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Abstract In this paper we study the problem of run-

time verification of real-time event streams, in partic-

ular we propose a language to describe monitors for

real-time event streams that can manipulate data from

rich domains.

We propose a solution based on stream runtime veri-

fication (SRV), where monitors are specified by describ-

ing how output streams of data are computed from in-

put streams of data. SRV enables a clean separation

between the temporal dependencies among incoming

events, and the concrete operations that are performed

during the monitoring.

Most SRV specification languages assume that all

streams share a global synchronous clock, and divide

time in discrete instants. At each instant every input

has a reading and for every instant the monitor com-

putes an output. In this paper we generalize the time

assumption to cover real-time event streams, but keep

the explicit time offsets present in some synchronous

SRV languages like Lola. The language we introduce,

called Striver, shares with SRV the simplicity and econ-

omy of operators, and the separation between the rea-

soning about time and the computation of data values.

The version of Striver in this paper allows expressing

future and past dependencies. Striver is a general lan-
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guage that allows expressing for certain time domains

other real-time monitoring languages, like TeSSLa, and

temporal logics, like STL.

We show in this paper translations from other for-

malisms for (piecewise-constant) real-time signals and

timed event streams. Finally, we report an empirical

evaluation of an implementation of Striver.

1 Introduction

Runtime verification (RV) is a lightweight formal me-

thod that studies the problem of whether a single trace

from the system under analysis satisfies a formal spec-

ification. Runtime verification is therefore a dynamic

technique that considers only the traces observed, in

contrast with static verification that must consider all

executions of the system. Consequently, runtime verifi-

cation sacrifices completeness to obtain a readily appli-

cable formal method that can be combined with testing

or debugging. Other common use of RV is the formal

monitoring of reactive systems to provide explanations

of the system behavior dynamically, which can be com-

bined at runtime with corrective measures. See [1,2] for

surveys on RV, and the recent book [3]. Early specifica-

tion languages proposed in RV were based on temporal

logics [4,5,6], regular expressions [7], timed regular ex-

pressions [8], rules [9], or rewriting [10]. The approach

we propose here is based on stream runtime verification

(SRV), pioneered by Lola [11].

Stream runtime verification defines monitors by de-

claring the dependencies between output streams (re-

sults) and input streams (observations from the sys-

tem). The main idea of SRV is that the same sequence

of steps performed during the monitoring of a temporal

logic formula can be followed to compute statistics of
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the input trace, as the temporal dependencies between

the inputs and outputs are the same. The only neces-

sary change is to generalize the operations performed

from the data collected as input to compute the inter-

mediate results and outputs, which allows computing

richer verdicts, following the same steps and data de-

pendencies. The generalization of the outcome of the

monitoring process to richer verdict values brings run-

time verification closer to monitoring and data stream-

processing. See [12,13,14] for further works on SRV.

Temporal testers [15], which can be seen as a Boolean

SRV description, were later proposed as a similar mon-

itoring technique for LTL. SRV was initially conceived

for monitoring synchronous systems, where computa-

tion proceeds in cycles.

In the pioneering Lola SRV specification language,

writing a specification consists of associating every out-

put stream variable with a defining equation. The inten-

tion is that—once the input streams are known—each

output variable is mapped to the unique output stream

that satisfies its equation. Take, for example, the fol-

lowing Lola specification [11]:

input bool p

define int one_p := if p then 1 else 0

output bool always_p := p /\ always_p[-1,true]

output int count_p := one_p + count_p [-1,0]

This specification defines one intermediate stream,

called one_p, and two output streams, called always_p

and count_p. The output stream always_p captures

whether the Boolean input stream p was true at every

point in the past (that is, the LTL formula p). The

stream one_p is 1 when the input p is true and 0 other-

wise, which eases the definition of count_p to count the

number of times p was true in the past. Offset expres-

sions like count_p[-1,0] or always_p[-1,true] refer

to a different position in a stream with a default value

when there is no such a position (that is, before the

beginning and after then end of the trace). The offset

expression count_p[-1,0] refers to stream count_p at

the previous position with default value 0 if the referred

position falls before the beginning of the trace. Sim-

ilarly, the offset expression always_p[-1,true] refers

to the previous position with default value true. In this

paper, we introduce a similar formalism for timed event

streams. Our goal is to provide a simple language with

few constructs including explicit references to the pre-

vious and next position at which some stream contains

an event.

Other similar languages for timed event streams are

TeSSLa [16] and RTLola [17] but both of these preclude

to reason explicitly about real-time instants. Instead,

TeSSLa and RTLola offer building blocks like stream

transformers in the language to describe the temporal

dependencies between streams. For this reason we say

that Striver is an explicit time SRV formalism.

Striver is a stream-based declarative specification

language for timed asynchronous observations, where

streams are sequences of timed events. In other words,

events in different streams do not necessarily happen

at the same time. However, all time-stamps are totally

ordered according to a global clock. This is the as-

sumption made in the timed asynchronous model of dis-

tributed systems [18]. Striver targets the outline, non-

intrusive monitoring of real-time systems. Outline in

this context means that the monitor is not intertwined

or modifies the system under analysis, but instead runs

on its specific infrastructure, with the goal of minimiz-

ing the effect of monitoring on the system’s behavior

(non-intrusiveness). One of the most important con-

cerns in RV is the usage of resources. The concept of

trace-length independence refers to the ability of a moni-

toring algorithm to carry out the online evaluation (pro-

cessing of input streams to generate output streams)

with an amount of memory that can be bounded from

the specification and is independent of the length of the

trace.

Our intended application is the monitoring and test-

ing of cloud systems and multi-core hardware moni-

toring, where our time assumption is reasonable. The

Elastest project [19] aims at improving the testing of

large cloud applications. The Elastest Monitoring Ser-

vice (EMS) is a component of the Elastest infrastruc-

ture that improves the testing capabilities of Elastest.

The core of the EMS is an implementation of the algo-

rithms described in this paper.

Notions of time. The concepts of time used in this pa-

per are summarized as follows:

– Synchronous SRV. Time proceeds as sequence of in-

stants, where exactly one event is read in each in-

put stream, and one output event is eventually com-

puted for each output stream. Examples of specifi-

cation languages that assume a synchronous model

of time are Lola [11] and LTL [20].

– Isochronous SRV. The time domain is potentially

continuous. Each observation is an event which car-

ries a time-stamp, and can happen at any point.

However, output streams are updated at periodic

intervals (which justifies the name isochronous) or

at those instants where there is an event in an in-

put stream. Examples include the periodic stream

definitions in RTLola [17].

– Asynchronous SRV. Again, the time domain is po-

tentially continuous time, and time-stamped events

can occur at any time. Output streams can contain



Stream Runtime Verification of Real-Time Event-Streams with Striver 3

events at arbitrary points in time, without any pe-

riod or input event. This requires the engine to gen-

erate events at arbitrary instants which justifies the

name asynchronous. Examples are Striver [21] (ex-

tended in this paper) and TeSSLa [16]. RTLola [17]

can generate events at periodic times and also at

those times at which there is an input event.

Related work. TeSSLa [16] is a specification language

for timed-event streams based on stream transformers

(basic building blocks that take streams and define new

streams). In contrast, Striver uses a style of specifica-

tion that expresses the dependency of streams using

explicit time offsets, in an approach more aligned to

Lola. The seminal paper for TeSSLa [16] presents the

language and [22] shows asynchronous operational se-

mantics for a simpler fragment of the language (that en-

capsulates all recursion within the building blocks) that

also disallows non-Zeno specifications. We prove in this

paper that Striver subsumes TeSSLa (under some as-

sumptions) in the sense that every stream transformer

from TeSSLa can be implemented in Striver.

Another similar work is RTLola [17], which also

aims to extend SRV from the synchronous domain to

timed streams. In RTLola, defined streams are either

computed at predefined periodic instants of time or at

the ticking time of input streams. Even though the se-

mantics of RTLola are given informally in [17], RTLola

is either input driven or isochronous according to the

definition above because output streams can only be

generated at periodic times or at time triggered in-

stants. RTLola is very efficient on inputs arriving at

high speeds as a typical RTLola specification simply

stores input events and computes output events (typi-

cally summaries) at regular intervals. However, this sac-

rifices trace length independence unless there is an as-

sumption on the ratio of arrival of events. Compared to

RTLola, in the model of computation of Striver, streams

are computed at the specific real-time instants where

they are required, resulting in a fully asynchronous SRV

system. In this case, Striver is strictly more expressive

than RTLola (the version from [17]) because RTLola

cannot define properties that must be interpreted at

every instant of time (like “there cannot be more than

k events in any window of 3 s”) which require to pro-

duce events in the output at instants that are neither

periodic nor present in the input. It is simple to see that

every construct in RTLola can be translated into a few

lines of Striver code. Also, asynchronous languages like

TeSSLa and Striver can be used more easily to define

specifications that are guaranteed to be trace length in-

dependent, and be very efficient on inputs with sparse

event but occasional heavy bursts.

Signal temporal logic (STL) [23,24] is a temporal

logic for real-time signals based on metric temporal

logic (MTL) [25] that is capable of dealing with nu-

meric signals. We show in Sect. 5.2 that Striver can

subsume STL over piecewise-constant signals and also

generalize the semantics of STL to quantitative data

collection over piecewise constant signal inputs.

Data Stream Management Systems (DSMS) [26] al-

low working with streams of input data by continu-

ously executing queries over stored stream. Typically,

DSMS queries are executed periodically and thus they

present issues inherent to isochronous approaches. In

particular, these systems are sensitive to sparse bursts

of events, having to decide whether to buffer a rather

large input data and keep the execution period high,

or execute with a higher frequency, and waste CPU

cycles when there is no data to consume. Also, the

evaluation of queries typically comes in two flavors:

(1) the ones that are evaluated over a fixed window of

time, which may require only bounded resources but re-

strict the range of observations (for example in the Con-

tinuous Query Language (CQL) developed as part of

the STREAM Data Stream Management System [27]);

(2) the evaluations that store the whole history (which

require unbounded storage). In comparison, one of the

main concerns of stream runtime verification is to study

rich monitoring languages with formal semantics that

know the whole history of the computation and can be

evaluated with bounded resources.

Contributions. In summary, the contributions of the

paper are:

1. The Striver specification language, which generalizes

(preserving the separation between data and time)

SRV to timed event streams, keeping explicit time

offsets, and not using additional building blocks or

stream transformers.

2. A trace-length independent online algorithm for the

past fragment, included in Sect. 4.1, and an online

algorithm for the full language, included in Sect. 4.2

(which is not trace-length independent in general).

3. A comparison between TeSSLa and Striver, which is

included in Sect. 5.1.

4. An extension of the language to describe sliding win-

dows, in Sect. 5.2, which allows a translation from

STL to Striver.
5. An empirical evaluation for both the past fragment

and the extensions including future dependencies

and windows, reported in Sect. 6.

Journal paper. An earlier version of this paper appears

in the Proceedings of the 18th International Confer-

ence on Runtime Verification (RV’18) [21]. This paper
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extends [21] including many proofs and additional ex-

amples, and more specifically, the following additions:

– An extension of Striver that includes future opera-

tors, which involves extending the syntax, type in-

ference system, and generalizing the semantics and

well-formedness condition.

– The complete proof of trace-length independence

of the algorithm for the past fragment of Striver
presented in [21] and a completely new online al-

gorithm for the fully fledged version of Striver, in-

cluded Sect. 4.2. This algorithm does not proceed

synchronously as the simpler algorithm from but in-

stead accesses each of the streams independently.

– The complete comparison with all operators of the

TeSSLa specification language, included in Sect. 5.1.

– A further extension to define truly sliding windows

in Striver (windows that span from any two points in

the time domain) and the comparison with STL, in-

cluded in Sect. 5.2. This requires the bounded future

fragment of Striver, introduced in the same section.

– An extended empirical evaluation, in Sect. 6, par-

ticularly with new experiments to evaluate the ex-

tensions of the language.

– A discussion of the language properties in Sect. 7 in-

cluding a finer-grain analysis on time boundaries, a

sketch on how to perform offline monitoring which

is a method to achieve trace length independence

monitoring provided the appropriate host capabili-

ties.

2 Preliminaries

The keystone of Stream Runtime Verification is to sep-

arate two concerns: the temporal dependencies and the

data manipulated. The temporal dependencies are used

to calculate the order of operations in monitoring algo-

rithms, while the data manipulation describes how to

perform each operation. We use here the term data do-

mains to refer to the first-order signatures and struc-

tures that allows modeling the data manipulation. The

clean separation between temporal dependencies and

data domains allows generalizing existing algorithms

that monitor temporal logics, from Boolean verdicts to

quantitative verdicts, by using data domains richer than

Booleans.

2.1 Data domains

We use many-sorted first order signatures and struc-

tures to describe data domains. A signature Σ : 〈S,F〉
consist on a finite collection of sorts S, and function

symbols F (where each argument of a function has a

sort, and the resulting term also has a sort). A sim-

ple signature is Booleans, that has only one sort (Bool)

with two constants (true and false), binary functions

(∧, ∨. . . ), unary functions like ¬, etc. In this paper, we

use sort and type interchangeably. A more sophisticated

signature is Naturals that consists of two sorts (Nat and

Bool), with constant symbols 0, 1, 2. . . of sort Nat , bi-

nary symbols +, ∗, etc. (of sort Nat × Nat → Nat) as

well as predicates <, ≤, which take two Nat arguments

and return a Bool with their usual interpretation. We

assume that all signatures have equality over all sorts

and that every sort (Nat , Bool, Queue, Stack, etc.) is

equipped with a ternary symbol if · then · else·. In

the case of Nat , the if · then · else· symbol has type

Bool×Nat×Nat→ Nat.

The theories we consider are interpreted. Therefore,

for every first-order signature there is a structure where

all function symbols have a computational interpreta-

tion. That is, every sort S is associated with a domain

DS (a concrete set of values), and each function symbol

f is interpreted as a total computable function f , with

the given arity and that produces values of the domain

of the result given elements of the arguments’ domains.

For example, the symbol + can be used to construct an

expression of type Nat given two expressions of type

Nat, and + is associated with the interpreted function

+ that computes the sum of two natural numbers. For

simplicity, we omit the sort S from DS (and simply

write D) if it is clear from the context.

We will build specifications using stream variables

to model input and output streams. Each stream vari-

able is associated with a sort. From the point of view of

syntactic expressions, stream variables are used to build

atoms. As usual, given a set of sorted atoms A and a

signature, the set of terms is the smallest set containing

A and closed under the use of function symbols in the

signature as term constructors (respecting sorts).

We consider a special time domain T, whose inter-

pretation is a (possibly infinite, possibly dense) totally

ordered set. We also require the existence of a super-

set of the time domain T+ closed under addition +

(which is a total function), and such that the tempo-

ral domain T is an interval of T+. Usually, time do-

mains contain a minimal element 0̄, a maximal element

1̄, or both, to denote the beginning and the end of

time. Examples of time domains are R≥0, Q≥0, and

N, with their usual order. Given ta, tb ∈ T, we use

[ta, tb] = {t ∈ T | ta ≤ t ≤ tb}, and also (ta, tb), [ta, tb)

and (ta, tb] with the usual meaning. We say that a set of

time points S ⊆ T is non-Zeno when it does not contain

bounded subsets with infinitely many elements, this is,

whenever for every ta, tb ∈ T, the set S∩ [ta, tb] is finite.
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We extend every domainD intoDnotick by including

the fresh symbol ⊥notick to indicate when a stream of

type D does not contain an event. Additionally, we ex-

tend Dnotick into D⊥ by including two additional fresh

symbols: ⊥-out and ⊥+out. We extend the equality func-

tion symbol in the signatures to deal with the intro-

duced constants, where each constant is equal to itself,

and different from the other constants and from all el-

ements in the sorts of the underlying signature. The

fresh symbols ⊥-out and ⊥+out are used to represent

whether a time offset falls off the beginning or the end

of the trace. We use T-out for T ∪ {⊥-out}, T+out for

T ∪ {⊥+out} and Tout for T ∪ {⊥-out,⊥+out}. Similarly,

we use D-out for D∪{⊥-out}, D+out for D∪{⊥+out} and

Dout for D ∪ {⊥-out,⊥+out}.
A key principle in the design of Striver is that the

implementation of data domains is used completely off-

the-shelf, so the addition of these new symbols is per-

formed within the Striver engine, and the actual off-the-

self data domain implementation only receives actual

values from the appropriate domains. Besides equality

(which is easily extended as described above), we do not

force any function in the theories (like + for example)

to handle these new symbols.

2.2 Streams

Monitors observe sequences of events as inputs, where

each event contains a data value from its domain and is

time-stamped with an increasing time value. We model

these sequences as event-streams. Given a partial func-

tion f : A ⇁ B, we use dom(f) as the subset of A

where f is defined.

Definition 1 (Event stream) An event stream of

sort D is a partial function η : T⇁ D such that dom(η)

does not contain bounded infinite subsets.

The set dom(η) is called the set of event points of η.

An event stream η with a first element can be naturally

represented as a timed word :

sη = (t0, η(t0))(t1, η(t1)) · · · ∈ (dom(η)×D)∗,

such that:

1. sη is ordered by time (ti < ti+1); and

2. the set {t | (t, d) ∈ sη} is non-Zeno.

Note that every sequence that is non-Zeno has first

element if the time domain has minimum element (or

if at least dom(η) has a minimum element). If dom(η)

does not have a maximum element, we can extend time-

words η into ω-timed words

sη = (t0, η(t0))(t1, η(t1)) · · · ∈ (dom(η)×D)ω.

The set of all event streams over D is denoted by ED.

We introduce some additional notation for event

streams to capture the previous and next event in the

stream for a given point in time. Given a stream σ and a

time instant t ∈ T, the expression prev<(σ, t) provides

the nearest time instant in the past of t at which σ is

defined. Similarly, prev≤(σ, t) returns t if t ∈ dom(σ);

otherwise, it behaves as prev<. Formally,

prev<(σ, t)
def
= sup(dom(σ) ∩ [0̄, t))

prev≤(σ, t)
def
= sup(dom(σ) ∩ [0̄, t])

sup(S)
def
=

{
max (S) if S 6= ∅
⊥-out otherwise

The type of prev< and prev≤ is ED×T→ T-out. These

functions can return ⊥-out because sup returns ⊥-out

when the stream has no events in the interval provided.

Note that max (S) is well defined because time is totally

ordered and every stream σ has a finite number of ele-

ments in every given interval. Similarly, given a stream

σ and a time t ∈ T, the expression succ>(σ, t) provides

the nearest time instant in the future of t at which s is

defined, and succ≥(σ, t) returns t if t ∈ dom(σ); other-

wise, it behaves as succ>. Formally,

succ>(σ, t)
def
= inf (dom(σ) ∩ (t, 1̄])

succ≥(σ, t)
def
= inf (dom(σ) ∩ [t, 1̄])

inf (S)
def
=

{
min(S) if S 6= ∅
⊥+out otherwise

The type of succ> and succ≥ is ED ×T→ T+out. These

functions can return ⊥+out because inf returns ⊥+out

when the stream has no event in the interval provided.

2.3 Efficient monitorability

A synchronous SRV specification that only refers to the

past is called very efficiently monitorable (see [11]). In

synchronous SRV, these specifications can be monitored

online and guaranteed that (1) the online monitoring

can be performed trace length independently (with an

amount of memory that can be bounded a-priory and

does not depend on the length of the trace), and (2)

each output stream can be resolved immediately (that

is, once all inputs are read at time t, all outputs for time

t can be computed). The resources necessary to monitor

a specification are considered relative to the size of data

registers, meaning that for a trace length-independent

specification, the engine requires a constant number of

registers of the corresponding sort per stream. For ex-

ample, trace length independence in logic requires a

constant number of Boolean registers. In asynchronous
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SRV formalisms like Striver, very efficiently monitorable

specifications can be monitored preserving trace length

independence. In the general case of unrestricted spec-

ifications the resources cannot be bounded at static

time. We show in Sect. 4.1 an online monitoring al-

gorithm for very efficiently monitorable Striver specifi-

cations and prove that this algorithm is trace length

independent.

3 The Striver specification language

A Striver specification describes the relation between

input event-streams and output event-streams, where

an input stream is a sequence of observations from the

system under analysis.

The key idea in Striver is to associate each defined

stream variable with:

– a ticking expression, which defines when the

stream may contain an event;

– a value expression, which defines the value con-

tained in the event.

Note that in synchronous SRV, only a value expression

is necessary because every stream has a value in every

cycle (i.e., in every synchronous instant). Therefore, ex-

pressing explicitly when a stream produces a value in

synchronous SRV would be redundant.

Formally, a Striver specification ϕ : 〈I,O,V ,C ,T 〉
consists of input stream variables I = {x1, . . . , xn}, out-

put stream variables O = {y1, . . . , ym}, a collection of

clock or ticking expressions C = {C1, . . . , Cm}, a col-

lection of value expressions V = {V1, . . . , Vm}, and a

collection of sorts T = {T1, . . . , Tn+m}. Note that there

is one ticking expression and one value expression per

output stream variable, and one sort per stream vari-

able. We assume I ∩ O = ∅. We define the size1 of a

specification as its number of streams, this is, the size

of the specification ϕ is |I ∪ O|. Every output variable

y is associated with a ticking expression Cy ∈ C which

captures when stream y may tick, and with a value ex-

pression Vy ∈ V which defines what is the value of y

when it ticks, and if it ticks at all. Every stream vari-

able x is associated with a type name Tx that indicates

its domain. Note that the sub-indices of Cy, Vy and Tx
indicate the corresponding stream variable associated.

In practice, it is very useful that Ty defines an over-

approximation of the set of instants at which y ticks.

Then, the value expression can decide if the stream in-

deed produces a value or if the evaluation is a “no tick”.

A simple example of a filter can be seen in Example 1.

1 a more refined version of size considers the size of the
ticking and value expressions as well, but this is sufficient for
the purpose of this paper.

3.1 Syntax

We fix Z to be the set of stream variables Z = I ∪ O.

There are three types of expressions: ticking expres-

sions, value expressions and offset expressions. Offset

expressions are used inside value expressions to allow

temporal shifts. Formally, the expressions are:

– Ticking Expressions, which define when a stream

may produce a value:

α ::= {c}
∣∣ v.ticks ∣∣ delay ε w ∣∣ α U α (tick)

where c ∈ T, ε ∈ T+ are constants (with ε 6= 0),

v ∈ Z is an arbitrary stream variable, and U is used

for the union of sets of ticks.

– Offset Expressions, which allow to fetch events from

streams:

τx ::= x<~τ
∣∣ x<<τ ∣∣ x>~τ ∣∣ x>>τ

τ ::= t
∣∣ τz for z ∈ Z (offset)

The expression t represents the current time in-

stant. The expression x<<τ is used to refer to the

previous instant at which x ticks strictly in the past

of τ (or ⊥-out if there is not such an instant). The

expression x<~τ also considers the present as a can-

didate instant. Analogously, the intended meaning

of x>>τ is to refer to the next instant strictly in the

future of τ at which x ticks (or ⊥+out if there is not

such an instant). The expression x>~τ also considers

the present as a candidate.

– Value Expressions, which give the value of a defined

stream at a given ticking point candidate:

E :=d
∣∣ x(τx) ∣∣ f(E1, . . . , Ek)

∣∣ τ∣∣ -out ∣∣ +out ∣∣ notick (value)

where d is a constant of type D, x ∈ Z is a stream

variable of type D and f is a function symbol of re-

turn typeD. Note that in x(τx) the value of stream x

is fetched at an offset expression indexed by x, which

captures the ticking points of x and guarantees the

existence of an event if the point is within the time

boundaries. Expressions t and τx build expressions

of sort Tout. The three additional constants -out,

+out and notick allow reasoning (using equality)

about accessing both ends of the streams, or not

generating an event at a ticking candidate instant.

We also use the following syntactic sugar:

x(~e)
def
= x(x<~e) x(<e)

def
= x(x<<e)

x(e~)
def
= x(x>~e) x(e>)

def
= x(x>>e)

isticking(x)
def
= x<~t == t
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x(~e, d)
def
= if (x<~e)==-out then d else x(~e)

x(<e, d)
def
= if (x<<e)==-out then d else x(<e)

x(e, d~)
def
= if (x>~e)==+out then d else x(e~)

x(e>, d)
def
= if (x>>e)==+out then d else x(e>)

Essentially, x(~t) provides the value of x at the pre-

vious ticking instant of x (including the present) and

x(<t) is similar but not including the present. Also,

x(<t, d) is somewhat analogous to x[−1, d] in Lola, al-

lowing us to fetch the value of the previous event in

stream x, or d if there is not such previous event. The

constructors x(e~), x(e, d~), x(e>), and x(e>, d) are

analogous to their respective past constructors. Finally,

isticking(x) indicates if the stream x is producing a

value at the current time instant.

Striver offers a concrete syntax where constructors

bind stream variables to stream definitions and stream

types. Let ϕ be a Striver specification. We use

input type name

to indicate that name is an input stream of type type.

This is, name ∈ I and Tname
def
= type ∈ T . We use

ticks name := tickexpr

define type name := valexpr

to indicate that name is an output stream with tick

expression tickexpr, type type, and value expression

valexpr. This is, name ∈ O and Cname
def
= tickexpr ∈

C , name ∈ O, Vname
def
= valexpr ∈ V and Tname

def
=

type ∈ T . We use some syntax highlight to make speci-

fications more readable. Reserved words include t, out

and notick for which we use italics fonts.

Example 1 The following specification defines a stream

y that filters out the negative values of an input stream

x. The stream y over-approximates its tick instants as

the tick instants of x, and then delegates the filtering

to its value expression.

input int x

ticks y := x.ticks

define int y := if !isticking(x) then notick

else if x(~t)<0 then notick

else x(~t)

Example 2 Consider two input event streams: sale and

arrival, where sale represents the sales of a certain

product, and arrival represents the arrivals of the

same product to the store. We can define an output

event stream stock to calculate the stock of that prod-

uct.

input int sale

input int arrival

ticks stock := sale.ticks U arrival.ticks

define int stock := stock(<t,0) +

(if isticking(arrival) then

arrival (~t) else 0) -

(if isticking(sale ) then

sale(~t ) else 0)

Note that stock is defined to tick when either sale or

arrival (or both) tick.

Example 3 We can define a stream clock to tick peri-

odically from a certain instant onwards using the delay

operator.

ticks clock := {0} U delay 1 clock

define Time clock := 5

The stream clock produces a value of 5 every 5 time

units starting at time 0. Note that this specification has

no input streams. ut

For a Striver specification ϕ = 〈I,O,V ,C ,T 〉 to be

legal, every ticking expression in C is an α-expression;

and every value expression in V is an E-expression. In

the next section we show how a simple type inference

mechanism guarantees that expressions can be evalu-

ated by the off-the-shelf interpreted theories. If a func-

tion application is not applied to a term that guarantees

a value of the type needed by the function, the specifi-

cation is rejected.

3.2 Type inference rules

We use off-the-shelf data domains which do not know

about the fresh constants -out, +out and notick in-

troduced to manage the cases of out of stream bounds

and absence of tick as values. Therefore, the interpreted

function + from the theory Naturals is not able to eval-

uate (x(~t) + y(~t)) in cases where x(~t) falls off the

trace and becomes ⊥-out, because Naturals does not

know about the value ⊥-out. In Striver we use a simple

type system to rule out statically the use of x(~t) in

(x(~t) + y(~t)) unless it is guaranteed that x(~t) is

guaranteed to be evaluated to a Nat value (typically

this is done via an if-then-else in the expression enclos-

ing (x(~t) + y(~t)).

We use x : ED to represent that x has been declared

of type D. There are three sets of type inference rules,

shown in Fig. 1.

– τ inference rules:

[now], [PrevEq], [Prev], [SuccEq] and [Succ].

These rules allow inferring that offset expressions

generate a time instant or an out-of-stream value.

– The E inference rules:

[notick], [-out], [+out], [access(1)],

[access(2)], [access(3)], [const] and [fun].
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Γ ` t : T
[now]

Γ ` x<<τz : T-out
[Prev]

Γ ` x<~τz : T-out
[PrevEq]

Γ ` x>>τz : T+out
[Succ]

Γ ` x>~τz : T+out
[SuccEq]

Γ ` +out : {⊥+out}
[+out]

Γ ` notick : {⊥notick}
[notick]

Γ ` -out : {⊥-out}
[-out]

Γ ` x : ED Γ ` τx : T
Γ ` x(τx) : D

[access(1)]
Γ ` τx : {⊥-out}

Γ ` x(τx) : {⊥-out}
[access(2)]

Γ ` τx : {⊥+out}
Γ ` x(τx) : {⊥+out}

[access(3)]
d is a constant of type D

Γ ` d : D
[const]

f is a function with signature (T1, . . . , Tk)→ D Γ ` E1 : T1 . . . Γ ` Ek : Tk

Γ ` f : (E1, . . . , Ek) : D
[fun]

Γ ` e0 = e1 Γ ` e1 : D

Γ ` e0 : D
[Eq]

Γ ` e : D ⊕ {d} Γ ` e 6= d

Γ ` e : D
[NEq]

Γ ` e = e′

Γ ` e′ = e
[=-commut]

Γ ` e 6= e′

Γ ` e′ 6= e
[ 6=-commut]

Γ ` e0 : D0 Γ ` e1 : D0 Γ, {e0 = e1} ` e2 : D1 Γ, {e0 6= e1} ` e3 : D1

Γ ` if e0=e1 then e2 else e3 : D1
[Ite]

x ∈ Γ
Γ ` x [Hip]

Γ ` e : D
Γ ` e : D ⊕X [⊕-intro]

Γ ` e : D ⊕ (X ⊕ Y )

Γ ` e : (D ⊕X)⊕ Y
[⊕-assoc]

Γ ` e : X ⊕D
Γ ` e : D ⊕X [⊕-commut]

Fig. 1 Type inference rules for Striver.

These rules allow typing value expressions, including

stream accesses.

– Type manipulation rules:

[Eq], [NEq], [=-commut], [6=-commut], [Ite],

[Hip], [⊕-intro], [⊕-assoc] and [⊕-commut].

These expressions allow accessing the hypotheses as

well as introducing and eliminating union types.

A Striver specification ϕ = 〈I,O,V ,C ,T 〉, in order to

be legal, must satisfy that, from the set of type as-

sumptions Γ
def
=
⋃
x∈I∪O{x : ETx}, the type inference

rules allow deriving that the type of the value expres-

sion associated with every output stream is correct:

∀y ∈ O,Γ ` Vy : Ty ⊕ {⊥notick}. Also, as mentioned

above, every function application f(e1, . . . , ek) of an off-

the-shelf data domain must type properly, meaning that

all arguments must have the appropriate types required

by the f . Otherwise, the specification is declared illegal

at compile time.

The type system shown in Fig. 1 is designed to be

simple to assess type correctness. More sophisticated

type-inference systems would allow inferring the cor-

rect typing of expressions that allow writing simpler

expressions, but this is outside the scope of this paper.

Example 4 We show now that the stream stock from

Example 2 has type int. The specification without syn-

tactic sugar is:

input int sale

input int arrival

ticks stock := sale.ticks U arrival.ticks

define int stock :=

(if stock <<t == -out

then 0 else stock(stock <<t)) +

(if arrival <~t == t

then arrival(arrival <~t) else 0) -

(if sale <~t == t

then sale (sale <~t) else 0)

We start from

Γ
def
= {stock : Eint, sale : Eint, arrival : Eint}.

We first show the type proof of the fact that the

following expression is of type int.

if stock <<t == -out

then 0 else stock(stock <<t)

Fig. 2 (a) shows that if stock<<t is different from

-out then stock(stock<<t) is of type int, with

Γ 1 def
= Γ, stock<<t 6= -out

Γ 2 def
= Γ, stock<<t = -out.
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(a) stock : Eint ∈ Γ1

Γ1 ` stock : Eint

Γ1 ` stock<<t : T-out

stock<<t 6= -out ∈ Γ1

Γ1 ` stock<<t 6= -out

Γ1 ` stock<<t : T

Γ1 ` stock(stock<<t) : int

(b)

Γ ` stock<<t : T-out

Γ ` -out : { ⊥-out}

Γ ` -out : { ⊥-out} ⊕ T

Γ ` -out : T-out

0 is an int

Γ2 ` 0 : int proof0

Γ ` if stock<<t ==-out then 0 else stock(stock<<t) : int

(c)
arrival : Eint ∈ Γ3

Γ3 ` arrival : Eint

arrival<~t = t ∈ Γ3

Γ3 ` arrival<~t = t Γ3 ` t : T
Γ3 ` arrival<~t : T

Γ3 ` arrival(arrival<~t) : int

(d)
Γ ` arrival<~t : T-out

Γ ` t : T
Γ ` t : T-out proof1

0 is an int

Γ4 ` 0 : int

Γ ` if arrival<~t ==t then arrival(arrival<~t) else 0 : int

Fig. 2 Type proof trees for Example 4

We call this proof tree proof0.

Then, in Fig. 2 (b), we see the type proof f the whole

expression. We then show the proof tree to see that the

following expression has type int.

if arrival <~t == t then arrival(arrival <~t)

Fig. 2 (c) shows that if arrival<~t is equal to t,

then arrival(arrival<~t) is of type int, with

Γ 3 def
= Γ, arrival<~t = t

Γ 4 def
= Γ, arrival<~t 6= t.

We call this proof tree proof1. Next, we see the type

proof of the whole expression, in Fig. 2 (d). The proof

that the following expression has type int is analogous.

if sale <~t == t then sale(sale <~t) else 0

The types inferred in the previous proofs imply that

the applications of (+) and (−), which are of type

(int, int) → int, receive the right types. We can con-

clude that the defining value expression for stock has

type int, and therefore it is also an expression of type

int ∪ {⊥notick} as required. ut

It is easy to show that the type checking described

above is decidable (via an easy terminating argument

on type inference).

3.3 Semantics

As common in stream runtime verification languages,

the semantics of Striver is defined denotationally first.

This semantics establishes whether a given input (one

stream per input stream variable) and a given output

(one stream per output stream variable) satisfy the

specification. The semantics of Striver are defined for

non-Zeno streams only. We show in Sect. 3.4 that if the

input streams are non-Zeno, then the output streams

are guaranteed to be non-Zeno as well.

The semantics of Striver can be defined for infinite

traces, that is, over time domains that have no 0̄ or 1̄

(or neither). However, the absence of each time bound-

ary imposes certain syntactic restrictions over the lan-

guage. On the other hand, any syntactically well-typed

and well-formed specification (see below) can be given

semantics if its time domain is finite. As a result, we

face with a trade off between language expressivity and

time domain restrictions:

1. We can define semantics for unrestricted time do-

mains, but accept only a fragment of the language.

2.a. We can impose the existence of a minimum time 0̄

and accept a fragment of the language that allows
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forwards monitoring (that is, the time domain used

in TeSSLa).

2.b. We can impose the existence of a maximum time

1̄ and accept a different fragment of the language to

allow backward monitoring

3. We can impose the existence of both a 0̄ and a 1̄ and

accept any specification that is syntactically well-

typed and well-formed.

In this section, we consider time domains to have a 0̄

and a 1̄ and discuss the other cases as extensions. This

restriction, combined with the fact that we deal with

non-Zeno streams, implies that all streams we consider

contain finitely many events. In Sect. 7, we give the syn-

tactic conditions that allow the use of unbounded time

domains, effectively enabling us to deal with infinite

streams. Note that non-Zenoness is always a necessary

condition for our denotational semantics.

This denotational semantics define a satisfaction re-

lation in terms of valuations. Given the set of variables

Z = I ∪ O from the specification, a valuation σ is a

map that associates every x of sort D in Z with an

event stream from ED. For a stream variable x, the ex-

pression σx represents the stream associated with x in

σ. Given a valuation σ, we now define the result of eval-

uating an expression for σ. We define three evaluation

maps J.Kσ, J.Kσ, J.Kσ depending on the type of the ex-

pression2. The evaluation of a ticking expression is a

set of ticks. The evaluation of an offset expression is a

function that for every point in time, returns another

point in time (or ⊥-out). Finally, the evaluation of a

variable expression is a function that for every point in

time provides a value of the appropriate domain. These

evaluation maps are defined as follows:

– Ticking Expressions. The semantic map J.Kσ assigns

a set of time instants to each ticking expression as

follows:

J{c}Kσ
def
= {c}

Jv.ticksKσ
def
= dom(σv)

Ja1 U · · · U akKσ
def
= Ja1Kσ ∪ · · · ∪ JakKσ

Jdelay ε wKσ
def
= {t′ | there is a t ∈ dom(σw)

satisfying t+ σw(t) = t′,

|σw(t)| ≥ |ε| and

sign(σw(t)) = sign(ε), and

dom(σw) ∩ (t, t′) = dom(σw) ∩ (t′, t) = ∅}

A constant c defines the set of time instants that

only contains c. The ticks of a stream variable de-

fines the set of ticks that v is assigned in the val-

uation σ. The union U is interpreted as the union

of sets of ticks. Finally, the operator (delay ε w)

2 we use colors to better distinguish between semantic maps

defines the set of times t + v such that there is an

event (t, v) in w, with v of the same sign as ε, and

|v| ≥ |ε|; and there is no event between t and t+ v.

Notice that if the stream w produces an event whose

value is either of a different sign than ε, or is closer

to zero than ε, then it does not induce a time instant

to be added to the set, but it still might prevent the

previous value t+ v in w to be added to the set.

– Offset Expressions. Offset expressions J.Kσ calculate,

given a time instant t, another time instant, or a

symbol representing that the limits of the trace were

surpassed. The semantics is given in Fig. 3. The in-

terpretation of t is the current instant. For x<<e,

the interpretation is the time of the event in the

valuation of x (that is, σx) at the closest instant

previous to the evaluation of JeKσ at the current in-

stant, or the value ⊥-out if there is no such event.

For x<~e, the interpretation takes the evaluation of

JeKσ at the current instant, or the previous one at

which σx contains an event. The semantics of >>

and >~ are dual to << and <~.

– Value Expressions. The semantics of the value ex-

pressions are given for an instant t:

Jx(e)Kσ(t)
def
=


⊥-out if JeKσ(t) = ⊥-out

⊥+out if JeKσ(t) = ⊥+out

v if JeKσ(t) = t′ and σx(t′) = v

Jf(E1, . . . , Ek)Kσ(t)
def
= f(JE1Kσ(t), . . . , JEkKσ(t))

JtKσ(t)
def
= t

JτxKσ(t)
def
= JτxKσ(t)

J-outKσ(t)
def
= ⊥-out

J+outKσ(t)
def
= ⊥+out

JnotickKσ(t)
def
= ⊥notick

The interpretation of a stream access for x at e is

the value of the stream σx at the time t in case the

evaluation of e is t and σx is defined at t; otherwise

it is ⊥-out or ⊥+out. The interpretation of a func-

tion is the corresponding interpreted function on the

evaluation of the arguments, which includes as par-

ticular case the interpretation of constant d (as the

value d). We rely on the type system to guarantee

that the arguments have values of the right domain.

The evaluation of t is the current value t. Simi-

larly, the interpretation of offsets is the correspond-

ing instants of time given by the evaluation of offset

expression. Finally, the interpretation of -out and

notick is the values ⊥-out and ⊥notick. Note that

Jx(e)Kσ includes the possibility that (1) the expres-

sion cannot be evaluated because the time instant

given by JeKσ(t) is outside the boundaries of domain

of the stream and (2) the expression is not defined
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JtKσ(t)
def
= t

Jx <<eKσ(t)
def
=


⊥-out if JeKσ(t) = ⊥-out

prev≤(σx, 1̄) if JeKσ(t) = ⊥+out

prev<(σx, JeKσ(t)) otherwise

Jx <~eKσ(t)
def
=


⊥-out if JeKσ(t) = ⊥-out

prev≤(σx, 1̄) if JeKσ(t) = ⊥+out

prev≤(σx, JeKσ(t)) otherwise

Jx>>eKσ(t)
def
=


⊥+out if JeKσ(t) = ⊥+out

succ≥(σx, 0̄) if JeKσ(t) = ⊥-out

succ>(σx, JeKσ(t)) otherwise

Jx>~eKσ(t)
def
=


⊥+out if JeKσ(t) = ⊥+out

succ≥(σx, 0̄) if JeKσ(t) = ⊥-out

succ≥(σx, JeKσ(t)) otherwise

Fig. 3 Semantics of offset expressions.

because the stream does not tick at t. It is easy to

see that the cases for Jx(e)Kσ are exhaustive because

JeKσ(t) guarantees that σx(JeKσ(t)) is defined.

We are now ready to define evaluation models as fol-

lows.

Definition 2 (Evaluation model) Given a valuation

σ of variables I ∪O, the evaluation of the equations for

stream y ∈ O is the event sequence defined as follows:

JCy,VyKσ
def
= {(t, d) | t ∈ JCyKσ and d = JVyKσ(t)

and d 6= ⊥notick}

An evaluation model is a valuation σ such that for every

y ∈ O: σy = JCy,VyKσ.

In other words, a candidate valuation σ is an evaluation

model if σ satisfies all ticking equations and all value

equations for all defined stream variables. Note that if

an instant t is not in the domain of a stream s, then

there is no d to comply with the definition and then

(t, d) /∈ σs.
The goal of a Striver specification is to define a mon-

itor that intuitively should be a computable function

from input streams into output streams. The following

definition captures whether a specification indeed cor-

responds to such a function.

Definition 3 (Well-defined) A specification ϕ is well

defined if for all σI , there is a unique σO, such that

σI ∪ σO is an evaluation model of ϕ.

Specifications can be ill-defined. For example, the fol-
lowing specification

ticks none := {5}

define bool none := not none(~t,False)

admits no evaluation model, and the following admits

many evaluation models

ticks many := {5}

define bool many := many(~t,False)

3.4 Dependency graph

Definition 3 states that a specification ϕ is well defined

if for every valuation of the input streams σI there

is a unique valuation of the output streams σO that

makes (σI , σO) an evaluation model. Well-definedness

is a semantic condition, which is not easy to check for a

given specification (undecidable for expressive enough

domains). Following [11,28], we present here a syntactic

condition, called well-formedness, that is easy to check

on input specifications and guarantees that specifica-

tions are well defined.

Given a set of streams Z, we define the subsets

of Present, Past and Future offset expressions as the

smallest subsets of offset expressions such that:

– t ∈ Present,

– if e ∈ Future and x ∈ Z, then

– (x<<e) ∈ Past ∩ Present ∩ Future,

– (x<~e) ∈ Past ∩ Present ∩ Future,

– (x>>e) ∈ Future, and

– (x>~e) ∈ Future

– if e ∈ Present and x ∈ Z, then

– (x<<e) ∈ Past,
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– (x<~e) ∈ Present ∩ Past,

– (x>>e) ∈ Future, and

– (x>~e) ∈ Present ∩ Future

– if e ∈ Past and x ∈ Z, then

– (x<<e) ∈ Past,

– (x<~e) ∈ Past,

– (x>>e) ∈ Past ∩ Present ∩ Future, and

– (x>~e) ∈ Past ∩ Present ∩ Future

Note that e ∈ Future models whether e may be an

instant in the future in some valuation. In other words,

if e /∈ Future, then it is guaranteed that JeKσ(t) cannot

refer to the future of t in any valuation σ.

Definition 4 (Direct dependency) We say that y

has a present direct dependency on x (and we write

x
0−→ y) if

– x.ticks appears in Cy, or

– Vy contains some present expression τx ∈ Present.

We say that y has a past direct dependency on x (and

write x
−−→ y) if

– delay ε x appears in Cy and ε > 0, or

– Vy contains some past expression τx ∈ Past.

We say that y has a future direct dependency on x (and

write x
+−→ y) if

– delay ε x appears in Cy and ε < 0, or

– Vy contains some future expression τx ∈ Future.

In turn, dependencies allow creating a graph with three

kinds of edges that represent future, past and present

dependencies. This graph is easily computed from the

specification and it has linear size in the size of the spec.

Definition 5 (Dependency graph) Given a specifi-

cation ϕ = 〈I,O,V ,C ,T 〉 the dependency graph is a

directed graph Gϕ = (Z,E), where set of vertices is

Z = I ∪O, and set of edges is E : Z×Z×{ 0−→, −−→, +−→},
where there is an edge (x, y, t) ∈ E whenever x

t−→ y

(for t ∈ {=,+,−}).

A path in the dependency graph is a past path if

it contains at least one past dependency edge
−−→ and

it does not contain any future dependency edge
+−→. A

path in the dependency graph is a future path if it con-

tains at least one future dependency edge
+−→ and does

not contain any past dependency edge
−−→. Note that

future paths model paths that necessarily refer to a fu-

ture time instant, while past paths model paths that

necessarily refer to a past instant. If a path is neither

future nor past, then it may refer to the current instant.

The condition of well-formedness restricts the different

kinds of paths in circular dependencies of a given spec-

ification.

Definition 6 (Well-formed specifications) A spec-

ification ϕ is well formed if for every maximal strongly

connected component (MSCC) M in its dependency

graph, either every closed path in M is a past path or

every closed path in M is a future path.

Closed paths are those paths whose initial and final

vertices are the same. Closed paths in the dependency

graph of a specification ϕ capture dependencies between

a stream and itself. Therefore the fact that all closed

paths in a given MSCC are future or past guarantees

that no circular dependency can refer to the current in-

stant. In turn, this guarantees that there are no circu-

larities in the information needed to compute the value

of a stream at a given instant. The well-formedness con-

dition is easy to check for a given specification and it

implies that the dependency graph consists of a DAG

of MSCCs, each of which is either future or past.

Theorem 1 Every well-formed Striver specification is

well-defined.

Proof Let ϕ be a well-formed specification and consider

an arbitrary valuation σI of the input stream variables

of the specification. By assumption, every stream in

this input valuation has a finite number of events be-

cause they are non-Zeno and the temporal domain is

restricted to have a minimum value 0̄ and a maximal

value 1̄.

We reason by induction in a reverse topological or-

der between the MSCCs, showing that for every MSCC

M there is a single valuation of the stream variables in

M assuming that all stream variables in lower MSCCs

(we call these the inputs to M) have a single valuation.

Also, assuming that the input valuations are non-Zeno,

the output valuations are also non-Zeno.

Assume that M is a future MSCC (the other case is

completely dual). We first define the following “quan-

tum” duration for M as follows:

q
def
= min{−ε|(delay ε w) ∈ Cx for any x,w ∈M}

For MSCCs that do not contain a delay, any constant

time q > 0 can be taken. The definition of quantum

for past MSCCs is identical, except that ε is used for

−ε. It is easy to see that the existence of an element

in an expression delay ε w at t only depends on σw in

the interval [t+ q, 1̄] because the offset is at least q. We

now divide the global duration of the streams [0̄, 1̄] into

a sequence of d 1̄
q e intervals of duration q:

[0̄, 0̄ + q), [0̄ + q, 0̄ + 2q), . . . , [0̄ + nq, 1̄]

We use Ii for the i-th interval in this sequence. We now

reason by induction from i = n down to 0 to show

that there are only finitely many candidates t ∈ Ii that
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can be a solution to Tx for some x ∈ M . Take the

first atomic expression in Tx for x ∈ M . The case for

s.ticks and delay ε s where s /∈M can only generate a

finite number of ticks in Ii because σs only has a finite

number of ticks by assumption. The case for delay ε w

where w ∈ M can only generate as many ticks as σw
has in ∪j>iIj because the offsets must be at least of q

by the definition of q. Finally, the constructs w.ticks

and U do not generate new ticks except ticks already

included in the previous cases.

Finally, we show that for the finite number of time

instants in an interval Ii, the finite number of tick-

ing candidates {t0 < t1 < . . . < tk} in the inter-

val Ii for JTx, VxKtj is completely determined for every

tj ∈ {t0, . . . , tk}. Note that every closed path in a fu-

ture MSCC contains at least a future edge. Therefore,

removing future edges, the MSCC M becomes a DAG.

Evaluating in a reverse topological order < in this DAG

guarantees that at time tj the values of the streams at

tj necessary to compute the value of x at tj are known.

A case inspection in the structure of Tx and Vx reveals

that JTx, VxKσ is completely determined by the events

in σs|[tj ,1̄] if s < x, and in σs|[tj+1,1̄] otherwise. We then

conclude that there is a unique solution for every σx
in the interval Ii, which has a finite number of events.

Since there is a unique valuation for σx|[tj ,1̄] for every

time instant tj in every interval Ii, we conclude that

there is a unique solution for every σx within [0̄, 1̄]. ut

The proof above implies that for every well-formed

specification, the input valuation determines uniquely

a single valuation σx for every stream x. Additionally,

in order to determine the value of streams in future

MSCCs one only needs to inspect the present and future

of streams in the same MSCC, or values of streams in

lower MSCCs. Dually, for past MSCCs only the past

needs to be inspected. More importantly, the finiteness

and acyclicity of the dependencies between events in

the evaluation model allow us to reason by induction

to prove that operational monitoring algorithms indeed

compute the evaluation model.

4 Operational semantics

We show now the operational semantics of Striver. We

first present in Sect. 4.1 a monitoring algorithm for the

past fragment of Striver, this is, an algorithm to moni-

tor Striver specifications whose dependency graph does

not contain positive edges (
+−→). This algorithm allows

to compute incrementally the output streams from the

input streams, and its resources consumption is trace-

length independent. Then, in Sect. 4.2 we show a gen-

eral algorithm for the full version of Striver, which in-

cludes also future operators.

4.1 Operational semantics for past specifications

The semantics of Striver specifications introduced in

Sect. 3.3 are denotational in the sense that these se-

mantics guarantee that for every input stream valua-

tion there is exactly one output stream valuation, but

does not provide a procedure to compute the output

streams, let alone do it incrementally. We provide in

this section an operational semantics that computes the

output incrementally for the past fragment of Striver.
Note that in the past fragment the dependency graph

only contains
−−→ and

0−→ edges. We fix a past spec-

ification ϕ with dependency graph G, and we let G=

be its pruned dependency graph (obtained from G by

removing
−−→ edges). We also fix < to be an arbitrary

total order between stream variables that is a reverse

topological order of G=.

We first present a simple online monitoring algo-

rithm that stores the full history computed so far for

every output stream variable. Later, we will provide

bounds on the portion of the history that needs to be re-

membered by the monitor, showing that only a bounded

number of events needs to be recorded, and that this

bound depends linearly on the size of the specification

and not on the length of trace. The modified algorithm

is a trace-length independent monitor for past Striver
specifications.

The following auxiliary lemma captures sufficient in-

formation to determine the value of a given stream at

a given time instant.

Lemma 1 Let y be an output stream variable of a spec-

ification ϕ, σ, σ′ be two evaluation models of ϕ, such

that, for time instant t:

(i) For every variable x, either

t′ /∈ dom(σx) and t′ /∈ dom(σ′x) or

σx(t′) = σ′x(t′), for every t′ < t, and

(ii) For every variable x, such that x
0−→∗ y, either

t′ /∈ dom(σx) and t′ /∈ dom(σ′x) or

σx(t′) = σ′x(t′), for every t′ ≤ t.
Then, σy(t) = σ′y(t).

Proof It is easy to see that t ∈ JTyKσ if and only if t ∈
JTyKσ′ , by structural induction on ticking expressions.

The key observation is that only values in the conditions

of the lemma are needed for the evaluation, which are

assumed to be the same in σ and σ′. Similarly, it is easy

to see that JVyKσ = JVyKσ′ because again the values

needed are the same in σ and σ′. ut
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Algorithm 1 PastMonitor: Online Monitor for Past

Specifications
1: procedure PastMonitor
2: Hs ← 〈〉 for every s ∈ Z
3: tq ← −∞
4: loop . Step
5: tq ← min

s∈O
{t | t = vote(H,Ts, tq)}

6: if tq =∞ then break

7: for s in G= following < do

8: if tq ∈ JTsKH then

9: v ← JVsKH(tq)
10: if v 6= ⊥notick then

11: Hs ← Hs ++ (tq , v) . Updates history
H

12: emit(tq , v, s)

13: end for
14: end loop

The online algorithm for the past fragment main-

tains the following state (H, tq):

– History: H contains a finite event stream for each

output stream variable. We use Hy for the event

stream prefix for stream variable y.

– Quiescence time: tq is the time up to which all

output streams have been computed.

The monitor runs a main loop, which first calcu-

lates the next time tq that is relevant to the monitoring

evaluation, and then computes all outputs up to time

tq. We will show that no event can exist in any stream

in the interval between two consecutive quiescence time

instants. We assume that at time t, the next event for

every input stream is available to the monitor, even

though knowing that there is no event up-to some t < t′

is sufficient.

The core observation that allows the design of our

incremental algorithm follows from Lemma 1, which

limits the information that is necessary to compute

whether stream y at instant t contains some event (t, d)

and the value d within the event. All this information is

contained in H, so we write JTyKH and JVyKH to remark

that only H is needed to compute JTyKσ and JVyKσ.

The main algorithm, PastMonitor, is shown in

Algorithm 1. Lines 2 and 3 set the history and initial

quiescence time. The main loop continues until no more

events can be generated. Line 5 computes the next qui-

escence time, by taking the minimum instant after the

last quiescence time at which some output stream may

tick. A stream y “votes” (see Algorithm 2) for the next

possible instant (in the future of the current quiescence

time) at which its ticking equation Ty can possibly con-

tain a value. Consequently, no event can possibly be

present between the current quiescence time and the

lowest vote. Note that recursion at lines 27 and 29 ter-

Algorithm 2 vote: Compute the next ticking instant

15: function vote(H, expr, t)
16: switch expr do
17: case delay ε s

18: switch Hs do
19: case 〈〉 return ∞
20: otherwise
21: (t′, v) = latest(Hs)
22: if v < ε ∨ t′ + v > 1̄ then return ∞
23: else return t′ + v

24: case {c}
25: if c > t then return c

26: else return ∞
27: case a U b

28: return min(vote(H, a, t),vote(H, b, t))

29: case y.ticks with y ∈ O
30: return vote(H,Ty , t)

31: case s.ticks with s ∈ I
32: return succ>(σs, t)

minates because the graph G= is acyclic (recall that

the specification is well-formed).

If the voted next quiescence time is ∞, it means

that all streams have been completed, and thus the al-

gorithm ends. This behavior is reflected in line 6. If the

voted next quiescence time is a time instant t, then the

algorithm calculates the potential value of each stream

at t in topological order < over G=, so the information

about the past required in Lemma 1 is contained in H.

For every stream, if the calculated potential value is

not ⊥notick, then the event is added to the history of

the stream (in line 11) and emitted as an output of the

monitor (in line 12).

Note that at every cycle, we need the next event on

all input streams at a time instant greater than the cur-

rent quiescence time. The algorithm will block until all

such events occur. As a consequence, the input streams

will be inspected and processed at different paces ac-

cording to the global time. If an input stream s has been

consumed completely, then the result of succ>(σs, t)

will be ∞ at every succeeding cycle. Finally, note that

latest(Hs) in line 23 returns the latest event in the past

history of stream s (which is guaranteed to be non-

empty due to the test in lines 19 and 20).

The following result shows that assuming that σI is

non-Zeno, the output is also non-Zeno. Hence, for every

instant t, the algorithm eventually reaches a quiescence

time tq greater than any given t in a finite number of

executions of the main loop.

Lemma 2 PastMonitor generates non-Zeno output

for a given non-Zeno input.

Proof Note that events are generated in strictly increas-

ing time for every stream, because the quiescence time

tq decided in line 5 is greater than the current time.
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However, that does not imply non-Zenoness because

some time domains (like the reals and the rationals) ac-

cept infinite sequences of increasing time stamps that

do not pass a given instant t.

Now, we first show that if the output generated by

the monitor is Zeno for time t (that is, there is no bound

on the executions of the loop body that make tq > t),

then the execution is also Zeno for time t−ε. The lemma

then follows because by repeating the result d tεe times

we will obtain that there is a Zeno execution that does

not pass t − ε tε = 0, but the second execution already

passes 0.

Consider one such offending t. There must be an

output stream variable x that votes infinitely many

times in the infinite sequence of increasing quiescence

times that never pass t. Let x be the lowest such stream

variable in (G=, <). Consider the ticking expression for

x. Since U collects the votes for its sub-expressions,

it follows that some sub-expression votes for infinitely

many quiescence times in the sequence. The sub-ex-

pression cannot be s.ticks, because s would be lower

than x in < (contracting that x is minimal). Hence, the

sub-expression voting infinitely many times is of the

form (delay ε s). Then, all these votes are caused by

different events in Hs that are ticks of s that happened

earlier than t− ε. ut

We finally show that the output of PastMonitor

is an evaluation model. We use Hi
s(σI) for the history

of events Hs after the i-th execution of the loop body,

and H∗s (σI) for the sequence of events generated after a

continuous execution of the monitor. Note that H∗s (σI)

is a finite sequence of events if time is bounded by 1̄, or

if all inputs have a finite number of events and no rep-

etition is introduced in the specification using delay.

In this case, the vote is eventually ∞ and the monitor-

ing algorithm halts. However, this algorithm can also

be used (guaranteeing finite memory) for the continu-

ous online evaluation ad infinitum for unbounded input

events or the cyclic generation of events with delay.

Theorem 2 Let σI be an input event stream, and let

σO consist of σx = H∗x(σI) for every output stream x.

Then, (σI , σO) is an evaluation model of ϕ.

Proof Let σ be (σI , σO). By Lemma 2, the sequence of

quiescence times is a non-Zeno sequence. We show by

induction on the votes of PastMonitor that for every

quiescence time tq, σ is an evaluation model up to tq,

that is H∗x |tq = JTx, VxKσ|tq .

Let tprevq be a quiescence time and let

ty = vote(H, y.ticks, tprevq ). We first show that for

every output stream y, ty ∈ JTyKσ and for no t′ with

tprevq < t′ < ty, t′ ∈ JTyKσ. This result follows by induc-

tion on <, by Lemma 1 which guarantees that only the

past is necessary to evaluate JTyKσ, and by our assump-

tion that σ is an evaluation model up-to tprevq . Now, let

tq be the next quiescence time after tprevq chosen in line

5. We show, again by induction on <, that for every

output stream variable y, Hy contains an event (tq, v)

if and only if tq ∈ JTyKσ (which we showed above),

and v = JVyKσ = JVyKH as computed in line 9. Hence,

all events in Hy satisfy that (tq, v) ∈ JTy, VyKσ and all

events (tq, v) ∈ JTy, VyKσ are added to Hy at quiescence

time tq. Since only quiescence times can satisfy JTyKσ,

it follows that σ is an evaluation model up-to tq if σ

is an evaluation model up-to tprevq , as desired. Finally,

since the set of quiescence times is non-Zeno, for every

t there is a finite number n of executions of loop body

after which tnq ≥ t. Then, after n rounds σ is guaranteed

to be an evaluation model up to t. Since t is arbitrary,

it follows that σ is an evaluation model. ut

Putting together Theorem 2, and Lemmas 1 and 2, we

obtain the following result.

Corollary 1 Let ϕ be a well-formed specification, σI
a non-Zeno input stream and H∗ the result of Past-

Monitor. Then, H∗ is the only evaluation model for

input σI , and H∗ is non-Zeno.

The uniqueness of the evaluation model for a well-

formed specification is guaranteed by Theorem 1.

4.1.1 Trace length independent monitoring

The algorithm PastMonitor shown above computes

incrementally the only possible evaluation model for a

given input stream, but this naive algorithm stores the

whole prefix Hy for every output stream variable y.

We show now a modification of the algorithm that is

trace length independent, based on the notion of flat

specification. A specification is flat if every occurrence

of an offset expression is either of the form x(<~t) or

x(<<t). In other words, there can be no nested term of

the form x(<~(y<~t)) or x(<~(y<<t)) or x(<<(y<~t)) or

x(<<(y<<t)). We first show that every specification can

be transformed into a flat specification. The flattening

applies incrementally the following steps to every nested

term x(E(y<<t)), where E is an arbitrary offset term:

1. introduce a fresh stream s with equations Ts =

y.ticks and Vs = x(E(t))

2. replace every occurrence of x(E(y <<t)) by s(<t).

Example 5 Consider a continuous integration process

in software engineering, described using the following

specification. The intended meaning of stream faulty

is to report those commits to a repository that fail the

unit tests.
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input commit_id commits , unit push , bool tests

ticks faulty := tests.ticks

define commit_id faulty :=

if tests(~t,true)

then notick else commits(<push <<t)

After applying the flattening process, the specification

becomes:

input commit_id commits , unit push , bool tests

ticks faulty := tests.ticks

define commit_id faulty :=

if tests(~t,true)

then notick else s(<t)

ticks s := push.ticks

define commit_id s := commits(<t)

Here, s stores the commit_id of the last commit at the

point of a push, which is precisely the information to

report at the time of a faulty commit. ut

Lemma 3 Let ϕ be a specification. There is an equiv-

alent flat specification ϕ′ that is linear in the size of

ϕ.

Now, let ϕ′ be the flat specification obtained from

ϕ and let y be an output stream variable. Consider the

cases for offset sub-expressions in the computation of

JVyKH(t) in line 9 of PastMonitor:

– s<~t: the evaluation fetches the value Hs at time t

(if s ticks at t) or at the previous ticking time (if s

does not tick at t).

– s<<t: the evaluation fetches the value Hs at the pre-

vious ticking time of s.

In either case, only the last two elements of Hs are

needed. The similar argument can be made to com-

pute Ty because only the last event of s is needed for

(delay ε s). Hence, to evaluate PastMonitor on flat

specifications, the algorithm only needs to maintain the

last two elements in the history for every output stream

variable to compute the next value of every value and

ticking equation.

Theorem 3 Every flat specification ϕ can be moni-

tored online with linear memory in the size of the spec-

ification and independently of the length of the trace.

Moreover, every step can be computed in linear time on

the size of ϕ.

Proof We apply the flattening step until every output

stream definition is flat.

4.2 Operational semantics for full Striver

We now present operational semantics of the full Striver
language, including future and past references. As for

the algorithm presented in Sect. 4.1, the new algorithm

proceeds forward calculating the next event for each

output stream. The main idea of this algorithm is to

decouple the instant of this calculation for each individ-

ual stream. Before, there was a single quiescence time

common to all streams, but the new algorithm proceeds

with a potentially different time for each stream.

As we did for the past fragment, we show a simple

algorithm focusing on simplicity instead of efficiency.

However, for the general algorithm shown in this sec-

tion, there are cases that force the algorithm to main-

tain an unbounded portion of the calculated history.

This is unavoidable as the monitoring problem for fu-

ture Striver not trace-length independent in general.

Some cases can be optimized though. For example, it

is easy to see that using the operational semantics pre-

sented in this section, a specification whose dependency

graph is a tree can be monitored in a trace-length in-

dependent manner if the monitor has the additional

power of choosing the speed at which each of the input

streams is processed. A shared node in the dependency

graph means that the events in one stream (say s) influ-

ence another (say x) through different sub-expressions

e1 and e2. It is possible that e1 and e2 need events from

the common stream s that are arbitrarily far from each

other, and between these events there may be an arbi-

trary number of intermediate events (which cannot be

bound a priory) These intermediate events have to be

buffered by the engine for their future use. It is work in

progress to characterize other classes of specifications

that can be monitored in a trace length independent

manner, other than those whose dependency graph is a

tree.

First, we define the type Iterator as Id × T, whose

values are pairs formed by a stream identifier and the

timestamp of the last value calculated for the stream.

This value corresponds to the time up-to which the

stream has been computed which essentially separates

queiscience time for every stream. The constants −out
and +out are used to represent out of the bounds (ini-

tial and final resp). All stream histories are initialized

as empty lists. Given an iterator it = (s, t), we use

it.stream for the stream s and it.time for the time t.

Given an event e = (t, d), we use e.time for the time t

of the event and e.val for the value d.

Monitor. We initialize an iterator for every stream and

save it in a map called outIters. The monitoring algo-

rithm monitor, shown in Algorithm 3, keeps calculat-

ing further events for all streams in outIters. For each

iterator, the algorithm computes the next value, pro-

gressing in time. When an event is computed, this is

emitted to the environment as a monitor observation.

Therefore, for every stream, the events are generated in



Stream Runtime Verification of Real-Time Event-Streams with Striver 17

Algorithm 3 monitor: Online Monitor

1: typedef Iterator :: (Id ,T)
2: −out← (−∞, notick)
3: +out← (∞, notick)
4: Hs ← 〈〉 for every s
5: outIters ← ∅
6: procedure Monitor

7: outIters.add(s,−∞) for every s
8: while outIters 6= ∅ do

9: for it ∈ outIters do

10: (it, ev)← next(it)
11: if ev = +out then

12: outIters.delete(it)
13: else
14: emit(ev.time, ev.val, it.stream)

15: end loop

increasing time order (note that different streams need

not emit the events in increasing order with respect to

each other). If the retrieved value for s is +out, this

means that σs will not contain any more values and

the iterator of s is removed from outIters.

Algorithm 4 Iterator functions

16: function (Iterator , (T, D ∪ {notick})) next(Iterator it)
17: (s, t)← it

18: for i = 0 . . . size(Hs)− 1 do

19: ev ← Hs[i]
20: if ev.time > t then

21: return ((s, ev.time), ev)

22: ev′ ← solveNext(s)
23: if last(Hs).val = notick then

24: removeLast(Hs)

25: append(Hs, ev′)
26: return ((s, ev′.time), ev′)

27: function (T, D) ∪ {−out} peekPrev(Iterator it)
28: (s, t)← it
29: for i = 0 . . . size(Hs)− 1 do

30: ev ← Hs[i]
31: if ev.time = t then
32: if i = 0 then

33: return −out
34: return Hs[i− 1]

Algorithm 5 Spec execution

35: function (T, D ∪ {notick}) solveNext(s)
36: if Hs = 〈〉 then
37: t← −∞
38: else
39: t← last(Hs).time

40: tv ← calculateNextTime(Ts, t)
41: if tv.val = notick then
42: return tv

43: val← JVsKH(tv.time)
44: return 〈tv.time, val〉

Iterator functions. Iterators are equipped with the fol-

lowing methods, shown in Algorithm 4. The function

next returns the next event strictly in the future of

the time in the state of the iterator. Such event can be

a progress event, which means that there are no actual

values up to the computed time t, and encodes the pro-

cessing of the stream up to t in cases where there is no

event at t. The simple naive implementation of next

shown here loops through the elements in the History

of the stream, until it finds the first event with a times-

tamp greater than the iterator’s time, and returns the

updated iterator, along with the computed event. This

event can be already present in the history because the

iterators for other streams could have triggered progress

in the computation of the history of s. If such an event is

not found in the History, the function calls solveNext

for the computation of the next event in the valuation

of stream s. The event computed is added to the His-

tory of the stream, removing the last value stored if it

was a notick (that is, a progress event), which guaran-

tees that histories can only have a notick as the last

event. In other words, progress events are only used to

encode the precise quiescence time of the stream. The

calculated actual event is returned along with the new

state of the iterator. The function peekPrev retrieves

the previous event before a certain t, or −out if t is the

timestamp of the first event in the trace. As a precon-

dition, there has to be an event with timestamp t in

the History (which is in turn always guaranteed in the

algorithm).

Spec execution. The calculation of the next value for

a given stream is performed by calling solveNext,

shown in Algorithm 5. If the event history Hs is empty,
this computation will call calculateNextTime with

−∞ as the last timestamp. Otherwise, the computation

will use the timestamp of the last event in the history

of s. If the event returned by calculateNextTime is

a progress event (indicated by a notick value), it means

that the ticking expression returned progress but no

actual event, and this progress event is returned. This

also covers the case where the returned event is +out. If

a real tick candidate is returned by calculateNext-

Time (indicated by a () value, read as unit), this is used

to compute the value that corresponds to the denota-

tional semantics of the specification. Note that these se-

mantics may invoke prev, prevEq, succ or succEq

according to the expression of Vs, potentially triggering

the progress of other stream iterators. An event with

the timestamp of the tick and the computed value is

returned.

Tick calculation. For the calculation of the next poten-

tial tick after t for a delay of a stream s with positive
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Algorithm 6 Tick calculation

45: function (T, {(), notick}) calculateNextTime(expr, t)
46: switch expr do
47: case (delay ε s)
48: if ε > 0 then
49: it← (s,−∞)
50: for (it, ev)← next(it) do

51: if ev.time > t then
52: ev′ ← peekPrev(it)
53: if ev′ = −out then

54: return (ev.time, notick)

55: t′ ← ev′.time + ev′.val

56: if t′ > 1̄ then

57: return +out

58: if t′ ≤ ev.time ∧ t′ > t ∧ ev′.val ≥ ε

then

59: return (t′, ())

60: return (t′, notick)

61: else

62: it← (s,−∞)
63: for (it, ev)← next(it) do

64: if ev = +out then

65: return +out

66: if ev.time > t ∧ ev.val 6= notick then

67: t′ ← ev.time + ev.val

68: if t′ > t ∧ t′ ≥ 0̄ ∧ ev.val ≤ ε then
69: return (t′, ())

70: return (ev.time, notick)

71: case {c}
72: if c > t then

73: return (c, ())

74: return +out

75: case s.ticks
76: it← (s,−∞)
77: for (it, ev)← next(it) do

78: if ev.time > t then
79: return (ev.time, ())

80: case e1 U e2
81: (t1, v1)← calculateNextTime(e1, t)
82: (t2, v2)← calculateNextTime(e2, t)
83: if t1 = t2 then
84: if v1 = v2 = notick then

85: return (t1, v1)
86: else
87: return (t1, ())

88: if t1 < t2 then

89: return (t1, v1)

90: return (t2, v2)

delays (a stream with time values v ≥ ε > 0), the pro-

cedure calculateNextTime iterates until it finds an

event with a timestamp greater than t. This procedure

is shown in Algorithm 6. If the event found is the first

event (that is, if peekPrev returns -out), then we can

conclude that no tick happens up to the time of that

event, and this is all we can conclude. If the event found

is not the first event, the procedure considers the previ-

ous event, and adds its timestamp and its value. If the

result is not in the time domain, this is, it is greater

than 1̄, then we output +out. Otherwise, the algorithm

Algorithm 7 Stream access methods

91: function (T, D) ∪ {−out} prev(s, t)
92: iter ← (s,−∞)
93: for (iter, ev)← next(iter) do

94: if ev.time ≥ t then
95: return peekPrev(iter)

96: function (T, D) ∪ {−out} prevEq(s, t)
97: iter ← (s,−∞)
98: for (iter, ev)← next(iter) do

99: if ev.time = t ∧ ev.val 6= notick then

100: return ev
101: if ev.time ≥ t then
102: return peekPrev(iter)

103: function (T, D) ∪ {+out} succ(s, t)
104: iter ← (s,−∞)
105: for (iter, ev)← next(iter) do

106: if ev = +out ∨ (evtime > t ∧ ev.val 6= notick) then
107: return ev

108: function (T, D) ∪ {+out} succEq(s, t)
109: iter ← (s,−∞)
110: for (iter, ev)← next(iter) do

111: if ev = +out ∨ (evtime ≥ t ∧ ev.val 6= notick) then

112: return ev

checks whether the last event is overridden by the fol-

lowing event. If it is not overridden, the value generated

was greater or equal to ε, and the corresponding time

computed is greater than the argument t, then we out-

put the time of the event along with the unit value.

This case corresponds to the delay producing an ac-

tual tick. If it was overridden, it was lower than ε or it

has already been output (indicated by the fact that the

value is lower or equal to t), then no tick will happen

until the time of the next event.

If the expression is a negative delay , then we find

the next non-progress event in the stream s. If we reach

the end of the stream, we output +out. Otherwise, we

add the timestamp and value of the event, and check if

the result is greater than t, in the time domain (this is

greater or equal to 0̄), and the value was lower or equal

to ε. If the condition is met, the time of the correspond-

ing event is returned with the unit value. If it is not,

then no event will be produced until the timestamp of

the next event.

For a constant expression, if the constant is greater

than t, then it is returned with the unit value. Other-

wise, the procedure returns +out.

For a s.ticks expression, the procedure iterates over

s until it finds the first event with a timestamp greater

than t and returns its timestamp along with the unit

value.

Finally, for U, calculateNextTime finds the low-

est timestamp greater than t for each argument stream,

and then proceeds in the following way. If the times-

tamps are the same, and the two values are notick, then

a notick at the timestamp is produced. If the times-
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tamps are the same, but one of the two values is not

notick, then a unit value at the timestamp is produced.

Otherwise, the event whose timestamp is the lowest is

returned.

Stream access methods. We finally describe the imple-

mentation of prev, prevEq, succ and succEq that

implement prev<, prev≤, succ>and succ≥from the de-

notational semantics. This is shown in Algorithm 7.

– To calculate prev<, prev iterates until if finds the

first event with a timestamp greater than t on s,

and returns the event immediately preceding.

– To calculate prev≤, prevEq iterates until it finds

the first event with a timestamp greater or equal to

t on s. If such event has timestamp t and it is not

a progress event, it is returned. Otherwise, prevEq

behaves just like prev.

– To calculate succ>, succ iterates until it finds the

first non-progress event with a timestamp greater

than t on s, or +out, and returns this event.

– To calculate succ≥, succEq iterates until it finds

the first non-progress event that has a timestamp

greater or equal to t on s, or +out, and returns it.

The correctness of the algorithm means that the op-

erational semantics implemented by the algorithm out-

puts all events in the evaluation model for every output

stream, and only those events. This is easily shown by

induction on the well-formed graph of the finite set of

events in the unique evaluation model, guaranteed to

exist and be unique by Theorem 1.

5 Comparison with other formalisms

5.1 Comparison with TeSSLa

We compare in this section Striver with the TeSSLa

specification language [16]. Even though TeSSLa is de-

fined both for event streams and piece-wise constant

signals, event streams and piece-wise constant signals

can be easily converted into each other (see, e.g., [22]).

We show in this section that TeSSLa can be trans-

lated into Striver under the assumptions described be-

low, where the main difficulty is related to the delay

operator and the possibility of generating Zeno out-

puts. Essentially, the decisions in the design of Striver
presented in the previous sections guarantee that all

outputs are non-Zeno (if all inputs are), while on the

other hand, TeSSLa accepts specifications that gener-

ate non-Zeno outputs. We modify the delay operator in

this section to increase the expressivity of Striver here

to be able to cope with these additional specifications.

The design principle of TeSSLa is not to handle ex-

plicit time and offsets but instead to offer stream trans-

formers that can be combined to build specifications. A

TeSSLa specification consists of a collection of stream

variables Z = I∪O and set of recursive equations of the

form y := e with y ∈ O using the following operators:

e ::= nil
∣∣ unit

∣∣ x ∣∣ lift(f)(e, . . . , e)
∣∣ time(e)

∣∣
last(e, e)

∣∣ delay(e, e)

where x is a stream variable. The meaning of nil is

the empty stream that contains no events. The oper-

ator unit models the unique stream of type unit that

only contains a single event, at time 0. The terminal

x allows referring to other streams in the specification.

The operators lift, time, last and delay are stream

transformers, that is, they return streams from other

streams. The operator time returns a stream that con-

tains the same ticks as the stream passed, except that

the values are the instants at which the events occur.

The operator lift allows using functions from data do-

mains by applying them to the current or previous val-

ues of the argument streams. The operator last(v, r)

takes two streams, v for values and r for triggers; last

returns a stream at the ticking times of r with the pre-

vious value of v. Finally, delay(d, r) takes two streams:

a delay stream d and a reset stream r. The output is a

stream of type unit that has an event at time t when d

has an event (t−v, v), there is no event in r in the time

interval (t− v, t), and either there was no tick pending

or there is an event in r at instant t− v as well.

We now present a translation from TeSSLa specifi-

cations that are non-Zeno to Striver. The set of stream

variables is the same, and each equation is translated

independently. To simplify the translation we assume

that the TeSSLa specification is flat, that is, all argu-

ments of all operators are stream variables. Every spec-

ification can be easily flattened by introducing extra

variables.

– nil: the stream x := nil is translated into:

ticks x := {0}

define void x := notick

– unit: the stream x := unit is defined as:

ticks x := {0}

define unit x := ()

– lift: the stream x := lift(f)(s0, . . . , sn), where B is

the co-domain of f , is translated into:

ticks x := s0.ticks U ... U sn.ticks

define B x :=

if (s0 <~t==-out ||...|| sn <~t == -out)

then notick else f(s0(~t),...,sn(~t))

– time: the stream x := time(s) is translated into:
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ticks x := s.ticks

define Time x := t

– last: the stream x := last(v, r), where v is a stream

of type A is defined as:

ticks x := r.ticks

define A x := v<<t

The translation of TeSSLa’s delay operator is more

cumbersome as it allows the possibility of output event

streams with diverging (Zeno) time sequences. Since

both Striver and TeSSLa assume that inputs are non-

Zeno, the only possibility to generate a sequence of Zeno

time-stamps is by the delay operator generating ticks

that are closer and closer. As defined in [16], TeSSLa

still allows diverging outputs and classifies as legal those

executions that do not diverge. For those specifications

and inputs for which the TeSSLa operational semantics

diverge the denotational and operational semantics of

TeSSLa disagree. A design principle of Striver is to guar-

antee non-Zeno outputs, which was achieved in Sect. 3

by forcing the time of all delays to be larger than a con-

stant ε (which can be arbitrarily small). Hence, since

there are non-Zeno sequences in which the delay gen-

erates arbitrarily close events, the delay operator from

Sect. 3 is not sufficient to translate TeSSLa to Striver,
at least in an inductive way.

To capture all legal TeSSLa specifications, we intro-

duce now a modified delay operator delay′ sgn f w,

where sgn is one of {pos,neg}, f is a function with

type T → Bool and w is a stream of type T as before.

The intended meaning of f is to tell the delay operator

whether to ignore or accept a given event. The seman-

tics are:

Jdelay sgn f wKσ
def
= {t′ | there is a t ∈ dom(σw)

satisfying t+ σw(t) = t′,

f(σw(t)), sign(σw(t)) = sgn and

dom(σw) ∩ (t, t′) = dom(σw) ∩ (t′, t) = ∅}

We require that f be non-divergent for valuation can-

didate σ, that is, that the set of ticks Jdelay sgn f wKσ
is non Zeno. We can mimic the original semantics of

Striver’s delay by choosing f(v) = |v| ≥ |ε|, which

is Zeno-convergent for any valuation. The function f

serves as an oracle for delay to accept candidate ticks.

The introduction of f imposes an obligation to the

writer of the specification, who is now in charge of guar-

anteeing that f meets the requirement of preventing

divergence. If this precondition is not met, then the de-

notational semantics of the Striver specification is un-

defined for such an offending trace, and the operational

semantics will simply keep producing an ever close set

of ticks. If the precondition is met, then the operational

and denotational semantics will coincide. Note that this

is not really a big practical limitation as a legal f can,

for example, let a large number of events be generated

and reset the counter if a certain ε has been passed since

the first event.

With this modified delay’ operator, we can define

the translation of TeSSLa delay as follows:

– delay: the stream x := delay(d, r) is translated

into:

ticks x_aux := d.ticks U r.ticks

define Time x_aux :=

if isticking(d) then

if isticking(r) ||

x_aux(<t,0) + (x_aux <<t) <= t

then d(~t)

else notick

else 0

ticks x := delay ’ 1 (\v -> True) aux

define unit x := ()

The choice of f(v) = true as the argument for delay

allows capturing the semantics of TeSSLa and guaran-

tees that if a given TeSSLa specification is legal (gener-

ates non Zeno outputs for every input), then f is con-

vergent for all inputs.

In [22], the authors present a non-blocking engine

for a subset of TeSSLa, which can anticipate the compu-

tation of some streams even if not all the input streams

have events. The operational semantics presented in

Sect. 4.1 are kept simple for the sake of explanation,

but it can be extended to mimic the asynchronous al-

gorithm in [22] to evaluate and increment iterators in-

dependently, and block an iterator only when some of

its necessary values is not present.

Theorem 4 The semantics of a legal TeSSLa specifi-

cation ϕ, and the Striver specification ϕ′ resulting from

following the shown translation over ϕ are equal over

any valid input.

Proof (sketch) An easy induction on the structure of

TeSSLa expressions allows proving that the resulting

Striver specification obtained is equivalent. We sketch a

proof for the case of delay. The output stream x gen-

erates the unit value after the last alarm set by x aux,

with a new value on x aux overriding the pending

alarm. The auxiliary stream x aux behaves as follows:

If stream d is generating an event, then x aux decides

whether it will emit the value or ignore it. If the reset

stream is also generating a value, the delay is emitted.

Alternatively, if the last alarm set by x aux has al-

ready gone off (or if no alarm was ever set), then the

delay is emitted. If there was a pending alarm and the

reset stream is not generating a value, the delay is ig-

nored, and x aux produces a notick value. If instead
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the delay stream d is not producing a value (and thus,

the reset stream r is), then we cancel any pending alarm

by emitting a 0. ut

5.2 Comparison with signal temporal logic

We now show how Striver also subsumes the signal tem-

poral logic (STL) [23,24]. To do so, we extend the core

Striver language with new constructors to allow the

definition of properties over sliding windows without

the need to introduce container-types in a given data

theory. First, we introduce the notion of carried val-

ues which essentially allow tagging the timestamp at

which a stream ticks with values from the ticking sub-

expression that actually causes the tick. By itself, this

extension does not add expressive power to the lan-

guage, and could be expressed using the instruments

presented in Sect. 3. The second extension introduces

shift, which allows moving the ticks of another stream

by a positive or negative constant. Together with the

carried values, shift allows defining a shift stream trans-

former and truly sliding windows. In detail, we extend

the Striver language with two new capabilities:

1. Carried values: Every time a value expression is

computed at an instant t, it is because t belongs

to its associated ticking expression, which in turn

can be caused by other streams, by a constant or

by a delay. The idea of the carried value is to give a

way to access the values of the ticking streams from

the value expressions. To achieve this, we enrich the

evaluation context of the value expressions with a

new language construct cv whose value is a tuple

containing the values of the members in the ticking

expression that induced the tick. We indicate the

type of the carried value in the tick expression of

the stream. In particular, if the n-th source of ticks

is not producing a value at the time of evaluation,

then the n-th element of cv is ⊥notick.

2. Shift: The constructor shift extends ticking ex-

pressions allowing to shift a stream by a constant

duration. Together with carried values, we can triv-

ially shift a stream by a given length as follows:

input int s

ticks int shift_s := shift 3sec s

define int shift_s := cv

Note that the carried value cv allows fetching the

value of s at a different time (after the delay 3sec),

which otherwise would require calculating the time

instant and allow accessing values of streams at arbi-

trary times. Such a feature would increase the com-

plexity of monitoring algorithms and typically re-

quires preserving the whole trace of every stream.

We show how the addition of these constructors affects

the syntax:

– Ticking Expressions: We add the shift operator to

the ticking expressions.

α ::= α′
∣∣ α′ U · · · U α′

α′ ::= {c}
∣∣ v.ticks ∣∣ delay ε w ∣∣ shift c v (1)

– Offset Expressions: Offset expressions are not af-

fected by these extensions.

– Value Expressions: We add the constructor to access

the carried values.

E := d
∣∣ x(τx) ∣∣ f(E1, . . . , Ek)

∣∣ τ ′ ∣∣ -out ∣∣ +out∣∣ notick ∣∣ cv (2)

The additional expression cv represents the value

carried by the ticking expression.

The idea is that the ticking expressions calculate not

only a set of tick instants, but also a value associated

with every potential tick instant. For the ticking ex-

pression v.ticks, the associated value at instant t is

σv(t). For the ticking expression c, the associated value

for each instant t is () (the unit value). For the ticking

expression delay ε w, the associated value for instant t

is the value of w that made t become a tick instant. For

the ticking expression shift c v, the associated value

for each instant t is σv(t − c). Finally, for the ticking

expression e0 U · · · U ek, the associated value for each

instant t is a k-tuple where each element i = 1, · · · , k is

the value carried by the expression ei if t is in the tick

expression ei, and ⊥notick otherwise.

This value carried by the tick expression can be ac-
cessed from the value expression with the new construc-

tor cv.

Note that if the tick expression does not have a

shift expression, we can calculate the carried value

using the original value operators using the construct

isticking(r) and r(~t) over every non-delayed tick

expression of the form r.ticks, and calculating with

r(<t) over every delay ε r tick expression.

We are now ready to show that Striver with these

extensions subsumes signal temporal logic (STL) [23,

24]—when interpreted over piecewise-constant signals.

Piecewise-constant signals are signals that only change

value in finitely many points in every given interval, and

remain constant between two points of value change.

The syntax of STL is

ϕ ::= true
∣∣ µf ∣∣¬ϕ ∣∣ ϕ ∨ ϕ ∣∣ ϕ U[a,b] ϕ

where f is a function from Rn to R, and a and b be-

long to the temporal domain. The satisfaction relation
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is defined over a sequence x of real valued signals and

a time-point t as follows.

(x, t) |= true always holds

(x, t) |= µf iff f(x[t]) > 0

(x, t) |= ¬ϕ iff (x, t) 6|= ϕ

(x, t) |= ϕ1 ∨ ϕ2 iff (x, t) |= ϕ1 or (x, t) |= ϕ2

(x, t) |= ϕ1 U[a,b] ϕ2 iff for some t′ ∈ [t+ a, t+ b],

(x, t′) |= ϕ2,

and for all t′′ ∈ [t, t′],

(x, t′′) |= ϕ1

Event streams have a alternative interpretation as

piecewise-constant signals, where the signal changes at

the points at which events are produced. A translation

of STL into Striver like the one shown in this section

enables the encoding of quantitative semantics of STL

by enriching the data types of expressions and verdicts.

We show here how to check STL Boolean properties by

translating them to Striver specifications. The specifi-

cation is constructed recursively over ϕ:

– True: We translate true as the stream tr as follows:

output bool tr

ticks unit tr := {0}

define bool tr := true

– Function sampling µf :. We assume that the input

signal is input D x, and define the Boolean output

signal mu_f as follows:

output bool mu_f

ticks D mu_f := x.ticks

define bool mu_f := f(cv) > 0

– Negation: Given the Boolean stream x for ϕ, we

define the stream neg_x for ¬ϕ as follows:

output bool neg_x

ticks bool neg_x := x.ticks

define bool neg_x := not cv

– Disjunction: Given the Boolean streams x and y,

for ϕ1 and ϕ2 (resp), we define the stream x_or_y

for (ϕ1 ∨ ϕ2) as follows:

output bool x_or_y

ticks (bool ,bool) x_or_y :=x.ticks U y.ticks

define bool x_or_y :=

x(~t,false) || y(~t,false)

– Until: Given Boolean streams x and y for ϕ1 and

ϕ2 (resp), and given a and b we define the stream

x_U_y for (ϕ1 U[a,b] ϕ2) as follows:

output bool x_U_y

ticks bool shift_y_a := shift -a y

define bool shift_y_a := cv

ticks bool shift_yT_a := shift_y_a.ticks

define Time shift_yT_a :=

if cv then t else notick

ticks bool x_F:=x.ticks

define Time x_F:=if cv then notick else t

ticks (bool ,bool ,bool ,bool) x_U_y :=

shift -a y U shift -b y

U shift -b x U x.ticks

define bool x_U_y := let

min_y := if shift_y_a (~t,false) then t

else shift_yT_a(>t,infty)

min_xF := if !x(~t,false)

then t else x_F(>t,infty) in

min_y+a <= t+b && min_y+a < min_xF

Essentially, the intermediate stream shift_y_a de-

fines a shift of y by exactly a time units, and then

shift_yT_a filters out the events with value false

and keeps occurrences of value true only. Hence, the

time and value of the next event in shift_yT_a at

any instant t correspond to the next time y becomes

true after t+ a. The expression min_y contains the

earliest time at which y becomes true (considering

the possibility of t itself if y is already true). Sim-

ilarly, min_xF contains the earliest time at which x

becomes false (considering the possibility of t itself

if x is already false). With these auxiliary defini-

tions, the value expression of x U y simply checks

that y becomes true within [a, b] and that x is true

from t up-to that point.

The tick expression of the stream indicates the times

at which its value can change, namely when a y

event enters or leaves the sliding window defined by

[t+ a, t+ b], or when a x event enters or leaves the

sliding window defined by [t, t+ b].

We use the constant infty to represent a value that is

greater than any value of T. The translation presented
is bottom-up and simple, but it does not exploit the

fact that, if b is not ∞, only a bounded future must

be explored. As it is, the translation of until is a future

specification. We extend now the language with bounded

offset operators by redefining τ -expressions as follows:

τx ::= x<~τ ′
∣∣ x<<τ ′ ∣∣ x>~τ ′ ∣∣ x>>τ ′ ∣∣ x<~bτ ′ ∣∣

x<<bτ
′ ∣∣ x>~bτ ′ ∣∣ x>>bτ ′

τ ′ ::= t
∣∣ τz for z ∈ Z

The semantics of the newly added operators is as fol-

lows: Considering ∀x ∈ T.⊥-out < x and x < ⊥+out,

If Jx<~eKσ(t) < JeKσ(t)− b, then Jx<~beKσ(t) = ⊥-out.

Otherwise, x<~be behaves as x<~e at t.

If Jx<<eKσ(t) < JeKσ(t)− b, then Jx<<beKσ(t) = ⊥-out.

Otherwise, x<<be behaves as x<<e at t.

If Jx>~eKσ(t) > JeKσ(t) + b, then Jx>~beKσ(t) = ⊥+out.

Otherwise, x>~be behaves as x>~e at t.

If Jx>>eKσ(t) > JeKσ(t) + b, then Jx>>beKσ(t) = ⊥+out.

Otherwise, x>>be behaves as x>>e at t.



Stream Runtime Verification of Real-Time Event-Streams with Striver 23

Mathematically, the semantics of x<~be is the following:

Jx<~beKσ(t)
def
=


⊥-out if Jx<~eKσ(t) = ⊥-out

or Jx<~eKσ(t) < JeKσ(t)− b
Jx<~eKσ(t) otherwise

The semantics of the other operators are analogous.

Even though these expressions do not enhance the ex-

pressive power of Striver, they enable the monitoring

engine to stop seeking a value if the time progress grows

beyond a bound. With this information, the engine can

optimize the execution and even guarantee trace-length

independence assuming that the event rate is bounded.

An empirical study on how using bounded operators af-

fects the resource performance is included in Sect. 6. We

can now use the >>b operator to define a more efficient

version of STL’s Until :

ticks (bool ,bool ,bool ,bool) x_U_y :=

shift -a y U shift -b y

U shift -b x U x.ticks

define bool x_U_y := let

min_y := if shift_y_a (~t,false) then t

else shift_yT_a(>t_{b-a},infty)

min_xF := if !x(~t,false) then t

else x_F(>_b t,infty) in

min_y+a <= t+b && min_y+a < min_xF

At instant t, the implementation will be keeping the

events in y in the range [t + a, t + b] and the events in

x in the range [t, t+ b].

6 Empirical evaluation

In this section, we report on an empirical evaluation of

Striver. We conduct two sets of experiments: one for the

past fragment of Striver, that is guaranteed to run in

bounded resources, and the other for the full version of

Striver, including the extension shown in Section 5.2.

All experiments were executed on a virtual machine

running on an Intel Xeon at 3GHz with 32GB of RAM.

6.1 Past Striver

The empirical evaluation of past Striver is based on an

implementation written in the Go programming lan-

guage3 which is the core element of the Elastest Mon-

itoring Service4. We run experiments to measure the

memory usage and time per event for two collections of

specifications:

3 Past-only Striver is available at http://github.com/

imdea-software/striver
4 Available at https://github.com/elastest/

elastest-monitoring-service

– The first collection generalizes Example 2 comput-

ing the stocks of p independent products. These

specifications contain a number of streams propor-

tional to p, where each defining equation is of con-

stant size. Even though each output stream in the

specification could be monitored in parallel, our en-

gine is completely sequential.

input int sale_1

input int arrival_1

...

input int sale_p

input int arrival_p

ticks stock_1 :=

sale_1.ticks U arrival_1.ticks

define int stock_1 := stock_1(<t,0) +

(if isticking(arrival_1)

then arrival_1 (~t) else 0) -

(if isticking(sale_1)

then sale_1 (~t ) else 0)

...

ticks stock_p :=

sale_p.ticks U arrival_p.ticks

define int stock_p := stock_p(<t,0) +

(if isticking(arrival_p)

then arrival_p (~t) else 0) -

(if isticking(sale_p)

then sale_p (~t ) else 0)

– The second collection computes the average of the

last k sales of a fixed product, via streams that tick

at the selling instants and compute the sum of the

last k sales. The resulting specifications have depth

proportional to k.

ticks denom := sale.ticks

define int denom := if denom(<t) == k

then k

else denom(<t,0)+1

ticks sumlastk := sale.ticks

define int sumlastk :=

sumlastk(<t,0) +

sale(~t) -

sale(<sale <<sale <<... <<t, 0)

ticks avgk := sale.ticks

define int avgk := sumlastk / denom

We instantiate k and p from 10 to 500 and run each

resulting specification with a set of generated input

traces. We measure the average memory usage (using

the OS) and the number of events processed per second.

In the first experiment, we run the synthesized mon-

itors with traces of varying length (shown in the top two

plots in Fig. 4). The results illustrate that the memory

needed to monitor each specification is independent of

the length of the trace (the curves are roughly con-

stant). Also, the throughput of events processed is in-

dependent of the length of the trace, and is a constant in

http://github.com/imdea-software/striver
http://github.com/imdea-software/striver
https://github.com/elastest/elastest-monitoring-service
https://github.com/elastest/elastest-monitoring-service
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Fig. 4 Empirical evaluation of the past fragment of Striver

the thousands of events per second in each experiment.

In the second experiment, we fix a trace of 1 million

events and run the specifications with k and p ranging

from 250 to 550. The results (lower diagrams) indicate

that the memory needed to monitor stock_p is inde-

pendent of the number of products while the memory

needed to monitor each avg_k specification grows lin-

early with k. Recall that theoretically all specifications

can be monitored with memory linearly on the size of

the specification.

6.2 Full Striver

We report an empirical evaluation of a prototype se-

quential Striver implementation, written in the Java

programming language5. For this set of experiments we

consider a simple STL specification of a moving vehi-

cle. The speed of the vehicle is an input stream of type

double. The property to specify is: “Whenever the ve-

hicle is moving too fast, it must decelerate continuously

5 The full version of Striver is available at http://github.

com/imdea-software/striver

until it reaches a safe speed within 5 s.” We say that

the vehicle is moving too fast if its speed is greater than

1, and we define a safe speed as a speed under 0.8. We

can write this property in STL as follows:

ϕ : (speed > 1)→
(
decel U[0,5] speed < 0.8

)
Note that this specification requires a Boolean input

signal decel that indicates whether the vehicle is decel-

erating. We translate this property into Striver using the

following specification, where slow_down is obtained by

translating the Until operator as shown in Sect. 5.2.

input double speed

ticks double toofast := speed.ticks

define bool toofast := cv > MAX_SPEED

ticks double speedok := speed.ticks

define bool speedok := OK_SPEED > cv

ticks double decel := speed.ticks

define double decel := cv > speed(>t)

slow_down := decel U_[0,5] speedok

http://github.com/imdea-software/striver
http://github.com/imdea-software/striver
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Fig. 5 Empirical evaluation of the fully fledged version of Striver

ticks (bool ,bool) ok :=

toofast.ticks U slow_down.ticks

define bool ok :=

toofast (~t,false) => slow_down (~t,true)

Using Striver we measure the deceleration with the

signal speed comparing its value at the current instant

with the next value, and thus there is no need of an

extra input signal.

The input data, shown in Fig. 5a, c, are generated

pseudo-randomly. Figure 5a shows an input illustrat-

ing under the graph (in green) the regions where ϕ

holds. Also, at the bottom we show the regions where

the speed is too high, but where the car decelerates

continuously until reaching a safe speed, within 5 time

units. Fig. 5c shows a much longer input signal.

We translated the specification using bounded fu-

ture operators, and showed that the memory consump-

tion of the monitor remains constant over the trace

length. However, the memory requirement correlates

linearly with the size of the window and with the input

event rate, as can be seen in Fig. 5b.

On the other hand, if we use a Striver specification

with unbounded future operators, then the memory re-

quirement depends on the input signal and is no longer

solely determined by the window size and input event

rate. The memory usage of the different runs can be

seen in Fig. 5d. In the Striver specification with un-

bounded future accesses, the Until expression needs to

retrieve at a given time, the next instant at which the

vehicle decelerates and also the next instant at which

its speed is safe. If one of these instants is far in the fu-

ture, the monitor engine needs to consume and store all

the input up to that point. This causes a rapid increase

in the memory consumption and is completely depen-

dent on the shape of the input signal, which is in prin-

ciple arbitrary. Once the relevant instants are found,

the input signal is consumed up to that point, which

causes a rapid decrease in memory consumption. As a

result of this, we observe that memory usage presents

peaks during the execution. The green curve in Fig. 5d

represents the memory consumption of a run with the

original safe speed, of 0.8. We can see that usually this
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value is reached quickly and keeps the memory below

the maximum value, which was set at 1GB.

In the blue run, we modified the safe speed to−1600.

This value requires more time to find the relevant time

instants, resulting in higher peaks of memory usage,

that go down at approximately time instant 40. From

that point on, the speed of the car never comes back

down to a value as low as −1600, and thus the memory

consumption reaches the maximum memory.

The red curve represents the memory consumption

of a run with a safe speed of −1750. Since this value

is never reached, or it is reached too far away in the

input trace, the memory consumption goes up contin-

uously well beyond the maximum memory threshold

(without producing an output), and eventually the pro-

gram crashes with a java.lang.OutOfMemoryError.

Note how a small variation in the input data yields very

different memory consumption curves for unbounded

future specifications.

7 Final discussions and conclusion

We have introduced Striver, a stream runtime verifi-

cation specification language for timed event streams,

equipped with explicit time. We have presented a trace-

length independent online monitoring algorithm for the

past fragment, and we show empirically that it behaves

as expected in terms of the bounds of resources. We

have also presented an online monitoring algorithm for

the full version of the language and we show how its

future fragment needs not be trace length independent.

We have shown how to translate specifications in other

specification languages, such as TeSSLa and STL, to
Striver and we showed empirically that the memory re-

quirement to monitor an STL specification is bounded

by the ratio between input rate and the size of the in-

tervals in the usage of Until operators.

Unbounded time domains. The semantics of Striver in-

troduced in Section 3.3 requires temporal domains to

have both a minimal element 0̄ and a maximal element

1̄ for all specifications to be well-defined in the general

case. We describe here how to relax these requirements.

The boundaries in the time domain are necessary for

two reasons:

– First,is to provide a base case for recursion, which is

required by closed paths in the dependency graph.

A negative cycle imposes the need for a 0̄, while a

positive cycle imposes the need for a 1̄. For example,

consider the following specification:

input unit r

ticks s := r.ticks U {5}

define int s := s(>t,0) + 1

There must be a value for s at 5, but if r produces

infinitely many events, it is not possible to find an

integer that satisfies the value equation of s.

– Second, to prevent faulty references to the occur-

rences of functions prev<, prev≤, succ>, and succ≥,

in the semantics of τ expressions. An expression

s<<e or s<~e that uses an expression e whose value

could be ⊥+out (for example r>>t) imposes the need

for a 1̄, while a s>>e or s>~e using an expression e

whose value could be ⊥-out imposes the need for a

0̄. For example, consider the following specification:

input unit r

ticks v := {0}

define void v := notick

ticks s := {0}

define Time s := r<<(v>>t)

The stream s at 0 is trying to fetch the last value of

r, which may not exist if r produces infinitely many

events.

If we are dealing with a specification whose depen-

dency graph does not have positive cycles, and there

are no expressions s<<e or s<~e where the semantics of

e could be ⊥+out, then there is no need to impose the

presence of a 1̄ in the time domain. For example, this is

the case when one uses only past expressions. Dually, if

we are dealing with a specification whose dependency

graph does not have negative cycles, and there are no

expressions s>>e or s>~e where the semantics of e could

be ⊥-out, then there is no need to impose the presence

of a 0̄ in the time domain.

The operational semantics of the past-only fragment

of Striver presented in Sect. 4.1 always converges to

the correct evaluation model if the specification is well-

defined. On the other hand, the operational semantics

of the full language presented in Sect. 4.2 may diverge

for well-defined specifications which do not contain pos-

itive cycles, do not define a 1̄, but use unbounded future

accesses or negative delays. For example, the following

specification is well defined:

ticks (unit , unit) clock:={0} U shift 10 clock

define unit clock :=()

ticks unit empty := clock.ticks

define void empty := notick

ticks unit empty2 := {0}

define void empty2 := empty(>t,notick)

The stream clock generates a () every 10 time units

starting at 0, and the streams empty and empty2 have

no events, something that can be easily deduced from

their types. A smart compiler could realize that empty

and empty2 have no events from their types or check-

ing that the value expression of empty is notick, but

an immediate application of the operational semantics
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algorithm will diverge trying to calculate the value of

the stream empty2 at time 0. The main reason is that a

future access (like empty(>t,notick)) requires to com-

pute the next ticking instant of empty. Even though this

is a single offset, this instant may be arbitrarily far in

the future, or not even exist. Therefore, in a model of

time where the future is unbounded, this computation

may not terminate.

Language duality. There exists a duality between the

past and the future operators of Striver, which can be

exploited to offline monitor any specification using the

online algorithm presented in Sect. 4.1 and following the

idea of multiple passes used in Lola [11,28]. We start

from a well formed specification and partition its de-

pendency graph into maximal strongly connected com-

ponents (MSCC). Since the specification is well formed,

each of the MSCCs either has only positive cycles, or

have only negative cycles. MSCCs with negative cycles

will be computed from the beginning of the trace for-

wards. MSCCs with positive cycles will be computed

from the end of the trace backwards. Every pass will

store the output streams of the MSCCs being calcu-

lated in a local file storage. The dependency graph of

MSCCs is actually a DAG, and the order of evaluation

is a reverse topological order using the order induced

by the dependencies. Independent MSCCs can be com-

puted in parallel. If the specification does not contain

both positive and negative cycles, then the whole speci-

fication can be computed using only one pass. The lack

of cycles of any kind implies that well-definedness is

not dependent on boundaries over the time domain,

and that the direction of the computation can be freely

chosen by the algorithm. In particular, the STL trans-

lation of a property yields a dependency graph with

no cycles, and thus can be computed both forward or

backwards as desired.

Future work. Future work includes the extension of the

language with parametrization, (like in quantified event

automata (QEA) [29], MFOTL [30] and Lola2.0 [31]),

to dynamically instantiate monitors for observed data

items. We also plan to study offline evaluation algo-

rithms, and algorithms that tolerate deviations in the

time-stamps and asynchronous arrival of events from

the different input streams, computing the values of

the output streams as soon as the necessary data are

available.
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