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Abstract. Online runtime verification is a formal dynamic technique
that studies how to monitor formal specifications incrementally against
an input trace. Often, an observed prefix of a behavior is not enough
to emit a definite verdict and the monitor must wait to receive more
information. Monitorability classifies the set of properties depending on
the feasibility to obtain a verdict after a finite observation. Havelund and
Peled [20] classified LTL properties according to whether an observation
can be extended to a definite answer.

In this paper we present a framework that extends the classification of
Havelund and Peled to verdict domains that are richer than Booleans,
obtaining a monitorability setting under which some of the verdicts (but
not others) can be discarded after a sequence of observations. We study
two instances of this setting, quantitative temporal logics and partially
ordered domains for stream runtime verification, and we illustrate using
examples the different elements of the taxonomy. Finally, we also consider
how assumptions on the set of behaviors can improve monitorability, and
how imprecise observations can impair monitorability.

1 Introduction

Runtime verification (RV) is a dynamic formal technique for system reliability
that studies how events, emitted from a system under study, adhere to a given
formal specification. Runtime verification focuses on two main problems: (1) how
to generate a monitor from a given specification, and (2) algorithms that take a
monitor and process a sequence of input events produced by the system, typically
in a incremental manner, attempting to produce a definite verdict. In this paper
we use behavior to refer to the trace of the system—that is, one infinite sequence
of events that a system can produce—and observation as the finite sequence of
events that monitor receives.

Static formal verification techniques like model checking [14,28] attempt to
prove that every behavior of the system satisfies a given specification. In contrast,
in runtime verification monitors must decide based on observations. Runtime
verification sacrifices completeness to provide an applicable formal extension of
testing and debugging. See [19,26] for surveys on runtime verification and the
recent book [4].



Early specification languages studied for runtime verification were based on
temporal logics, typically LTL [21,13,6], regular expressions [32], timed regular
expressions [2], rules [3], or rewriting [30]. Since monitors only see an observation
and not a complete behavior, the semantics of temporal logic must be adapted
for finite traces. One solution is to adapt the semantics for finite traces [13] that
provide a definite answer upon the “termination” of the trace. Another solution
is to give a definite answer only if all the behaviors that extend the observation
satisfy the specification (declaring satisfaction), or if all such extensions violate
the specification (declaring violation). Otherwise, the monitor can produce a
temporary “I don’t know” verdict [6], with the hope to later refine it into a
conclusive verdict. The idea of producing an inconclusive verdict was already
introduced in the context of stream runtime verification [11] and later used in
variants of LTL for finite traces, like LTLf [12] and MLTL [29].

A basic soundness criteria states that monitors should never give a ver-
dict that can be later reverted by an extended observation [7]. However, sound
monitors can still switch from an indecisive verdict into a definite verdict. The
soundness requirement is semantic, in the sense that it is based on the semantics
of the logic itself by considering all possible traces that are compatible with the
given observation. Monitors can be formally understood as an implementation of
a computational function that maps observations into verdicts [20,33,34] that re-
spects the soundness requirement. Therefore, monitoring algorithms correspond
to an incremental execution of the monitor as a function. From this perspective
monitorability corresponds to the question of the existence of such a computable
function.

One of the first definitions of monitorability, given by Pnueli and Zaks [27],
establishes that an LTL property is monitorable after an observation u if there
is an observation u′ that extends u for which the verdict is definitely a violation
or there is an observation u′ that is an extension of u for which the verdict is a
satisfaction. There are properties that are always monitorable for violation, in
the sense that every violating behavior has a finite prefix (observation) that is
sufficient to determine the violation. For a second class of properties this witness
only exists for some behaviors, and for the rest of the properties there is never
such a witness observation (these definitions are analogous replacing violation
by satisfaction). Havelund and Peled present in [20] a complete taxonomy for
LTL, introducing the terms AFR (always finitely refutable), SFR (sometimes
finitely refutable) and NFR (never finitely refutable). Their counterparts for a
satisfaction verdict are AFS, SFS and NFS. In this paper we study extensions
of this taxonomy for more expressive (non-Boolean) verdicts.

It is useful for specification engineers to have very expressive logics to de-
fine their properties, but additional expressiveness usually comes at the price of
higher complexity in the decision problems and more inefficient algorithms. Since
the early languages used in RV were borrowed from static verification where de-
cidability is crucial, these languages only allowed Boolean verdicts. However,
runtime verification solves a simpler problem than model-checking so some re-
searchers have been extending the expressivity of RV specification languages.



Examples include logics that can quantify over the data in the events [20,5],
extensions of automata with the ability to store and compare data [9], and
quantitative semantics for temporal logics [15]. Another direction to extend the
expressivity of monitors is Stream Runtime Verification [11,31,16,18,10] that ab-
stract the data used in the monitoring algorithms in temporal logics to arbitrary
data. In this paper we extend the Havelund and Peled notions of monitorability
to the setting of richer verdicts by studying whether a subset of the possible
verdicts can be discarded after witnessing a finite trace. In [12] the monitora-
bility necessarily refers to the ability to give a conclusive verdict after a finite
observation, but the logics we consider are defined over infinite traces. In con-
trast, LTLf [12] and similar logics are interpreted over finite traces. Also, logics
that guarantee that verdicts are obtained after a finite number of steps (by the
semantics of the logic or some assumption on the input trace), like MLTL [29],
are immediately in AFS and AFR.

The standard monitoring studies monitors that are correct for any system
under observation, which is considered unknown during the generation of the
monitor. However, one can often monitor more effectively for particular systems
or under assumptions about what the system can do. For example, [36] improves
LTL monitoring using a model of the system to prune the set of possible future
observations, and [33] considers how to improve the monitoring of hyperprop-
erties using approximations of the system. Similarly, [22] illustrates properties
that are not monitorable but become monitorable if one assumes that the input
observation satisfies a given LTL formula. In practice, the events obtained from
the system may not be perfect, which can affect the monitoring. For example,
in [25] the authors study the possibility that events or event values are unknown,
so the monitor must deal with the set of possible observations, therefore emitting
sets of verdicts. In [23], the authors define the concept of trace mutations to cap-
ture divergences between observations and behaviors, and study how different
mutations affect the monitorability of a property. We present in Section 5 an
example of a system and monitoring with richer verdicts that can be monitored
under assumptions and event uncertainties, and instantiate the monitorability
landscape for the properties monitored. This paves the way for a systematic
analysis of monitoring of rich verdicts under assumptions and uncertainties.

In summary, the contributions of the paper are: (1) an extension of the
Havelund and Peled taxonomy of monitorability to richer verdicts and in par-
ticular to totally and partially ordered domains; and (2) an instantiation of the
taxonomy to quantitative temporal logics and to partially ordered domains based
on stream runtime verification.

Finally, note that our taxonomy of properties, like the one introduced by
Havelund and Peled, is based on the ability of monitors to produce verdicts.
Other taxonomies of properties exist. For example, [8] classifies properties based
on the use of the temporal operators involved.

The rest of the paper is structured as follows. Section 2 includes the prelim-
inaries. Section 3 introduces the generalization of the monitorability framework
to expressive verdicts. This is instantiated to quantitative temporal logics in



Section 4, where the set of verdicts is totally ordered, and to partially ordered
domains in Section 5. Finally, Section 6 contains some final remarks.

2 Preliminaries

We use streams (infinite sequences) to represent the behavior exhibited by a
system. A stream of type D is an infinite sequence of values of D, and we denote
the type of the streams of type D as Dω. We will usually use record types to
represent the information of different aspects of the system under study. The
type 〈p0 :: D0, . . . , pn :: Dn〉 represents a record that contains a finite number
of entries and assigns a value of type Di to every variable pi for 0 ≤ i ≤ n. For

example, s
def
= (〈p : true〉 〈p : true〉 〈p : false〉ω) ∈ 〈p :: Bool〉ω is the stream of

〈p :: Bool〉 values where p starts with two true values and remains false thereafter.

Given a record value r
def
= 〈p0 : v0, . . . , pn : vn〉 we use r(pi) to refer to vi for

0 ≤ i ≤ n. Given a stream σ ∈ Dω and a natural number i ∈ N0 we use σ(i) to
refer to the element of type D at position i in σ. Similarly, we use σi to refer
to the stream (σ(i) σ(i+ 1) . . .). For example, s(0)(p) = true, s(50)(p) = false,
and s1 = (〈p : true〉 〈p : false〉ω).

We use finite sequences to represent observations of the behavior of a pro-
gram. A sequence of type D is a finite sequence of values of D, and we denote
the type of the sequences of type D as D∗. The length of a sequence ls is the

number of elements in ls, written as |ls|. For example, l
def
= [〈p : true〉 〈p :

true〉 〈p : false〉 〈p : false〉 〈p : false〉] ∈ [〈p :: Bool〉] is the stream of assignments
of Boolean values to p, which starts with two true values and is succeeded by
three false values. We say that a sequence ls ∈ D∗ of length |ls| = n is a prefix
of a stream s ∈ Dω and write ls ≺ s if the first n elements of s coincide with the
n elements of ls. We also say that s is a continuation of ls. We say that ls ∈ D∗
is a subsequence of a stream s ∈ Dω and write ls @ s if there is an index i such
that ls ≺ si. We also say that s is an expansion of ls. For example, |l| = 5, l ≺ s
(this is, s is a continuation of ls), and obviously l @ s (this is, s is an expansion
of ls). The sequence [〈p : false〉 〈p : false〉 〈p : false〉] is also a subsequence of s,
because it is a prefix of s2.

Let AP = {p0, . . . , pn} be a finite set of atomic propositions and R
def
= 〈p0 ::

Bool, . . . , pn :: Bool〉 the record type that assigns a Boolean value to each atomic
proposition in AP. The syntax of LTL is:

ϕ ::= T
∣∣ a ∣∣ ϕ ∨ ϕ ∣∣¬ϕ ∣∣ϕ ∣∣ ϕ U ϕ

where a is an atomic proposition, ∨ and ¬ are the usual Boolean disjunction and
negation, and and U are the next and until temporal operators. The semantics
of LTL associate behaviors σ ∈ Rω with formulas as follows:

σ |= T always σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2

σ |= a iff σ(0)(a) = true σ |= ¬ϕ iff σ 6|= ϕ
σ |= ϕ iff σ1 |= ϕ
σ |= ϕ1 U ϕ2 iff for some j ≥ 0 σj |= ϕ2, and for all 0 ≤ i < j, σi |= ϕ1



Common derived operators are ϕ1 ∧ ϕ2
def
= ¬(ϕ1∨ϕ2), ϕ1Rϕ2

def
= ¬(¬ϕ1U¬ϕ2),

ϕ def
= T U ϕ and ϕ def

= ¬¬ϕ.

2.1 LTL property classification

In [20], the authors give a property classification according to the capability of a
monitor to reach a verdict witnessing a finite trace. The original definitions are
the following. For a given property ϕ:

Safety/Always Finitely Refutable (AFR). When ϕ does not hold on a be-
havior, a failed verdict can be identified after a finite prefix.

Guarantee/Always Finitely Satisfiable (AFS). When ϕ is satisfied on a
behavior, a satisfied verdict can be identified after a finite prefix.

Liveness/Never Finitely Refutable (NFR). When ϕ does not hold on a
behavior, a refutation can not be identified after a finite prefix.

Morbidity/Never Finitely Satisfiable (NFS). When ϕ is satisfied on a be-
havior, satisfaction can not be identified after a finite prefix.

The authors define two extra property classes that are not given a name:

Sometimes Finitely Refutable (SFR). For some behaviors that violate ϕ,
a refutation can be identified after a finite prefix; while for other behaviors
violating ϕ, a refutation cannot be identified with a finite prefix.

Sometimes Finitely Satisfiable (SFS). For some behaviors that satisfy ϕ,
satisfaction can be identified after a finite prefix; while for other behaviors
satisfying the property, satisfaction cannot be identified with a finite prefix.

Fig. 1 shows the landscape of property classes along with an example LTL prop-
erty for every class.

We can see, for example, thatp belongs to Guarantee and Liveness. This
property is NFR because given any finite prefix of a trace where the property
does not hold, we can construct an alternative continuation where it does hold,
simply making the next value of p be true. The property is also AFS because we
can find the first index when p becomes true and any continuation of that prefix
makes the property true.

3 A Richer View of Monitorability

In this section we generalize the framework of Havelund and Peled in [20] to
consider richer verdicts (beyond Boolean values). Similar to the approach in [20],
we base our work on the ability of a monitor to reach a verdict witnessing a finite
observation. Note that the finite satisfiability of a property means that with a
finite observation we can dismiss the value false as the result, and the finite
refutability of a property means that with a finite observation we can dismiss
the value true as the result. The main intuition is to focus on the dismissibility
of verdict values.
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Fig. 1. Landscape of property classes according to [20].

Consider a formalism whose semantics J·K is defined over behaviors of type
Iω and that assigns verdicts of type D. For example, classical LTL is defined
over records of Boolean values and its semantics assigns Boolean verdicts.

We say a value v ∈ D is Finitely Dismissible for a formula ϕ and a behavior
s ∈ Iω if there is an observation ls ∈ I∗, ls ≺ s such that for all s′ continuation
of ls, JϕK(s′) 6= v. We say a value v ∈ D is Finitely Admissible for a formula ϕ
and a behavior s ∈ Iω if there is an observation ls ∈ I∗, ls ≺ s such that for all
possible continuations s′ ∈ Iω (this is, all the streams s′ ∈ Iω such that ls ≺ s′),
JϕK(s′) = v. Notice that the only value that can be Finitely Admissible for ϕ
over s is JϕK(s).

We say that a set of values D′ ⊆ D is None Finitely Dismissible (NFD) for a
formula ϕ and a behavior s if every v ∈ D′ is not Finitely Dismissible for ϕ and
s. Analogously, we say that a set of values D′ ⊂ D is All Finitely Dismissible
(AFD) for a formula ϕ and a behavior s if every v ∈ D′ is Finitely Dismissible
for ϕ and s. Notice that the empty set is both NFD and AFD. We say that a set
of values D′ ⊂ D is Some Finitely Dismissible (SFD) if it is not AFD nor NFD.

We can extend the definition of Finite Admissibility to sets of values but
they are of little use in our work.

Lemma 1. If v is Finitely Admissible for a formula ϕ and a behavior s then
D \ {v} is AFD for ϕ and s.

Proof. Since v is Finitely Admissible for ϕ and s, there is a finite sequence ls ≺ s
such that for every continuation s′ of ls, JϕK(s) = v. We can therefore dismiss
any value in D \ {v} with the finite prefix ls. ut

The converse holds for finite domains.



Lemma 2. If D \ {v} is AFD for a formula ϕ and a behavior s and D is finite,
then v is Finitely Admissible for ϕ and s.

Proof. There is an index for every element v′ in D \ {v} that indicates the
shortest length of the finite prefix after which v′ can be dismissed for ϕ over s.
After a prefix of the maximum length of those indexes (which are finite), we will
have dismissed every v′ 6= v in D, and as a consequence the semantics of any
continuation over ϕ is v. ut

However, if D is infinite, Lemma 2 does not hold.

Lemma 3. If D\{v} is AFD for a formula ϕ and a behavior s and D is infinite,
then it is not necessarily the case that v is Finitely Admissible for ϕ and s.

Proof. Let there be a property ϕ that assigns the maximum value of the field p
(of type N) in the behavior if it exists, and ∞ otherwise. The verdict is of type

N ∪ {∞} and for the behavior s
def
= (〈p : 1〉 〈p : 2〉 〈p : 3〉 . . .), the semantics

of ϕ is JϕK(s) = ∞, any natural number is finitely dismissible and yet ∞ is
not finitely admissible: we can simply repeat the last value of a prefix forever,
creating a continuation whose semantics over ϕ is a natural number. ut

We will show two more (counter) examples for bounded, dense verdict domains
in Sections 4.2 and 4.3.

4 Boolean and Quantitative Totally Ordered Domains

In this section we generalize the classification of Havelund and Peled to totally
ordered sets, according to the dismissibility of values with respect to the result.
Note that this is the same criterion as in the original definitions.

4.1 Property classes

If the type D of the verdicts of a formalism is a totally ordered set equipped
with an order relation (D,≤), we can classify the properties according to their
value-dismissibility as follows. Let v = JϕK(σ) be the semantics of the property
ϕ for behavior σ. We use v< for the set of values lower than v and and v> the

set of values greater than v, that is v<
def
= {v′|v′ < v} and v>

def
= {v′|v′ > v}.

We say a property is AFD> if the set of values greater than its verdict for any
behavior is AFD. We define AFD<, NFD> and NFD< analogously. A property
is SFD> if for some executions, some values greater than its verdict are finitely
dismissible while other are not. The definition of SFD< is analogous. With these
definitions we can redefine the property classes for rich, totally ordered domains
as follows:

Safety/AFD>. We say that a property is a Safety property if the set v> is
All Finitely Dismissible for any behavior σ (this is, the monitor can dismiss
every value greater than the result with a prefix). In other words, if you set
a maximum tolerable threshold t and the result is below the threshold, you
will know it after a finite prefix.
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Fig. 2. Landscape of property classes for totally ordered domains

Guarantee/AFD<. We say that a property is a Guarantee property if the set
v< is All Finitely Dismissible for any behavior σ (this is, the monitor can
dismiss every value lower than the result with a prefix). In other words, if
you set a minimum score t and the result is higher than it, you will know it
with a finite prefix.

Liveness/NFD>. We say a property is a Liveness property if the set v> is
None Finitely Dismissible for any behavior σ (this is, the monitor can never
dismiss any value greater than the result processing any prefix). In other
words, if you set a maximum tolerable threshold t and the result is below it,
you will not know it with a finite prefix.

Morbidity/NFD<. We say a property is a Morbidity property if the set v< is
None Finitely Dismissible for any behavior σ (this is, the monitor can never
dismiss any value lower than the result with a prefix). In other words, if you
set a minimum score t and the result is higher than it, you will not know it
with a finite prefix.

We define two additional sets of properties:

SFD>. In some traces the monitor can dismiss some values higher than the
result with a prefix, but not others.

SFD<. In some traces, the monitor can dismiss some values lower than the
result, but not others.

Fig. 2 shows the landscape of property classes for rich, totally ordered domains.
Note that the definitions of Safety and Liveness are incompatible for verdict
domains with more than one element, and so are the definitions of Guarantee
and Morbidity, which means that a property cannot be both a Safety and a



Liveness property, nor can it be both a Guarantee and a Morbidity property.
However, it is possible that a property belongs to two classes, and also that a
property does not belong to any of the classes described above.

We see that our definitions maintain the classification of the original prop-
erties presented in [20] if we consider the Boolean domain with the usual order
relation false < true. Recall that according to our definitions, a Safety property
is one such that a monitor can always dismiss the values greater than the result
with a finite prefix. This is equivalent to say, in the Boolean ordered set, that
if the result is false then a monitor can always dismiss the set {true} with a
prefix. Since the domain is finite, Lemma 2 implies that the value false is always
Finitely Admissible, and thus, a failed verdict can be identified after a finite
prefix. A similar analysis can be made for the rest of the classes.

In the following sections we will give a witness for every class and sensible
multiclass for different formalisms and domains.

4.2 Quantitative LTL

In [15] the authors define quantitative semantics for LTL, which generalize the
semantics from Boolean to a richer type. Input streams are streams of real num-
bers in the range [0, 1]. The syntax is the same as for classic LTL. The semantics
is given recursively over the terms and assigns a value in the range [0, 1] for every
term with respect to a behavior that assigns a real number in the range [0, 1] to

every proposition, this is, in QLTL, R
def
= 〈p0 :: R[0,1], . . . , pn :: R[0,1]〉.

JT K(σ)
def
= 1 Jϕ ∨ ψK(σ)

def
= JϕK(σ) t JψK(σ)

JaK(σ)
def
= σ(0)(a) J¬ϕK(σ)

def
= 1− JϕK(σ)

JϕK(σ)
def
= JϕK(σ1)

Jϕ U ψK(σ)
def
= supi≥0(JϕK(σ0) u · · · u JϕK(σi−1) u JψK(σi))

Where x u y def
= min(x, y) and x t y def

= max(x, y).
Following the syntax of the derived operators, their semantics in QLTL are

Jϕ ∧ ψK(σ)
def
= JϕK(σ) u JψK(σ), JϕK(σ)

def
= supi≥0JϕK(σi), and

JϕK(σ)
def
= inf i≥0JϕK(σi).

Since the generalization of the property classes to quantitative values pre-
sented in Section 4.1 is consistent with the generalization of the semantics of LTL
to quantitative values in QLTL, the formulae presented in Section 2.1 belong to
the same classes.

Lemma 4. The following hold:
– The property p belongs to Guarantee and Liveness,
– the property p belongs to Safety and Morbidity,
– the property p belongs to Safety and Guarantee,
– the property p belongs to Morbidity and Liveness,
– the property p ∧q only belongs to Guarantee,



– the property p ∨q only belongs to Liveness,
– the property p ∨q only belongs to Safety, and
– the property p ∧q only belongs to Morbidity.

Proof. We show the proof that p belongs to Guarantee and Liveness. p
is NFD> because given any finite prefix of a trace where the supremum is v 6= 1,
we can construct an alternative continuation where it is greater than v simply
making the next value 1. If the verdict is v = 1, the complement set would be
trivially NFD. It is AFD< because the verdict v is the minimum element greater
or equal than the infinite values of p throughout the trace. Let v′ < v. If no
element in (v′, v] occur in the trace, then the result would be v′. Otherwise, the
occurrence of such value would dismiss v′ as a possible result. ut

The verdict of a QLTL property is a real number in the range [0, 1], i.e. an
infinite set, and thus it is subject to the case where the set of values different
from the result is AFD but the result itself is not Finitely Admissible.

Lemma 5. There is a QLTL property ϕ and a behavior s such that v = JϕK(s)
is not Finitely Admissible, but [0, 1] \ {v} is AFD.

Proof. Consider the property (p ∧ q) and a behavior s such that, at every

instant i, the value of q is 1
2 and the value of p is

∑i
n=0

1
4×2n , this is, p produces

values closer to 1
2 , but never 1

2 exactly. Then, in QLTL, JpK(s) = 1
2 , the

set [0, 12 ) ∪ ( 1
2 , 1] is All Finitely Dismissible, but the result 1

2 is not Finitely
Admissible. ut

4.3 Discounting in LTL

The temporal logic DiscLTL[D] generalizes LTL by adding discounting temporal
operators [1]. According to the authors, the logic is in fact a family of logics,
each parameterized by a set D of discounting functions. A function η : N→ [0, 1]
is a discounting function if limi→∞ η(i) = 0, and η is strictly decreasing. Input
streams are Boolean, as in classic LTL, but verdicts are real numbers in the
range [0, 1].

For a given a set of discounting functions D, the logic DiscLTL[D] adds to
LTL the operator ϕ Uη ϕ. The semantics of this logic is given recursively over
the terms and assigns a value in the range [0, 1] for every term with respect to a
behavior, assigning 0 to an input value of false and 1 to an input value of true.

JT K(σ)
def
= 1 Jϕ ∨ ψK(σ)

def
= max{JϕK(σ), JψK(σ)}

JaK(σ)
def
=

{
1 if σ(0)(a) = true

0 otherwise
J¬ϕK(σ)

def
= 1− JϕK(σ)

JϕK(σ)
def
= JϕK(σ1)

Jϕ U ψK(σ)
def
= sup

i≥0
{min{JψK(σi), min

0≤j<i
{JϕK(σj)}}}

Jϕ Uη ψK(σ)
def
= sup

i≥0
{min{η(i)JψK(σi), min

0≤j<i
{η(j)JϕK(σj)}}}



Property classification. The properties in Section 4.2 belong to the same
categories, which is reasonable because they do not use discounting functions.
For the same reason, and since the observations are Boolean values, the possible
values are {0, 1} and thus the semantics and the property classes coincide with
those of classic LTL.

Lemma 6. Properties of the form ϕ Uη ψ belong to Safety and Guarantee.

Proof. Let v = sup
i≥0
{min{η(i)JψK(σ(i)), min

0≤j<i
{η(j)JϕK(σ(j))}}} for a trace σ.

Let v′ ∈ (v, 1] (if the set (v, 1] is empty, it can be trivially dimissed). Since
both JψK and JϕK are in the range [0, 1] at any index, then there is an index
k such that η(k) < v′. After index k and since no value greater than v′ ever
happened (it would be greater than the verdict and thus the supremum), v′ can
be dismissed as a verdict.

Let v′ ∈ [0, v) (if the set [0, v) is empty, it can be trivially dimissed). Following
the same reasoning, there is an index k after which η(k) < v. At index k, v is
guaranteed to be the result. ut

DiscLTL[D] provides us with another example where the set of non-verdicts
is All Finitely Dismissible but the correct result is not Finitely Admissible.

Lemma 7. There is a DiscLTL[D] property ϕ and a behavior s such that v =
JϕK(s) is not Finitely Admissible, but [0, 1] \ {v} is AFD.

Proof. Consider a behavior s such that p is always false, and the DiscLTL[D]

property ϕ =ηp(s). The temporal operator η is defined as ηϕ
def
= T Uη ϕ.

From the semantics of U and T , we see that

JϕK(s) = sup
i≥0
{min{η(i).σ(i)(p), min

0≤j<i
{η(j).1)}}}

= sup
i≥0
{min{η(i).0, min

0≤j<i
{η(j))}}} = sup

i≥0
{ min
0≤j<i

{η(j))}}}

Then, JϕK(s) = 0, the set (0, 1] is All Finitely Dismissible, but the result 0 is not
Finitely Admissible. ut

5 Towards Partially Ordered Domains

In this section we generalize the property classes definitions presented so far to
partially ordered domains. We also introduce the notions of assumptions (via
gray box monitoring) and imprecise observability to capture different relations
between behaviors and observations, and we see how these notions impact in
property classification in a concrete example.



5.1 Property Classes for Partially Ordered Domains

We first generalize the definitions of the property classes presented in Section 4.1.
If the type of the verdicts of a formalism is a partially ordered set, we still classify
the properties according to their value-dismissibility. Let v = JϕK(σ), v� the set

of values in D not greater or equal than v and v� the set of values in D not

lower or equal than v, that is v�
def
= {v′|v′ � v} and v�

def
= {v′|v′ � v}. We

now redefine the property classes for rich, partially ordered domains:

Safety/AFD�. We say a property is a Safety property if the set v� is All

Finitely Dismissible for any behavior σ (this is, the monitor can dismiss
every value not lower or equal than the result with a prefix).

Guarantee/AFD�. We say a property is a Guarantee property if the set v� is

All Finitely Dismissible for any behavior σ (this is, the monitor can dismiss
every value not greater than the result with a prefix).

Liveness/NFD�. We say a property is a Liveness property if the set v� is

None Finitely Dismissible for any behavior σ (this is, the monitor can never
dismiss any value not lower or equal than the result with a prefix).

Morbidity/NFD�. We say a property is a Morbidity property if the set v� is

None Finitely Dismissible for any behavior σ (this is, the monitor can never
dismiss any value not greater or equal than the result with a prefix).

Again, we also define two additional sets of properties:

SFD�. In some traces the monitor can dismiss some values not lower or equal

than the result with a prefix, but not others.
SFD�. In some traces, the monitor can dismiss some values not greater or equal

than the result, but not others.

It is easy to see that for totally ordered domains the set of values not greater or
equal than a value is equal to the set of values lower than it, hence these new
definitions simply extend the classifications presented in Section 4.1 to partially
ordered sets. The landscape of the new property classification is the same as the
one in Fig. 2, but with the subscripts > replaced by � and the subscripts <
replaced by �.

5.2 Gray Box Monitoring (Assumptions)

So far we have considered that any stream of states is a possible behavior of the
system, following a black box approach in which the monitor has no information
about the conduct of the system. However, trace analysis for value dismissibility
must only take into account plausible behaviors of the system under scrutiny and
thus we can use assumptions to limit the set of behaviors contemplated. We call
this a gray box approach. An assumption, as defined in [22], is a set of behaviors
that contains the traces that comply with the assumption. Assumptions can



make properties fit into the categories presented in the previous section that
would otherwise be uncategorizable.

For example, we saw in Section 2.1 that the LTL property p ∨q only
belongs to the Liveness property class. However, under the assumption that
(p∨q), the property becomes a tautology and thus, it is trivially both a Safety
and Guarantee property. The same LTL property p ∨q becomes a Safety
property under the assumption that once q becomes false, it will remain false
forever, i.e., (¬q → ¬q).

Recall that a value v is finitely dismissible (resp. admissible) if the semantics
of a property for every continuation of an observation is different from (resp.
equal to) v. When we use assumptions, we only need to consider the continuations
of the observation ls that intersect the assumption A: {s′ ∈ Iω ∩A|ls ≺ s′}.

5.3 Imprecise Observations

Sometimes observations are imperfect, in the sense that some parts of the ob-
servation are missing. In practice, this could be due to technical impossibility,
bad instrumentation, privacy concerns, faulty communication, or because the
monitor is incorporated to an already running system. Up to this point we have
considered observations to be a prefix of the behavior, but in this section we gen-
eralize the relationship between observations and behaviors via an abstraction
function obs, which indicates the different ways a behavior can be observed.

The observation function is a representation about how a behavior can be
perceived by the monitor. The choice of the observation function has an impact
on property classification. For example, we saw in Section 2.1 that the LTL prop-
erty p is a Safety and Guarantee property, but it becomes a Liveness and
Morbidity property under loss or corruption of events, stuttering, or incorrect
event order arrival.

In the example shown in Section 5.4 below, our obs function captures the
error (mutation in the terminology of [23]) of losing a prefix of the behavior,
as a way to represent the scenario in which we start to monitor a system that
is already running and thus the initial state is unknown. We also show a set of
obs functions that implement a controlled corruption mutation in which events
of a certain kind are replaced by a no-value event, representing the situation in
which the system under analysis is not properly instrumented or privacy concerns
prevent the monitor from detecting specific events, and thus some events are
unobservable.

5.4 Example: Resource Sharing

This example illustrates that if assumptions are present, sometimes it is possible
to effectively monitor liveness and safety properties. The monitors considered in
this example try to compute a verdict value at every time instant, instead of a
single verdict corresponding to the valuation of a formula at the initial position
for the input trace observed. We model these streams of valuations in stream



runtime verification [31] where the output of the verdict stream provides the
sequence of verdict values for each time instant.

In the scenarios presented so far, the monitor gains information about the
behavior by incrementally observing a prefix of the behavior. That is, the monitor
observes the set of finite prefixes of a trace, which acts as the abstraction function
of a behavior. In other words, the observations of the monitor is computed from

a behavior s as obs≺(s)
def
= {ls | ls ≺ s}. However, property classification can

also be applied to scenarios where the beginning of a trace is unknown, that is,
where observations miss a prefix. We can represent this case, considering that
observations ls ∈ D∗ are not prefixes of behaviors s ∈ Dω but subsequences
of them. The behavior abstraction we consider in this situation is the function
that returns each of the (finite) subsequences of a stream, this is, obs@(s)

def
=

{ls | ls @ s}.
Consider for example a monitor that observes the lock/free operations of

semaphores of a concurrent program. Our task is to study a monitor that pro-
duces a verdict indicating, at every point in time and for every resource, which
process is the holder of the lock (if any). We start by introducing some interme-
diate definitions and properties before we describe the monitor.

The input stream e ∈ EventTω indicates the successive events that take place
during the execution of the concurrent program. In [17] the authors show how
to represent event-based systems using a synchronous language. As proposed in
that work, we use a special constant nop to represent the absence of an event in
an instant. We assume that at most one event can happen at every instant. Let
ProcessT be the set of processes in the system, and let ResourceT be the set of
resources. A process can lock or free a resource.

The output (verdict) stream acquired ∈ AcquiredTω is calculated from e and
computes which process is holding which resource at every instant keeping a map
that assigns a process to a resource. Formally, the types EventT and AcquiredT
are defined as:

EventT
def
= {nop} ∪ (ProcessT× ResourceT× {lock, free})

AcquiredT
def
= ResourceT 7→ ProcessT

A nop event represents that no event happened in an instant. A (p, r, o) event
indicates that process p has performed operation o over resource r. The resources
that are not a key of the map in AcquiredT are unlocked, and we define maps as
sets of key-value pairs with at most one value associated with a key.

We define a partial order relation between maps: for two maps m and m′,

we say that m ≤ m′ iff every key-value pair in m is in m′. Formally, m ≤ m′ def
=

∀(k, v) ∈ m, (k, v) ∈ m′. For example, the empty map ∅ is lower or equal than
any map. The maps m0 = {(0, 10)} and m1 = {(1, 20)} are not comparable
(i.e., m0 � m1 and m0 � m1) but they have a supremum which is the map

m2
def
= {(0, 10), (1, 20)} (this is, m0 ≤ m2, m1 ≤ m2 and also for every other m′2

such that m0 ≤ m′2 and m1 ≤ m′2, then m2 ≤ m′2). On the other hand, the maps
{(0, 10)} and {(0, 20)} are not comparable and they do not have a supremum.



By observing lock events the monitor can dismiss some values that are not
lower than the verdict, and by observing free events the monitor can dismiss
some values that are not greater than the verdict. We will see why in Lemma 8.

We classify the property of resource ownership using gray box monitoring and
with respect to system assumptions. We first define two possible assumptions
about the system:

willFree
def
= ((p, r, lock)→(p, r, free))

willLock
def
= (r /∈ keys(acquired)→( , r, lock))

The assumption willFree limits the traces to those in which whenever a process
locks a resource, then at some point in the future the process will free the
resource. Similarly, willLock restricts to traces in which whenever a resource
is available, some process will eventually lock it.

Let us also consider two functions that override events.

noLock(e)
def
=

{
nop if e = ( , , lock)

e otherwise.
noFree(e)

def
=

{
nop if e = ( , , free)

e otherwise.

The function noLock overrides lock events with nop events, while the function
noFree overrides free events with nop events.

We can use the functions noLock and noFree in the observability abstraction
obs to represent the inability of the monitor to perceive lock or free events. We
define three functions that abstract behavior to observations using mapS to map
a function over a set of observations and mapL to map a function over a finite
sequence of events:

obsnoLock(s)
def
= mapS (mapL noLock) (obs@(s))

obsnoFree(s)
def
= mapS (mapL noFree) (obs@(s))

obsblind(s)
def
= mapS (mapL (noLock ◦ noFree)) (obs@(s))

An observation of a behavior using obsnoLock is a finite subsequence of the behav-
ior where all the lock events have been replaced by nop. Analogously, obsnoFree
represents the inability of the monitor to perceive free events, and obsblind rep-
resents the inability of the monitor to perceive both lock and free events.

Lemma 8. The property acquired can belong to any class depending on the as-
sumptions of the system and on the events the monitor can actually perceive.

Proof. We sketch here the proof that acquired is a Guarantee property under
the assumption willFree with observation function obs@. Let m be the map at
the beginning of the monitoring, and let m′ � m. This means that there is a
(r, p) ∈ m which is not in m′. In other words, there is a resource r which has been
acquired by a process p and has not yet been freed. Due to the assumption, the
process p will eventually free r, conveying the information that (r, p) was part
of the initial map and at that point the monitor can dismiss m′ as a candidate.
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Fig. 3. Classifications of acquired with respect to observability and assumptions

We will see that the property is SFD� under the assumption willFree. Let

m be the map at the beginning of the monitoring, and let m′ � m. This means
that there is a (r, p) ∈ m′ which is not in m. If the monitor witnesses the lock
of r, it can dismiss m′, but it cannot dismiss maps m′ � m that contain as keys
resources that are not locked after the monitoring starts. ut

We explain now the classification of the property acquired based on value-
dismissibilty with respect to obs and system assumptions (see Fig. 3).
– acquired is a Guarantee property under the assumption willFree. Let m be
the map at the beginning of the monitoring, and let m′ � m. This means that
there is a (r, p) ∈ m which is not in m′. In other words, there is a resource
r which has been acquired by a process p and not yet released. Due to the
assumption, the process p will eventually release r, conveying the information
that (r, p) was part of the initial map and at that point the monitor can dismiss
m′ as a candidate. The property is SFD� under the assumption willFree: let m

be the map at the beginning of the monitoring, and let m′ � m. This means
that there is a (r, p) ∈ m′ which is not in m. If the monitor witnesses the lock
of r, it can dismiss m′, but it cannot dismiss maps m′ � m that contain as keys
resources that are not locked after the monitoring starts.
– acquired is a Safety property under the assumption willLock. The proof is
analogous to the previous one. Let m be the map at the beginning of the moni-
toring, and let m′ � m. This means that there is a (r, p) ∈ m′ which is not in m.
Due to the assumption, some process will eventually lock r, conveying the infor-
mation that (r, p) was not part of the initial map and at that point the monitor
can dismiss m′ as a candidate. We will see that the property is SFD� under the

assumption willLock. Let m be the map at the beginning of the monitoring, and



let m′ � m. This means that there is a resource r locked in m which is not so
in m′. If the monitor witnesses the release of r it can dismiss m′, but it cannot
dismiss maps m′ � m that contain as keys resources that were locked before
monitoring started and are not released after that.
– acquired is in both a Safety and Guarantee property if both assumptions
hold, but it does not belong to any of the classes if there are no assumptions
regarding lock behavior. The reasoning follows from previous classifications.
– If the observability function is obsnoFree and thus the monitor cannot detect
free events, it cannot dismiss values not greater or equal than the result and
belongs to the class Morbidity. Let m be the map at the beginning of the
monitoring, and let m′ � m. This means that there is a resource r locked in
m which is not so in m′. Since the monitor cannot witness the release of r, it
cannot dismiss m′. The property is SFD�: let m be the map at the beginning of

the monitoring, and let m′ � m. There exists an (r, p) ∈ m′ which is not in m.
If the monitor witnesses the lock of r it can dismiss m′, but it cannot dismiss
maps m′ � m with resources that are not locked after the monitoring starts.
– If the observability function is obsnoLock the property belongs to the class
Liveness. Let m be the map at the beginning of the monitoring, and let m′ � m.
This means that there is a (r, p) ∈ m′ which is not in m. Since the monitor cannot
witness the lock of r, it cannot dismiss m′. The property is SFD�: let m be the

map at the beginning of the monitoring, and let m′ � m. This means that there
is a resource r locked in m which is not so in m′. If the monitor witnesses the
release of r it can dismiss m′, but it cannot dismiss maps m′ � m with resources
that were locked before monitoring started and are not released after that.
– If the observability function is obsblind and thus the monitor can detect neither
lock nor free events, it cannot dismiss any map and belongs to both Morbidity
and Liveness. This follows from the reasoning of the previous items.
– acquired is a Liveness and Guarantee property under the assumption willFree
with the observability function obsnoLock because obsnoLock makes the property
a Liveness property, and the assumption makes it a Guarantee property.
– acquired is Safety and Morbidity under the assumption willLock if the ob-
servability function is obsnoFree because obsnoFree makes the property a Mor-
bidity property, and the assumption makes it a Safety property.

6 Conclusion

In this paper we have presented a generalization of the classification of Havelund
and Peled [20] to expressive verdicts. We have introduced general definitions for
admissibility and dismissibility of verdicts and instantianted these to totally or-
dered and partially ordered domains. Then we have illustrated the taxonomy
to quantitative logics like quantitative LTL and discounting LTL. Future work
includes studying other quantitative logics like Counting LTL [24], where the se-
mantics distinguish the steps necessary until satisfactions, and Robust LTL [35].
We also plan to extend our framework to general verdicts in the setting of stream
runtime verification.
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