
HStriver: A Very Functional Extensible
Tool for the Runtime Verification

of Real-Time Event Streams

Felipe Gorostiaga1,2,3(B) and César Sánchez1

1 IMDEA software institute, Madrid, Spain
{felipe.gorostiaga,cesar.sanchez}@imdea.org

2 Universidad Politécnica de Madrid, Madrid, Spain
3 CIFASIS, Rosario, Argentina

Abstract. We present HStriver, an extensible stream runtime verifica-
tion tool for event streams. The tool consists of a runtime verification
engine for (1) real-time events streams where individual observations and
verdicts can occur at arbitrary times, and (2) rich data in the observa-
tions and verdicts. This rich setting allows, for example, encoding as
HStriver specifications quantitative semantics of logics like STL, includ-
ing different notions of robustness.

The keystone of stream runtime verification (SRV) is the clean separa-
tion between temporal dependencies and data computations. To encode
the data values and computations involved in the monitoring process
we borrow (almost) arbitrary data-types from Haskell. These types are
transparently lifted to the specification language and incorporated in the
engine, so they can be used as the types of the inputs (observations), out-
puts (verdicts), and intermediate streams. The resulting extensible lan-
guage is then embedded, alongside the temporal evaluation engine (which
is agnostic to the types) into Haskell as an embedded Domain Specific
Langauge (eDSL). Morever, the availability of functional features in the
specification language enables the direct implementation of desirable fea-
tures in HStriver like parametrization (using functions that return stream
specifications), etc. The resulting tool is a flexible and extensible stream
runtime verification engine for real-time streams. We illustrate the use of
the tool on many sophisticated real-time specifications, including realistic
signal temporal logic (STL) properties of existing designs.

1 Introduction

Runtime Verification [4,25,29] is a lightweight dynamic technique for systems
reliability that studies (1) how to generate monitors from formal specifications,
and (2) algorithms to monitor the system under analysis, by processing one trace

The tool is available open source at http://github.com/imdea-software/hstriver.
This work was funded in part by the Madrid Regional Government under
project “S2018/TCS-4339 (BLOQUES-CM)”, by Spanish National Project “BOSCO
(PGC2018-102210-B-100)”.
c© Springer Nature Switzerland AG 2021
M. Huisman et al. (Eds.): FM 2021, LNCS 13047, pp. 563–580, 2021.
https://doi.org/10.1007/978-3-030-90870-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90870-6_30&domain=pdf
http://orcid.org/0000-0002-3478-3408
http://orcid.org/0000-0003-3927-4773
http://github.com/imdea-software/hstriver
https://doi.org/10.1007/978-3-030-90870-6_30

564 F. Gorostiaga and C. Sánchez

at a time. Early RV formal specification languages were based on temporal logics
like past LTL [31] adapted to finite traces [7,13,26], regular expressions [36],
rewriting [34], fix-point logics [1], rule based languages [3]. In these languages,
verdicts (and many times observations) are Boolean, because these logics were
borrowed from static verification—where decidability is crucial.

Stream runtime verification (SRV) [12,35] attempts to generalize these mon-
itoring algorithms to richer datatypes, including in observations and verdicts,
which allows the computation of quantitative values and summaries, the com-
putation of witnesses, models or the collection of representative data, etc. The
keystone of SRV is to cleanly separate the temporal engine from the individ-
ual data operations, abstracting the temporal monitoring algorithms which can
then be instantiated with generic data types. SRV offers declarative specifica-
tions where offset expressions allow accessing streams at different moments in
time, including future instants. The first SRV developments [12] were based on
similarly synchronous languages—like Esterel [8] or Lustre [21]. These languages
force causality because their intention is to describe systems and not observations
or monitors, while SRV removes the causality assumption allowing the reference
to future values. Synchronous SRV languages have been extended in recent years
to event-based systems for monitoring real-time event streams [10,15,18,20,28].
Most SRV efforts to date, synchronous and event-based, have focused on effi-
ciently implementing the temporal engine, only offering a handful of hard-wired
data-types. However, in practice, adding a new datatype requires modifying the
parser, the internal representation and the runtime system, which becomes a
cumbersome activity. More importantly, these tools are shipped as monolithic
tools with a few hard-wired datatypes which the user of the tool cannot extend.

In this paper we describe the tool HStriver, an extensible implementation of
an event-based SRV language. The core language is based on [18], and enables the
extensions to arbitrary datatypes, implemented as an embedded DSL in Haskell.
There are other RV tools implemented as eDSLs [2,24,37] but a main novelty of
HStriver is the use of lift deep embedding, that allows borrowing Haskell types
transparently and embedding the resulting language back into Haskell [9].

Most of the HStriver datatypes were introduced after the temporal engine was
completed without any re-implementation, so users of the tool can also extend
the datatypes easily. The second contribution of HStriver is the implementa-
tion of a novel efficient asynchronous engine for the temporal part, described in
Sect. 2. Implementing HStriver as a Haskell eDSL enables the use of higher-order
functions which in turn allows writing code that produces stream declarations
from stream declarations, enabling features like stream parametrization, which
requires costly ad-hoc implementations in previous tools. This is used to package
HStriver libraries that describe logics like STL, etc. with Boolean and quantita-
tive semantics in a few lines.

Related work. There have been runtime verification tools for the monitoring
of event-based streams (see [14] for a survey). R2U2 [33] is based on a varia-
tion of metric interval temporal logic (MITL) for finite (real-time) traces. Since
R2U2 uses logic as a specification formalism, the observations and verdicts are

HStriver: A Very Functional Extensible Tool for the Runtime 565

based on Boolean values. BeepBeep [22,23] is a framework to build runtime
verification tools based on connecting streaming blocks. Even though BeepBeep
could be used as a programming framework for tools like HStriver, in compari-
son to HStriver, BeepBeep lacks semantics both in terms of the data-types, the
assumptions on the temporal domain and lacks a way to compute the resources
needed. MonPoly [5,6] is a monitoring tool based on first-order MITL. Even
though the tool can produce witnesses for the quantifiers, in comparison with
SRV, FO-MITL cannot compute values of arbitrary data-types like the compu-
tation of statistics and quantitative semantics of logics. Copilot [32] is a Haskell
implementation that offers a collection of building blocks to transform streams,
but Copilot does not offer explicit time accesses and offsets (and in particular
future accesses). Also, Copilot is based on synchronous time. The closest tools
to HStriver are RTLola [15,16] and TeSSLa [10] which are SRV tools extending
Lola [12] with capabilities to real-time event streams. The main difference are
that RTLola and TeSSLa come with a predefined collection of data-types, while
HStriver enjoys the Haskell capabilities to import and create new types with-
out changing HStriver. Also, HStriver incorporates an asynchronous pull engine
and borrows flexible data-types and functional features from the host language.
Additionally, HStriver allows event-generation, while RTLola is restricted to be
event-driven or periodic events. Compared with TeSSLa, HStriver is an explicit
timed language while TeSSLa uses stream transformers.

The main contributions of this tool paper are (1) to describe the imple-
mentation of HStriver, an SRV tool for real-time event streams using a lift deep
embedding in Haskell; (2) the novel pull algorithm to implement an asynchronous
temporal engine and; (3) to illustrate many of the HStriver features by exam-
ple. The rest of the paper is structured as follows. Section 2 introduces SRV and
describes the internals of HStriver, Sect. 3 illustrates many features by example,
and finally Sect. 4 concludes.

2 The HStriver Tool

SRV generalizes monitoring algorithms to arbitrary data, where data-types are
abstracted using multi-sorted first-order interpreted signatures. These data-types
are called data theories in the SRV terminology. The signatures are interpreted
in the sense that every functional symbol f used to build terms of a given type is
accompanied with an evaluation function f (the interpretation) that allows the
computation of values (given values of the arguments). In the context of event-
streams, a specification not only needs to declare the values of output streams
(based on input and output streams) but also the temporal instants at which
there are events in the output streams.

The temporal core of the tool HStriver is based on the Striver specification
language [18]. A specification 〈I,O,E〉 consists of (1) a set of typed input stream
variables I, which correspond to the input observations; (2) a set of typed output
stream variables O which represent outputs of the monitor and intermediate
observations; and (3) defining equations, which associate every output y ∈ O

566 F. Gorostiaga and C. Sánchez

Fig. 1. Software Architecture of HStriver.

with two stream expressions: Ty, which describes when there is an event in y, and
Ey which describes what the value is whenever there is an event. Tick expressions
Ty are built from constant time-instants, and the union, and shift and delays of
the ticking instants of other streams. Stream Expressions Ey are built from
constant values, function symbols and offset expressions that allow referring to
the previous and next-events in streams, according to the time-stamps of events.
The online algorithm proposed in [18] is a push algorithm that processes input
events in the order of their time-stamps and produces output events also in
time order. The algorithm implemented in HStriver is a much more efficient pull
algorithm, which attempts to compute events in output streams fetching the
necessary events from other streams. We have empirically shown that HStriver
is capable of processing tens of thousands of events per second [17].

HStriver Architecture. The architecture of HStriver follows the same app-
roach as the tool HLola [19] and is shown in Fig. 1. An HStriver specifica-
tion defines event streams using the syntax described below as well as Haskell
datatypes and type members. A specification can also borrow Haskell notation
and features such as list comprehension and let-clauses (represented by the red
dashed arrow in Fig. 1). Then, a very simple translator generates Haskell code
from the source specification. This translator does not parse and interpret the
totality of the source code, but only performs simple rewritings introduced to
make the specification cleaner. The resulting Haskell code is then combined with
the execution engine described below, written in Haskell, and compiled using
the GHC to obtain the binary for the specification monitor. In this manner,
the HStriver tool can be easily extended with new data-theories, and Haskell
programs can use HStriver specifications as part of their code.

The Language. A stream declaration in an HStriver specification can be either:

– An input declaration, which is bound to a name and a type using the following
syntax:
input <TypeConstraints>? <Type> <name> <ArgType argame>*, or

– An output declaration, which is bound to a name, a TickExpression te
assigned to the field ticks and a ValueExpression ve assigned to the field
val, using the following syntax:

HStriver: A Very Functional Extensible Tool for the Runtime 567

output <TypeConstraints>? <Type> <name> <ArgType argame>* :
ticks = te
val = ve

where <TypeConstraints> is an optional set of constraints over the polymorphic
types handled by the stream and expressed in Haskell notation, and <ArgType
argame>* is an optional list of arguments. We can use define instead of output
to define intermediate streams, whose values are not reported by the monitor
but can be used by other streams. We can replace the last : with a = to define
an output stream as the copy of another stream instead of indicating its Tick
and Value Expressions.

The types of the streams have to be Haskell Typeable types, which is a very
general class of types, enough for our the purpose of SRV data theories. The
types of input streams have to be parseable from JSON using the Haskell aeson
library (i.e., they have to be an instance of the FromJSON class), and the output
streams have to be serializable to JSON using the aeson library (this is, they
have to implement the ToJSON class). Also, the current HStriver frontend imposes
some minor syntactic restrictions (the work reported in this tool paper focuses on
an efficient implementation with rich data theories, while ongoing work includes
bringing the specification language closer to Striver).

The TickExpression of an output stream indicates when it might produce an
event, and is defined by the following recursive datatype:

– A single point in time t, which we write {t},
– The instants at which stream s contains an event, written ticksOf s
– The instants of the events of s shifted by a constant c, written shift c s,
– The instants at which a stream of type TimeDiff (“Time Difference”) s contains

an event, delayed by the value in the event (unless s contains a new event
meanwhile), which we write delay s, or

– The union of two TickExpressions te1 and te2 , which we write te1 U te2

The ValueExpression of an output stream indicates if the stream will contain
an event at a ticking point, and with which value. A TickExpression also “car-
ries” the values of all events that made the stream wake up to facilitate the
computation of the ValueExpression. The ValueExpression is defined as follows:

– The constructor ’ x encapsulates an element x from a data-theory. This
constructor represents the lift stage of the lift-deep embedding technique [9].

– Function application is juxtaposition, has the greatest precedence and is auto-
matically lifted for ValueExpressions. Parentheses are used to impose a dif-
ferent association between functions and values.

– The value cv contains the value carried by the tick expression.
– The constructor :=> is used to refrain from producing a value: it will return

the value at the right hand of the operator provided that the expression at
the left hand side holds, and will not produce a value otherwise.

Two additional constructors allow accessing timestamps and values of differ-
ent streams:

568 F. Gorostiaga and C. Sánchez

– We use timeOf te to access the timestamp of a TauExpression (explained
below) te, and

– We use the projection constructor s[te|_] to access the value of a stream s in
a TauExpression te, either (1) providing a default value v with the same type
as s in case the tau expression te falls off the trace as in s[te|v]; or (2) with no
default value, delegating the obligation to check if the expression falls off the
trace to the surrounding expression, as in s[te|?]; or (3) with no default value,
indicating that the inner TauExpression does not fall off the trace, as in s[te|].

Finally, the datatype for TauExpression, which allows offsets in time:

– The value t represents the current time.
– The constructor s « te allows us to refer to the last event in stream s strictly

before the value of the TauExpression te.
– The constructor s <~ te is like « but also considers the current t.
– The constructors » and ~> are the future duals of « and <~ respectively.

Sometimes, the offset expressions can allow us to express bounds on the time
which enable a more efficient implementation (very useful to capture logics like
STL). We rewrite the stream accesses to make them more compact and improve
legibility. Thus, s[s « te|_] becomes s[<te|_], s[s <~ te|_] becomes s[~te|_],
s[s » te|_] becomes s[te>|_], and s[s ~> te|_] becomes s[te~|_].

The language HStriver offers the possibility to work with two temporal
domains: Double and UTC. The former uses the Haskell type Double as the time
domain, while the latter uses Data.Time from package time.

We specify the time domain for a specification with the directive time domain
followed by either Double or UTC. HStriver libraries and theories are imported
with use library/theory Name, which allows the access to functions and streams
from the imported file by prepending the name of the library or theory as in
Name.member.

The main difference between a library and a theory file is that the former con-
tains utilities for streams manipulation and definitions, while a theory is agnos-
tic of the Striver concepts and comprises functions and constants from a spe-
cific application domain. Data theories, as described in Sect. 2, are implemented
directly in the host language, which lets us use native types and functions, as well
as third parties out of the shelf, and even define our own custom types and func-
tions as data theories. In this manner, the syntactic name of a Haskell function def-
inition (or its lambda expression in the case of anonymous functions) make up the
functional symbols used to build terms, while their semantics in the Haskell lan-
guage are the functions interpretations. This characteristic of the language shows
the extensibility of the language in terms of data theories.

We can also import arbitrary Haskell libraries with the directive use haskell
Name. Finally, we can access functions and constants in the Haskell Prelude by
prepending P to their names.

Example 1. In this example we show the definition of an output stream stock
to calculate the stock of a certain product based on two input event streams:

HStriver: A Very Functional Extensible Tool for the Runtime 569

sale that represents the sales of such product, and arrival which represents the
arrivals of the same product. The output stream stock is defined to tick when
either sale or arrival (or both) tick. The value carried by the tick expression
is of type (Maybe Int, Maybe Int) and represents the units of the product sold
and received at a given point in time. Notice that at least one of the members
will be a Just value.

time domain Double
use haskell Data.Maybe

input Int sale
input Int arrival

output Int stock:
ticks = ticksOf sale U ticksOf arrival
val = let
(msal, marr) = cv
sal = 1’(fromMaybe 0) msal
arr = 1’(fromMaybe 0) marr
in
stock[<t|0] - sal + arr

In HStriver we can also define a stream as the transformation of another
stream, which does not require the explicit definition of a TickExpression and a
ValueExpression. We call this feature Stream aliasing. HStriver also allows the
static parameterization of streams, which lets us reuse stream definitions and
instantiate these for different parameters in static time. These two features are
shown in the following example.

Example 2. The following specification generalizes Ex. 1 for multiple products.
It uses the delay operator to set up a timer and raise an alarm in case the stock
of any product has been low for too long.

time domain Double
use library Utils
use haskell Data.Maybe

#HASKELL
data Product = ProductA | ProductB | ProductC deriving (Show, Eq)
#ENDOFHASKELL

input Int sale <Product p>
input Int arrival <Product p>

define Int stock <Product p>:
ticks = ticksOf (sale p) U ticksOf (arrival p)
val = let
(msal, marr) = cv
sal = 1’(fromMaybe 0) msal
arr = 1’(fromMaybe 0) marr
in
stock p [<t|0] - sal + arr

define Bool low_stock <Product p> = Utils.strMap "low" (lowval p) (stock p)

570 F. Gorostiaga and C. Sánchez

define Bool cp_low_stock <Product p> = Utils.changePointsOf (low_stock p)

define TimeDiff alarm_timer <Product p>:
ticks = ticksOf (cp_low_stock p)
val = if cv then tolerance p else (-1)

define () alarm <Product p>:
ticks = delay (alarm_timer p)
val = ’()

output () any_alarm:
ticks = ticksOf (alarm ProductA) U ticksOf (alarm ProductB)

U ticksOf (alarm ProductC)
val = ’()

� Alternative alarm:
define TimeDiff alarm_timer2 <Product p>:

ticks = ticksOf (cp_low_stock p) U ticksOf (arrival p)
val = let
(mls, marr) = cv
ls = 1’fromJust mls
in if (1’isJust marr) || not ls then (-1) else tolerance p

The Engine. In earlier work [18] we proposed an online monitoring algorithm,
limited to past offsets only, that processes input events in strictly increasing
time, producing outputs also in increasing time. We call this a push approach,
because input events are pushed into the monitor. Instead, the implementation of
HStriver follows a novel pull approach: the engine computes events for the output
streams, which requires pulling events from other streams, and eventually pulling
events from inputs. The performance of both execution approaches is similar for
the common fragment of the language (i.e., the past-only fragment of Striver).
Using a pull procedure, we gain expressivity in exchange for a somewhat more
complex execution design. In this section we explain the pull algorithm in detail.

Input events are read from named pipes in JSON format. The main algorithm
maintains the following state that updated at each step in the computation: (1)
one Leader for each stream declared, and (2) one Pointer from one stream to
another for every timeOf or projection used.

The task of the Leader is to fetch the next event in a stream when required.
The Leader for an input stream will pull the next input event, while the Leader
for an output stream will use its definition to calculate the next event, pulling
from the pointers in the value and tick expressions if necessary. Leaders can also
discover the lack of events, which is useful data for referring streams, and is
necessary to prevent the system from hanging trying to calculate a real event.

A Pointer represents a relevant position in the sequence of events of a stream.
Pointers advance from past to future over the events of a stream. The events in
the past of a pointer have already been used, while the events in the future will
be used later in the computation. When a Pointer needs an event that has not
yet been computed, it will use the corresponding Leader to fetch it. When all

HStriver: A Very Functional Extensible Tool for the Runtime 571

the pointers of a stream pass beyond an event, this event can be forgotten. For
example, the Leader for the stream any_alarm in Example 2 maintains one pointer
to each of the three alarm streams to determine when to generate the unit value.
In particular, any_alarm will pull from every alarm stream at the beginning and
then keep pulling from the pointer at
the minimum position. Each of the
alarm streams also maintains a pointer
to its corresponding alarm_timer, to
calculate if the corresponding stock is
low for too long, so it produces a unit
value. In particular, the leader will pull
from alarm_timer one event to check
the next timestamp and value; and one
more to determine whether the timer is
reset or not. The engine maintains an
extra pointer for every output stream,
which it uses to pull events and print
them. The diagram on the right shows
how the pointers are updated every
time the output stream stock is pulled. The big box of each stream represents
its Leader. Everything at the right of the leader has not yet been discovered,
hence the dashed line. The leader of the stream stock maintains one pointer to
the last event of each other stream, plus an extra pointer to its own last event
(not considering the event that is being computed).

2.1 How to Run HStriver

To compile an HStriver specification or library we execute the hstriverc pro-
gram —which is shipped with the tool— with a set of filenames, of which at most
one can be a runnable specification, while the rest have to be library definitions.
This will produce an executable monitor, with the name specified using the flag
-o filename, or a.out if no output filename was specified.

To run our monitor over input data, it has to be executed with a parameter
indicating the directory where the input data is located as its parameter: monitor
dir . For every non-parameterized input stream s, the monitor will read its events
from the file dir/s.json. For a parameterized input stream s with parameters
arg0 . . . argn , the monitor will read the events for the instantiated input streams
from the files dir/arg0/. . ./argn.json. The input events have to be of the form
{"Time": ts, "Value": val}, where val is the value of the stream at the instant
ts, and there has to be one event per line, with a monotonically increasing
timestamp. The monitor will then produce a list of events with the form {"Id":
id, "Time": ts, "Value": val}, where val is the value of the stream id at the
instant ts.

Note that the input files can be named pipes, which will be consumed when it
is necessary to compute the next output event, following the pull model explained
in Sect. 2, effectively allowing the monitor to be run over data generated in real

572 F. Gorostiaga and C. Sánchez

time. Also notice that it is easy to write a wrapper that acts as a sink for
different input events and dispatches every event to its corresponding named
pipe, if necessary.

Take for example the specification in Ex. 1, whose definition is in the file
stock.hstriver, and suppose we want to execute with the input streams in the
directory ins in the working directory. Then, we need to run:

$ hstriverc -o monitor stock.hstriver
$./monitor ins

There need to be two input stream files in the directory ins: ins/sale.json and
ins/arrival.json. The monitor will print the events of stock to the standard
output progressively when the information is available in the input stream files.

To run the specification in Ex. 2, where paramstock.hstriver contains the
definitions and the input streams are in the sub-directory paramins of the cur-
rent directory, we need to run

$ hstriverc -o monitor paramstock.hstriver
$./monitor paramins

and there need to be two directories in the directory ins: ins/sale and
ins/arrival, with three input files inside each of them, namely
ins/sale/ProductA.json, ins/arrival/ProductA.json
ins/sale/ProductB.json, ins/arrival/ProductB.json
ins/sale/ProductC.json, and ins/arrival/ProductC.json

The monitor will print an event whenever there is a shortage of any product.1

3 Example Specifications and Libraries

In this section we show a selection of HStriver specifications, each of which
illustrates a particular interesting feature of the language.

3.1 Example: Clock

The specification below demonstrates the use of the delay operator to define a
specification with no input streams and one output streams clock, which gener-
ates a unit value at each instant multiple of 5. In this specific case, we could have
used the shift operator instead with identical results. This example illustrates
that HStriver is not only event-driven, and can generate ticks at instants where
no input streams have an event.

time domain Double
output TimeDiff clock:

ticks = {0} U delay clock
val = 5

1 See the tool webpage https://software.imdea.org/hstriver to find example specifica-
tions along with input and output data.

https://software.imdea.org/hstriver

HStriver: A Very Functional Extensible Tool for the Runtime 573

TeSSLa [10] can also implement this feature but most other systems, like
RTLola [16] can only tick at periodic instants or at points at which inputs have
events.

3.2 Libraries

We can use HStriver to collect reusable code and stream transformers in libraries
(that do not have output streams). Libraries are declared with the directive
library Name. Specifications can then import the definitions in the library to
aid the stream definitions. Some libraries are time domain agnostic and do not
require the definition of a time domain. We leverage the modules system of the
host language to implement this feature. The libraries definitions contain many
definitions of stream declarations from stream declarations, which shows the
high-order nature of HStriver. Here we show the implementation of the library
Utils, which contains useful stream operators that are used extensively in the
rest of the examples.

library Utils

define (...) => b strMap <String funame> <(a->b) f> <Stream a s>:
ticks = ticksOf s
val = 1’f cv

define (Streamable a) => a filter <String funame> <(a->Bool) f> <Stream a x>:
ticks = ticksOf x
val = (1’f cv) :=> cv

define (Eq a, Streamable a) => a changePointsOf <Stream a s>:
ticks = ticksOf s
val = let
prevMVal = s[<t|?]
noprev = prevMVal === ’-out
prevVal = 1’getEvent prevMVal
update = prevVal /== cv
in noprev || update :=> cv
where
getEvent (Ev x) = x

define Streamable a => a firstEvOf <Stream a s>:
ticks = ticksOf s
val = let
_this = firstEvOf s
isfirst = timeOf (_this « t) === ’-infty
in isfirst :=> cv

define Streamable a => a shift <TimeDiff n> <Stream a x>:
ticks = shift n x
val = cv

We also show part of the implementations of the library STL which imple-
ments the operators of the Signal Temporal Logic STL [30], a temporal logic
widely used to describe system properties of continuous signals, which are rep-
resented as timestamped event streams.

574 F. Gorostiaga and C. Sánchez

library STL
use library Utils
use haskell Data.Maybe

define Bool until <(TimeDiff, TimeDiff) (a,b)> <Stream Bool x> <Stream Bool y>:
ticks = shift (-a) y U shift (-b) y U shift (-b) x U ticksOf x
val = let
tnow = 1’T now
yT = filterId y
min_yT = if Utils.shift (-a) y [~t|False] then tnow

else timeOf (Utils.shift (-a) yT »_(b-a) t)
xF = filterNot x
min_xF = if not (x [~t|False]) then tnow else timeOf (xF »_b t)
plus x tim = 2’timeDiffPlus x ’tim
in
min_yT ‘plus‘ a <= tnow ‘plus‘ b && min_yT ‘plus‘ a <= min_xF

define TimeDiff alwaysaux <TimeDiff n> <Stream Bool x>:
ticks = ticksOf x
val = let
nextx = 1’unT (timeOf (x»t))
frontier = 2’tDiffAdd nextx ’n
in
not cv :=> if not (x [t>|False]) then (-1) else 2’tDiff frontier now

define Bool statealways <TimeDiff n> <Stream Bool x>:
ticks = let aaux = alwaysaux n x in delay aaux U ticksOf aaux
val = 1’isNothing (snd cv)

define Bool always <(TimeDiff, TimeDiff) (a,b)> <Stream Bool x>:
ticks = shift (-a) (statealways (b-a) x) U {0}
val = let
_this = always (a,b) x
in 2’fromMaybe (_this [<t|True]) (fst cv)

define Bool eventually <(TimeDiff, TimeDiff) (a,b)> <Stream Bool x> =
neg (always (a,b) (neg x))

This snippet illustrates the definitions of the U[a,b] as until, Φ[a,b] as always and
Ψ[a,b] as eventually. These definitions are parametrized by the interval bounds
and the streams of the sub-expressions.

3.3 STL

The next example illustrates a simple STL specification: if the input speed
becomes toofast, then speed will decelerate continuously until reaching an
admissible speed (speedok) within 0.5 time units (represented by the stream
slow_down). This example shows a straightforward use of the STL library to
define temporal properties as streams.

HStriver: A Very Functional Extensible Tool for the Runtime 575

time domain Double

use library STL
use library Utils

const max_speed = 5
const ok_speed = 4

input Double speed

define Bool toofast = Utils.strMap "toofast" (P.>max_speed) speed

define Bool speedok = Utils.strMap "speedok" (P.<=ok_speed) speed

define Bool decel:
ticks = ticksOf speed
val = cv > speed[t>|0]

define Bool slow_down = STL.until (0,5) decel speedok

output Bool ok:
ticks = ticksOf toofast U ticksOf slow_down
val = toofast [~t|False] ‘implies‘ slow_down [~t|True]

3.4 Example: Cost Computation

The following example calculates the accumulated energy cost incurred by a mon-
itor, based on a cost model for (a) waking up, (b) processing an event, (c) going
to sleep, (d) being idle, (e) being awake, and also a patience parameter, which
models how long to wait for a new event before going to sleep. This specification
contains the definition of an output stream which is the quantitative result of a
progressive computation, as opposed to typical Boolean output streams. In this
example the event production is unpredictable and not governed by a predefined
ratio2. This example uses custom datatype definitions, and event generation at
instants where there is no input event.

time domain Double
use haskell Data.Maybe

input () wakeup

define TimeDiff sleep_delayer:
ticks = ticksOf wakeup
val = ’patience

define () sleep:
ticks = delay sleep_delayer
val = ’()

define RunMode runMode:
ticks = ticksOf wakeup U ticksOf sleep
val = if 1’isJust (fst cv) then ’Alert else ’Sleeping

2 The full code or all examples and libraries in this section can be found in https://
software.imdea.org/hstriver.

https://software.imdea.org/hstriver
https://software.imdea.org/hstriver

576 F. Gorostiaga and C. Sánchez

output Cost cost:
ticks = ticksOf runMode
val = let
previousRunMode = runMode[<t|Alert]
currentRunMode = cv
costOfTransitioning = 2’transitionCost previousRunMode currentRunMode
getTimeT (T x) _ = x
getTimeT _ y = y
prevt = 2’getTimeT (timeOf (runMode « t)) now
timediff = 1’(round.realToFrac) (2’tDiff now prevt)
accum = cost [<t|0] + timediff * (’runCostPerSecond previousRunMode)
in
accum + costOfTransitioning

3.5 Example: PowerTrain

Our third example makes a heavy use of the STL library to implement STL
properties for the verification of a powertrain control verification from [27], where
input signals change asynchronously.

time domain Double
use library STL

input Double verification
input Double mode
input Double pedal

� phi = []_(taus ,simTime)(((low/\<>_(0, h) high)
� \/ (high/\<>_(0,h) low)) -> []_[eta, zeta_min] (utr /\utl))
const ut2 = 0.02
output Bool opt2 =
STL.always (taus, simTime) (((low ‘conj‘ STL.eventually (0,h) high)
‘disj‘ (high ‘conj‘ STL.eventually (0,h) low))
‘strImplies‘ STL.always (eta, zeta_min) (utl ut2 ‘conj‘ utr ut2))

� phi = <>_[simTime,simTime] utr
const ut3 = 0.05
output Bool opt3 = STL.eventually (simTime, simTime) (utr ut3)

� phi = []_(taus,simTime) utr
const ut4 = 0.1
output Bool opt4 = STL.always (taus, simTime) (utr ut4)

As in [27] we use input data computed from a MatLab simulation of the
powertrain. This example shows how to import and use the STL operators to
describe properties. We have aimed to keep the syntax of the original properties.

3.6 Example: Smart Home

This example is a smart home specification that uses the Orange4Home data-
set [11]. The following monitor calculates how much time residents spend watch-
ing TV per day, assessing that every day the people living the house should

HStriver: A Very Functional Extensible Tool for the Runtime 577

not watch more than three hours of TV (exceeded3hPerDay). More interesting
is exceededAvgPlus30m, which states that residents should not watch thirty min-
utes more than the total average of TV watched historically. This threshold is
dynamic, and requires declaring intermediate quantitative streams that compute
the average and current day TV time.

time domain UTC

use library Utils
use haskell Data.Time

input TVStatus livingroom_tv_status
input TVStatus office_tv_status

define Bool any_tv_on:
ticks = ticksOf office_tv_on U ticksOf livingroom_tv_on
val = office_tv_on [~t|False] || livingroom_tv_on [~t|False]

output Bool exceeded3hPerDay:
ticks = ticksOf any_tv_on
val = howMuchTvToday[~t|] > 3*60*instantsPerMinute

define Int totalTVTime:
ticks = ticksOf any_tv_on
val = totalTVTime [<t|0] + if any_tv_on[~t|] then 1 else 0

define Int avgTvPast:
ticks = ticksOf any_tv_on
val = if isNewDay[~t|] then 2’div (totalTVTime[~t|]) (countDays[~t|])
else avgTvPast [<t|0]

output Bool exceededAvgPlus30m:
ticks = ticksOf any_tv_on
val = howMuchTvToday[~t|] > avgTvPast[~t|] + 30 * instantsPerMinute

4 Conclusion

We have a presented HStriver, a stream runtime verification tool for real-time
event-streams, implemented as an eDSL with Haskell as the host language, based
on a technique called lift-deep embedding. The architecture of HStriver lets us
use Haskell tools straightforwardly to aid improving the confidence on the cor-
rectness of the implementation with respect to the semantics of Striver, for exam-
ple using unit tests, end-to-end tests and tools like Quickcheck and LiquidHaskell,
as displayed in [9]. In this seminal paper we have focused on functionality, but
future work includes the certification of HStriver, which is a more accessible
endeavor for a concise language with a few constructs with clean semantics as
Striver than for a general purpose language. HStriver has been used in (non-
critical) UAV missions, where garbage collection is forbidden for critical appli-
cations, but we are exploring the generation of Misra-C from (a restricted set
of) HStriver specifications. Also, future work includes a frontend that allows
adapting the input syntax to particular use cases, offering a friendly syntax and
the necessary types and features from HStriver.

578 F. Gorostiaga and C. Sánchez

References

1. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Proceedings of the 5th Int’l Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI’04). LNCS, vol. 2937, pp. 44–57. Springer
(2004). https://doi.org/10.1007/978-3-540-24622-0_5

2. Barringer, H., Havelund, K.: Tracecontract: A scala DSL for trace analysis. In:
Proceedings of the 17th Int’l Symposium on Formal Methods (FM’11). LNCS, vol.
6664, pp. 57–72. Springer (2011). https://doi.org/10.1007/978-3-642-21437-0_7

3. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitor-
ing: from eagle to ruleR. In: Proceedings of the 7th Int’l Workshop on Runtime
Verification (RV’07). LNCS, vol. 4839, pp. 111–125. Springer (2007). https://doi.
org/10.1007/978-3-540-77395-5_10

4. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification. LNCS, vol.
10457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5

5. Basin, D., Klaedtke, M.H.F., Zalinescu, E.: MONPOLY: monitoring usage-control
policies. In: Proceedings of the 2nd Int’l Conference on Runtime Verification
(RV’11). LNCS, vol. 7186, pp. 360–364. Springer (2011). https://doi.org/10.1007/
978-3-642-29860-8_27

6. Basin, D.A., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Pro-
ceedings of the Int’l Workshop on Competitions, Usability, Benchmarks, Evalua-
tion, and Standardisation for Runtime Verification Tools (RV-CUBES), pp. 19–28.
Kalpa Publications in Computing, EasyChair (2017). https://doi.org/10.29007/
89hs

7. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011). https://doi.org/10.1145/
2000799.2000800

8. Berry, G.: Proof, language, and interaction: essays in honour of Robin Milner,
chap. The foundations of Esterel, pp. 425–454. MIT Press (2000). https://doi.org/
10.7551/mitpress/5641.001.0001

9. Ceresa, M., Gorostiaga, F., Sánchez, C.: Declarative stream runtime verification
(hLola). In: Proceedings of the 18th Asian Symposium on Programming Languages
and Systems (APLAS’20). LNCS, vol. 12470, pp. 25–43. Springer (2020). https://
doi.org/10.1007/978-3-030-64437-6_2

10. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma,
D.: TeSSLa: temporal stream-based specification language. In: Proceedings of
SBMF’18. LNCS, vol. 11254. Springer (2018). https://doi.org/10.1007/978-3-030-
03044-5_10

11. Cumin, J., Lefebvre, G., Ramparany, F., Crowley, J.: A dataset of routine daily
activities in an instrumented home. In: Ubiquitous Computing and Ambient Intel-
ligence, pp. 413–425. Springer International Publishing, Cham (2017). https://doi.
org/10.1007/978-3-319-67585-5_43

12. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: Proceedings of the 12th Int’l Symposium of Temporal Representation
and Reasoning (TIME’05), pp. 166–174. IEEE CS Press (2005). https://doi.org/
10.1109/TIME.2005.26

13. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campenhout, D.V.:
Reasoning with temporal logic on truncated paths. In: Proceedings of the 15th
Int’l Conference on Computer Aided Verification (CAV’03). LNCS, vol. 2725, pp.
27–39. Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_3

https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-540-77395-5_10
https://doi.org/10.1007/978-3-540-77395-5_10
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.29007/89hs
https://doi.org/10.29007/89hs
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.7551/mitpress/5641.001.0001
https://doi.org/10.7551/mitpress/5641.001.0001
https://doi.org/10.1007/978-3-030-64437-6_2
https://doi.org/10.1007/978-3-030-64437-6_2
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-319-67585-5_43
https://doi.org/10.1007/978-3-319-67585-5_43
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-3-540-45069-6_3

HStriver: A Very Functional Extensible Tool for the Runtime 579

14. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. In: Proceedings of the 18th Int’l Conference on Runtime Verifi-
cation (RV’18). LNCS, vol. 11237, pp. 241–262. Springer (2018). https://doi.org/
10.1007/978-3-030-03769-7_14

15. Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger, M.,
Tentrup, L., Hazem, T.: StreamLAB: stream-based monitoring of cyber-physical
systems. In: Proceedings of the 31st Int’l Conference on Computer-Aided Verifica-
tion (CAV’19). LNCS, vol. 11561, pp. 421–431. Springer (2019). https://doi.org/
10.1007/978-3-030-25540-4_24

16. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring. CoRR abs/1711.03829 (2017). arxiv.org/abs/1711.03829

17. Gorostiaga, F., Danielsson, L.M., Sánchez, C.: Unifying the time-event spectrum
for stream runtime verification. In: Proceedings of 20th Int’l Conference on Run-
time Verification (RV’20). LNCS, vol. 12399, pp. 462–481. Springer (2020). https://
doi.org/10.1007/978-3-030-60508-7_26

18. Gorostiaga, F., Sánchez, C.: Striver: Stream runtime verification for real-time
event-streams. In: Proceedings of the 18th Int’l Conference on Runtime Verifi-
cation (RV’18). LNCS, vol. 11237, pp. 282–298. Springer (2018). https://doi.org/
10.1007/978-3-030-03769-7_16

19. Gorostiaga, F., Sánchez, C.: HLola: a very functional tool for extensible stream
runtime verification. In: Proceedings of the 27th Int’l Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’21). Part II, pp.
349–356. LNCS, Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_18

20. Gorostiaga, F., Sánchez, C.: Stream runtime verification of real-time event streams
with the Striver language. Int. J. Softw. Tools Technol. Transfer 23(2), 157–183
(2021). https://doi.org/10.1007/s10009-021-00605-3

21. Halbwachs, N., Caspi, P., Pilaud, D., Plaice, J.: Lustre: a declarative language for
programming synchronous systems. In: Proceedings of the 14th ACM Symposium
on Principles of Programming Languages, pp. 178–188. ACM Press (1987). https://
doi.org/10.1145/41625.41641

22. Hallé, S.: When RV meets CEP. In: Proceedings of RV’16. LNCS, vol. 10012, pp.
68–91. Springer (2016). https://doi.org/10.1007/978-3-319-46982-9_6

23. Hallé, S., Khoury, R.: Event stream processing with BeepBeep 3. In: Proceedings
of the Int’l Workshop on Competitions, Usability, Benchmarks, Evaluation, and
Standardisation for Runtime Verification Tools (RV-CUBES), pp. 81–88. Kalpa
Publications in Computing, EasyChair (2017). https://doi.org/10.29007/4cth

24. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transfer 17(2), 143–170 (2014). https://doi.org/10.1007/s10009-014-0309-2

25. Havelund, K., Goldberg, A.: Verify your runs. In: Proceedings of VSTTE’05, pp.
374–383. LNCS 4171, Springer (2005). https://doi.org/10.1007/978-3-540-69149-
5_40

26. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Proceed-
ings of the 8th Int’l Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’02). LNCS, vol. 2280, pp. 342–356. Springer-Verlag
(2002). https://doi.org/10.1007/3-540-46002-0_24

27. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of the 17th Int’l Conference on Hybrid
systems: Computation and Control (HSCC’14), pp. 253–262. ACM (2014). https://
doi.org/10.1145/2562059.2562140

https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-25540-4_24
http://arxiv.org/org/abs/1711.03829
https://doi.org/10.1007/978-3-030-60508-7_26
https://doi.org/10.1007/978-3-030-60508-7_26
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.1007/s10009-021-00605-3
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/41625.41641
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.29007/4cth
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1145/2562059.2562140
https://doi.org/10.1145/2562059.2562140

580 F. Gorostiaga and C. Sánchez

28. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: runtime
verification of non-synchronized real-time streams. In: Proceedings of the 33rd
Symposium on Applied Computing (SAC’18). ACM (2018). https://doi.org/10.
1145/3167132.3167338

29. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebr.
Progr. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.2008.08.004

30. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Proceedings of FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer
(2004). https://doi.org/10.1007/978-3-540-30206-3_12

31. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer-Verlag
(1995). https://doi.org/10.1007/978-1-4612-4222-2

32. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time run-
time monitor. In: Proceedings of the 1st Int’l Conference on Runtime Verification
(RV’10). LNCS, vol. 6418, pp. 345–359. Springer (2010). https://doi.org/10.1007/
978-3-642-16612-9_26

33. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Proceedings 20th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS’14). LNCS, vol. 8413, pp. 357–372. Springer (2014).
https://doi.org/10.1007/978-3-642-54862-8_24

34. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005). https://doi.org/10.1007/s10515-005-
6205-y

35. Sánchez, C.: Online and offline stream runtime verification of synchronous systems.
In: Proceedings of the 18th Int’l Conference on Runtime Verification (RV’18).
LNCS, vol. 11237, pp. 138–163. Springer (2018). https://doi.org/10.1007/978-3-
030-03769-7_9

36. Sen, K., Roşu, G.: Generating optimal monitors for extended regular expressions.
In: Electronic Notes in Theoretical Computer Science, vol. 89. Elsevier (2003).
https://doi.org/10.1016/S1571-0661(04)81051-X

37. Stolz, V., Huch, F.: Runtime verification of concurrent Haskell programs. Electron.
Notes Theor. Comput. Sci. 113, 201–216 (2005). https://doi.org/10.1016/j.entcs.
2004.01.026

https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.1016/S1571-0661(04)81051-X
https://doi.org/10.1016/j.entcs.2004.01.026
https://doi.org/10.1016/j.entcs.2004.01.026

	HStriver: A Very Functional Extensible Tool for the Runtime Verification of Real-Time Event Streams
	1 Introduction
	2 The HStriver Tool
	2.1 How to Run HStriver

	3 Example Specifications and Libraries
	3.1 Example: Clock
	3.2 Libraries
	3.3 STL
	3.4 Example: Cost Computation
	3.5 Example: PowerTrain
	3.6 Example: Smart Home

	4 Conclusion
	References

