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Abstract. Temporal task planning uses formal techniques such as re-
active synthesis to guarantee that a robot will succeed in its mission.
This technique requires certain explicit and implicit assumptions and
simplifications about the operating environment of the robot, including
its sensors and capabilities. A robot executing a plan can produce a silent
mission failure, where the user may believe that the mission goals were
achieved when instead the assumptions were violated at runtime. This
entails that mitigation and remediation opportunities are missed.
Monitoring at runtime can detect complex assumption violations and
identify silent failures, but such monitoring requires the ability to de-
scribe and detect sophisticated temporal properties together with quan-
titative and complex data. Additional challenges include (1) ensuring the
correctness of the monitors and a correct interplay between the planning
execution and the monitors, and (2) that monitors run under constrained
environments in terms of resources.
In this paper we propose a solution based on stream runtime verification,
which offers a high-level declarative language to describe sophisticated
monitors together with guarantees on the execution time and memory
usage. We show how monitors can be combined with temporal planning
not only to monitor assumptions but also to support mitigation and
remediation in UAV missions. We demonstrate our approach both in
real and simulated flights for some typical mission scenarios.

1 Introduction

Specifying and developing sophisticated behavior of autonomous systems is a
notoriously difficult task. Formal methods is a very tempting approach to the
rigorous development of robots and other autonomous systems. Temporal task
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planning consists of defining a task specification of express complex robot be-
haviors, for example, using a fragment of the linear temporal logic (LTL), as we
do in this paper. The LTL specification is then transformed into a system using
controller synthesis, which implements an operational strategie that guarantees
to achieve the desired task [7]. The limitations of current synthesis technology
require several modeling simplifications be able to encode the robot, its envi-
ronment and the mission goals. Consequently, the correctness of the approach
depends not only on the correctness of the specification and the synthesis tools
used, but also on certain explicit and implicit assumptions about the robot’s
operating environment, sensors and capabilities. A robot executing a plan can
silently fail to fulfill the task if the assumptions are violated at runtime, leading
the user to mistakenly believe that a mission has been accomplished successfully,
which can have significant practical consequences. Sometimes the assumptions
can fail due to unforeseen circumstances. Also, the current synthesis technol-
ogy that is typically used for temporal planning requires a discretization and
simplification of the environment that may not always be respected at runtime.

Monitoring assumption violations at runtime can detect silent failures and
provide mitigation and remediation opportunities. In this paper we show how
temporal task planning can be combined with stream runtime verification (SRV)
to monitor both explicit and implicit assumptions on which those plans rely.
More concretely, we describe a method to detect and predict assumption viola-
tions at runtime to further improve the assurance of robotic behavior.

We use a language and system based on the SRV language Lola to describe
the monitors. Lola is a good language for this goal because:

– it has clean semantics,
– its expressive yet succinct syntax results in natural specifications,
– the language allows easy extensions (like new datatypes) and I/O of rich

events, and
– it allows the creation of predictive functions such as Kalman filters.

Additionally, Lola allows a theoretical analysis of monitor specifications, which
lets us calculate beforehand the constant amount of memory required to run
the monitors throughout the entire execution independently of the length of the
trace.

We integrate SRV and temporal task planning for two typical mission sce-
narios of an Unmanned Aerial Vehicle (UAV). We show a simplified architecture
of the interplay between the components from temporal task planning and run-
time verification in Fig. 1. The mission planning using temporal task problem
involves the description of both a temporal task specification and a Lola specifi-
cation. From these specifications we synthesize a controller and a monitor which
communicate with the motion planner, with the vehicle, and with each other
through sensors and actuators. We have implemented the UAV controller using
MAVLink [2] and we demonstrate our approach empirically both in real flights
using the Parrot AR.Drone 2.0 with an onboard mounted Raspberry Pi Zero W
and in flights simulated using the Software in the Loop ArduPilot Simulator [1],
applying offline and online monitoring. In this paper we focus on the Stream
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Fig. 1: Architecture for SRV + UAV Temporal Planning.

Runtime Verification part of the approach, and we explain the specifications of
the properties to monitor. More details on the mission planning stage and the
interaction between the UAV controller and the monitors are available in [11].

The rest of the paper is structured as follows. Section 2 revisits stream run-
time verification and the language Lola. Section 3 explains the concept of im-
plicit assumptions and silent mission failures, presenting multiple examples. Sec-
tion 4 describes an empirical evaluation. Finally, Section 5 concludes.

2 The Stream Runtime Verification Language Lola

We briefly revisit stream runtime verification for synchronous streams. A syn-
chronous stream is a sequence of values from a data domain. We refer to the
value at the n-th position in a sequence z as z(n). For example, the sequence
altitude = [350, 360, 289, 320, 330] contains the successive values of the alti-
tude of an unmanned aerial vehicle. In this sequence altitude(0) = 350 and
altitude(2) = 289. This sequence can be obtained, for example, by sampling a
sensor of the UAV every five seconds.

Streams are typed using data theories, which are essentially sets of values and
interpreted function symbols. The function symbols are used to build stream
expressions, and are equipped with an associated implementation that allows
computing a result value once the values of the arguments are provided.

Lola is a synchronous SRV language. Specifications (or programs) in Lola
declare the relation between output streams (verdicts) and input streams (ob-
servations). In this paper we will use an implementation of Lola called HLola5

(see [5]) written in the purely functional language Haskell. The distinguishing
feature of HLola is that data theories are not decided a-priori and hard-wired in
5 HLola is available at https://github.com/imdea-software/hlola.

https://github.com/imdea-software/hlola


the tool. Instead, HLola borrows (almost) arbitrary Haskell datatypes as data
theories in Lola [6] in a way that is transparent to the monitor engine. We will
introduce the language and the implementation concisely. See [3, 4] for rigorous
formal descriptions of Lola and [5] for the implementation details of the tool
HLola.

2.1 Lola Syntax and Semantics

Syntax. A Lola specification uses a set of stream variables which are used to
represent inputs and output streams. An output stream is defined by associating
it with a defining stream expression, which consists of:

– offsets v[k|d] where v is a stream variable of type D, k is an integer number
and d a value from D, and

– function applications f t1 . . . tn in which f is applied to stream expressions
t1, . . . , tn of the right types.

Constants are 0-ary function symbols. A stream variable v represents a stream
of values of the type of v. If v is an input stream, the values will be provided
incrementally, and if v is an output stream the values will be computed by
the monitor incrementally. An offset expression v[−1|d] captures the value of
sequence v in the previous position. If there is no previous instant, the value
d is returned instead. The particular case of an offset with k = 0 requires no
default value as the index is always guaranteed to be within the range of the
sequence, in which case we use v[now]. A Lola specification consists of a set
I of typed input stream variables, a set O of typed output stream variables,
and a set of defining equations, yi = ei, one per output variable yi ∈ O where
ei is a stream expression of the same type as yi. Note that expression ei can
use any stream variables from I and O, including yi. The defining equations
describe the relation between input and output streams. Note that functions f
used to build expressions do not need to know about time or offsets. Examples
of these function include ∧, ∨, +, vector multiplication, etc. At runtime, the
implementation of theses functions will provide values for the temporal engine
to evaluate. This is the essence of stream runtime verification where the temporal
reasoning and the algorithms to compute values are kept separate.

Example 1. The specification “the mean altitude in the last 3 instants” can be
expressed in Lola as follows, where denom calculates the number of instants that
are taken into account to compute the average.

1 input Double altitude

2 output Double denom = min 2 denom[-1|0] + 1
3 output Double mean =
4 (altitude[-2|0] + altitude[-1|0] + altitude[now]) / denom[now]
5 output Bool ok_altitude = mean[now] < 400



In this specification I = {altitude} and O = {denom, mean, ok_altitude}. Also,
altitude, denom and mean are streams of Double values, while ok_altitude is a
stream of Bool values.

Semantics. Semantics of Lola specifications are given in terms of valuations.
A valuation ρ consists of the assignment of one sequence ρx for each stream
variable x, all of the same length. The semantics of Lola is defined in terms of
valuations of expressions JexK as follows:

– For offsets: Jv[i|c]K(j) =

{
ρv(j + i) if 0 ≤ j + i < L

c otherwise
– For functions: Jf e1 . . . ekK(j) = f Je1K(j) . . . JekK(j)

Note that f on the left hand side of the semantic definition of a function repre-
sents the syntactic representation of the function (the constructor of expressions)
while the f on the right hand side represents the function evaluator.

We say that a valuation ρ satisfies a Lola specification φ whenever every
output variable y satisfies its defining equation ey, i.e. when ρy = JeyK. See [4] for
a more rigorous explanation of valuations, where a simple graph traversal of the
specifications is used to guarantee correct semantics and to statically compute
bounds of the resources needed to perform the monitoring.

HLola: A Powerful Implementation of Lola. HLola is an implemen-
tation of Lola developed as an embedded language in Haskell with an extra
layer of syntactic facilities. This embedding, called lift deep embedding, extends
the notion of eDSL and is described in [3]. This implementation strategy allows
us to incorporate constructs from the host language Haskell into Lola, such as
let-bindings, where clauses, partial application, list comprehension, etc. We can
also use higher order to seamlessly define parametric streams, and we give access
to the modules system of Haskell to allow the separation of independent pieces of
code. An HLola specification can import an arbitrary Haskell module as well as
a Lola theory (the implementation of types and functions for a specific domain)
or library (auxiliary stream definitions of general purpose) with the directive use
at the beginning of the specification.

The powerful type system of Haskell ensures the type-correctness of a specifi-
cation as well as its syntactic well-formedness. Extra checks specific to the Lola
language such as the validity of the dependency graph are assessed by a routine
in the HLola engine prior to the monitor execution.

The main function that implements the monitoring algorithm is runSpec,
which takes an HLola specification and an input trace for every input stream
and returns the successive events of the output streams. As a by-product of
developing HLola as an eDSL in Haskell, the datatypes that constitute an
HLola specification and the function runSpec are defined in Haskell as well,
and as such can be lifted to become a theory ready to be used as a data theory



of HLola itself. This has enabled the use of HLola specifications as a theory
from within the language [6].

We describe now this HLola feature, that simplifies specifications in many
occasions by allowing the evaluation of data as the result of the computation of a
monitor, in order to use the results in higher monitoring activities. We call this
feature nested monitoring or nested specifications. Nested specifications allow
spawning and executing monitors dynamically, collecting the result of a stream
in each invocation and using it as a value in the caller monitor. Defining an
inner specification involves giving it a name and adding an extra clause: return
x when y where x is a stream of any type and y is a Boolean stream. The type of
the stream x determines the type of the value returned when the specification
is invoked dynamically. Optionally, the definition of a nested specification can
require parameters, which can be different in each invocation. Once we have
defined a nested specification, we can execute it using the function runSpec from
the theory Lola, importing the theory and providing the necessary parameters
and lists of values for the input streams as lists of values of the corresponding
types, in the order in which they are defined in the nested specification.

When a nested specification with a return clause return x when y is executed,
the computation will return the value of the stream x at the first time y becomes
True, or the last value of x if y never holds in the execution. As a consequence, if
y becomes True in the middle of an execution, the monitor does not have to run
until the end to compute a value and can anticipate the result. This opens the
door to evaluate the nested specification incrementally and return the outcome
as soon as the outcome is definitive. If the specification contains no input stream,
then it is executed until the return stream becomes True.

Example 2. Consider the following specification, which calculates whether input
numeric streams p and q have crossed in the last 50 instants. We define a topmost
specification as follows:

1 use theory Lola
2 use innerspec crossspec

3 input Double p
4 input Double q

5 output [Double] last50 <Stream Double str> = let
6 prev = take 49 (last50 str[-1|[]])
7 in str[now] ++ prev

8 output Bool haveCrossed = let
9 ps = last50 p
10 qs = last50 q
11 in runSpec (crossspec ps[now] qs[now])

The output stream haveCrossed invokes the nested specification crossspec with
the lists of the last 50 events of p and q as inputs. We use the auxiliary Haskell



function take to keep the first 49 elements of the previous list in the variable
prev, to which we append the corresponding new value.

The inner specification uses the Haskell function signum –which returns −1,
0, or 1, indicating the sign of the argument– to check that the sign of the differ-
ence is maintained throughout the entire subtrace:

1 innerspec Bool crossspec

2 input Double p
3 input Double q
4 output Bool cross =
5 signum (p[now] - q[now]) /== signum (p[-1|p[now]] - q[-1|q[now]])

6 return cross when cross

Note that the inner monitor returns as soon as the signals are detected to cross.

3 Implicit Assumptions and Silent Mission Failures

Temporal task planning using reactive synthesis requires a discrete description
of the goal (and the world in which the system will operate). Creating discrete
domains for complex continuous enivironments requires introducing assumptions
regarding the relation between the discrete abstraction and the intention in the
real world that typically includes continuous variables. Thus, the objective in the
real world can be informally described as “ARW implies GRW” (where ARW rep-
resents the assumptions in the real world and GRW represents the mission goal
in the real world). Reactive synthesis solves this problem by using discrete goals
and assumptions AD → GD. The correctness of the solution is based on two ad-
ditional assumptions: “ARW implies AD” and “GD implies GRW”, in other words
that the discrete assumptions hold in the real world and that accomplishing the
discrete goals imply accomplising the mission in the real world.

We refer to ARW and the last two implications as implicit assumptions. A
silent mission failure occurs when a system fails to achieve its goals GRW but
ARW does not hold either. As a consequence the implication “ARW implies GRW”
is satisfied, making it impossible for the system user to distinguish if GRW holds
or if ARW did not hold.

3.1 Handling Assumption Violations

We show two scenarios in which we combine temporal task planning and Stream
Runtime Verification

(A) Flagging assumption violations after a mission concludes in order to detect
silent failures.



(B) Triggering recovery measures online, such as replanning or mission abortion,
immediately upon an assumption violation using quantitative streams in
specifications to facilitate plan adjustment 6.

We now discuss these separately by describing two missions.

SRV for Offline Monitoring. The first mission uses SRV for assumption
monitoring and logging. This is a search and rescue mission with a no-fly zone,
with the instruction of landing when the target is found. The monitor processes
the incoming events and monitors and logs assumption violations alongside the
associated relevant information, which can then be used offline for mission post-
hoc analysis.

In this mission we monitor two assumptions. The first assumption checks
that the UAV never enters the no-fly zone, and, if it does, measures the degree
of violation as the distance inside the no-fly zone. The second assumption ensures
that the area sensed when entering a zone covers the zone completely.

The first assumption can be easily monitored by calculating for each input
position reading, the depth inside the no-fly zone, returning Nothing if the UAV
is not within a forbidden zone.

There are several ways one could monitor the second assumption. In this
specification we monitor a stronger property that requires the attitude and po-
sition of the vehicle to be within certain bounds. Since these data measurements
may carry noise we include in the monitor specification a filtering phase that
implements a first order low-pass filter. Note that most cameras may require sev-
eral seconds to capture a high resolution image, specially on low-end hardware.
For this reason, it is necessary to monitor that the filtered attitude and position
is within the required bounds for every instant between the open_capture com-
mand and its corresponding response event, which is the time frame in which
a picture is being taken. Below we show an HLola specification that encodes
both assumptions.

6 The complete discrete event control problems and assumption used to synthesise
plans and monitors, and the data obtained from the real and simulated flights dis-
cussed in this section is available at http://mtsa.dc.uba.ar.

http://mtsa.dc.uba.ar


1 use theory Geometry2D
2 use haskell Data.Maybe
3 use haskell Data.List

4 data Attitude = Attitude {yaw ::Double, roll ::Double, pitch ::Double}
5 data Target = Target {x :: Double, y :: Double, num_wp :: Double}
6 data Position = Position {x :: Double, y :: Double, alt :: Double}
7 type Vector = (Double, Double)
8 type Position = (Double, Double)
9 type Polygon = [(Double, Double)]

10 input Attitude attitude
11 input Vector velocity
12 input Position position
13 input Double altitude
14 input Target target
15 input [Polygon] noflypolys
16 input [String] events_within

17 output Bool all_ok_capturing = capturing[now] ‘implies‘
18 (height_ok[now] && near[now] && roll_ok[now] && pitch_ok[now])

19 output Bool flying_in_safe_zones = flying_in_poly[now] === Nothing

20 output (Maybe Polygon) flying_in_poly = let
21 position_in_poly = pointInPoly filtered_pos[now]
22 in find position_in_poly noflypolys[now]

23 output (Maybe Double) depth_into_poly = let
24 mSides = funmap polygonSides flying_in_poly[now]
25 distance_from_pos = shortestDist filtered_pos[now]
26 in funmap distance_from_pos mSides
27 where
28 shortestDist x = minimum (map distancePointSegment x)
29 funmap f Nothing = Nothing
30 funmap f (Just x) = Just (f x)

31 output Bool capturing = let
32 has_capture = "capture" ‘belongsto‘ events_within[now]
33 in has_capture || open_capture [-1|False]

34 output Bool open_capture =
35 lastIsCapture open_capture[-1|False] events_within[now]
36 where
37 lastIsCapture dflt [] = dflt
38 lastIsCapture _ xs = last xs == "capture"



40 output Double f_pos_component <(Position->Double) field> = let
41 tau = 0.6
42 _this = f_pos_component field
43 in (field position[now] + tau*(2*_this[-1|0] - _this[-2|0]/2))
44 / (1 + 1.5*tau)

45 output Double filtered_x = (f_pos_component x)[now]

46 output Double filtered_y = (f_pos_component y)[now]

47 output Double filtered_alt = (f_pos_component alt)[now]

48 output Position filtered_pos = (filtered_x[now], filtered_y[now])

49 output Bool near = distance filtered_pos[now] target[now] < 1

50 output Bool height_ok = filtered_alt[now] > 0

51 output Bool roll_ok = abs (roll attitude[now]) < 0.0523

52 output Bool pitch_ok = abs (pitch attitude[now]) < 0.0523

The specification imports geometric facilities from theory Geometry2D, and Haskell
libraries Data.Maybe and Data.List, and defines custom datatypes to interpret
the data from the UAV, in lines 1–9. The input streams of this specification,
declared in lines 10–16 encompass the state of the UAV, the current target po-
sition, the no-fly zones and the onboard camera events to detect when a picture
is being captured. The output stream all_ok_capturing declared in line 17 as-
sesses that, whenever the vehicle is taking a picture, the height, roll and pitch
are acceptable and the vehicle is near the target location. The output stream
flying_in_safe_zones from line 19 reports if the UAV is flying outside the forbid-
den regions. The stream flying_in_poly in line 20 partially applies the function
pointInpoly from the theory Geometry2D to the current position to find and re-
turn the forbidden region in which the vehicle is flying, if any, using the Haskell
function find. The output stream depth_into_poly defined in line 23 takes the
minimum of the distances between the vehicle position and every side of the
forbidden region inside of which the vehicle is flying, if any.

The intermediate stream capturing from line 31 expresses whether the UAV
is taking a picture, using the auxiliary stream open_capture declared in line
34. The streams filtered_alt and filtered_pos from lines 47 and 48 represent
the location and altitude of the UAV filtered to reduce noise from the sen-
sors, a procedure that is implemented generically by the parameterized stream
filtered_pos_component in line 40. The intermediate stream near declared in line
49 takes the distance from the vehicle location to its target and checks if it is
lower than 1. Finally, the streams height_ok, roll_ok, and pitch_ok from lines
49–51 calculate that the corresponding attitude of the vehicle is within certain
predefined boundaries.

A logger will store the values of all these streams whenever all_ok_capturing
is False to detect a silent failure and allow a post-hoc analysis.



SRV for Online Monitoring and Adaptation. In the second mission we
demonstrate how SRV can be used, beyond logging, to support remediation
actions during the flight by interacting with components of the UAV controller.
We ran an ordered patrol mission (as described in [8]) of three locations with
no-fly zones.

We built a monitor that uses quantitative data to predict the violation of as-
sumptions, enabling the possibility of reacting to anticipate and avoid the faulty
behavior before it occurs. To achieve this, the HLola monitor specification en-
codes a simplified non-linear 2D model of a fixed-wing UAV and the full extent
of the waypoint guidance control algorithm of ArduPilot. Part of the input to
this monitor includes the current state of the system (position, attitude, wind)
and the list of waypoints for the current trajectory. The monitor uses this input
together with the non-linear model of the UAV and the guidance control algo-
rithms to produce, by means of simulation into the future, a prediction of the
UAV’s flight path.

We add an Extended Kalman Filter (EKF) to estimate in-flight a parame-
ter tau from the simplified UAV models, helping to diminish the error in the
predicted flight path. Other parameter identification techniques could be used
instead (e.g., least squares), but we aimed to show HLola’s ability to implement
state-of-the-art estimation algorithms.

The monitor produces an event to indicate that the monitor anticipates an
abnormal situation in the future:

– If the UAV is predicted to hit the target zone but far from its center point,
then a nearMiss event is produced.

– If the target zone is to be completely missed, an event goFailed is produced.
Our monitor is specified to hold its failure prediction for several time instants
before producing a goFailed, to allow the controller to attempt to correct the
airspeed.

– Finally, the monitor produces an event abnormalDrift when the predicted dis-
tance of the UAV to its intended location is beyond a threshold.

To utilize the output of our predictive monitors, the following three require-
ments are added to the mission plan:

(1) upon a nearMiss the UAV should reattempt to visit the location immediately,
(2) upon a goFailed the UAV should skip the location and move onto the next

location to patrol, and
(3) upon an abnormalDrift event, the UAV should abort mission and land.

We monitor two properties. The first property predicts how close to the
center of the target zone the UAV will pass, so that the UAV controller can
either abort the mission or try to correct the flight path based on the degree of
the error predicted.

The second property observes how the UAV is following the planned path by
predicting the estimated time of arrival and total flight distance. A significant
difference is likely to be due to wind conditions, which is not considered by



the plan. The monitor uses this estimated arrival time and distance to compute
the speed at which the vehicle is more likely to succeed in closely following the
trajectory, and the controller uses this information to change the speed of the
UAV accordingly.

Below we show the HLola specification that monitors both assumptions.

1 use theory Geometry2D
2 use theory SimulatedGuidance
3 use theory GuidanceTheory
4 use haskell Data.Either
5 use theory Lola
6 use innerspec simuguidance

7 type Matrix = [[Double]]

8 input NonLinearData navigation_data
9 input Vector velocity
10 input Point position
11 input Point target
12 input Vector target_dir

13 output Double intersDistance = let
14 r0 = (position[now], velocity[now])
15 r1 = (target[now], target_dir[now])
16 in intersectionDistance r0 r1

17 output Double pi_controller =
18 saturate (21 + estimated_error[now] * 0.5 + err_int[now])
19 where
20 saturate x = if x<15 then 15 else if x>30 then 30 else x

21 output Double estimated_error =
22 21 - distance estim_data[now] / time estim_data[now]

23 output (Matrix, Double, Double) kfuStream = let
24 inroll = initial_roll navigation_data[now]
25 prev_iroll = initial_roll navigation_data[-1| navigation_data[now]]
26 dt = 0.05
27 dfltM = [[0.01,0],[0,0.01]]
28 kfp = kalman_filter_predict navigation_data[now] 1 tau[-1|0.5]
29 in
30 kalman_filter_update
31 matrix_kfiltered[-1| dfltM] prev_iroll tau[-1|0.5]
32 inroll kfp dt

33 output Matrix matrix_kfiltered =
34 fst3 kfuStream[now]

35 output Double tau = let
36 thd3 kfuStream [now]



37 output ([Point2], Double, Bool, Double, Double) simulated_guidance =
38 let wp_radius_wp = get_wp_radius_wp navigation_data[now]
39 in
40 runSpec (simuguidance navigation_data[now] tau[now] 200 wp_radius_wp)
41 where
42 get_wp_radius_wp (NLD _ wp_list _ _ n_wp radius_list _ _ _ _ _) =
43 filter farEnoughWP
44 (drop n_wp (zip3 wp_list radius_list (Nothing:map Just wp_list)))
45 farEnoughWP (_, _, Nothing) = True
46 farEnoughWP (nwp, _, Just prev_wp) = norm (nwp ‘minus‘ prev_wp)>0.01

47 output [Point2] simulated_guidance_wps = let
48 fst5 simulated_guidance[now]

49 output Estimation estim_data =
50 simulate_guidance tau[now] navigation_data[now]

51 output Double err_int = if isSaturated pi_controller[-1|21] then
52 err_int [-1|0] else err_int [-1|0] + estimated_error [now] * 0.03
53 where
54 isSaturated x = x==15 || x==30

The input streams are data about the state of the vehicle at every instant
(navigation_data, velocity and position) and its current target destination
(target and target_dir).

The output stream intersDistance of line 13 estimates how far from the
target location the UAV will pass, returning −1 if the UAV is actually moving
away from the target location. The output stream pi_controller shown in line
17 is used to control the UAV’s airspeed set-point, taking a reference velocity
of 21 meters per second and an estimation of the average UAV speed along
with the predicted flight path, generated from the predicted arrival time and
flight distance, which is calculated by the stream estim_data, declared in line 49.
The main idea is that in order to correctly follow the planned path one must
satisfy a constant turn radius assumption, which (for the UAV) translates into
constant ground-speed. When the UAV has tailwind, for a constant airspeed, it
will fly at a faster ground-speed than when it experiences headwind. Controlling
the ground-speed around a fixed value (by actuating on the airspeed set-point)
helps following the desired path more accurately.

The intermediate stream kfuStream shown in line 23 implements the EKF
at every instant, and the intermediate stream simulated_guidance from line 37
simulates the UAV trajectory based on the current navigation_data, the tau
(provided by the EKF and extracted in line 35), a maximum flight time of 200
and the target path, given by the list of its waypoints.

The function simulate_guidance from the theory GuidanceTheory uses a nested
specification simuguidance to simulate the trajectory of the UAV over the current
list of waypoints, which is captured in the input stream route.



1 innerspec ([Point2], Double, Bool, Double, Double) simuguidance
2 <NonLinearData nld> <Double tau> <Double maxtime>

3 use theory GuidanceTheory
4 use theory Geometry2D
5 use theory Lola
6 use haskell Data.List.Extra
7 use innerspec simuinner

8 type Route = (Point2, Double, Maybe Point2)

9 input Route route

10 output ReachStateType reaching_state = let
11 roll = reach_roll [-1|initial_roll nld]
12 yaw = reach_yaw [-1|initial_yaw nld]
13 distance = reach_distance [-1|0]
14 time = reach_time [-1|0]
15 pos = reach_pos [-1|initial_pos nld]
16 in
17 runSpec
18 (simuinner nld tau maxtime pos yaw roll time distance route[now])

19 output Bool reached_maxtime = reached_maxtime_field reaching_state[now]
20 output Double reach_time = reach_time_field reaching_state[now]
21 output Double reach_distance = reach_distance_field reaching_state[now]
22 output Double reach_yaw = reach_yaw_field reaching_state[now]
23 output Double reach_roll = reach_roll_field reaching_state[now]
24 output Point2 reach_pos = reach_pos_field reaching_state[now]
25 output [Point2] wps =
26 snoc wps[-1| []] reach_pos[now]
27 where
28 snoc ls x = ls ++ [x]

29 output Bool has_reached = reached_maxtime [-1|False]
30 output ([Point2], Double, Bool, Double, Double) ret =
31 (wps[now], reach_roll[now], reached_maxtime[now],
32 reach_time[now], reach_distance[now])

33 return ret when has_reached

The successive values of route are the linear trajectories that the UAV is ex-
pected to go through. The monitor simuguidance will run until the route is cov-
ered or until the maxtime is exceeded. For every part of the route, simuguidance
will spin up a second level nested specification simuinner to simulate successive
small steps of the flight in a path between two waypoints.



1 innerspec ReachStateType simuinner <NonLinearData nld> <Double tau>
2 <Double maxtime> <Point2 dpos> <Double dyaw> <Double droll>
3 <Double dtime> <Double ddistance> <(Point2, Double, Maybe Point2) wps>
4 use theory GuidanceTheory
5 use theory Geometry2D

6 data ReachStateType = RST { reached_maxtime_field :: Bool,
7 reach_time_field :: Double,
8 reach_distance_field :: Double,
9 reach_yaw_field :: Double,
10 reach_roll_field :: Double,
11 reach_pos_field :: Point2}

12 const dt = 0.05
13 const g = 9.8
14 const lim_roll_cd = 65 * pi / 180
15 const limit = sin lim_roll_cd

16 const NLD navl1_d _ navl1_p _ _ _ _ gamma vel_a vel_w _ = nld
17 const (dposx, dposy) = dpos
18 const (next_wp, wp_radius, mprev_wp) = wps

19 output Double time = step_time [-1|dtime]
20 output Double step_time = time[now] + dt
21 output Double yaw = step_yaw [-1|dyaw]
22 output Double step_yaw = let
23 yaw_dot = (g * (sin (roll[now]))) / vel_a
24 in yaw[now] + dt * yaw_dot

25 output Double posx = step_posx [-1|dposx]
26 output Double step_posx =
27 posx[now] + dt * (vel_a * sin yaw[now] + (vel_w * sin gamma))
28 output Double posy = step_posy [-1| dposy]
29 output Double step_posy =
30 posy[now] + dt * (vel_a * cos yaw[now] + (vel_w * cos gamma))
31 output Point2 pos = P posx[now] posy[now]
32 output Double roll = step_roll [-1|droll]
33 output Double step_roll = let
34 vel_g = (fst.get_ground_speed vel_w vel_a gamma) yaw[now]
35 hdg = (snd.get_ground_speed vel_w vel_a gamma) yaw[now]
36 gcp = guidance_control_parameters navl1_d navl1_p next_wp
37 prev_wp[now] vel_g hdg pos[now]
38 l1 = fst3 gcp
39 k_l1 = snd3 gcp
40 eta = thd3 gcp
41 demanded_roll = (asin.max (-limit).min limit)
42 ((k_l1 * vel_g * vel_g * sin eta) / (l1 * g))
43 in
44 (dt * demanded_roll + tau * roll[now]) / (tau + dt)



43 output Double distance = step_distance [-1|ddistance]
44 output Double step_distance = let
45 step_pos = (step_posx[now], step_posy[now])
46 in distance[now] + norm (step_pos ‘minus‘ pos[now])

47 output Point2 prev_wp = maybe pos[now] Leaf mprev_wp
48 output Bool reached_maxtime = time[now] >= maxtime && maxtime > 0
49 output Bool stop_simulation = let
50 vnwp = verify_next_waypoint next_wp wp_radius prev_wp[now] pos[now]
51 in reached_maxtime[now] || vnwp /== INTRAVEL

52 output ReachStateType ret = RST reached_maxtime[now] time[now]
53 distance[now] yaw[now] roll[now] pos[now]

54 return ret when stop_simulation

Every execution of simuinner updates the UAV roll, yaw, and position, the
time consumed, and the distance reached in the simulation step. The nested
monitor simunner has no input stream and as a consequence it will execute
until stop_simulation becomes True. The monitor calculates the trajectory of
the UAV updating its position, distance traveled, roll, and yaw according to
simulation steps of 0.05 time units. The simulation stops when the maxtime is
reached, or when the UAV is no longer INTRAVEL and returns the latest state of
the UAV, along with the total time consumed and the information of whether
the maximum time was reached.

4 Empirical Evaluation

Our UAV control system (including the HLola monitors) was built for MAVLink
[2] complying aerial vehicles, and tested extensively on the ArduPilot Software-
In-The-Loop (SITL) simulator as in [9]. We have used this simulator (see [10])
to seamlessly transition from simulation to actually flying a fixed-wing vehicle
based on a Pixhawk. The controller was run on a single Raspberry Pi.

To evaluate if the UAV entered no-fly zones during its mission using offline
monitoring, we have carried out real flights using the Parrot Ar.Drone 2.0 and
an onboard mounted Raspberry Pi Zero W, which we have used to log the flight
data. The HLola monitor used a constant amount of memory of around 13.4
megabytes during the whole post-flight analysis.

The mission that uses online monitoring to predict and correct the behavior
of the UAV was simulated on the ArduPlane SITL simulator, with a Raspberry
Pi 3B+ as the simulated hardware, just like in [10]. We show the actions taken
by the monitor during the patrol mission in Fig. 2 (a). We have incremented the
simulated wind speed over time to mimic an adverse situation and trigger the
monitor, as we show in Fig. 2 (b). By doing so, the second time the UAV travels
from A to B, the predicted arrival distance error rises over 100 meters, triggering
the calculation of a new trajectory until one that guarantees the correct arrival



(a) Mission trajectory (b) Memory consumption and wind

Fig. 2: Mission trajectory and flight data

of the UAV to the location is found. After the second time C is visited, the wind
is too strong and the UAV is commanded to return to the launch point. Fig. 2
(b) also illustrates the memory consumption of the monitor, which remains prac-
tically constant as expected (see [3] for details about the memory consumption
of HLola).

Our experiments show how we can monitor assumptions for UAV missions
using HLola with negligible interference with the main navigation system, in
particular with constant memory consumption and in constant time per event,
providing support for the hypotheses that motivated the use of SRV and HLola.

5 Conclusion

We have applied the infrastructure from Runtime Verification to monitor as-
sumptions in the context of temporal task planning, both offline for post-hoc
analysis and online to enable remediation actions.

We have been able to describe the assumptions with HLola, a very expres-
sive language for Stream Runtime Verification, using multi-level specifications
to predict the behavior of the vehicle using complex estimators. We have auto-
matically synthesized the monitors that collect and process sophisticated data,
generating rich verdicts while providing strong correctness and resource con-
sumption guarantees.

We are currently working on a deeper interplay of monitoring and planning
in an architecture that allows modular and flexible definitions of widely diverse
UAV missions, reusing monitors across different tasks, and leveraging on the
formal semantics and guarantees from the field of Stream Runtime Verification
to further improve the reliability of robots running temporal plans.
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