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Abstract This article introduces the extended versions of selected papers from the refer-
eed proceedings of the 16th International Conference on Runtime Verification (RV 2016)
held in Madrid, Spain, in September 2016. Runtime verification encompasses all aspects of
monitoring and analysis of hardware, software, and system executions in general. Runtime
verification techniques are lightweight dynamic techniques to assess and enforce correctness,
reliability, and robustness during system execution. These techniques are significantly more
powerful and versatile than conventional testing, and more practical than exhaustive formal
verification (at the price of incomplete coverage).
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1 Runtime verification

Runtime verification (RV) is the umbrella term to encompass all aspects of monitoring and
analysis of hardware, software and the executions of systems in general. RV techniques are
lightweight dynamic techniques to assess and enforce correctness, reliability, and robustness
during system execution. These techniques are significantly more powerful, versatile and
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rigorous than conventional testing, and more practical than exhaustive formal verification.
Foundational papers on RV include [1–5]; see also [6–11] for tutorial papers. Recently, a
tutorial book on RV has been released [12] presenting introductory and advanced topics,
including the monitoring of cyber-physical systems [13], runtime failure prevention and
reaction [14], monitoring concurrency errors [15], monitoring decentralized and distributed
systems [16], and financial and transaction systems [17].

In the last decade, runtime verification, as a computer science field, has grown significantly.
As an event, RV—which started initially as a workshop—became a conference in 2010 [18].
Three competitions on software for runtime verification have been organized in so far (see
[19–21] and [22] for an extensive report of the first incarnation of the competition) as well
as a workshop reporting reflections on past competitions [23]. Additionally, two graduate
schools (see [24]) devoted to runtime verification have been recently organized in 20161 and
2018.2 A European COST Action on Runtime Verification (IC 1402, runtime verification
beyond monitoring3) is ongoing with the objectives of connecting runtime verification to
other analysis techniques, and expanding the applicability of RV beyond software reliability.
Workshops on particular aspects of runtime verification have also flourished: the AD-RV
track [25,26] at ISoLA20144 ongeneral applications of runtimeverification, the iAD-RV[27]
track on industrial applications of runtime verification at ISoLA 2016,5 the PrePost workshop
on pre and post deployment technique in 2016, and the recent RUME6 and VORTEX7

workshops on embedded systems and object-oriented languages, respectively.
As the area is getting increasingly mature, deeper results are generated tackling more

complex problems. This special issue contains extended versions of selected papers from the
RV 2016 conference, as a witness to this maturity.

2 Summaries of the selected articles

In this section, we briefly summarize the articles contained in this special issue. All articles
are significantly extend the corresponding papers from the refereed proceedings [28] of the
16th International Conference on Runtime Verification, RV 2016, held in Madrid, Spain, in
September 2016.

Goubault-Larrecq and Lachance [29] use monitoring for intrusion detection via their tool
Orchids. Their paper addresses the problem of determining the complexity of monitoring
an Orchids signature (a specification) and provide a linear-time algorithm that determines
whether the number of monitors for this specification is linear or exponential in the number
of events.

Shi et al. [30] validate at runtime wireless protocol using wireless sniffers to avoid device
instrumentation. They address the problem of losses caused by wireless propagation which
prevents the construction of complete traces. Protocols are expressed as a statemachinewhich
encodes the uncertainty of sniffers by adding non-determinism. The validation problem is
framed as a decision problem, shown to be NP-complete, and they provide an algorithm for

1 www.rv2016.imag.fr/?page_id=128.
2 www.cost-arvi.eu/?page_id=1163.
3 www.cost-arvi.eu.
4 www.cs.uni-potsdam.de/gsse/www.isola-conference.org/isola2012/.
5 isola-conference.org/isola2016/.
6 beru.univ-brest.fr/RUME18.html.
7 conf.researchr.org/track/vortex-2018/vortex-2018-papers.
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exhaustively exploring mutated traces. The algorithm can be enhanced by protocol-oblivious
heuristics to select most likely mutated traces.

Kauffman et al. [31] infer abstractions of event streams produced by telemetry systems
of the Curiosity rover on Mars. Their approach introduces a hierarchy of event abstractions
that can be queried and visualized. Event abstractions are expressed as a rule-based system
inspired by Allen’s temporal logic. The approach is implemented in both the C and the
Scala programming languages and the specification formalism as both internal and external
domain-specific languages.

Jakšić et al. [32] monitor the physical behavior of cyber-physical systems. They provide
a quantitative semantics of Signal Temporal Logic by introducing a weighted edit distance.
The decision procedure is a dynamic programming algorithm which allows quantifying the
similarity between the system and specification behaviors. Hardware-based monitors are
implemented on an FPGA, assessed on automotive benchmarks, and used on a magnetic
sensor of modern cars.

Moreno and Fischmeister [33] enforce the safety and security of embedded systems using
power consumption. Their approach is non-intrusive and consists in analyzing the signal and
the system using a spectral analysis that matches the input and output signal. The approach
leverages the control-flow graph of the program for performance improvement. They present
experiments on a SCADE application and a case study where anomalous executions are
detected.

Roşu [34] introduces a sound and complete direct proof system for linear-temporal logic
with (only) finite traces. The proof system consists of seven rules extending the proof system
of propositional logic, six rules are rather expected, and one special rule is of coinductive
nature. Roşu shows that this rule is strictly more powerful than the classical inductive rule
used in existing proof systems for infinite and infinite-finite traces.
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