 23.72 20.49 84.46 115.00 110.00 4070.00

centr 0.00 0.00 0.00 17.61 16.59 6.52 101.00 100.00 110.00

(c) Time delay (in cycles)

Fig. 2. Comparison dLola vs Themis

15

Ring Ringshort Line Clique Star
best even worst best even worst best even worst best even worst best even worst

4 301 1301 2901 301 1301 1301 301 1501 2401 301 901 1101 301 1401 2101

5 301 1301 3903 301 1301 2103 301 1501 3401 301 901 1101 301 1501 2101

7 301 1301 5701 301 1301 3001 301 1801 5401 301 901 1101 301 2401 3901

9 301 1301 5901 301 1301 4301 301 1301 7401 301 901 1101 301 2301 3901

10 301 1301 6501 301 1301 4501 301 1301 8401 301 901 1101 301 2701 5701

Fig. 3. Number of messages exchanged by topology and placement (for 4, . . . , 10 nodes)

a lazy strategy requires less messages than an eager strategy because many re-
mote values are not required. In the worst case the eager strategy consumes less
messages than the lazy, because the request messages are not sent.

In comparison with Themis, dLola requires less messages on average and
in the worst case, but more messages in the minimum case. Fig. 2(b) shows
the size of the message payload used for the computation of verdicts. Again,
dLola uses smaller payloads except in the minimum case. Fig. 2(c) contains the
maximum delay, which shows that dLola incurs in a higher maximum delay for
the centralized cases, but significantly lower when decentralized.

Topologies. Intuitively speaking, the performance depends on the placement of
streams, as more locality reduces the latency and the number of messages re-
quired. We selected five representative topologies (ring, ringshort, linear, clique,
star) and for each topology selected three different placements: (1) maximizing
manually the locality, (2) assigning output streams evenly, and (3) minimizing
manually the locality. For all experiments we use the following specification,
where we make a chain of four output streams depend on an input and on the
previous stream. Fig. 3 illustrates how the placement of subformulas affect the
overall efficiency of the monitors, which confirms that placement is crucial for
efficiency and suggests that in most cases, values can be resolved with a num-
ber of messages independently of the topology and size of the network by careful
placement. This is relevant since the topology may be fixed by the system design,
while the placement is part of the monitoring solution.

6 Conclusions and Future Work

We have studied the problem of decentralized stream runtime verification, that
starts from a specification, a topology and a placement of the input streams. Our
solution consists of a placement of output streams and an online local monitoring
algorithm that runs on every node. We have captured specifications that guaran-
tee that the monitoring can be performed with constant memory independently
of the length of the trace. We report on an empirical evaluation of our prototype
tool dLola. Our empirical evaluation shows that placement is crucial for perfor-
mance and suggest that in most cases careful placement can lead to constant
costs and delays. As future work we plan to extend our solution to timed asyn-
chronous distributed systems [9], to monitor under failures and uncertainties and
to support reading at different nodes (alternatively or simultaneously).

16

References

1. Autosar. https://www.autosar.org/.
2. Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. J. ACM,

49(2):172–206, 2002.
3. Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based

runtime verification. In Proc. of the 5th Int’l Conf. on Verification, Model Check-
ing and Abstract Interpretation (VMCAI’04), volume 2937 of LNCS, pages 44–57.
Springer, 2004.

4. David Basin, Felix Klaedtke, and Eugen Zalinescu. Failure-aware runtime verifi-
cation of distributed systems. In Proc. of the 35th IARCS Annual Conf on Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS’15),
volume 45 of LIPIcs, pages 590–603. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2015.

5. Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach. From propositional to
first-order monitoring. In Axel Legay and Saddek Bensalem, editors, Runtime
Verification - 4th International Conference, RV 2013, Rennes, France, September
24-27, 2013. Proceedings, volume 8174 of Lecture Notes in Computer Science, pages
59–75. Springer, 2013.

6. Andreas Bauer, Martin Leucker, and Chrisitan Schallhart. Runtime verification
for LTL and TLTL. ACM Transactions on Software Engineering and Methodology,
20(4):14, 2011.

7. Andreas Klaus Bauer and Yliès Falcone. Decentralised LTL monitoring. In Proc.
of the 18th Int’l Symp. on Formal Methods (FM’12), volume 7436 of LNCS, pages
85–100. Springer, 2012.

8. Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Scheffel, Malte
Schmitz, and Daniel Thoma. TeSSLa: Temporal stream-based specification lan-
guage. In Proc. of the 21th Brazilian Symp. on Formal Methods (SBMF’18), volume
11254 of LNCS, pages 144–162. Springer, 2018.

9. Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system
model. IEEE Transactions on Parallel and Distributed Systems, 10(6):642–657,
1999.

10. Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: Run-
time monitoring of synchronous systems. In Proc. of the 12th Int’l Symp. of Tem-
poral Representation and Reasoning (TIME’05), pages 166–174. IEEE CS Press,
2005.

11. Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and
David Van Campenhout. Reasoning with temporal logic on truncated paths. In
Proc. of the 15th Int’l Conf. on Computer Aided Verification (CAV’03), volume
2725 of LNCS, pages 27–39. Springer, 2003.

12. Antoine El-Hokayem and Yliès Falcone. Monitoring decentralized specifications.
In Proc. of the 26th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis
(ISSTA’17), pages 125–135. ACM, 2017.

13. Antoine El-Hokayem and Yliès Falcone. THEMIS: A Tool for Decentralized Mon-
itoring Algorithms. In Proc. of the 26th ACM SIGSOFT Int’l Symp. on Software
Testing and Analysis (ISSTA’17), pages 125–135. ACM, July 2017.

14. Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem Torfah. A
stream-based specification language for network monitoring. In Proc. of the 16th
Int’l Conf. on Runtime Verification (RV’16), volume 10012 of LNCS, pages 152–
168. Springer, 2016.

17

15. Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian Schwenger,
Marvin Stenger, Leander Tentrup, and Torfah Hazem. StreamLAB: Stream-based
monitoring of cyber-physical systems. In Proc. of the 31st Int’l Conf. on Computer-
Aided Verification (CAV’19), volume 11561 of LNCS, pages 421–431. Springer,
2019.

16. Adrian Francalanza, Jorge A. Pérez, and César Sánchez. Runtime verification
for decentralised and distributed systems. In Ezio Bartocci and Yliès Falcone, edi-
tors, Lectures on Runtime Verification - Introductory and Advanced Topics, volume
10457 of Lecture Notes in Computer Science, pages 176–210. Springer, 2018.

17. Felipe Gorostiaga and César Sánchez. Striver: Stream runtime verification for
real-time event-streams. In Proc. of the 18th Int’l Conf. on Runtime Verification
(RV’18), volume 11237 of LNCS, pages 282–298. Springer, 2018.

18. Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety properties.
In Proc. of the 8th Int’l Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’02), volume 2280 of LNCS, pages 342–356. Springer-
Verlag, 2002.

19. ISO Central Secretary. Road vehicles interchange of digital information controller
area network (CAN) for high speed communication. Standard ISO 11898, Inter-
national Standards Organisation, 1993.

20. E. K. Liebemann, K. Meder, J. Schuh, and G. Nenninger. Safety and performance
enhancement: the Bosch electronic stability control(ESP). In SAE, pages 421–428,
2004.

21. Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A hard
real-time runtime monitor. In Proc. of the 1st Int’l Conf. on Runtime Verification
(RV’10), volume 6418 of LNCS, pages 345–359. Springer, 2010.

22. Lee Pike, Nis Wegmann, Sebastian Niller, and Alwyn Goodloe. Copilot: monitoring
embedded systems. Innovations in Systems and Software Engineering, 9(4):235–
255, Dec 2013.

23. Grigore Roşu and Klaus Havelund. Rewriting-based techniques for runtime verifi-
cation. Automated Software Engineering, 12(2):151–197, 2005.

24. César Sánchez. Online and offline stream runtime verification of synchronous sys-
tems. In Proc. of the 18th Int’l Conf. on Runtime Verification (RV’18), volume
11237 of LNCS, pages 138–163. Springer, 2018.

25. Koushik Sen and Grigore Roşu. Generating optimal monitors for extended regular
expressions. In Oleg Sokolsky and Mahesh Viswanathan, editors, Electronic Notes
in Theoretical Computer Science, volume 89. Elsevier, 2003.

26. Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. Efficient decentralized
monitoring of safety in distributed systems. In Proc. of the 26th Int’l Conf. on
Software Engineering (ICSE’04), pages 418–427. IEEE CS Press, 2004.

