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Abstract. We study the spectra of time-event and of synchronous-
asynchronous models of computation for runtime verification, in partic-
ular in the context of stream runtime verification (SRV). Most runtime
verification formalisms do not involve a notion of time, either by hav-
ing inputs at all instants (like LTL or Lola) or by reacting to external
events in an event-driven fashion (like MOP). Other formalisms consider
notions of real-time, ranging from the collection and periodic processing
of events to complex computations of the times at which events exist or
are produced (like TeSSLa or Striver). Also, some monitoring languages
assume that all inputs and outputs change values at once (synchronous),
while others allow changes independently (asynchronous).
In this paper we present a unifying view of the event-time and synchronous-
asynchronous dimensions in the general setting of SRV. We first prove
that the Striver event-based asynchronous language can execute syn-
chronous untimed specifications (written in Lola), and empirically show
that this simulation is efficient. We then prove that Lola can simulate
real-time Striver monitors under the assumption of the existence of tem-
poral backbones and study two cases: (1) Purely event-driven or when
reactions can be precomputed (for example periodic intervals), which re-
sults in an efficient simulation but restricted to a fragment. (2) When
the time has a minimum quantum: which allows full expressivity but the
performance is greatly affected, particularly for sparse input streams.

1 Introduction

Runtime verification (RV) is a dynamic technique for software quality assurance
that consists of generating a monitor from a formal specification, that then
inspects a single trace of execution of the system under analysis. Stream runtime
verification, pioneered by Lola [7], defines monitors by declaring the dependencies
between output streams of results and input streams of observations. In this
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paper we study different models of streams and how the corresponding languages
compare to each other in terms of expressivity and efficiency.

Motivated by the counterparts in static verification, early approaches for RV
specification languages were based on temporal logics [3, 9, 15], regular expres-
sions [20], timed regular expressions [1], rules [2], or rewriting [18]. SRV is a
more expressive formalism that goes beyond Boolean verdicts, like in logical
techniques, to allow specifying the collection of statistics and the generation
of richer (non-Boolean) verdicts. Examples include counting events, specifying
robustness or generating models or quantitative verdicts. See [7, 8, 12, 14] for
examples illustrating the expressivity of SRV languages. Some SRV formalisms
consider streams to be sequences of raw data (as in LTL propositions), so the
data observed in different streams at the same index in their sequences are con-
sidered to have occurred at the same time. In this regard, stream sequences are
synchronized and thus we say that formalisms following this paradigm are syn-
chronous SRV formalisms. Examples of synchronous formalisms include Lola [7],
LTL, regular-expressions, Mision-time LTL [17], Functional Reactive Program-
ming (FRP) [11] and systems like Copilot [16].

On the other hand, new formalisms have been proposed that consider streams
to be sequences of events formed by data values that are time-stamped with
the time at which the data is produced (either observed or generated). In this
paradigm, streams can be of different length, and the only condition is that
the time-stamps are monotonically increasing. As a result, the same position of
different streams are not necessarily time-correlated. In this regard, we can say
that stream sequences are asynchronous, and thus we say that formalisms follow-
ing this paradigm are asynchronous SRV formalisms. Examples of asynchronous
SRV formalisms include RTLola [13], Striver [14] and TeSSLa [5].

Synchronous SRV formalisms are best suited for cases when data is period-
ically gathered for every input stream at the same time from the system under
analysis. Asynchronous formalisms are best suited for situations when data on
the input streams can be received at unpredictable moments—when something
of interest happens—and results can be calculated at any time, not only when
an event is observed. By these characteristics, we say that synchronous SRV for-
malisms are sample based, while asynchronous SRV formalisms are event based.

In this paper we will use Lola and Striver to show how the semantics of a
synchronous SRV formalism can be mimicked by an asynchronous SRV formalism
and vice versa. As a corollary, the languages subsumed by each formalism can be
automatically translated to the other under the conditions of our results. We also
study the impact on efficiency of each approach, and the different alternatives
to deal with the loss in performance.

The example specifications and empirical evaluation are based on the real-
world data in the dataset Orange4Home [6], which comprises the recording of
activities of a single person in an instrumented apartment over the span of four
consecutive weeks of work days. This dataset was studied previously in RV using
an Execution History Encoding (EHE) in [10].
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Contributions and structure. Section 2 contains the preliminaries. Section 3
contains the main contribution: the comparison of two formalisms from differ-
ent paradigms, and the proof that they are equally expressive. We also describe
different alternatives to translate a Striver specification to Lola, which are em-
pirically evaluated in Section 4. Finally, Section 5 concludes.

2 Preliminaries

We recall now Stream Runtime Verification (SRV) briefly (see [7] and the tu-
torial [19]). The fundamental idea of SRV, pioneered by Lola [7] is to cleanly
separate the temporal dependencies from the individual operations to be per-
formed at each step, which leads to the generalization of monitoring algorithms
for logics to the computation of richer values.

A value stream is a sequence of values from a domain4. In this paper we
use sequences to refer to value streams to distinguish them from event streams.
We can refer to the value at the n-th position in a sequence z writing z(n). For
example, the sequence co2 = [350, 360, 289, 320, 330] contains samples of the level
of CO2 in the air (measured in parts-per-million). In this sequence co2(0) = 350
and co2(2) = 289.

An event stream is a succession of events (t, d) where d is a value from a
value domain (as in sequences) and t is a time-stamp. Time-stamps are ele-
ments of a temporal domain (for example R, Q, Z), a set whose elements are
totally ordered. The interpretation of the time domain is a global clock, which
is common to all the streams in a monitor. The time-stamps in the events of
a legal event-stream are monotonically increasing. Nothing prevents a tempo-
ral domain from being used as a value domain of some stream, and in fact
it is common to define streams that compute and store the passage of time.
Given an element t in the temporal domain of an event stream r, we use r(t)
to refer to the value with time-stamp t in r. For example, the event-stream
tv status = {(1.5, off), (4.0, on), (6.0, off), (7.5, on), (8.0, off)} indicates when a
television is turned on or off. The event (4.0, on) in tv status or the fact that
tv status(4.0) = on, indicate that the TV is switched on at time 4.0. We will use
z, w . . . for sequences and s, r, . . . for event streams. Also, we use t to denote a
value of the time domain, and n to range over sequence indices.

Given a positive number N we use [N ] for the set {0, . . . , N − 1}. Given a
sequence z, we also use [z] for the set of indices of the sequence [z] = {0 . . . |z|−1}.
For example, [co2] = {0, 1, 2, 3, 4}. Given an event stream s, dom(s) is the set
of elements in the temporal domain which have an associated value for s. For
example, dom(tv status) = {1.5, 4.0, 6.0, 7.5, 8.0}.

Streams and sequences are typed using arbitrary (interpreted) multi-sorted
first-order theories. A type has a collection of symbols used to construct ex-
pressions, together with an interpretation of these symbols. The domain of the
types is the set of values to be used as data values in sequences and streams,

4 Even though for past-only specifications the results can be extended to infinite se-
quences, we use here finite sequences as in [7].
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and the interpretation of the symbols is used to evaluate ground expressions. A
Lola specification describes monitors by declaratively specifying the relation be-
tween output sequences (verdicts) and input sequences (observations). Similarly,
a Striver specification describes the relation between output event-streams and
input event-streams. We describe these formalisms separately.

2.1 Lola

Syntax Given a set Z of (typed) stream variables, the set of stream expressions
consists of (1) offsets v[k, d] where v is a stream variable of type D, k is an integer
number and d a value from D, and (2) function applications f(t1, . . . , tn) using
constructors f from the theories to previously defined terms. Stream variables
represent value streams (a.k.a sequences). The intended meaning of expression
v[−1, false] is the value of sequence v in the previous position of the trace (or false
if there is no such previous position, that is, at the beginning). The particular
case for an offset with k = 0 requires no default value as the index is guaranteed
to be within the range of the sequence. Therefore, we will use v[now] for a 0 offset
expression. We assume that all theories have a constructor if · then · else ·
that given an expression of type Bool and two expressions of type D constructs
a term of type D. We use TermD(Z) for the set of stream expressions of type
D constructed from variables from Z (and drop Z if clear from the context).

Definition 1 (Lola Specification). A Lola specification ϕ〈I,O〉 consists of a
set I = {x1, . . . , xm} of input stream variables, a set O = {y1, . . . , yn} of output
stream variables, and a set of defining equations, yi = ei(x1, . . . , xm, y1, . . . , yn)
one per output variable yi ∈ O, where every ei is an expression from TermD(I ∪
O), and D is the type of yi.

A specification describes the relation between input sequences and output se-
quences. We will use v for an arbitrary variable (where xi and yj refer to input
and output stream variables respectively).

Example 1. The specification “the mean level of CO2 in the air in the last 3
instants”, can be expressed as follows, where denom calculates the number of
instants that are taken into account:

input num co2

output num denom := min(3, denom[-1|0]+1)

output num mean:=(co2[-2|0]+co2[-1|0]+co2[now ])/ denom[now]
ut

Semantics An input valuation ρ contains one sequence ρx of length L for each
input stream variable x, of values of the domain of the type of x. Note that
ρx(n) is the value at position n of sequence ρx (with 0 ≤ n < L). We call ρx a
valuation of x, and ρI the collection of valuations of the set of stream variables
I. The intended meaning of a Lola specification is to associate sequences to
output stream variables (of the same length L) that satisfy the equations in
the specification. Formally, this semantics are defined denotationally as follows.
Given a valuation ρ (of all variables in I ∪O) the evaluation JeKρ of a term e is
a sequence of length L of values of the type of e defined as follows:
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– If e is v[i, c] then Jv[i, c]Kρ(j) = JvKρ(j + i) if 0 ≤ j + i < L, and c otherwise.
– If e is f(e1, . . . , ek) then Jf(e1, . . . , ek)Kρ(j) = f(Je1Kρ(j), . . . , JekKρ(j))

Note that in particular, Jv[now]Kρ(j) = ρv(j).

Definition 2 (Evaluation Model). A valuation ρ = (ρI , ρO) satisfies a Lola
specification ϕ whenever for every output variable yi, JyiKρ = JeiKρ. In this case
we say that σ is an evaluation model of ϕ and write (σI , σO) � ϕ.

These semantics capture when a candidate valuation is an evaluation model, but
the intention of a Lola specification is to compute the unique output sequences
given input sequences. A dependency graph Dϕ of a specification ϕ〈I,O〉 is a
weighted multi-graph (V,E) whose vertices are the stream variables V = I ∪O,

and E contains a directed weighted edge v
k−→ y whenever v[k, d] is a sub-term

in the defining equation of y. If a dependency graph Dϕ contains no cycles with
0 weight then the specification is called well-formed. Note that well-formedness
is equivalent to stating that all cycles in a given maximal strongly connected
component (MSCC) M of the dependency graph are positive, or all cycles of M
are negative. Well-formedness guarantees that for every ρI there is a unique ρO
such that (ρI , ρO) � ϕ. Essentially, this is because acyclicity guarantees that the
value of a sequence at a given position does not depend on itself. A well-formed
Lola specification has a unique evaluation model for each input valuation ρI and
we write ρO = ϕ(ρI) for this unique output valuation.

Another important concept is the evaluation graph which given a length L
contains one vertex vj for every stream variable v and position k. There is an

edge from vj → yj+k whenever there is an edge v
k−→ y in the dependency graph.

For example, if the defining equation of y contains x[−1, d] then y16 points to
x15 in all the evaluation graphs with L ≥ 16. In well-formed specifications there
are no cycles in any evaluation graph, which enables us to reason by induction
on evaluation graphs. See [7, 19] for details of these definitions as well as online
and offline monitoring algorithms for Lola specifications.

2.2 Striver

Syntax The syntax of Striver is:

α ::= {c}
∣∣ r.ticks

∣∣ delay ε s
∣∣ α ∪ α (tick-expr)

τx ::= x<~τ
∣∣ x<<τ ∣∣ x>~τ ∣∣ x>>τ τ ::= t

∣∣ τz for z ∈ Z (offset-expr)

E := d
∣∣ x(τx) ∣∣ f(E1, . . . , Ek)

∣∣ τ ∣∣ -out ∣∣ +out ∣∣ notick (value-expr)

There are three kinds of expressions:

– Ticking Expressions, which define those instants at which a stream may
contain a value. Here c ∈ T, ε ∈ T+ are constants (with ε 6= 0), r is a stream
variable, and ∪ is used for the union of instants.
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– Offset Expressions: which allow fetching time instants at which streams con-
tain values. The expression t represents the current instant. The expression
x<<τ is used to refer to the previous instant at which x ticked in the past of
τ (or ⊥-out if there is not such an instant). The expression x<~τ also consid-
ers the present as a candidate instant. Analogously, the intended meaning
of x>>τ is to refer to the next instant strictly in the future of τ at which
x ticks (or ⊥+out if there is not such an instant). The expression x>~τ also
considers the present as a candidate.

– Value Expressions, which compute values. Here, d is a constant of type D, x
is a stream variable of type D and f is a function symbol of return type D.
Note that in x(τx) the value of stream x is fetched at an offset expression
indexed by x, which captures the ticking points of x and guarantees the
existence of an event if the point is within the time boundaries. Expressions
t and τx build expressions of sort Tout. The three additional constants -out,
+out and notick allow reasoning (using equality) about accessing both ends
of the streams, or not generating an event at a ticking candidate instant.

We use x(<t,d) and x(~t,d) as syntactic sugar (mimicking x[-1|d] and x[now]

from Lola) as follows

x(<t,d)
def
= if x<<t ==-out then d else x(x<<t)

x(˜t,d)
def
= if x<˜t ==-out then d else x(x<˜t)

We define the duals x(t>,d) and x(t~,d) analogously.

Definition 3 (Striver Specification). A Striver specification ψ〈I,O〉 for input
stream variables I and output stream variables O, consists of one value expression
Vy and one ticking expression Ty for each y ∈ O (where Vy is of the same type
as y, plus the reserved constant notick).

As for Lola, Striver specifications are often given programmatically as illustrated
in the following example.

Example 2. The property “count for how long has the tv been on”, can be ex-
pressed as follows, where stream variable tv on computes the result.

input TV_Status tv

ticks tv_on := tv.ticks

define int tv_on := if tv(<t,off) == on

then tv_on(<t,0) + t - tv<<t else 0 ut

Semantics The semantics of Striver are again defined denotationally. A valu-
ation σ contains one event-stream σx for each stream variable in x ∈ {I ∪ O}.
The semantics use valuations to evaluate expressions:

– Ticking Expressions. The map J.Kσ assigns a set of instants to each ticking
expression:

• J{c}Kσ
def
= {c} and Ja1 ∪ · · · ∪ akKσ

def
= Ja1Kσ ∪ · · · ∪ JakKσ,
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• Jr.ticksKσ
def
= dom(σr), and

• Jdelay ε sKσ contains the instants t + v such that (t, v) ∈ σs, unless
|v| < |ε| or sign(v) 6= sign(ε) or there is a (t′, v′) ∈ σs with t′ between t
and t+ v.

– Offset Expressions: J.Kσ provides, given an instant t, another instant in a

valuation σ. In particular, JtKσ(t)
def
= t is the current instant, and

• Jx <<eKσ is the previous instant at which x contains a value strictly before
JeKσ(t), or ⊥-out if either there is no such instant, or if JeKσ(t) = ⊥-out.
The expression Jx <~eKσ is similar but considers JeKσ(t) as a candidate,
and

• Jx >>eKσ is the dual of Jx <<eKσ, looking into the future and returning
⊥+out in case it fails. Again, Jx >~eKσ is similar to Jx >>eKσ but considers
the instant JeKσ(t) as a candidate.

– Value Expressions. The semantics are given in terms of t:
• Jx(e)Kσ(t) is v for (JeKσ(t), v) ∈ s, or simply JeKσ(t) if it is not an instant,

• Jf(E1, . . . , Ek)Kσ(t)
def
= f(JE1Kσ(t), . . . , JEkKσ(t)),

• JτxKσ(t)
def
= JτxKσ(t), and JcKσ(t)

def
= c, for the constants in the domain

and the reserved constants -out, +out and notick.

Evaluating expressions allows defining evaluation models, like in Lola, as those
valuations that satisfy all equations (in this case ticking and value equations):

Definition 4 (Evaluation Model). Given a valuation σ of variables I∪O the
evaluation of the equations for stream y ∈ O is:

JTy,VyKσ
def
= {(t, d) | t ∈ JTyKσ and d = JVyKσ(t) and d 6= ⊥notick}

An evaluation model is a valuation σ such that for every y ∈ O: σy = JTy,VyKσ.

Similar definitions of dependency graph and well-formedness as the ones
stated above for Lola can be given for Striver specifications. The well-formedness
condition for Striver includes the condition for Lola (absence of zero-weight cy-
cles). Additionally, well-formedness for Striver requires that closed paths in a
given MSCC do not mix positive and negative edges. That is, cycles in a posi-
tive MSCC cannot contain negative edges (and cycles in a negative MSCC can-
not contain positive edges). Again, we write σO = ψ(σI) for the unique output
valuation that corresponds to an input valuation. See [14] for details.

3 Time vs Event-Based Runtime Verification

In this section we study how Lola can simulate Striver and vice versa.
We start by introducing transformations between sequences and streams.

Since events happen only at time instants, we reserve a special fresh constant
⊥ (read as “none”) to model the absence of an event in a sequence. We ex-
tend every value domain A into A⊥ = A ∪ {⊥}. For example, the sequence
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[350,⊥,⊥, 360,⊥, 289, 320, 330, 382] is a sequence of Z⊥ values. A sequence of
A⊥ is called a maybe sequence of A values.

We say that a set τ of totally ordered elements with a minimum element such
that |τ | ≥ |[z]| covers z. When a subset τ of the temporal domain contains the
set of time-stamps in a stream s, we say that τ covers s. If τ covers every stream
in a valuation σ, we say that τ covers σ and we say that τ is a temporal backbone
of σ. When ordered, τ can be seen as a sequence of increasing time-stamps.

Definition 5. Let τ = {t0, t1 . . .} be a temporal backbone that covers an event-
stream s of sort A, and let z be a maybe sequence of type A (that is, a sequence
of A⊥ values). We say that s and z are equivalent for τ(and we write s ≡τ z)
whenever |z| = |τ |, τ covers s and for all n ∈ [z]

z(n) =

{
s(τ(n)) if τ(n) ∈ dom(s)

⊥ otherwise

Note that if s ≡τ z and dom(s) = τ then z(n) 6= ⊥ for any n, this is, z is a value
sequence of type A when the backbone contains exactly the time-stamps of the
events in s.

We now define two maps that transform sequences into event streams and vice
versa. The map tostream takes a sequence z and a backbone τ and generates an
event stream with underlying time-domain T ⊇ τ , provided that τ covers z. The
map toseq takes an event stream s and a backbone τ and produces a sequence,
provided that τ covers s. These maps are defined as follows:

tostream(z, τ)
def
= {(τ(n), z(n)) | n ∈ [z] and z(n) 6= ⊥}

toseq(s, τ)(n)
def
=

{
s(τ(n)) if τ(n) ∈ dom(s)

⊥ otherwise

Example 3. We show the transformations for co2 and tv status for a backbone

τ
def
= {1.0, 1.5, 2.0, 2.5, 4.0, 4.5, 6.0, 7.0, 7.1, 7.2, 7.5, 8.0, 9.0}:

tostream(co2, τ)
def
= {(1.0, 350), (1.5, 360), (2.0, 289), (2.5, 320), (4.0, 330)}

toseq(tv status, τ)
def
= [⊥, off,⊥,⊥, on,⊥, off,⊥,⊥,⊥, on, off,⊥] ut

The following lemma relates tostream and toseq.

Lemma 1. For every sequence z, event-stream s and backbone τ that covers s:
– z ≡[z] tostream(z, [z]) and z = toseq(tostream(z, [z]), [z])
– s ≡τ toseq(s, τ) and s = tostream(toseq(s, τ), τ).

The previous definitions can be extended to collections of streams and to
valuations as follows. Let V be a set of stream variables, σ be a collection of
event-streams with one stream σv in σ for every v ∈ V , and let τ be a backbone
that covers σ. Let ρ be a collection of A⊥, with a sequence ρv for each variable
v. We say that σ is equivalent to ρ for backbone τ over the streams V , and write
σ ≡Vτ ρ whenever for all v ∈ V , σv ≡τ ρv.

Fig. 1 shows the main result proven in the rest of this section.
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ρO

σO′

ρI
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tostream striver ≡Oτ
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ϕ
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σO
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σI

ρI

toseq lola ≡Oτ

Fig. 1. Commutative diagrams for Theorems 1 and 2.

3.1 From Lola to Striver

We show now how to translate a synchronous specification (written in Lola) into
an event-based specification (written in Striver) that generate equivalent outputs
from equivalent inputs. Formally, we start from a well-formed Lola specification
ϕ〈I,O〉 and generate a well-formed Striver specification ψ〈I,O′〉 with O ⊆ O′

(the equivalence will be restricted to I ∪O as O′ \O are auxiliary streams). We
will show that for an evaluation model ρ of ϕ, if we choose τ = [ρ] (the instants
of time {0 . . . |ρ− 1|}) as the time backbone, then for every evaluation model of
ψ such that σ ≡Iτ ρ then σ ≡Oτ ρ. This is, if the evaluation models coincide in
their inputs with respect to the backbone τ , then the evaluation models coincide
in the output streams of the Lola specification with respect to τ . We assume that
the Lola specification is flattened, this is, the specification only contains stream
accesses with offsets −1, 0 or 1. This has been proved to be feasible in [7].

Recall that well-formed Lola specifications require that each MSCC of the
dependency graph has only positive cycles or only negative cycles. Additionally,
well-formed Striver specifications also require that cycles in positive MSCCs have
no negative edges and cycles in negative MSCCs have no positive edges. The
reason is that in real-time, a single negative edge (corresponding to a future ref-
erence fetching an event in the past) can compensate for any number of positive
edges and vice versa, and create a zero-weight cycle. Therefore, if we attempt
to simply translate a Lola successor access x[+1|d] as a Striver next event access
x(t>, d), we may turn a well-formed Lola spec into an illegal Striver spec.

To overcome this issue, the translation proceeds in two stages. First, we
translate the initial Lola specification into an equivalent Lola specification that
does not contain positive edges in negative MSCCs or negative edges in positive
MSCCs. This can be done for every Lola specification. In the second stage, we
translate the resulting Lola specification into a Striver specification.

Eliminating mixed edges in MSCCs. We show now the translation for removing
positive offsets from negative MSCCs. Removing negative offsets from positive
MSCCs is dual. We introduce an auxiliary function expM (e, k) that expands re-
cursively the offsets within a negative MSCC M by the constant k. The expan-
sion substitutes the definition of the referred stream making all offsets become
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non-negative:

expM (x[i|d], k)
def
=


x[i+ k|d] if x /∈M or k + i ≤ 0if true[k + i|false]

then expM (ex, k + i)

else d

 otherwise

expM (d, i)
def
= d

expM (f(E1, . . . , El), i)
def
= f(expM (E1, i), . . . , expM (El, i))

Note that the recursive expansion terminates because each expansion corre-
sponds to following an additional edge and all paths in the negative MSCC
eventually either leave the MSCC, or make the path negative. Finally, we rewrite
the term of every stream x = e ∈M as

output x :=expM (ex, 0)

Example 4. Take for example the following Lola specification:

output x = y[1|999] + 1

output y = x[-2|5] * 2

The resulting specification after the expansion is:

x = ((if true[1|false] then x[-1|5] * 2) else 999) + 1

y = x[-2|5] * 2

The correctness of the translation is provided by the following lemma.

Lemma 2. Let ϕ be a Lola spec and ϕ′ be the resulting specification after the
defining equation ex is replaced by expM (ex, 0). Then, ϕ and ϕ′ are equivalent.

The proof essentially proceeds by showing that given a candidate valuation JexK,
then JexK = Jexp(ex, 0)K by structural induction on the expressions.

The application of expM guarantees that, given a well-formed Lola specifica-
tion ϕ, the obtained equivalent Lola specification ϕ′ satisfies that every MSCC
in its dependency graph contains only positive edges or only negative edges in
every cycle.

Translation to Striver. In the second stage of the translation, we define a function
striver that generates a Striver value expression from the defining expression of
a Lola stream.

striver(x[−1|d])
def
= x(<t, d)

striver(x[now])
def
=

{
x(~t) if x belongs to a non-positive MSCC

x(t~) otherwise

striver(x[1|d])
def
= x(t>, d)

striver(d)
def
= d

striver(f(E1, . . . , Ek))
def
= f(striver(E1), . . . , striver(Ek))

For every output stream x = ex of type A in ϕ, we define its equivalent in ψ as:
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ticks x := r.ticks

define a x := striver(ex)

where r is any input stream.
We use striver(ϕ) to refer to the Striver specification resulting by translating

all output streams of ϕ as described above. We prove now that ϕ and striver(ϕ)
are equivalent, so therefore Striver can simulate Lola specifications.

Theorem 1. Let ϕ be a well-formed Lola specification and ρI a valuation of its
inputs of length N . Let ψ = striver(ϕ) be the Striver specification obtained by
translating ϕ and let σI = tostream(ρI , [N ]). Then, ψ(σI) ≡[N ] ϕ(ρI).

Proof. Let ϕ be a Lola specification, and ψ = striver(ϕ) its translation to Striver.
Let ρI be an input valuation of ϕ of size N , and let τ = 0 . . . N − 1, and let
ρO = ϕ(ρI). Let σI = tostream(σI , τ) be the corresponding input valuation for
ψ and σO = ψ(σI).

If N = 0, then ρx = 〈〉 and σx = {} for every stream x in I ∪O.
We see now the case of N > 0. First, we observe that for the case of specs

ϕ without mixed-edges the dependency graphs of ϕ and ψ are identical. We
proceed by induction over a topological sort of the acyclic graph of MSCCs in
the dependency graphs (the graph of MSCCs). By induction over 0 . . . N − 1
for negative MSCCs (and by induction over N − 1 . . . 0 for positive MSCCs).

Internally, we reason by induction over a topological sort of the MSCC with
−−→

and
+−→ edges removed.

Let x be a stream variable in a non-positive MSCC, and let i ∈ τ . We know
that i ∈ dom(x) because i ∈ dom(r), for any input stream r. Let v = ρx(i) be
the value at position i in σx. We consider the cases separately.

– The definition of x in ϕ is x=v, and thus the definition of the value of x in
ψ is x=v and σx(i) = v, or

– The definition of x in ϕ is x=y[now]. Then, the corresponding definition
of x in ψ is x=y(~t). Since ρy(i) = v then also σy(i) = v (by induction
hypothesis), and hence σx(i) = v

– The definition of x in ϕ is x=y[-1|d], and thus the definition of the value
of x in ψ is x=y(<t,d). Then, either:
• i = 0 and d = v, and σx(i) = v, or
• i > 0 and ρy(i− 1) = v, and σy(i− 1) = v (by induction hypothesis over
i), and σx(i) = v.

– The definition of x in ϕ is x=f(e1,...,ek), and thus the definition of the
value of x in ψ is x=f(e1’,...,ek’). In this case, we proceed by structural
induction over the expression. The leaves fall within one of the previous
cases. Since the arguments of every function are the same, they produce the
same result. We apply this reasoning until we get to the topmost expression
f(e1’,...,ek’), where f is applied to the same arguments as in its Lola
counterpart expression f(e1,...,ek), and thus the result is v in both cases;
and σ′x(i) = v.

The proof for positive MSCCs is analogous. ut
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Example 5. Let ϕ be the specification from Example 1 and the sequence for co2
in the preliminaries. The equivalent flattened specification is:

input num co2

output num aux := co2[-1|0]

output num denom := min(3, denom [-1|0]+1)

output num mean :=(aux[-1|0]+co2[-1|0]+co2[now ])/ denom[now]

The evaluation model for ρco2 = [350, 360, 289, 320, 330] is

ρaux = [ 0, 350, 360, 289, 320] ρdenom = [ 1, 2, 3, 3, 3]
ρmean = [ 350, 355, 333, 323, 313]

The translated Striver specification is:

input num co2

ticks aux := co2.ticks

define num aux := co2(<t,0)

ticks denom := co2.ticks

define num denom := min(3, denom(<t,0)+1)

ticks mean := co2.ticks

define num mean :=(aux(<t,0)+co2(<t,0)+co2(˜t))/ denom(˜t)

And its evaluation model for τ
def
= 0, . . . , 4 is:

σco2 = {(0, 350), (1, 360), (2, 289), (3, 320), (4, 330)}
σaux = {(0, 0), (1, 350), (2, 360), (3, 289), (4, 320)}

σdenom = {(0, 1), (1, 2), (2, 3), (3, 3), (4, 3)}
σmean = {(0, 350), (1, 355), (2, 333), (3, 323), (4, 313)}

3.2 Striver to Lola

We show now how to translate a well-formed Striver specification ψ〈I,O〉 to an
equivalent well-formed Lola specification ϕ〈I,O′〉 with the same input I and
output stream variables O′ (again O ⊆ O′ because O′ contains some auxiliary
stream variables). In this case we do not impose a temporal backbone τ . Instead,
we will show the conditions that τ must meet for the translation to be correct.
We reserve the word notick in the syntax of Lola to refer to the reserved constant
⊥. To ease the translation we introduce a new Lola stream variable called time
and assume that toseq(σ, τ) assigns time(i) = τ(i) for every instant i in σ.

The main idea of the translation is to create a defining expression for every
stream variable x ∈ O of type A, with ticking expression Tx and value expression
Vx, as follows:

output A x := if ticks(Tx) then value(Vx) else notick

where ticks(Tx) is a Boolean expression that is true whenever x has a value at the
time corresponding to the instant, and value(Vx) is an expression that computes
the corresponding value.
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We first define ticks, which given a ticking expression in Striver, returns a
Boolean expression in Lola.

ticks({c}) def
= time[now]==c

ticks(x.ticks)
def
= x[now]!=notick

ticks(x U y)
def
= ticks(x)||ticks(y)

ticks(delay ε x)
def
=

{
delay_eps_x [-1|noalarm]==time[now] if ε > 0

ndelay_eps_x [+1|noalarm]==time[now] otherwise

where, for each x and ε used in an expression delay ε x, we add to lola(ψ) the
following stream variable delay_ε_x and ndelay_ε_x with defining expressions:

output Time ∪{noalarm} delay_ε_x := if x[now]<ε then noalarm

else if x[now] == notick then delay_ε_x [-1| noalarm]

else x[now] + time[now]

output Time ∪{noalarm} ndelay_ε_x := if x[now]>ε then noalarm

else if x[now] == notick then ndelay_ε_x [+1| noalarm]

else x[now] + time[now]

Here, noalarm is a fresh value not in T.
We now define the function value, which translates Striver value expressions

into Lola expressions of the same type. We assume that the Striver specification
is flattened so it does not contain nested offset expressions.5

value(x(x <<t))
def
= prev_x[now] value(d)

def
= d

value(x(x <~t))
def
= preveq_x[now] value(-out)

def
= -out

value(x(x >>t))
def
= succ_x[now] value(+out)

def
= +out

value(x(x >~t))
def
= succeq_x[now] value(notick)

def
= notick

value(t)
def
= time[now] value(f(E1, . . .))

def
= f(value(E1), . . . )

where, for every stream x, we define

preveq_x:=if x[now]!=notick then x[now] else preveq_x[-1|-out]
prev_x := preveq_x [-1|-out]

succeq_x:=if x[now]!=notick then x[now] else succeq_x[+1|+out]
succ_x := succeq_x [+1|+out]

Essentially, the new streams preveq_x search for the previous value in x that
contains an actual value. The other auxiliary streams are analogous. Note that
offsets are restricted to values, not times. A specification that contains offset
expressions that access time can be translated to an equivalent one accessing
values creating a Striver stream times_of_x. As a result, we will get a stream
prev_times_of_x, along with the rest of the auxiliary streams in the translated
Lola specification.

5 An algorithm to get a flatten specification for a past-only Striver specification has
been shown in [14].
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We use lola(ψ) for the Lola specification obtained by transforming every out-
put stream variable in ψ as described above. Theorem 2 below captures whether
the transformation gives an equivalent Lola specification, which depends on the
temporal backbone being covering.

Theorem 2. Let ψ〈I,O〉 be a well-formed Striver specification, σI a valuation
of the inputs of ψ, τ be a covering temporal backbone, and ρI = toseq(σI , τ). Let
ϕ = lola(ψ). Then, ψ(σI) ≡Oτ ϕ(ρI).

Proof (sketch). The proof proceeds by complete induction on the evaluation
graph of ψ for ρ (which is an acyclic graph). Essentially, if the equivalence
does not hold there is a node (corresponding to a stream variable at a concrete
position) that is minimal—in the sense that it violates the stated equivalence
but all the lower nodes satisfy it—. Since in both cases the value of the node only
depends on lower nodes with two expressions that guarantee the same results
(given the values on the nodes they depend on), a contradiction is reached. ut

Example 6. Let ψ be the specification of Example 2 and the sequence for tv status
from Section 2 The evaluation model is:

σtv status = {(1.5, off), (4.0, on), (6.0, off), (7.5, on), (8.0, off)}
σtv on = {(1.5, 0.0), (4.0, 0.0), (6.0, 2.0), (7.5, 0.0), (8.0, 0.5)}

The translated specification is:

input TV_Status tv_status

output int tv_on :=

if tv_status[now] != notick then

if prev_tv_status[now] then

prev_tv_on[now]+time[now]-prev_times_of_tv_status[now]

else 0

else notick

Its evaluation model for the covering backbone τ = {1.5, 4.0, 6.0, 7.5, 8.0} is,
assuming ρtv status = [off, on, off, on, off]:

ρtv on = [0.0, 0.0, 2.0, 0.0, 0.5] ρtime = [1.5, 4.0, 6.0, 7.5, 8.0] ut

3.3 Time Backbone Election

The main result of the previous section is Theorem 2, which establishes a trans-
lation from Striver to Lola, and a condition under which the translation is correct.
Namely, that a temporal backbone is chosen in the translation satisfying that
the sequence of times in the backbone contains all the instants where events may
happen at runtime. We now describe three cases to compute a temporal back-
bone that satisfies the conditions of Theorem 2 and later in Section 4 evaluate
the efficiency of the resulting monitors.
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Full Time-Domain The first obvious choice is to use the minimum granularity
of time that the monitoring system considers (this can be one millisecond, one
second, etc. depending on the setting). In this case, T is a finite set (given a
starting and finishing time) and choosing τ = T guarantees trivially to cover all
event-streams of any valuation of the Striver specification. We call the resulting
Lola specification the full-time translation. As we will see, this approach becomes
very inefficient if |T| � |

⋃
x∈I∪O dom(x)|. We use density to refer to the ratio

of instants at which there are events in a given valuation, and sparsity for how
close together events are statistically. The less dense a valuation is, the more
inefficient lola(ψ) is compared to ψ when a full-time translation is used.

Input Timestamps Sometimes, it can be guaranteed that a Striver specifica-
tion is purely event-driven. In other words, all output events of all valuations
happen only at instants where there are input-events. The fragment of Striver
specifications whose tick operators are restricted to ticks and U (i.e. { c } and
delay are not used) is called event-driven and satisfies the following proposition.

Proposition 1. Let ψ be an event-driven Striver specification, σI an input val-
uation and σO = ψ(σI). Then,

⋃
y∈O dom(y) ⊆

⋃
x∈I dom(x).

In other words,
⋃
v∈I∪O dom(v) =

⋃
x∈I dom(x) for event-driven specifications.

As a result, we can incrementally define τ as the witnessed input timestamps,
and an incremental online Lola engine will be correct. We call the corresponding
Lola specification the event-driven translation. As we will see, this translation
is very efficient regardless of the density or sparsity of the streams observed.
However, unfortunately, this choice of backbone only supports a fragment of the
Striver language.

Input-independent Timestamps A third translation considers the case un-
der which one can statically determine that any valuation will only contain either
time instants dictated by the input (event-driven) or a set of instants which may
require time calculation but that does not depend on the input.

This happens, for example, when delay is used in a controlled way to define
periodic clocks (that only depend on themselves in a recursive definition with
delay), and not depending on instants in the input. Mixing event-driven and
periodic clocks allows us to capture the assumptions of the RTLola real-time
SRV tool [13]. We call the resulting Lola specification the isochronous transla-
tion.

4 Empirical Evaluation

In this section we report an empirical evaluation, executed on a MacBook Pro
with a Dual Core Intel-i5 at 2.5GHz with 8GB of RAM running MacOS Catalina.
The Lola monitors are generated using HLola, a Haskell implementation of Lola



16

described in [4] and the Striver monitors are generated using HStriver, a similar
infrastructure for Striver6. We evaluate empirically the following hypotheses:

– (H1) Lola can be simulated by Striver with little penalty in time.
– (H2) Striver can be simulated by Lola via a full-time translation, but the

resource penalty can be very large, particularly for low density inputs.
– (H3) If the Striver specification is purely event-driven then the event-driven

translation into Lola can simulate it very efficiently.
– (H4) If the Striver contains only event driven streams or periodic streams, it

can also be efficiently simulated via an isochronous translation.
– (H5) In practice, embedded monitoring execution platforms can either enter

idle mode immediately after processing an event or remain awake waiting
for events to be received shortly. Resources for sparse inputs can be reduced
by choosing an optimal patience time before entering idle mode.

To evaluate these hypotheses we have written a number of specifications in
HLola and HStriver for properties over the Orange4Home data-set [6]. The trans-
lations were computed manually following the algorithms in Section 3. Consider
for example S1: “the person does not watch TV for longer than 3 hours a day”,
which involves detecting the beginning and end of a TV watching session and
computing the total TV watching time during a day. A second specification S2:
“the person does not watch TV more than 30 minutes more than the daily aver-
age in the past”, requires also computing and maintaining numerical calculations
from previous days (note that this specification is not expressible in LTL). This
specification also requires events to be generated on the fly at time instants that
are neither input-driven nor periodic.

In the first experiment we assess (H1) starting from Lola specifications for S1
and S2, and translating them into Striver. We assume that the events are spaced
roughly by one minute during a day and ignore the seconds, which is reasonable
in our dataset.

In the second experiment we assess (H2) by re-implemening S1 and S2 in
Striver to consider the time of the inputs for their computation. This makes the
monitor more precise and allows it to report the excess of TV exactly at the
moment the property is violated (at that time no input event occurs in general).
The HLola implementation is slightly changed to expect events to be one second
apart, making the HLola specification as precise as its HStriver counterpart, but
also causing it to be much more inefficient.

In the third experiment we evaluate (H3) running a simpler event-driven
Striver Boolean specification S3: “there is some TV on in the house” and the
numeric S4: “total TV time when TV is switched-off ”, as well as the Lola equiv-
alent that uses the timestamps of the TV events as a backbone.

In the fourth experiment we evaluate (H4) running a spec S5 that calculates
the summary of TV time at the end of every hour.

6 Both HLola and HStriver are open source available from http://github.com/imdea-
software. All executions in this empirical evaluation are packaged as a docker con-
tainer downloadable from http://hub.docker.io/imdea-software/rv2020/.
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Event throughput
2h38m 9h18m 1d8h46m 11d4h27m 25d2h6m

HStriver HLola HStriver HLola HStriver HLola HStriver HLola HStriver HLola

Exp 1 6666 5050 7142 5577 7692 5900 8064 5830 8130 5279
Exp 2 4000 6407 7142 6377 7407 6264 7692 6145 7462 6149
Exp 3 6666 12900 11111 8933 11764 10650 11904 10432 12195 10528
Exp 4 4000 6550 10000 9083 10000 8438 12345 9182 12820 9376

Table 1. Experiments data

We calculate, for each experiment and a number of running traces, the aver-
age number of processed events per second. In each experiment we use a trans-
lator that generates the equivalent sequences and event-streams of varying time
spans. The summary of the observations can be found in Table 1, Fig. 2, Fig. 3(a)
and Fig. 3(b).

The results in Table 1 suggest that the event processing throughput is un-
affected by the number of events/instants being processed (all specifications are
trace-length independent), as predicted. Also, we observe that the event process-
ing throughput for both HLola and HStriver are similar for the same experiment.
Fig. 2 shows that the second experiment increases exponentially for Lola with
respect to the trace length (note that the y axis has a logarithmic scale), but
increases linearly with respect to the trace length in all other cases. The number
of events processed by Striver is roughly twice as its Lola counterpart (except in
experiment 2), since data from two different origins with the same timestamp
accounts for one event in Lola, but Striver processes them separately.

Fig. 3(a) reports a variation of experiment 3 where the input sequence is
padded with empty data to evaluate the impact on the performance of Lola. For
reference, the blue line at 1.64 indicates the execution time of the corresponding
HStriver specification. We can conclude that the execution time increases linearly
with respect to the density of the input data, as expected.
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Fig. 3. Event density (left) and costs (right).

Finally, we run an additional experiment to evaluate (H5), with a synthetic
cost model that considers the energy of going idle and waking up (Fig. 3(b)).
The brown line indicates the accumulated costs of a monitor that never goes idle.
The red line represents a monitor that goes idle immediately after processing
every event. The jumps in the red line correspond to the times at which an event
was received. The blue line corresponds to a monitor that waits for half an hour
after the last event processed to go idle. The outcome illustrates that waiting is
favourable if the next event comes soon, while sleeping is preferred if the next
event takes long to arrive.

5 Conclusions

We have studied the conditions under which synchronous monitoring and fully
asynchronous monitoring can simulate each other, particularly in the context
of stream runtime verification. Our first result is that every Lola specification
can be efficiently simulated by Striver. The second result is the definition of
a condition of the temporal backbone under which Lola can simulate Striver,
via a general translation, leading to three practical translations: (1) the full-
time translation that uses the minimum granularity of time, which is general
but inefficient; (2) the event-driven translation, which is efficient but restricted
to event-driven Striver specs; and (3) the asynchronous translation, a mixed
approach that supports event-driven execution plus simple time-driven events
like periodic clocks.

A simple analysis of the translations (from Lola to Striver and vice versa)
presented in Section 3 reveals that the resulting specification is linear in the size
of the original one, and that the algorithm takes linear time. Similar translations
can be made for other SRV specification languages like TeSSLa and RTLola. Our
empirical evaluation using the Orange4Home dataset illustrates the expressivity
of the SRV languages used and allowed us to empirically confirm the predictions
on the runtime efficiency of the corresponding monitors.
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