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Abstract. We present an automata-based algorithm for checking finite
state systems for hyperproperties specified in HyperLTL and HyperCTL⇤.
For the alternation-free fragments of HyperLTL and HyperCTL⇤ the au-
tomaton construction allows us to leverage existing model checking tech-
nology. Along several case studies, we demonstrate that the approach en-
ables the verification of real hardware designs for properties that could
not be checked before. We study information flow properties of an I2C
bus master, the symmetric access to a shared resource in a mutual exclu-
sion protocol, and the functional correctness of encoders and decoders
for error resistant codes.

1 Introduction

HyperLTL and HyperCTL⇤ are recent extensions to LTL and CTL⇤ with the
ability to express a wide range of hyperproperties [14]. Hyperproperties general-
ize trace properties and include properties from information-flow security such as
noninterference [15]. Even though the complexity of model checking HyperLTL
and HyperCTL⇤ has been determined, no e�cient algorithms are known so far.
In this paper, we thus study the automatic verification of finite state systems
for hyperproperties specified in HyperLTL and HyperCTL⇤.

HyperLTL and HyperCTL⇤ allow us to specify relations over executions of
the same system [14]. They introduce path quantifiers so computation paths can
be referred to in the atomic propositions. For example, the following HyperLTL
formula expresses noninterference [22] between input h and output o by requiring
that all computation paths ⇡ and ⇡0 that only di↵er in h, have the same output
o at all times:

8⇡.8⇡0.
�^

i2I\h
i⇡ = i⇡0

� ) (o⇡ = o⇡0)

Quantifiers in CTL⇤, in contrast, are of the form A' and E' where the
subformula ' can only (implicitly) refer to a single path—the path introduced
by A and E respectively. Hence, CTL⇤ cannot express noninterference [20,1].
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Noninterference between i and o implies that o contains no information
about i, and is therefore an important building block for properties in secu-
rity [23]. By embedding noninterference in a temporal context, HyperLTL and
HyperCTL⇤ allow us to express a wide range of properties from information-
flow security, including variants of declassification and quantitative information
flow [3,5,16,42]. The use cases of HyperLTL and HyperCTL⇤, however, extend
far beyond security, as we demonstrate in this paper.

The main result of this paper is an automata-theoretic algorithm for the
model checking problem of HyperLTL and HyperCTL⇤. The automata approach
to model checking LTL properties [47] reduces the verification problem to au-
tomata operations and decision problems, like automata product and check for
emptiness. Typically, the LTL specification is translated into a Büchi word au-
tomaton that captures all violations of the specification. The product of the
system with this automaton reveals the system’s traces that violate the specifi-
cation. We extend the approach based on Büchi word automata with the ability
to quantify over new executions along the run, and thereby obtain an algorithm
for HyperCTL⇤ (Section 3). The construction for a quantifier 9⇡. ' corresponds
to a product of the system and the automaton for the subformula '. As in the
classical approach, a final check of emptiness of the language of the automaton
provides the answer to the model checking problem. The construction of the au-
tomaton involves the expensive nondeterminization of alternating automata [37]
to handle quantifier alternations. For the rich class of alternation-free formu-
las, however, the algorithm is shown to be in NLOGSPACE in the size of the
system. In Section 4 we use the alternating automaton construction to derive
an approach to leverage existing model checking technology for model checking
circuits for the alternation-free fragment of HyperCTL⇤.

We demonstrate the flexibility and the e↵ectiveness of the proposed approach
for the alternation-free fragment of HyperCTL⇤ along three case studies (Sec-
tion 5). The first case study concerns the information flow analysis of an I2C
bus master. The second case study concerns the analysis of the symmetries in a
mutual exclusion protocol. The typical fair-access properties against which mu-
tual exclusion protocols are usually analyzed, such as accessibility and bounded
overtaking [31], can be seen as abstractions of what is really expected from mu-
tual exclusion protocols: symmetric access to the shared resource. HyperLTL
enables a fine grained analysis of the symmetry between the processes, for ex-
ample by expressing the property that switching the actions and roles between
two components in a trace results in another legal trace, in which the access
to the shared resource is switched accordingly. The third case study concerns
the functional correctness of encoders and decoders of error resistant codes. The
error resistance of a code is a property of its space of code words: all pairs of
code words must have a certain minimum Hamming distance. We show that
Hamming distance can be expressed in HyperLTL and demonstrate that this
leads to an e↵ective approach to the verification of encoders and decoders.

To summarize, our contributions are as follows:
– We develop the first direct automaton construction for model checking Hy-

perLTL and HyperCTL⇤ based on alternating automata.
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– We present the first practical approach for model checking hardware systems
for alternation-free HyperCTL⇤ formulas.

Our evaluation shows that the approach enables the verification of industrial
size hardware modules for hyperproperties. That is, we extend the state of the
art in model checking hyperproperties from systems using only few (binary)
variables [14,35] to systems with over 20.000 variables.

Related work. In this paper, we present an automata-theoretic model checking
algorithm for HyperLTL and HyperCTL⇤, together with a practical approach
to the verification of hardware circuits against alternation-free formulas. Previ-
ous automata constructions for the problem [14] are based on nondeterministic
Büchi automata, whereas we present an algorithm based on alternating Büchi
automata, which allows us to leverage modern hardware verification techniques
like IC3 [10]/PDR [18], interpolation [33], and SAT [8]. Our model checker can
therefore be applied to significantly more complex systems than the proof-of-
concept model checker for the one-alternation fragment of HyperLTL [14], which
is limited to small explicitly given models.

HyperLTL and HyperCTL⇤ are related to other logics for hyperproperties,
such as variations of the µ-calculus, like the polyadic µ-calculus by Andersen [2],
the higher-dimensional µ-calculus [39], and holistic hyperproperties [36]. The
model checking problem for these logics can be reduced to the model checking
problem of the modal µ-calculus [2,28] (or directly to parity games [35]) and
involves, similar to our construction, an analysis of the product of several copies
of the system. We are not aware, however, of any practical approaches that
would allow the verification of complex hardware designs against specifications
given in these logics. Another related class of logics are the epistemic temporal
logics [19], which reason about the knowledge of agents and how it changes
over time. While it has been shown that epistemic temporal logic can express
certain information flow policies [4], most practical work with epistemic logics has
focussed on applications from the area of multi-agent systems [21,29,30,34,40].

Lastly, in the area of information flow security, there are several verification
techniques that focus on specific information flow properties—rather than on a
general logic like HyperLTL and HyperCTL⇤—but use techniques that relate to
our model checking algorithm. A construction based on the product of copies of a
system, self-composition [6,7], has been tailored for various trace-based security
definitions [17,24,45].

2 Temporal Logics for Hyperproperties

We now introduce the temporal logics for hyperproperties, their semantics, and
their model checking problem.

A Kripke structure is a tuple K = (S, s0, �,AP, L) consisting of a set of states
S, an initial state s0, a transition function � : S ! 2S , a set of atomic propositions
AP, and a labeling function L : S ! 2AP decorating each state with a set of
atomic propositions. We require that each state has a successor, that is �(s) 6= ;,
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to ensure that every execution of a Kripke structure can always be extended
to an infinite execution. A path of a Kripke structure is an infinite sequence of
states s0s1 . . . 2 S! such that s0 is the initial state of K and si+1 2 �(si) for
all i 2 N. We denote by Paths(K, s) the set of all paths of K starting in state
s 2 S and by Paths⇤(K, s) the set of their su�xes. Given a path p and a number
i � 0, p[i,1] denotes the su�x path where the first i elements are removed.

HyperLTL and HyperCTL⇤ extend the standard temporal logics LTL and
CTL⇤ by quantification over path variables. Their formulas are generated by the
following grammar, where a 2 AP and ⇡ ranges over path variables:

' ::= true | a⇡ | ¬' | ' _ ' | ' ^ '
| ' | ' U ' | 'R ' | 9⇡. ' | 8⇡. '

Additionally, we define the derived operators ' = true U ', ' = ¬ ¬',
and '1 W '2 = '1 U '2 _ '1.

For HyperLTL and HyperCTL⇤ we require that temporal operators only
occur inside the scope of path quantifiers. HyperLTL is the sublogic of formulas
in prenex normal form. A formula is in prenex normal form, if it starts with
a sequence of quantifiers, and is quantifier-free in the rest of the formula. The
conceptual di↵erence between HyperLTL and HyperCTL⇤, is that HyperLTL,
like LTL, is a linear-time logic and that HyperCTL⇤, like CTL and CTL⇤, is a
branching-time logic [20]. A formula ' is in negation normal form if the only
occurrences of ¬ occur in front of propositions a⇡.

Semantics. In the following we define the semantics for the operators a⇡, ¬',
'1 _ '2, ', '1 U '2, and 9⇡. '. The other operators are defined via the
following equalities: 8⇡. ' = ¬9⇡. ¬', '1 ^ '2 = ¬(¬'1 _ ¬'2), and '1 R '2 =
¬(¬'1 U ¬'1). These derived operators are kept in the syntax to guarantee the
existence of equivalent formulas in negation normal form.

Let K be a Kripke structure and let s0 be its initial state. The seman-
tics of HyperLTL and HyperCTL⇤ is given in terms of assignments ⇧ : N !
Paths⇤(K, s0) of a set of path variables N to su�xes of paths. We use ⇧[i,1] for
the map that assigns to each path variable ⇡ the su�x ⇧(⇡)[i,1]. We use the
reserved path variable " to denote the most recently quantified path and define
the validity of a formula as follows:

⇧ |=K a⇡ whenever a 2 L
�
⇧(⇡)(0)

�

⇧ |=K ¬' whenever ⇧ 6|=K '
⇧ |=K '1 _ '2 whenever ⇧ |=K '1 or ⇧ |= '2

⇧ |=K ' whenever ⇧[1,1] |=K '
⇧ |=K '1 U '2 whenever for some i � 0 : ⇧[i,1] |=K '2 and

for all 0  j < i : ⇧[j,1] |=K '1

⇧ |=K 9⇡. ' whenever for some p 2 Paths(K,⇧(")(0)) :
⇧[⇡ 7! p, " 7! p] |=K '

For the empty assignment ⇧ = {}, we define ⇧(")(0) to yield the initial
state. Validity on states of a Kripke structure K, written s |=K ', is defined as
{} |=K '. A Kripke structure K = (S, s0, �,AP, L) satisfies formula ', denoted
with K |= ' whenever s0 |=K '.
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3 Automata-Theoretic Model Checking of HyperCTL⇤

In this section, we present an automata-theoretic construction for the verification
of HyperCTL⇤ formulas. In Section 4 we will then use this construction to build
a practical algorithm for the verification of circuits. We start with a brief review
of alternating automata. Given a finite set Q, B(Q) denotes the set of Boolean
formulas overQ and B+(Q) the set of positive Boolean formulas, that is, formulas
that do not contain negation. The satisfaction of a formula ✓ 2 B(Q) by a set
Q0 ✓ Q is denoted by Q0 |= ✓.

Definition 1 (Alternating Büchi automata). An alternating Büchi automa-
ton (on words) is a tuple A = (Q, q0,⌃, ⇢, F ), where Q is a finite set of states,
q0 2 Q is the initial state, ⌃ is a finite alphabet, ⇢ : Q⇥⌃ ! B+(Q) is a tran-
sition function that maps a state and a letter to a positive Boolean combination
of states, and F ✓ Q are the accepting states.

A run of an alternating automaton is a Q-labeled tree. A tree T is a subset
of N⇤

>0 such that for every node ⌧ 2 N⇤
>0 and every positive integer n 2 N>0, (i)

if ⌧ · n 2 T then ⌧ 2 T (i.e., T is prefix-closed), and (ii) for every 0 < m < n,
⌧ ·m 2 T . The root of T is the empty sequence " and for a node ⌧ 2 T , |⌧ | is the
length of the sequence ⌧ , in other words, its distance from the root. A run of A
on an infinite word ⇡ 2 ⌃! is a Q-labeled tree (T, r) such that r(") = q0 and
for every node ⌧ in T with children ⌧1, . . . , ⌧k the following holds: 1  k  |Q|
and {r(⌧1), . . . , r(⌧k)} |= ⇢(q,⇡[i]), where q = r(⌧) and i = |⌧ |. A run r of A
on ⇡ 2 ⌃! is accepting whenever for every infinite path ⌧0⌧1 . . . in T , there are
infinitely many i with r(⌧i) 2 F . We say that ⇡ is accepted by A whenever there
is an accepting run of A on ⇡, and denote with L!(A) the set of infinite words
accepted by A.

If the transition function of an alternating automaton does not contain any
conjunctions, we call the automaton nondeterministic. The transition function
⇢ of a nondeterministic automaton thus identifies a disjunction over a set of
successor states. Such a transition function can also be stated as a function
⇢ : Q⇥⌃ ! 2Q identifying the successors. Our model checking algorithm relies
on the standard translation for alternation removal due to Miyano and Hayashi:

Theorem 1 ([37]). Let A be an alternating Büchi automaton with n states.
There is a nondeterministic Büchi automaton MH(A) with 2O(n) states that
accepts the same language.

3.1 The Alternation-Free Fragment

We present a model checking algorithm for the alternation-free fragment of
HyperCTL⇤. This fragment is expressive enough to capture a broad range of
other information-flow properties, like declassification mechanisms, quantitative
noninterference, and information-flow requirements that change over time [14,16].
The case studies in Section 5 illustrate that this fragment also captures proper-
ties in application domains beyond information-flow security.
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Definition 2 (Alternation-free HyperCTL⇤). A HyperCTL⇤ formula ' in
negation normal form is alternation-free, if ' contains only quantifiers of one
type. Additionally, we require that no existential quantifier occurs in the left
subformula of an until operator or in the right subformula of a release operator,
and, symmetrically, that no universal quantifier occurs in the right subformula
of an until operator or in the left subformula of a release operator.

Similar to the automata-theoretic approach to LTL properties [38,46], we
construct an alternating automaton bottom up from the formula, but handling
multiple path quantifiers. For alternation-free HyperCTL⇤, the quantifiers may
occur inside temporal operators (with the restrictions in Def. 2) as long as there
is no quantifier alternation.

Let K be a Kripke structure K = (S, s0, �,AP, L). To check the satisfaction
of a HyperCTL⇤ formula ' by K, we translate ' into a K-equivalent alter-
nating automaton A'. The construction of A' proceeds inductively following
the structure of ', as follows. Assume that ' is in negation normal form and
starts with an existential quantifier, and consider a subformula  of '. Let n
be the number of path quantifiers occurring on the path from the root of the
syntax tree of ' to  , and let these path quantifiers bind the variables ⇡1, . . . ,⇡n.
The alphabet ⌃ of A is Sn, the set of n-tuples of states of K. We say that
a language L ✓ (Sn)! is K-equivalent to  , if all sequences of state tuples
(s00, . . . , s

0
n)(s

1
0, . . . , s

1
n) . . . in L correspond to a path assignment ⇧ satisfying  .

That is, for all (s00, . . . , s
0
n)(s

1
0, . . . , s

1
n) . . . 2 L it holds ⇧ |=K  for the path

assignment ⇧(⇡i) = s0i s
1
i . . . (for all i  n). An automaton is K-equivalent to  

if its language is K-equivalent to  .
For atomic propositions, Boolean connectives, and temporal operators, our

construction follows the standard translation from LTL to alternating
automata [38,46]. LetA 1 = (Q1, q0,1,⌃1, ⇢1, F1) andA 2 = (Q2, q0,2,⌃2, ⇢2, F2)
be the alternating automata for the subformulas  1 and  2:

 = a⇡k A = ({q0}, q0,⌃, ⇢, ;), where ⇢(q0, s) = (a 2 L(s |k))
 = ¬a⇡k A = ({q0}, q0,⌃, ⇢, ;), where ⇢(q0, s) = (a 62 L(s |k))
 =  1_ 2 A = (Q1 ·[Q2 ·[{q0}, q0,⌃, ⇢, F1 ·[F2)

where ⇢(q0, s) = ⇢1(q0,1, s) _ ⇢2(q0,2, s)
and ⇢(q, s) = ⇢i(q, s) for q 2 Qi, i 2 {1, 2}

 =  1 ^  2 A = (Q1 ·[Q2 ·[{q0}, q0,⌃, ⇢, F1 ·[F2)
where ⇢(q0, s) = ⇢1(q0,1, s) ^ ⇢2(q0,2, s)
and ⇢(q, s) = ⇢i(q, s) for q 2 Qi, i 2 {1, 2}

 =  1 A = (Q1 ·[{q0}, q0,⌃, ⇢, F )
where ⇢(q0, s) = q0,1
and ⇢(q, s) = ⇢1(q, s) for q 2 Q1

 =  1 U  2 A = (Q1 ·[Q2 ·[{q0}, q0,⌃, ⇢, F )
where ⇢(q0, s) = ⇢2(q0,2, s) _ (⇢1(q0,1, s) ^ q0)
and ⇢(q, s) = ⇢i(q, s) for q 2 Qi, i 2 {1, 2}

 =  1 R  2 A = (Q1 ·[Q2 ·[{q0}, q0,⌃, ⇢, F ·[{q0})
where ⇢(q0, s) = ⇢2(q0,2, s) ^ (⇢1(q0,1, s) _ q0)
and ⇢(q, s) = ⇢i(q, s) for q 2 Qi, i 2 {1, 2}
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For a quantified subformula  = 9⇡. 1, we have to reduce the alphabet
⌃ 1 = Sn+1 to ⌃ = Sn. The language for formula  contains exactly those
sequences � of state tuples, such that there is a path p through the Kripke
structure K for which � extended by p is in L(A 1). Let N 0

 1
= (Q0, q00,⌃, ⇢0, F 0)

be the nondeterministic automaton N 0
 1

= MH(A 1) constructed from A 1 by
the construction in Theorem 1, and let A = (Q00, q000 ,⌃ , ⇢

00, F 00) be constructed
from N 0

 1
and the Kripke structure K = (S, s0, �,AP, L) as follows:

 = 9⇡. 1 A = (Q0 ⇥ S ·[ {q000}, q000 ,⌃ , ⇢00, F 0 ⇥ S)

where ⇢00(q000 , s) = {(q0, s0) | q0 2 ⇢0(q00, s + s |n), s02 �(s |n)}
and ⇢00((q, s), s) = {(q0, s0) | q0 2 ⇢0(q, s + s), s0 2 �(s)}

For the case that n = 0 we define that s |n is the initial state s0 of K.
Since we consider the alternation-free fragment, there are no negated quan-

tified subformulas and the construction is finished.
The correctness of the construction can be shown by structural induction.

Proposition 1. Let ' be a HyperCTL⇤ formula and A' the alternating automa-
ton obtained by the previous construction. Then, ' and A' are K-equivalent.

So far, we only considered alternation-free formulas that start with existential
quantifiers. To decideK |= ' for an arbitrary ', we first transform ' in a Boolean
combination over a set X of quantified subformulas. Each element  0 of X is
now in the form 9⇡.' for which we apply the construction above. Since  0 is of
the form 9⇡. 1, A 0 is a nondeterministic Büchi automaton, for which we apply
a standard nonemptiness test [48].

Theorem 2. The model checking problem for the alternation-free fragment of
HyperCTL⇤ is PSPACE-complete in the size of the formula and NLOGSPACE-
complete in the size of the Kripke structure.

Proof. The alternating automatonA 1 is a tree with self-loops, when we consider
automata created for quantified subformulas as leafs of the tree. By structural
induction, we show that the size of A 0 for an alternation-free formula  0 is
polynomial in | 0| and in |K| and that sub-automata for quantified subformulas
are not reachable via actions that are self-loops with conjunctions.
Base case: for atomic propositions and negated atomic propositions, the induc-
tion hypothesis is fulfilled.
Induction step: Let  = 9⇡.  1. Only Until operators and Release operators in
the formula lead to nodes that have two transitions, one with a self-loop and
one without self-loops. By the restrictions in the definition of the alternation-
free fragment, we guarantee that automata of quantified subformulas are not
reachable via transitions with self-loops that contain conjunctions.

Conjunctive transitions that are not part of loops or self-loops only lead to
a polynomial increase in size during nondeterminization. Emptiness of nonde-
terministic Büchi automata is in NLOGSPACE [48], so the upper bound of the
theorem follows. Since HyperCTL⇤ subsumes LTL, the lower bound for LTL
model checking [43] implies the lower bound for HyperCTL⇤. ut
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3.2 The Full Logic

The construction from the previous subsection can be extended to full HyperCTL⇤

by adding a construction for negated quantified subformulas. We compute an au-
tomaton for the complement language, based on the following theorem:

Theorem 3 ([26]). For every alternating Büchi automaton A = (Q, q0,⌃, ⇢, F ),
there is an alternating Büchi automaton A with O(|Q|)2 states that accepts the
complemented language: L!(A) = L!(A).

We extend the previous construction with the following case:

' = ¬9⇡. 1 N 0
 1
, where N 0

 1
= MH(A 1) via Theorem 1

We capture the complexity of the resulting model checking algorithm in terms
of the alternation depth of the HyperCTL⇤ formula. The formulas with alterna-
tion depth 0 are exactly the alternation-free formulas.

Definition 3 (Alternation Depth). A HyperCTL⇤ formula ' in negation
normal form has alternation depth 0 plus the highest number of alternations
from existential to universal and universal to existential quantifiers along any of
the paths of the formula’s syntax tree. Existential quantifiers in the left subfor-
mula of an until operator or in the right subformula of a release operator, and,
symmetrically, universal quantifiers in the right subformula of an until operator
or in the left subformula of a release operator count as additional alternation.

For example, let  be a formula without additional quantifiers, then 9⇡.  has
alternation depth 0, 8⇡1.9⇡.  has alternation depth 1, 9⇡. 9⇡0.  has alter-
nation depth 0, 9⇡. 9⇡0.  has alternation depth 1, and (8⇡.  )^ (9⇡.  ) has
alternation depth 0.

Let gc(k, n) be a tower of exponentiations of height k, defined simply as
gc(0, n) = n and gc(k, n) = cgc(k�1,n). We define NSPACE(g(k, n)) to be the
languages that are accepted by a nondeterministic Turing machine that runs in
SPACEO(gc(k, n)) for some c > 1. For convenience, we define NSPACE(g(�1, n))
to be NLOGSPACE.

Proposition 2. Let K be a Kripke structure and ' a HyperCTL⇤ formula with
alternation depth k. The alternating automaton A' resulting from the previous
construction has O(g(k+1, |'|)) and O(g(k, |K|)) states and can be constructed
in NSPACE(g(k, |'|)) and NSPACE(g(k � 1, |K|)).
Theorem 4. Given a Kripke structure K and a HyperCTL⇤ formula ' with
alternation depth k, we can decide whether K |= ' in NSPACE(g(k, |'|)) and
NSPACE(g(k � 1, |K|)).

The proof of Proposition 2 is an induction over the alternation depth. The
proof of Theorem 4 uses that the nonemptiness problem for nondeterministic
Büchi automata is in NLOGSPACE [48]. Theorem 4 subsumes the result for
the alternation-free fragment:

Corollary 1. For alternation depth 0, the model-checking problem K |= ' is in
PSPACE in |'| and in NLOGSPACE in |K|.
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4 Symbolic Model Checking of Circuits

In this section we translate the automaton-based construction from Section 3
for alternation-free formulas into a practical verification approach for circuits.
Given a circuit C and an alternation-free formula ' the algorithm produces a
new circuit C' that is linear in the size of C and also linear in the size of '.
The compactness of the encoding builds on the ability of circuits to describe
systems of exponential size with a linear number of binary variables. The circuit
C' is then checked for fair reachability to determine the validity of C |= '. This
check can be done with of-the-shelf model checkers leveraging modern hardware
verification technology [12,8,11].

A circuit C = (X, init , I, O, T ) consists of a set X of binary variables (latches
with unit delay), a condition init 2 B(X) characterizing a non-empty set of
initial states of X, a set of input variables I, a set of output variables O, and a
transition relation T 2 B(X ⇥ I ⇥ O ⇥X). We require that T is input-enabled
and input-deterministic, that is, for all x ✓ X, i ✓ I, there is exactly one o ✓ O
and one x0 ✓ X such that T (x, i, o, x0) holds. We denote a subset of X as a
state of circuit C, indicating exactly those latches that are set to 1. The size of
a circuit C, denoted |C|, is defined as the number of latches |X|.

A circuit C can be interpreted as a finite Kripke structure KC of potentially
exponential size. The state space of KC is S = s0 [ 2X ⇥ 2I ⇥ 2O ⇥ 2X , where
s0 is a fresh initial state. The transition relation distinguishes the initial step
of the computation: s0 2 �(s0) i↵ there is a circuit state x ✓ X with init(x)
and x = s0|X such that T (x, s0|I , s0|O, s0|X), where s0|I , s0|O, s0|X , and s0|X0 are
the projections to variables I, O, the first copy of X, and the second copy of X
respectively. For subsequent steps of computation we define s0 2 �(s) whenever
T (s|X , s0|I , s0|O, s0|X0) and s|X0 = s0|X . That is, the first copy X denotes the
previous state, whereas X 0 denotes the current state. The labelling function of
KC maps each state s to the set s|I ·[ s|O ·[ s|X . That is, the alphabet APKC

is I ·[ O ·[ X. The semantics of HyperCTL⇤ on a circuit C is defined using the
associated Kripke structure KC . We write C |= ' whenever KC |= '0, where
'0 is obtained by replacing all atomic propositions a⇡ by a⇡. This leads to a
natural semantics on circuits: the atomic propositions always refer to the current
value of the latches, the next input, and the next output.

Given a circuit C and an alternation-free HyperCTL⇤ formula ', we reduce
the model checking problem C |= ' to finding a computation path in a circuit
C' that does not visit a bad state and satisfies a conjunction of strong fairness
(or compassion) constraints F = {f1, . . . , fk}. A strong fairness constraint f of
a circuit consists of a tuple (a1, a2) of atomic propositions and a path p satisfies
f , if a1 holds only finitely often or a2 holds infinitely often on p. We build
C' bottom up following the formula structure. Without loss of generality, we
assume that ' contains only existential quantifiers and is in negation normal
form. Let  be a subformula of ' that occurs under n quantifiers. Let C 1 =

Our definition of circuits can be considered as a model of and-inverter graphs in the
Aiger standard [9], where the gate list is abstracted to a transition relation.
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(X 1 , init 1 , I 1 , O 1 , T 1), C 2 = (X 2 , init 2 , I 2 , O 2 , T 2) be the circuits,
and let F 1 and F 2 be the fairness constraints for the subformulas  1 and  2.
For LTL operators, the construction resembles the standard translation from
LTL to circuits [25,13]. We construct C and F as follows:

 = a⇡k C = (;, true, I , {o }, o $ a⇡k), F = ;
 = ¬a⇡k C = (;, true, I , {o }, o xor a⇡k), F = ;
 =  1_ 2 C = (X 1

·[X 2 , init 1 ^ init 2 ,
I 1 [ I 2

·[{i }, O 1
·[O 2

·[{o },
(o $ (i ) o 1) ^ (¬i ) o 2)) ^ T 1 ^ T 2),

F = F 1 [ F 2

 =  1 C = (X 1
·[{x }, init 1 , I 1

·[{i }, O 1
·[{o , b },

T 1 ^ (o $ i ) ^ (x0
 $ i ) ^ (¬b $ (o 1 $ x ))),

F = F 1

 =  1 U  2 C = (X 1
·[X 2

·[{x }, init 1 ^ init 2 ,
I 1

·[I 2
·[{i , i0 }, O 1

·[O 2
·[{o , b },

T 1 ^ T 2 ^ (o $ x ) ^ (x0
 $ i ) ^

(¬b $ (((i0 ) o 2) ^ (¬i0 ) o 1 ^ x0
 )) $ x ))),

F = F 1 [ F 2 [ {(x , o 2)}
 = 9⇡.  1 C = (X 1

·[Xn, init 1 ^ (n = 1 ) init(Xn)),
I 1 \Xn, (O 1 \On) ·[{o },
T 1 ^ T (Xn) ^ (¬b $ (o $ o 1 ^ (Xn = Xn�1)))),

F = F 1

Here I =
S

in Ii ·[Oi ·[Xi; init(Xn) is the initial condition applied to copy Xn

of the latches; and likewise T (Xn) is the transition relation of C applied to the
copy Xn. We use Xn = Xn�1 to denote the expression that all latches in Xn

are equal to their counterparts in Xn�1. We omitted the construction for the
conjunction and the Release operator due to the space limits. It is easy to verify
that the transition relation is input-enabled and input-deterministic.

Proposition 3. Given a circuit C and an alternation-free formula ' with k
quantifiers, the size of the circuit C' is at most |C| · k + |'|.

For each subformula  of ', the output o in the circuit C' indicates that
 must hold for the current computation path, and the latch x represent the
requirements on the future of the computation that arise from the output o .
The output b indicates that the requirements for subformula  are violated and
a bad state is entered.

Proposition 4. Let C be a circuit and let ' be an alternation-free HyperCTL⇤

formula. C |= ' holds i↵ the circuit C' admits a computation that shows output
o' in the first step, that never outputs b for any of the subformulas  of ', and
that satisfies the fairness constraints.

The proof of correctness proceeds again by structural induction on the struc-
ture of the formula. The search for paths of the form above can be performed
by standard hardware model checkers.
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Verification time in s
Model #Latches #Gates IC3 INT BMC

IF1 (NI1)

I2C Master 254 1207

95.17 1.13 0.07 ⇥
IF2 (NI2) 53.08 1.16 0.08 ⇥
IF3 (NI3) 168.96 1.38 - X
IF4 (NI4) 438.41 1.01 0.09 ⇥
IF5 (NI5) 717.74 8.31 0.77 ⇥
IF6 (NI6) 186.20 1.10 0.07 ⇥
IF7 (NI7) TO 6.82 0.55 ⇥
IF8 (NI8) 1557.14 2.92 0.16 ⇥
IF9 (NI20) Ethernet 21093 70837 TO 155.77 6.27 ⇥
Sym1 (S1)

Bakery 46 1829
6.34 0.88 0.08 ⇥

Sym2
(S2)

168.59 464.52 7.00 ⇥
Sym3 Bakery.a 47 1588 69.12 TO 71.92 ⇥
Sym4

(S3)
Bakery.a.n 47 1618 26.31 4.75 0.39 ⇥

Sym5
Bakery.a.n.s 47 1532

66.41 TO - X
Sym6 (S4) 16.83 TO - X
Sym7 (S5)

Bakery.a.n.s.5proc 90 3762
97.45 TO - X

Sym8 (S6) 13.59 TO - X
Sym9 (S7) Bakery.a.n.s.7proc 136 6775 312.53⇤ TO - X
Hu↵1 (HD1)

Hu↵man enc 19 571
3.08 37.19 - X

Hu↵2 (HD2) 0.62 0.09 0.02 ⇥
8b10b 1 (HD1)

8b10b enc 39 271
0.32 0.09 0.02 ⇥

8b10b 2 (HD10) 1.19 9.06 - X
8b10b 3 (HD20) 0.03 0.04 0.02 ⇥
8b10b 4 (HD100) 8b10b dec 19 157 0.05 0.09 - X
Hamm1 (HD11)

Hamming enc 27 47

0.02 0.04 0.02 ⇥
Hamm2 (HD12) 0.02 0.03 0.02 ⇥
Hamm3 (HD13) 0.03 0.04 0.02 ⇥
Hamm3’ (HD103) 7.34 0.18 - X
Hamm4 (HD14) 66.93 0.10 - X
Hamm5 (HD21) 11.83 1.31 - X
Hamm6 (HD22) 14.44 0.78 - X
Hamm7 (HD3) 12.23 1.25 - X

Table 1. Experimental results for the case studies.

5 Case Studies and Experimental Results

We have implemented the symbolic model checking approach from Section 4 as
a transformation on Aiger circuits. We rely on standard hardware synthesis
tools to compile VHDL and Verilog files into a circuit to which we apply our
tool to obtain a new circuit. As the backend engine, we use the ABC model
checker [11], which provides many of the modern verification algorithms, includ-
ing IC3 [10]/PDR [18], interpolation (INT) [33], and SAT-based bounded model
checking (BMC) [8]. All experiments ran on an Intel Core i5 processor (4278U)
with 2.6 GHz. Table 1 shows the verification times for the circuits and properties

The tool and the experiments are available online [41].
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considered in our case studies. We used the default settings of ABC in all runs,
except the entry marked with ⇤. The symbol X indicates that an invariant was
found, and ⇥ that a (counter)example was found.

The experiments show that our approach enables the verification of hyper-
properties for hardware modules with hundreds or even thousands of latches.
For finding counterexamples, bounded model checking was most e↵ective, and
for cases where an invariant was needed, the relative performance of IC3/PDR vs.
interpolation was inconclusive. In addition to benchmarking, our goal for these
case studies has been to explore the versatility of alternation-free HyperCTL⇤

model-checking and the potential of our prototype tool. In the following subsec-
tions, we report on the setup and results of the case studies, as well as on the
verification workflow from a user perspective. Our case studies come from three
di↵erent areas: information flow, symmetry, and error resistant codes.

5.1 Case Study 1: Information Flow Properties of I2C

Our first case study investigates the information flow properties of an I2C bus
master. I2C is a widely used bus protocol that connects multiple components
in a master-slave topology. Even though the I2C bus has no security features,
it has been used in security-critical applications, such as the smart cards of the
German public health insurance, which led to exploits [44]. We analyzed a I2C
bus master implementation from the open source repository opencores.org.
A typical setup consists of one master, one controller, and several slaves. The
master communicates to the slaves via two physical wires, the clock line (SCL)
and the data line (SDA). The interface of the master towards the controller
consists of 8 bit wide words for input and output of data, a 3-bit wide address
to encode slave numbers, a system clock input, and several reset and control
signals. We checked the I2C bus master implementation against the information
flow properties shown in Table 2.

(NI1) 8⇡.8⇡0. (ADDR I⇡=ADDR I⇡0) ) (SDA O⇡=SDA O⇡0)

(NI2) 8⇡.8⇡0. DAT I⇡ = DAT I⇡0 ) (SDA O⇡=SDA O⇡0)

(NI3) 8⇡.8⇡0. (¬WEn ^DAT I⇡=DAT I⇡0) ) (SDA O⇡=SDA O⇡0)

(NI4) 8⇡.8⇡0. ({SDA I,SCL I}⇡={SDA I,SCL I}⇡0) ) (DAT O⇡=DAT O⇡0)

(NI5) 8⇡. (SDA Enable ) H{SDA I,SCL I},{DAT O}false)

(NI6) 8⇡.8⇡0. (SDA I⇡ = SDA I⇡0) ) (SDA O⇡=SDA O⇡0)

(NI7) 8⇡.8⇡0. (DAT I⇡ = DAT I⇡0) ) ( (I⇡=I⇡0) ) (SDA O⇡=SDA O⇡0))

(NI8) 8⇡.8⇡0. ({SDA I,SCL I}⇡={SDA I,SCL I}⇡0) ) ( (I⇡=I⇡0) )
(DAT O⇡=DAT O⇡0))

Table 2. Information flow properties for the verification of the I2C bus master. In
this list of properties, P⇡ = P⇡0 is defined as

V
a2P a⇡ = a⇡0 . P⇡ = P⇡0 is defined as

(I \ P )⇡ = (I \ P )⇡0 where P ✓ AP and I ✓ AP are the inputs of the circuit.

From the controller to the bus. Property (NI1) states that there is no information
flow with respect to the address to which the I2C master intends to send data,
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and (NI2) with respect to the data words themselves. Both information flows
are intended, and our tool reports the violation. We tried to bound the infor-
mation flow between the first valuation of the 3 bit wide address input and the
bus data by encoding [14] the quantitative information-flow property. While the
information flow of 3 bit could be determined (QNI1), checking the upper bound
of log 9 ⇡ 3.17 bit (QNI2) led to a timeout. Property (NI3) states that when the
write enable bit is not set, no information should flow from the controller inputs
to the bus. This property is satisfied by the implementation.

From the bus to the controller. Property (NI4) claims the absence of informa-
tion flow from the slaves to the controller, which is again legitimately violated
by the implementation. Property (NI5) refines (NI4) to determine whether the
flow can still happen when we only consider information received on SDA while
the master sends data too. The branching time operator H in (NI5), called the
Hide operator HI,O', is borrowed from the logic SecLTL [16] and expresses that
information from the inputs I do not interfere with the outputs O. The Hide op-
erator is easily expressible in HyperCTL⇤ [14]. Property (NI5) is violated by the
implementation, because the concurrent transmission of data on the bus by mul-
tiple masters can bring I2C into arbitration mode and changes the interpretation
of information sent over the bus later.

Long-term information flow: Properties (NI7) and (NI8) claim that the infor-
mation flows from (NI1) and (NI4) cannot happen for an arbitrary delay. These
properties are violated, which indicates that information may not be eventually
forgotten by the I2C master.

All properties on the I2C Master were easily analyzed by the model checker.
In order to determine if our approach scales to even larger designs, we checked
an adapted version of property (NI2) on an Ethernet IP core with 21093 latches.
The counterexample was still found within seconds.

5.2 Case Study 2: Symmetry in Mutual Exclusion Protocols

In our second case study, we investigate symmetry properties of mutual exclusion
protocols. Mutual exclusion is a classical problem in distributed systems, for
which several solutions have been proposed and analyzed. Violation of symmetry
indicates that some clients have an unfair advantage over the other clients.

Our case study is based on a Verilog implementation of the Bakery proto-
col [27] from the VIS verification benchmark. The Bakery protocol works as
follows. When a process wants to access the critical section it draws a “ticket”,
i.e., it obtains a number that is incremented every time a ticket is drawn. If there
is more than one process who wishes to enter the critical section, the process with
the smallest ticket number goes first. When two processes draw tickets concur-
rently, they may receive tickets with the same number, so ties among processes
with the same ticket must be resolved by a di↵erent mechanism, for example
by comparing process IDs. The Verilog implementation has an input select to
indicate the process ID that runs in the next step, and an input pause to indi-
cate whether the step is stuttering. Each process n has a program counter pc(n).
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When process n is selected, the statement corresponding the program counter
pc(n) is executed. We are interested in the following HyperLTL property:

(S1) 8⇡.8⇡0. (sym(select⇡, select⇡0) ^ pause⇡=pause⇡0) )
(pc(0)⇡=pc(1)⇡0 ^ pc(1)⇡=pc(0)⇡0)

where sym(select⇡, select⇡0) means that process 0 is selected on path ⇡ when
process 1 is selected on path ⇡0 and vice versa. Property (S1) states that, for every
execution, there is another execution in which the select inputs corresponding to
processes 0 and 1 are swapped and the outcome (i.e., the sequence of program
counters of the processes) is also swapped. It is well known that it is impossible to
accomplish mutual exclusion in an entirely symmetric fashion [32]. It is therefore
not surprising that the implementation indeed violates Property (S1).

Inspecting the counterexample revealed, however, that the symmetry is bro-
ken even before the critical section is reached: if a non-existing process ID is
selected by the variable select, process 0 proceeds instead. Property (S2) ex-
cludes paths on which a non-existing process ID is selected. The model-checker
produced a counterexample in which processes 0 and 1 tried to access the critical
section, but were treated di↵erently.

(S2) 8⇡.8⇡0. (sym(select⇡, select⇡0) ^ pause⇡=pause⇡0 ^
select⇡ < 3 ^ select⇡0 < 3) )

(pc(0)⇡=pc(1)⇡0 ^ pc(1)⇡=pc(0)⇡0)

Next, we parameterized the necessary symmetry breaking in the system. We
introduced additional inputs indicating which process may move, in case of a tie
of the tickets and extended the property by the assumption that the symmetry
is broken symmetrically.

(S3) 8⇡.8⇡0. (sym(select⇡, select⇡0) ^ pause⇡=pause⇡0 ^
select⇡ < 3 ^ select⇡0 < 3 ^ sym(sym break⇡, sym break⇡0)) )

(pc(0)⇡=pc(1)⇡0 ^ pc(1)⇡=pc(0)⇡0)

Property (S3) is still violated by the implementation: the order in which the
processes were checked depends on the process IDs and causes delays in how the
program counters evolve. After contracting the comparison of process IDs into
a single step, property (S3) became satisfied.

In further experiments, we changed the structure of property from the form
(S3) 8⇡.8⇡0. ' )  to (S7) 8⇡.8⇡0.  W ¬', which removes the liveness
part of the property, while maintaining the semantics (for input-deterministic
and input-enabled systems). This change significantly reduced the verification
times and enabled the verification of the protocol for up to 7 participants.

5.3 Case Study 3: Error Resistant Codes

Error resistant codes enable the transmission of data over noisy channels. While
the correct operation of encoder and decoders is crucial for communication sys-
tems, the formal verification of their functional correctness has received little
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attention. A typical model of errors bounds the number of flipped bits that may
happen for a given code word length. Then, error correction coding schemes must
guarantee that all code words have a minimal Hamming distance. Alternation-
free HyperCTL⇤ can specify that all code words produced by an encoder have a
minimal Hamming distance of d:

(HDd) 8⇡.8⇡0. (
W

a2I a⇡ 6=a⇡0) ) ¬HamO(d� 1,⇡,⇡0)

where I are the inputs denoting the data, O denote the code words, and the
predicate HamO(d,⇡,⇡0) is defined as HamO(�1,⇡,⇡0) = false and:

HamO(d,⇡,⇡0) =
�V

a2O a⇡=a⇡0
�W �W

a2O a⇡ 6=a⇡0 ^ HamO(d�1,⇡,⇡0)
�
.

We started with two simple encoders that are not intended to provide er-
ror resistance: a Hu↵man encoder from the VIS benchmarks, and an 8bit-10bit
encoder from opencores.org that guarantees that the di↵erence between the
number of 1s and the number of 0s in the codeword is bounded by 2. As ex-
pected, encoders provide a Hamming distance of 1 (Hu↵1 and 8b10b 2), but not
more (Hu↵2 and 8b10b 3). The experiments on these simple encoders were useful
to determine the configuration of the command signals that enable the trans-
mission of data. For example, checking the plain property as specified above for
the 8bit-10bit encoder reveals that the reset signal must be set to false before
sending data (8b10b 1). Similarly, for the 8bit-10bit decoder, we checked whether
all codewords of Hamming distance 1 produce di↵erent outputs (8b10b 4).

Next, we considered an encoder for the 7-4-Hamming code, which encodes
blocks of 4 bits into codewords of length 7, and guarantees a Hamming distance
of 3. We started with finding out in which configuration the encoder actually
sends encoded data (Hamm1 to Hamm4). With Hamm3 we discovered that the
implementation deviates from the specification because the reset signal for the
circuit is active high, instead of active low as specified. In Hamm3, we fixed the
usage of the reset bit. We then scaled the specification to Hamming distances 2
and 3 (Hamm5 to Hamm7).

6 Conclusions

We presented a novel automata-based automatic technique to model-check Hy-
perLTL and HyperCTL⇤ specifications, and an implementation integrated with
a state-of-the-art hardware model checker. Our case studies show that the imple-
mentation scales to realistic hardware designs; in one case we successfully checked
a design with more than 20.000 latches. The logics HyperLTL and HyperCTL⇤

proved to be versatile tools for the analysis of various kinds of properties.
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paper.
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