
Springer Nature 2021 LATEX template

General Monitorability of Totally Ordered Verdict Domains

Felipe Gorostiaga1,2* and César Sánchez1*

1IMDEA Software Institute, Madrid, Spain.
2CIFASIS, Rosario, Argentina.

*Corresponding author(s). E-mail(s): felipe.gorostiaga@imdea.org;
cesar.sanchez@imdea.org;

Abstract

Online runtime verification is a formal dynamic technique that studies how to monitor formal
specifications incrementally against an input trace. Often, an observed prefix of a behavior is
not enough to emit a definite verdict and the monitor must wait to receive more information
from the execution of the observed system. Monitorability classifies the set of properties depend-
ing on the feasibility to obtain a verdict after a finite observation. Havelund and Peled [1]
classified LTL properties according to whether an observation can be extended to a definite answer.
In this paper we present a framework that extends the classification of Havelund and Peled to verdict
domains that are richer than Booleans, obtaining a monitorability setting under which some of the ver-
dicts (but not others) can be discarded after a sequence of observations. We study the instance of this
setting to quantitative temporal logics and we illustrate using examples the different elements of the
taxonomy. Finally, we also consider how assumptions on the set of behaviors can affect monitorability.

1 Introduction

Runtime verification (RV) is a dynamic formal
technique for system reliability that studies how
a sequence of events—emitted dynamically from
the system under study—adhere to a given for-
mal specification. Runtime verification focuses on
two main problems: (1) how to generate a moni-
tor from a given specification, and (2) algorithms
that take a monitor and process a sequence of
input events produced by the system, typically in
a incremental manner, attempting to produce a
definite verdict. In this paper we use event for
an individual piece of information collected at a
given instant from the system under observation,
observation to refer to a finite sequence of events
that the monitor receives, and behavior for each
of the infinite sequences of events that temporal

properties can describe (and systems can produce
if executed ad-infinitum).

Static formal verification techniques like model
checking [2, 3] attempt to prove that every behav-
ior of the system satisfies a given specification.
In contrast, in runtime verification monitors must
decide based on observations. Runtime verifica-
tion sacrifices completeness to provide an appli-
cable formal extension of testing and debugging.
See [4, 5] for surveys on runtime verification and
the recent book [6].

Early specification languages studied for run-
time verification were based on temporal logics,
typically LTL [7–9], regular expressions [10], timed
regular expressions [11], rules [12], or rewrit-
ing [13]. Since monitors only see an observation
and not a complete behavior, the semantics of
temporal logic must be adapted for finite traces.
One solution is to adapt the semantics for finite

1

Springer Nature 2021 LATEX template

2 General Monitorability of Totally Ordered Verdict Domains

traces [8] that provide a definite answer upon
the “termination” of the trace. Another solu-
tion is to give a definite answer only if all the
behaviors that extend the observation satisfy the
specification (declaring satisfaction), or if all such
extensions violate the specification (declaring vio-
lation). Otherwise, the monitor can produce a
temporary “I don’t know” verdict [9], with the
hope to later refine it into a conclusive verdict.
The idea of producing an inconclusive verdict
was already introduced in the context of stream
runtime verification [14] and later used in vari-
ants of LTL for finite traces, like LTLf [15] and
MLTL [16].

A basic soundness criteria for monitorability
states that monitors should never give a verdict
that can be later reverted by an extended obser-
vation [17]. However, sound monitors can still
switch from an indecisive verdict into a definite
verdict. The soundness requirement is semantic
in the sense that it is based on the seman-
tics of the logic itself by considering all possible
traces that are compatible with the given observa-
tion. Monitors can be formally understood as an
implementation of a computational function that
maps observations into verdicts [1, 18, 19] that
respects the soundness requirement. Therefore,
monitoring algorithms correspond to an incremen-
tal execution of the monitor as a function. From
this perspective monitorability corresponds to the
question of the existence of such a computable
function.

One of the first definitions of monitorability,
given by Pnueli and Zaks [20], establishes that an
LTL property is monitorable after an observation
o if there is another observation u that extends
o for which the verdict is definitely a violation
or there is an observation v that is an exten-
sion of o for which the verdict is a satisfaction.
There are properties that are always monitorable
for violation in the sense that every violating
behavior has a finite prefix (observation) that is
sufficient to determine the violation. For a sec-
ond class of properties this witness only exists for
some behaviors, and for the rest of the properties
there is never such a witness observation (these
definitions are analogous replacing violation by
satisfaction). Havelund and Peled present in [1]
a complete taxonomy for LTL, introducing the

terms AFR (always finitely refutable), SFR (some-
times finitely refutable) and NFR (never finitely
refutable). Their counterparts for a satisfaction
verdict are AFS, SFS and NFS. In this paper
we study extensions of this taxonomy for more
expressive (non-Boolean) verdicts, in particular
for totally ordered domains, including numerical
domains used in quantitative temporal logics.

It is useful for specification engineers to have
very expressive logics to define their properties,
but additional expressiveness usually comes at the
price of higher complexity in the decision prob-
lems and less efficient algorithms. Since the early
languages used in RV were borrowed from static
verification where decidability is crucial, these lan-
guages only allowed Boolean verdicts. However,
runtime verification solves a simpler problem than
model-checking so some researchers have been
extending the expressivity of RV specification lan-
guages. Examples include logics that can quantify
over the data in the events [1, 21], extensions of
automata with the ability to store and compare
data [22], and quantitative semantics for tempo-
ral logics [23]. Another direction to extend the
expressivity of monitors is Stream Runtime Ver-
ification [14, 24–27] that abstract the data used
in the monitoring algorithms in temporal logics to
arbitrary data.

The work in [28] simultaneously over- and
under-approximates the verdict for a given mon-
itor as more information is received. In compar-
ison, [28] focuses on approximating the outcome,
while we focus on proving (discarding or consid-
ering) the precise verdict. Also, they deal with
omega traces of observations that are letters from
a finite alphabet, while we consider (for QLTL)
complex data that include an infinite alphabet of
observations. In [29], the authors consider model
checking for quantitative temporal logic, which
allows them to handle some notions of uncertainty.
However, do not study monitorability of which val-
ues can be discarded for classes of formulae. In [30]
they focus on quantitative safety and liveness,
attempting to provide a semantic decomposition
of properties into safety and liveness, analogous
to the one in the Boolean case [31]. In this paper
we first generalize the Havelund-Peled notions of
monitorability to the setting of richer verdicts by
studying whether a subset of the possible ver-
dicts can be discarded after witnessing a finite

Springer Nature 2021 LATEX template

General Monitorability of Totally Ordered Verdict Domains 3

trace. We borrow the terminology (safety, live-
ness, guarantee, morbidity and quaestio) from [1]
and generalize them to the quantitative (totally
ordered) setting, without an aim to preserve the
decomposition of formulas into their safety and
liveness constituents, but focusing on whether
potential verdicts can be discarded.

In [15] the monitorability necessarily refers to
the ability to give a conclusive verdict after a finite
observation because the logic considered in [15]
is a logic for finite traces. In contrast, the logics
we consider are defined over infinite traces. Also,
logics that guarantee that verdicts are obtained
after a finite number of steps (by the semantics of
the logic or some assumption on the input trace),
like MLTL [16], are immediately in AFS and AFR.

Most runtime verification works typically focus
on monitors that must be correct for any system
under observation, which is considered completely
unknown during the generation of the monitor.
That is, a sound monitor must consider all future
observations as possible. However, one can often
monitor more effectively for particular systems or
under assumptions about what the system can do.
For example, [32] improves LTL monitoring using
a model of the system to prune the set of possi-
ble future observations, and [18] considers how to
improve the monitoring of hyperproperties using
approximations of the system. Similarly, [33] illus-
trates properties that are not monitorable but
become monitorable if one assumes that the input
observation satisfies a given LTL formula. In prac-
tice, the events obtained from the system may not
be perfect in the sense that some events may be
lost, be incorrect or only received with approxi-
mate precision, which can affect the monitoring.
For example, in [34] the authors study the pos-
sibility that events or event values are unknown,
so the monitor must deal with the set of possible
observations, therefore emitting sets of verdicts.
In [35], the authors define the concept of trace
mutations to capture divergences between obser-
vations and behaviors, and study how different
mutations affect the monitorability of a prop-
erty. We present in Section 5 how assumptions
can affect the monitorability of properties with
richer verdicts, and instantiate the monitorability
landscape for the properties monitored. A system-
atic analysis of monitoring of rich verdicts under
assumptions and uncertainties is however, out of
the scope of this paper.

In summary, the contributions of the paper
are: (1) an extension of the Havelund and Peled
taxonomy of monitorability to richer verdicts and
in particular to totally ordered verdict domains;
and (2) an instantiation of the taxonomy to
quantitative temporal logics.

Our taxonomy of properties, like the one intro-
duced by Havelund and Peled, is based on the
ability of monitors to produce verdicts. Other tax-
onomies of properties exist. For example, [36] clas-
sifies properties based on the use of the temporal
operators involved.

This paper is an extended version of the con-
ference paper [26] published in NFM’22. In this
journal version we only analyze formalisms whose
verdicts are totally ordered, but provide a much
finer grain study of the classes. In particular,
Section 5 is a fully novel characterization by con-
sidering independently (1) the possible behaviors
and (2) the possible verdicts, while in [26] these
decisions were not independent. The resulting tax-
onomy is much richer and a novel contribution,
unique for quantitative domains. This is the main
contribution of this journal version. These new
notions could be extended to partially ordered ver-
dict domains, but this is out of the scope of this
paper.

The rest of the paper is structured as follows.
Section 2 includes the preliminaries. Section 3
introduces a generalization of the monitorability
framework to expressive verdicts. This is instanti-
ated to quantitative temporal logics in Section 4.
Section 5 further generalizes the framework, allow-
ing for a more granular classification of the prop-
erties. In this section we also show how assump-
tions affect the classification of properties. Finally,
Section 6 contains some final remarks.

2 Preliminaries

Sequences, Streams and Data

We represent the behaviors of a system as streams,
where a stream of type D is an infinite sequence
of values of D. We denote the type of the streams
of type D as Dω. We use record types to represent
the information of different aspects of the system
under study. The record type ⟨p0 :: D0, . . . , pn ::
Dn⟩ represents a record that contains a finite num-
ber of entries. A value of a record type consists of a
value of type Di to each variable pi, for 0 ≤ i ≤ n.

Springer Nature 2021 LATEX template

4 General Monitorability of Totally Ordered Verdict Domains

Example 1 For example,

s
def
= (⟨p : true⟩ ⟨p : true⟩ ⟨p : false⟩ω) ∈ ⟨p :: Bool⟩ω

is the stream of values of record type ⟨p :: Bool⟩ values
where p starts with two true values and remains false
thereafter.

Given a record value r
def
= ⟨p0 : v0, . . . , pn : vn⟩

we use r(pi) to refer to vi for 0 ≤ i ≤ n. Given
a stream σ ∈ Dω and a natural number i ∈ N0

we use σ(i) to refer to the element of type D at
position i in σ. Similarly, we use σi to refer to the
stream (σ(i) σ(i+1) . . .). Given a stream σ of val-
ues of record type ⟨p0 : D0, . . . , pn : Dn⟩ we abuse
notation and use σ(pi) as the stream (of type Di)
that corresponds to (σ(0)(pi), σ(1)(pi) . . .). Also,
we use σ(j)(pi) and σ(pi)(j) interchangeably.

Example 2 Let s be as in the previous example. Then,
s(0)(p) = true, s(50)(p) = false, and s1 = (⟨p :
true⟩ ⟨p : false⟩ω).

We use finite sequences to represent observa-
tions from the system under analysis. A sequence
of type D is a finite sequence of values of D, and
we denote the type of the sequences of type D as
D∗. We use ϵ for the empty sequence.

Example 3 The following

ls
def
= [⟨p : true⟩ ⟨p : true⟩ ⟨p : false⟩ ⟨p : false⟩ ⟨p : false⟩]

is the stream of assignments of Boolean values to p,
which starts with two true values and is succeeded by
three false values.

We say that a sequence ls ∈ D∗ of n elements is
a prefix of a stream s ∈ Dω and write ls ≺ s if the
first n elements of s coincide with (the n elements
of) ls. We also say that s is a continuation of ls.
We say that ls ∈ D∗ is a subsequence of a stream
s ∈ Dω and write ls ⊏ s if there is an index i such
that ls ≺ si. We also say that s is an expansion of
ls. For instance, considering ls as defined in Exam-
ple 3, ls ≺ s (that is, s is a continuation of ls), and
obviously ls ⊏ s (that is, s is an expansion of ls).
The sequence [⟨p : false⟩ ⟨p : false⟩ ⟨p : false⟩] is
also a subsequence of s, because it is a prefix of s2.

Semantics Monitors

We borrow the definition of a semantic monitor
from [37]. Consider a formalism whose semantics
J·K is defined over behaviors of type Iω and that
assigns verdicts of type D. The semantic monitor
of a specification φ in that formalism is a function

Mφ(s) = {JswK(φ) | w ∈ Iω}

The semantic monitor provides the set of possi-
ble outcomes JswK(φ) that are compatible with
the observed finite prefix s. If the set of poten-
tial verdicts D is the Boolean domain, we call the
formalism a Boolean formalism. For a Boolean for-
malism, the semantic monitor of a property given
a finite prefix of a trace will return either {true},
{false} or {true, false}. Note that a semantic moni-
tor can provide information about a property stat-
ically if invoked with input prefix ϵ. We say that
the values in D \Mφ(ϵ) are statically dismissible.

Linear Temporal Logic

Linear Temporal Logic (LTL) is a formalism
defined over records of Boolean values and whose
semantics assigns Boolean verdicts. Let AP =
{p0, . . . , pn} be a finite set of atomic propositions

and R
def
= ⟨p0 :: Bool, . . . , pn :: Bool⟩ the record

type that assigns a Boolean value to each atomic
proposition in AP. The syntax of LTL is:

φ ::= T | a | φ ∨ φ | ¬φ | φ | φ U φ

where a ∈ AP is an atomic proposition, ∨ and ¬
are the usual Boolean disjunction and negation,
and and U are the next and until temporal oper-
ators. The semantics of LTL associate behaviors
σ ∈ Rω with formulas as follows:

JT K(σ) def
= true

Jφ ∨ ψK(σ) def
= JφK(σ) ∨ JψK(σ)

JaK(σ) def
= σ(0)(a)

J¬φK(σ) def
= ¬JφK(σ)

JφK(σ) def
= JφK(σ1)

Jφ U ψK(σ) def
=

∨
i≥0

{JψK(σi) ∧
∧

0≤j<i

{JφK(σj)}}

Common derived operators are

φ1 ∧ φ2
def
= ¬(φ1 ∨ φ2), φ

def
= T U φ and

Springer Nature 2021 LATEX template

General Monitorability of Totally Ordered Verdict Domains 5

φ def
= ¬¬φ. In this paper we use a map J·K

for the semantics, as opposed to a relation |=, for
uniformity with Section 4 below.

2.1 LTL Property Classification

In [1], Havelund and Peled introduce a prop-
erty classification according to the capability of a
(semantic) monitor to return a single value wit-
nessing a finite prefix of a trace. The original
definitions are the following. Given a property φ:

• Safety, or Always Finitely Refutable (AFR):
When φ does not hold for a behavior, a
failed verdict can always be identified after a
sufficiently long finite prefix.

• Guarantee, or Always Finitely Satisfiable
(AFS): When φ is satisfied on a behavior, a
satisfied verdict can be identified after a finite
prefix.

• Liveness, or Never Finitely Refutable
(NFR): When φ does not hold on a behav-
ior, a refutation can not be identified after a
finite prefix.

• Morbidity, or Never Finitely Satisfiable
(NFS): When φ is satisfied on a behavior, sat-
isfaction can not be identified after a finite
prefix.

Havelund and Peled also define two extra
property classes that are not given a name:

• Sometimes Finitely Refutable (SFR): For
some behaviors that violate φ, a refutation
can be identified after a finite prefix; while
for other behaviors violating φ, a refutation
cannot be identified with a finite prefix.

• Sometimes Finitely Satisfiable (SFS): For
some behaviors that satisfy φ, satisfaction
can be identified after a finite prefix; while
for other behaviors satisfying the property,
satisfaction cannot be identified with a finite
prefix.

Fig. 1 shows the landscape of property classes
along with an example LTL property for every
class.

We can see, for example, that p belongs to
Guarantee and Liveness. This property is NFR
because given any finite prefix of a trace where the
property does not hold, we can construct an alter-
native continuation where it does hold, simply
making the next value of p be true. The property
is also AFS because we can find the first index

Quaestio SafetyLiveness

Guarantee

Morbidity

Quaestio SFR ∩ SFS

SFR ∩ NFS

SFR ∩ SFSNFR ∩ SFS AFR ∩ SFS

SFR ∩ AFSNFR ∩ AFS AFR ∩ AFS

NFR ∩ NFS AFR ∩ NFS

p

pp ∧q

p ∨q p ∨q

p ∧q

(p ∨p) ∧q

p

p

Fig. 1 Landscape of property classes according to [1].

when p becomes true and any continuation of that
prefix makes the property true.

One final remark is that [1] implicitly ignores
tautologies and contradictions. Strictly according
to the definitions above, contradictions are at the
same time AFR, AFS and NFS; while tautologies
are at the same time AFS, AFR and NFR. We have
made the decision to consider only monitorability
with respect to verdicts that are not statically dis-
missible, as monitoring is intrinsically the activity
of obtaining information at runtime. In this paper
we use AFR, NFR, SFR, AFS, NFS, and SFS to clas-
sify properties in any Boolean formalism (in [1]
these classes are introduced for LTL).

3 A Richer View of
Monitorability

In this section we generalize the framework of
Havelund and Peled [1] to consider richer verdicts
by considering domains other than Booleans. Sim-
ilar to the approach in [1], we base our work on
the ability of a semantic monitor to reach a verdict
after only witnessing a finite observation.

The main intuition of our approach is to focus
on the dismissibility of verdict values. The finite
satisfiability of a property means that after a finite
observation a semantic monitor can dismiss the
value false as the result, and the finite refutability
of a property means that with a finite observation
a semantic monitor can dismiss the value true as
the result.

Let us consider a formalism that assigns ver-
dicts of type D to behaviors Iω, with a semantic

Springer Nature 2021 LATEX template

6 General Monitorability of Totally Ordered Verdict Domains

assignment J·K. We say a value v ∈ D, a poten-
tial verdict, is Finitely Dismissible for a formula
φ and a behavior s ∈ Iω if there is an observa-
tion ls ∈ I∗, ls ≺ s such that v /∈ Mφ(ls), where
Mφ is the semantic monitor for φ. We say a value
v ∈ D is Finitely Admissible for a formula φ and a
behavior s ∈ Iω if there is an observation ls ∈ I∗,
ls ≺ s such that that Mφ(ls) = {v}. Note that the
only value that can be Finitely Admissible for φ
over s is JφK(s).

Recall that a special case of finite dismissibil-
ity of a value v for a property φ is when v /∈
Mφ(ϵ), that is, when v is statically dismissible.
In this paper we focus on dynamically dismiss-
ing the values that cannot be discarded statically,
and exclusively study the monitorability of ver-
dicts that are, in principle, possible outcomes of
the monitoring process. We are interested in deter-
mining whether a monitor can conclude that the
verdict is discarded after a finite observation.

Example 4 For example, consider the property φ(s) =
min
0≤i

(s(i)(p)) for an infinite sequence s of non-negative

integer values of p for which JφK(s) = 0. In this
case, the value −1 can be statically dismissed because
all values are non-negative, the value s(0)(p) + 1 is
finitely dismissible because after the first step s(0)(p)
is observed and the final verdict must be at most
s(0)(p) < s(0)(p)+1. Note that 0 is finitely admissible
because JφK(s) = 0 and after 0 is observed the verdict
is determined.

We say that a set of values D′ ⊆ D is None
Finitely Dismissible (NFD) for a formula φ and a
behavior s if every v ∈ D′ that is not statically
dismissible for φ is also not Finitely Dismissible
for φ and s. Analogously, we say that a set of val-
ues D′ ⊂ D is All Finitely Dismissible (AFD) for
a formula φ and a behavior s if every v ∈ D′ is
Finitely Dismissible for φ and s. Considering the
property from Ex. 4, the set of values in the inter-
val (s(0)(p),∞) are AFD, and the set of values
(0, JφK(s)) are NFD. Note that the empty set is
both NFD and AFD, as are the sets that contain
only statically dismissible values. We say that a
set of values D′ ⊂ D is Some Finitely Dismissible
(SFD) if it is neither AFD nor NFD. We can extend
the definition of Finite Admissibility to sets of
values but they are of little use in our work.

Proposition 1 If v is Finitely Admissible for a for-
mula φ and a behavior s then D \ {v} is AFD for φ
and s.

Proof Since v is Finitely Admissible for φ and s, there
is a finite sequence ls ≺ s such that Mφ(ls) = {v}. We
can therefore dismiss any value in D \ {v} witnessing
the finite prefix ls. □

The converse of Proposition 1 holds for finite
domains.

Proposition 2 If D \ {v} is AFD for a formula φ
and a behavior s and D is finite, then v is Finitely
Admissible for φ and s.

Proof For every element v′ in D \ {v} there is a pre-
fix lsv′ such that v′ /∈ Mφ(lsv′). Let ls be the prefix
of maximum length among those. After witnessing
ls, every element in D \ {v} is not in Mφ(ls), so
Mφ(ls) = {v}. □

However, if D is infinite, Proposition 2 does
not hold.

Proposition 3 If D\{v} is AFD for a formula φ and
a behavior s and D is infinite, then it is not necessarily
the case that v is Finitely Admissible for φ and s.

Proof Let φ be a property that assigns the maximum
value of the field p (of type N) in the behavior if it
exists, and∞ otherwise. The verdict is of type N∪{∞}
and for the behavior s

def
= (⟨p : 1⟩ ⟨p : 2⟩ ⟨p : 3⟩ . . .),

the semantics of φ is JφK(s) = ∞, any natural num-
ber is finitely dismissible and yet ∞ is not finitely
admissible: we can simply continue the observation
by repeating the last value ad-infinitum, creating a
behavior whose semantics, according to φ, is any nat-
ural number (and not ∞). □

We will later show two more counter-examples
for the converse of Proposition 1 for bounded,
dense verdict domains in Sections 4.2 and 4.3.

4 Boolean and Quantitative
Totally Ordered Domains

In this section we instantiate the framework in the
previous section to totally ordered sets, accord-
ing to the dismissibility of values with respect

Springer Nature 2021 LATEX template

General Monitorability of Totally Ordered Verdict Domains 7

to the result, and then apply to two well-known
quantitative temporal logics.

4.1 Property classes

If the type D of the verdicts of a formalism is a
totally ordered set equipped with an order relation
(D,≤), we can classify the properties according
to their value-dismissibility as follows. Note that
we only require that the domain of verdicts be
totally ordered, so the domain of observations can
be different to the domain of verdicts, and poten-
tially not an ordered set. Let v = JφK(σ) be the
semantics of the property φ for behavior σ. We
use v< for the set of values lower than v and and
v> for the set of values greater than v, that is

v<
def
= {v′ | v′ < v} and v>

def
= {v′ | v′ > v}.

Note that D = v< ∪{v}∪ v>. Recall that we only
consider the set of potential verdicts Mφ(ϵ) that
cannot be dismissed statically for φ. That is, a
value v is only interesting to study if a semantic
monitor cannot dismiss it as a potential verdict
before the monitoring starts.

We say a property is AFD> if the set of val-
ues greater than its verdict for any behavior is
AFD, that is, if all the values greater than the
verdict that are not statically dismissible, are
finitely dismissible. We define AFD<, NFD> and
NFD< analogously. A property is SFD> if for some
executions, some values greater than its verdict
are finitely dismissible while other are not. The
definition of SFD< is analogous.

For example, the property

φ(s) = min
0≤i

(s(i)(p))

from Ex. 4 is AFD> and also NFD<. If the ver-
dict is 1, the empty set of values greater than
the verdict is finitely dismissible. If the verdict is
v < 1, for any v′ greater than v, at some point
we will witness a value in the range [v, v′) (oth-
erwise, v′ would be the minimum), and then we
can dismiss v′ as a potential verdict. Thus, the
property is AFD>. For any value v′ lower than the
verdict we can create an alternative continuation
that consists of v′ forever after any prefix, making
the verdict v′, which is why the property is NFD<.

On the other hand, the property

φ1(s) = max(s(0)(q),min
0≤i

(s(i)(p)))

is AFD> and SFD<. The property is not NFD<

because if s(0)(q) = 1 we can dismiss every value
lower than the verdict finitely. Similarly, the prop-
erty is not AFD< because if s(0)(q) = 0 we cannot
dismiss any value lower than the verdict finitely.
Thus, the property is SFD<.

The property

φ2(s) = s(0)(p)

is trivially in AFD> and AFD<. The verdict is
known at the first instant, so any other value can
be finitely dismissed. Finally,

φ3(s) = min
0≤i

(max
j≤i

(s(i)(p)))

is in NFD> and NFD<, since we can take any prefix
and value v and create a continuation that con-
sists of v indefinitely, making v the verdict of the
property over such trace.

With these definitions we can redefine the
property classes for rich, totally ordered domains
as follows1:

• Safety/AFD>: We say that a property is a
Safety property if the set v> is All Finitely
Dismissible for any behavior σ (that is, a
semantic monitor can dismiss every value
greater than the result after a finite prefix).
In other words, setting a threshold t that
happens to be above the actual verdict guar-
antees that after a prefix all values above the
threshold will be dismissed.

• Guarantee/AFD<: We say that a property
is a Guarantee property if the set v< is All
Finitely Dismissible for any behavior σ (that
is, a semantic monitor can dismiss every value
lower than the verdict after a sufficiently long
prefix). In other words, if you set a minimum
score t and the result is higher than it, you
will know it with a finite prefix.

• Liveness/NFD>: We say a property is a
Liveness property if the set v> is None
Finitely Dismissible for any behavior σ (that
is, a semantic monitor can never dismiss any
value greater than the result processing any
prefix). In other words, if you set a maximum

1Note that, even though we borrow the names (safety, live-
ness, . . .) from [1] and [38], our notions do not preserve the
decomposition of formulas into safety and liveness from the
Boolean domain (as opposed to the notions in [30] which
preserve the classical decompositions).

Springer Nature 2021 LATEX template

8 General Monitorability of Totally Ordered Verdict Domains

Quaestio SafetyLiveness

Guarantee

Morbidity

Quaestio SFD> ∩ SFD<

SFD> ∩NFD<

SFD> ∩ SFD<NFD> ∩ SFD< AFD> ∩ SFD<

SFD> ∩AFD<NFD> ∩AFD< AFD> ∩AFD<

NFD> ∩NFD< AFD> ∩NFD<

Fig. 2 Landscape of property classes for totally ordered
domains

tolerable threshold t and the result is below
t, then you will not know that the value is
below after any finite prefix.

• Morbidity/NFD<: We say a property is a
Morbidity property if the set v< is None
Finitely Dismissible for any behavior σ (that
is, a semantic monitor can never dismiss any
value lower than the result with a prefix). In
other words, if you set a minimum score t and
the result is higher than t, you will not know
after a finite prefix.

Fig. 2 shows the resulting landscape of property
classes for totally ordered domains. Note that the
definitions of Safety and Liveness are incom-
patible for verdict domains with more than one
element, and so are the definitions of Guarantee
and Morbidity, which means that no property
can be both a Safety and a Liveness property,
or can be both a Guarantee and a Morbidity
property. However, it is possible that a property
belongs to two classes, and also that a property
does not belong to any of the classes described
above.

We see that our definitions maintain the clas-
sification of the original LTL properties presented
in [1] if we consider the Boolean domain with
the usual order relation false < true. Recall that
according to our definitions, a Safety property
is one such that a semantic monitor can always
dismiss the values greater than the result with a
finite prefix. This is equivalent to saying, in the
Boolean ordered set, that if the result is false then
a semantic monitor can always dismiss the set
{true} with a prefix. Since the domain is finite,

Proposition 2 implies that the value false is always
Finitely Admissible, and thus, a failed verdict can
be identified after a finite prefix. A similar analysis
can be made for the rest of the classes.

In the following sections we will give a wit-
ness for every class and sensible multiclass for two
extensions of LTL to quantitative domains.

4.2 Quantitative LTL

In [23] the authors define quantitative seman-
tics for LTL, which generalize the semantics from
Boolean to a numeric domain. Input streams are
streams of real numbers in the range [0, 1]. The
intuition is that the numeric value for atomic vari-
able p at a given instant is the extent to which
p is “true” (1 being absolutely true and 0 being
absolutely false). The syntax is the same as for
the classic LTL. The semantics is given recursively
over the terms and assigns a value in the range
[0, 1] for every term with respect to a behavior
that assigns a real number in the range [0, 1] to

every proposition, this is, in QLTL, R
def
= ⟨p0 ::

R[0,1], . . . , pn :: R[0,1]⟩.

JT K(σ) def
= 1

Jφ ∨ ψK(σ) def
= max{JφK(σ), JψK(σ)}

JaK(σ) def
= σ(0)(a)

J¬φK(σ) def
= 1− JφK(σ)

JφK(σ) def
= JφK(σ1)

Jφ U ψK(σ) def
= sup

i≥0
{min{JψK(σi),

min
0≤j<i

{JφK(σj)}}}

Following the syntax of the derived operators,
their semantics in QLTL are

Jφ ∧ ψK(σ) def
= min{JφK(σ), JψK(σ)}

JφK(σ) def
= sup

i≥0
{JφK(σi)}

JφK(σ) def
= inf

i≥0
{JφK(σi)}

Note that under the assumption that the values
of the atomic propositions are always 0 or 1, a
semantic monitor can statically dismiss the values
in the open interval (0, 1) as the possible verdicts
of a QLTL property and hence the classification of
QLTL under this assumption coincides with that
of LTL.

Springer Nature 2021 LATEX template

General Monitorability of Totally Ordered Verdict Domains 9

The formulae presented in Section 2.1 for LTL
belong to the same classes in QLTL with no
assumptions.

Proposition 4 The following hold:

• p belongs to Guarantee and Liveness,

• p belongs to Safety and Morbidity,

• p belongs to Safety and Guarantee,

• p belongs to Morbidity and Liveness,

• p ∧q only belongs to Guarantee,

• p ∨q only belongs to Liveness,

• p ∨q only belongs to Safety, and

• p ∧q only belongs to Morbidity.

Proof We show that p belongs to Guarantee and
Liveness.p is NFD> because given any finite prefix
of a trace where the supremum is v ̸= 1, we can con-
struct an alternative continuation where it is greater
than v simply making the next value 1. If the verdict is
v = 1, the (empty) set of values v> would be trivially
NFD. It is AFD< because the verdict v is the mini-
mum element greater or equal than the infinite values
of p throughout the trace. Let v′ < v. If no element
in (v′, v] occur in the trace, then the result would be
v′. Otherwise, the occurrence of such value would dis-
miss v′ as a possible result. The proof that p belongs
to Safety and Morbidity is dual. The verdict of the
property p is Finitely Admissible, which means that
any other value is fd, and the property belongs to
Safety and Guarantee.

We show that the property p belongs to Mor-
bidity and Liveness. It is NFD> because given any
finite prefix of a trace where the result is v ̸= 1, we can
construct an alternative continuation where the result
is greater than v, simply making p = 1 forever. Analo-
gously, the property is NFD< because given any finite
prefix of a trace where the result is v ̸= 0, we can con-
struct an alternative continuation where the result is
lower than v, simply making v = 0 forever. □

In general and without assumptions, the ver-
dict of a QLTL property is a real number in the
range [0, 1], that is an infinite set. Therefore, it is
not covered by Proposition 2. The following propo-
sitions show that in fact, in some cases, the set
of values different from the result is AFD but the
result itself is not Finitely Admissible.

Proposition 5 There is a QLTL property φ and
a behavior s such that v = JφK(s) is not Finitely
Admissible, but [0, 1] \ {v} is AFD.

Proof Consider the property (p∧ q) and a behavior
s such that, at every instant i, the value of q is 1

2 and

the value of p is
∑i

n=0
1

4×2n , that is, p produces values

closer to 1
2 , but never 1

2 exactly. Then, JpK(s) = 1
2 ,

the set [0, 12) ∪ (12 , 1] is All Finitely Dismissible, but

the result 1
2 is not Finitely Admissible. □

4.3 Discounting in LTL

We now study, DiscLTL[D], a temporal logic that
generalizes LTL by adding discounting temporal
operators [39]. According [39], DiscLTL[D] is in
fact a family of logics, each parameterized by a set
D of discounting functions. A function η : N →
[0, 1] is a discounting function if limi→∞ η(i) = 0,
and η is strictly decreasing. Input streams are
Boolean, as in classic LTL, but verdicts are real
numbers in the range [0, 1]. Note that in this case,
the domain of observations and the domain of ver-
dicts are different. We reason about the potential
verdicts, that is, the real numbers in [0, 1].

For a given a set of discounting functions
D, the logic DiscLTL[D] adds to LTL the binary
operator Uη. The semantics of this logic is given
recursively over the terms and assigns a value in
the range [0, 1] for every term with respect to a
behavior, assigning 0 to an input value of false
and 1 to an input value of true. The semantics of
DiscLTL[D] is:

JT K(σ) def
= 1

Jφ ∨ ψK(σ) def
= max{JφK(σ), JψK(σ)}

JaK(σ) def
=

{
1 if σ(0)(a) = true

0 otherwise

J¬φK(σ) def
= 1− JφK(σ)

JφK(σ) def
= JφK(σ1)

Jφ U ψK(σ) def
= sup

i≥0
{min{JψK(σi),

min
0≤j<i

{JφK(σj)}}}

Jφ Uη ψK(σ) def
= sup

i≥0
{min{η(i) · JψK(σi),

min
0≤j<i

{η(j) · JφK(σj)}}}

All properties in Section 4.2 belong to the
same categories (without assumptions) which is
reasonable because they do not use discounting
functions, and the semantics guarantee that the
outcome of the formulas is the same as for LTL.
For the same reason, and since the observations

Springer Nature 2021 LATEX template

10 General Monitorability of Totally Ordered Verdict Domains

are Boolean values for this logic, the only possi-
ble verdicts are {0, 1} and thus the semantics and
the property classes coincide with those of classic
LTL if Uη is not used.

Proposition 6 Properties of the form φ Uη ψ belong
to Safety and Guarantee.

Proof Let v be JφUηψK(σ). If v > 0, there is an index k
such that η(k) < v. After this index, the successive val-
ues of the expression (min{η(i) ·JψK(σ(i)), min

0≤j<i
{η(j) ·

JφK(σ(j))}}) will always be strictly lower than v,
which means that (1) v has already occurred, and (2)
it is guaranteed to be the supremum. This means that
if v > 0, at index k we know the verdict and the
semantic monitor can discard every other value.

In the special case of v = 0, the semantic monitor
can trivially dismiss the (empty) set of values lower
than it. Let v′ ∈ (0, 1]. There is an index k such that
η(k) < v′. The expression η(i) · JψK(σ(i)) will be lower
than v′ for every i ≥ k, which means that after index k,
the possible successive values of the whole expression
(min{η(i)·JψK(σ(i)), min

0≤j<i
{η(j)·JφK(σ(j))}}) can only

be lower than v′, meaning that the monitor can discard
v′ as a potential verdict after index k. □

DiscLTL[D] provides another example where
the set of non-verdicts is All Finitely Dismissible
but the correct result is not Finitely Admissible.

Proposition 7 There is a DiscLTL[D] property φ and
a behavior s such that v = JφK(s) is not Finitely
Admissible, but [0, 1] \ {v} is AFD.

Proof Consider a behavior s such that p is always
false, and the DiscLTL[D] property φ = ηp(s). The

temporal operator η is defined as ηφ
def
= T Uη φ.

From the semantics of U and T , we see that

JφK(s) = sup
i≥0

{min{η(i) · σ(i)(p), min
0≤j<i

{η(j) · 1}}}

= sup
i≥0

{min{η(i) · 0, min
0≤j<i

{η(j)}}}

= sup
i≥0

{ min
0≤j<i

{η(j)}}

Then, JφK(s) = 0, the set (0, 1] is All Finitely Dismis-
sible, but the result 0 is not Finitely Admissible. □

5 More General
Monitorability Classes

In this section we refine the taxonomy in the pre-
vious section exploiting the following observation.
The definition of SFD as the complement of the
other classes is somewhat unsatisfying as it col-
lapses several different cases. We now split SFD
into two different classes, which in turn generates
dualities with respect to the complements of the
classes and the finite dismissibility of values.

5.1 A Finer Classification of SFD

For a given a formula φ, we can classify the finite-
dismissibility (fd) of a set of values D analyzing,
for each of the following four definitions, whether
φ meets the criteria or not:

• A
A
fdD. For all the behaviors, all the values in

D are finitely dismissible.
• A EfdD. For all the behaviors, there is a value
in D which is finitely dismissible.

• S
A
fdD. For some behaviors, all the values in

D are finitely dismissible.
• S EfdD. For some behaviors, there is a value
in D which is finitely dismissible.

We use c to denote the complement of a class c
and we say that a property is in c iff it is not
in c. For example, a property is in A

A
fdD iff it

is not in A
A
fdD. We also introduce the equivalent

definitions for non-dismissibility (fd) of a value as
follows:

• A
A
fdD. For all the behaviors, all the values in

D are not finitely dismissible. Equivalently,
there is no behavior that makes any value
in D finitely dismissible, which means that
A
A
fdD = S EfdD.

• A EfdD. For all the behaviors, there is a value
in D which is not finitely dismissible. Equiv-
alently, there is no behavior for which all the
values in D are finitely dismissible, meaning
that A EfdD = S

A
fdD.

• S
A
fdD. For some behaviors, all the values in

D are not finitely dismissible. Equivalently, it
is not the case that all the behaviors contain
some value in D which is finitely dismissible,
meaning that S

A
fdD = A EfdD.

• S EfdD. For some behaviors, there is a value
in D which is not finitely dismissible. Equiv-
alently, it is not the case that for all the

Springer Nature 2021 LATEX template

General Monitorability of Totally Ordered Verdict Domains 11

behaviors, all the values in D are finitely dis-
missible, which means that S EfdD = A

A
fdD.

Therefore, in principle, a property can be classi-
fied using only four dimensions (S Efd, S

A
fd, A Efd,

A
A
fd), which gives an upper-bound of 16 different

categories. We now analyze what we can expect
when we aim to monitor a property, considering
each dimension:

• When we monitor a property in A
A
fdD, it

is guaranteed that, for any value d in D
and after a finite prefix, a semantic monitor
can dismiss d as the verdict. In particular,
this could imply that the verdict is finitely
admissible.
On the other hand, if the property is in

A
A
fdD = S EfdD, it means that it may be the

case that in the monitored trace our value of
interest d ∈ D is fd; but it still makes sense
to monitor the property in case that d is fd.

• When a property is in A EfdD, there is at least
one value in D that can be finitely dismissi-
ble by a semantic monitor, that is, that we
can always gain information about the dis-
missibility of at least one value in D when we
monitor the property.
When a property is in A EfdD = S

A
fdD,

it could be the case that for the specific
trace we are witnessing, all the values in
D are not finitely dismissible. It still makes
sense to monitor the property, in case we are
monitoring a more friendly trace.

• When we monitor a property in S
A
fdD, it

could be the case that we receive a trace
where every value inD is fd, so it makes sense
to monitor the property.
If instead the property is in S

A
fdD =

A EfdD, it is guaranteed that at least one value
in D will not be fd, although others may be,
so it makes sense to monitor a property with
the hope that we will dismiss a specific value.

• When a property is in S EfdD, we can hope
that our value of interest d ∈ D is finitely
dismissible in the specific trace we are moni-
toring.
Instead, if the property is in S EfdD =

A
A
fdD, it is guaranteed that the monitor will

never be able to dismiss any value in D.
We now refine this result even further as not all the
definitions intersect with each other. In particular,
since we are assuming the existence of behaviors

S Efd A Efd

1

2

4

9
3

7

6
8

5

A
A
fd S

A
fd

Fig. 3 General landscape of property classes

in the properties we analyze, if for a given prop-
erty a characteristic holds for all behaviors then
it follows that there is a behavior for which the
characteristic holds. Formally:

A
A
fdD ⊆ S

A
fdD A

A
fdD ⊆ S

A
fdD

A EfdD ⊆ S EfdD A EfdD ⊆ S EfdD

This means that we do not need to consider prop-
erties with A

A
fdD and S

A
fdD, and with A EfdD and

S EfdD. This leaves 9 potential classes.
We can see that the definitions from Section 4

of NFD, AFD and SFD can be rewritten using these
new classifications. We say that a set of values D
is None Finitely Dismissible (NFD) if it is A

A
fdD.

Analogously, we say that a set of values D is All
Finitely Dismissible (AFD) if it is A

A
fdD. Note

that the empty set is both NFD and AFD. We say
that a set of values D is Some Finitely Dismissi-
ble (SFD) if it is neither AFD nor NFD. Note that
AFD and NFD can overlap, in particular when the
set of values D is empty: always all the values in
an empty set can be finitely dismissed, but also
always all the values in an empty set cannot be
finitely dismissed.

From now on, we omit the subscript D for
clarity, as it is fixed in the context. Fig. 3 shows
the general landscape of property classes for a
particular set of values. Note that the region of
A Efd is contained in S Efd and A

A
fd is contained

in S
A
fd as mentioned above. Therefore, a given

property belongs to one of the following nine
classes (the gray characteristics are implied by

Springer Nature 2021 LATEX template

12 General Monitorability of Totally Ordered Verdict Domains

other characteristics):

1. S Efd ∩ S
A
fd ∩ [A Efd] ∩ [A

A
fd]

2. S Efd ∩ S
A
fd ∩ A Efd ∩ [A

A
fd]

3. [S Efd] ∩ S
A
fd ∩ A Efd ∩ [A

A
fd]

4. [S Efd] ∩ S
A
fd ∩ A Efd ∩ A

A
fd

5. [S Efd] ∩ [S
A
fd] ∩ A Efd ∩ A

A
fd

6. S Efd ∩ [S
A
fd] ∩ [A Efd] ∩ A

A
fd

7. S Efd ∩ S
A
fd ∩ [A Efd] ∩ A

A
fd

8. S Efd ∩ [S
A
fd] ∩ A Efd ∩ A

A
fd

9. S Efd ∩ S
A
fd ∩ A Efd ∩ A

A
fd

5.2 Example Classifications

As we have done in Section 4, we analyze the
finite dismissibility of values greater or lower than
the verdict for logics where the set of potential
verdicts is totally ordered.

Boolean Formalisms.

First, consider finite dismissibility of the values
greater than the verdict in a Boolean formal-
ism, that is, one where the domain of potential
verdicts is the Boolean domain. We use the sub-
script > to refer to the set of values greater than
the verdict. Regions 1 to 5 contain no proper-
ties; region number 6 contains all the tautologies
and contradictions; region number 7 contains all
the properties that are NFR, but are not tautolo-
gies; region number 8 contains all the properties
that are AFR, but are neither tautologies nor con-
tradictions; and region number 9 contains all the
properties that are SFR.

We will prove that region 6 contains all the
tautologies and contradictions.

Proposition 8 Let φ be an property in a Boolean for-
malism. Then, φ belongs to S Efd>∩A

A
fd> if and only

if φ is a tautology or a contradiction.

Proof Let φ in S Efd> ∩A
A
fd>. Since S Efd> = A

A
fd>,

and φ ∈ A
A
fd>, then all the values greater than the

verdict have to be both fd and fd at the same time.
Thus, the set of values greater than the verdict which
are not statically dismissible has to be empty. If there
is a trace that admits false as the verdict and there is
a trace that admits true as a verdict, when the ver-
dict is false the set of values greater than the result
is the nonempty set {true}. Consequently, φ can only
admit one of the Boolean values as its verdict for

all the traces, that is, φ is either a tautology or a
contradiction.

Let φ be a tautology or a contradiction. In that
case, the verdict for every trace is the same and every
other values is statically dismissible. Since in particu-
lar the set of values greater than the verdict and not
statically dismissible is empty, the property belongs to
both A

A
fd> and A

A
fd> = S Efd>. □

The proof that regions 1 to 5 are empty in
Boolean formalisms follows from the following
proposition:

Proposition 9 In Boolean formalisms, the sets
A Efd> (that is, S

A
fd>) and A Efd> are empty.

Proof Let φ be a property in A Efd> or A Efd>. Since
there has to be a value greater than the verdict, the
verdict cannot be true for any trace for φ. Thus, φ is
a contradiction and belongs to region 6, as shown in
Proposition 8. □

We prove now that region 7 contains all the
properties that are NFR.

Proposition 10 Let φ be an property in a Boolean
formalism. Then, φ belongs to S Efd>∩S

A
fd>∩A

A
fd>

if and only if φ is NFR and is not a tautology.

Proof Let φ in S Efd>∩S
A
fd>∩A

A
fd>. Since φ belongs

to S Efd> = A
A
fd>, then for the traces for which the

verdict is false, the set {true} is fd, and thus we can
never accept the verdict false (i.e. refute the property)
with a finite prefix. This means that φ is NFR, and it
is not a tautology because it would belong to region 6.

Let φ be an NFR property, but not a tautology.
When the verdict is false, the set {true} is fd because
φ is is NFR. When the verdict is true, the empty set of
values greater than the verdict is fd. Thus, the prop-
erty is in A

A
fd> = S Efd>. There are traces for which

the verdict is true (because φ is in NFR and thus
not a contradiction). For those traces the set of val-
ues greater than the verdict is empty, and thus the
property is in S

A
fd>. There are also traces for which

the verdict is false (because φ is not a tautology).
For those traces the value true > false is not finitely
dismissible because otherwise we would be able to
refute the property with a finite prefix, contradicting
the fact that φ is NFR. Therefore, the property is in
S Efd> = A

A
fd>. □

Springer Nature 2021 LATEX template

General Monitorability of Totally Ordered Verdict Domains 13

We now prove that region 8 contains all the
properties that are AFR but are neither tautologies
nor contradictions.

Proposition 11 Let φ be an property in a Boolean
formalism. Then, φ belongs to S Efd>∩A Efd>∩A

A
fd>

if and only if φ is AFR and is neither a tautology nor
a contradiction.

Proof Let φ a property in S Efd> ∩ A Efd> ∩ A
A
fd>.

The property is not a tautology or a contradiction
because it would belong to region 6, as proved by
Proposition 8. When the verdict is true for a trace,
the (empty) set of values greater than true is finitely
dismissible. When the verdict is false for a trace, since
φ belongs to A

A
fd>, the value true > false is fd, and

thus we can always accept the verdict false (i.e. refute
the property) with a finite prefix, which means that φ
is AFR.

Let φ be an AFR property, but not a tautology
or a contradiction. When the verdict is false, the set
{true} is fd because φ is AFR. When the verdict is
true, the (empty) set of values greater than the verdict
is fd. Thus, the property is in A

A
fd>. Since there are

traces for which the verdict is false (because φ is not
a tautology), there are some traces where there is a
value greater than the verdict (i.e. true) which is fd
(because φ is AFR), meaning that the property is in
S Efd>. However, since there are traces for which the
verdict is true (because φ is not a contradiction), there
are some traces where there is not a value greater than
the verdict (i.e. true) which is fd, meaning that the
property is in S

A
fd> = A Efd>. □

We now prove that region 9 contains all the
properties that are SFR.

Proposition 12 Let φ be an property in a Boolean
formalism. Then, φ belongs to S Efd>∩S

A
fd>∩A Efd>∩

A
A
fd> if and only if φ is SFR.

Proof In the original definitions, SFR is defined as a
property that is not AFR or NFR. We have shown that
regions 1 to 5 contain no properties. We have also
shown that AFR and NFR properties belong to regions
6, 7 and 8, including tautologies and contradictions.
Region 9 contains all the properties that are not AFR
or NFR, and only those. □

A similar analysis can be made with respect
to the finite dismissibility of the values lower than

the verdict in Boolean formalisms. In this case,
regions 1 to 5 contain no properties; region number
6 contains all the contradictions and tautologies;
region number 7 contains the properties that are
NFS, but are not contradictions; region number 8
contains the properties that are AFS, but are not
tautologies or contradictions; and region number
9 contains the properties that are SFS. The proofs
are similar to their counterparts for values greater
than the verdict.

LTL.

Since LTL is a Boolean formalism, the regions 1 to
5 are empty for LTL, and tautologies and contra-
dictions belong to region 6 in both cases, leaving
us with only three sensible regions (7, 8 and 9).
The overlapping of these regions for values lower
and greater than the verdict form the original dia-
grams of [1] by Havelund and Peled and also the
diagrams of Figs. 1 and 2 from Sections 2 and 4.

QLTL.

Just like in Section 4, the classification of QLTL
properties coincides with that of LTL if we assume
that the values of the atomic propositions are
always 0 or 1. Without this assumption, some
properties belong to other classes. Consider for
example the LTL property p ∧¬p. This prop-
erty is a contradiction in LTL and belongs to
region 6. However, in QLTL if p is not assumed to
be always 0 or 1, the property belongs to region
8 (considering the finite dismissibility of values
greater than the verdict).

Proposition 13 The QLTL property p ∧ ¬p
belongs to S Efd> ∩ A Efd> ∩ A

A
fd>.

Proof The range of values (0.5, 1] can be statically dis-
missed. For the behavior for which p is always 0.5,
the verdict is 0.5 and there are no values greater than
the verdict that are fd. Thus, φ belongs to S

A
fd> =

A Efd>.
Let v be the verdict of φ over a trace, and let d > v.

At some point, either p or 1 − p has to become lower
than d. So, d is fd, and φ is in A

A
fd>.

Consider a trace where p is 0 at the first instant.
The verdict of the property is 0 and every other value
is fd. In particular, value 1 is finitely dismissible in
such trace. Thus, φ belongs to S Efd>. Note that this

Springer Nature 2021 LATEX template

14 General Monitorability of Totally Ordered Verdict Domains

also implies that the property is not a tautology or a
contradiction. □

Other assumptions make QLTL properties
populate regions that are originally empty for
LTL. We say that a proposition p is “fairly lower”
than a value d in a given behavior if the supre-
mum of the values of p is strictly less than d. This
assumption allows dismissing some values finitely
and statically.

Proposition 14 Assuming that p is fairly lower than
1, the propertyp belongs to region 1 (S Efd>∩S

A
fd>).

Proof We can statically dismiss the value 1 as the ver-
dict because the supremum of p is strictly less than
1. Let v be the verdict of φ for a certain trace and
let d be a value in (v, 1). We cannot finitely dismiss
d as the verdict because for any given prefix, we can
create a continuation where the next value of p is
d, and the verdict would be d. Thus, φ belongs to
A
A
fd> = S Efd>.
On the other hand, we can always find such value

because the verdict is strictly lower than 1. Thus, φ
belongs to A Efd> = S

A
fd>. □

Proposition 15 Assuming that p is fairly lower than
the first value of q, the property φ = p ∧ q belongs
to region 2 (S Efd> ∩ S

A
fd> ∩ A Efd>).

Proof Let d be the value of q at the first instant.
Again, we can statically dismiss the value 1 as the ver-
dict because d is at most 1, and p is fairly lower than
d.

If d < 1, we can dismiss the values in (d, 1) finitely.
Thus, φ belongs to S Efd>.

If d = 1, the property behaves as p and all the
values greater than the verdict are fd. Thus, φ is in
S
A
fd> = A Efd>.
Finally, since the verdict is strictly lower than 1,

there are always values between the verdict and 1
which are fd, making the property belong to A Efd =
S
A
fd>. □

Proposition 16 Assuming that p is fairly lower than
the first value of q, and that the first value of q is lower
than 1, the property φ = p ∧ q belongs to region 3
(S
A
fd> ∩ A Efd>).

Proof Let d be the value of q at the first instant.
Since d < 1, we can statically dismiss 1 as a potential
verdict.

We can dismiss the values in (d, 1) finitely. Since
d < 1, the set (d, 1) is not empty, and φ belongs to
A Efd>.

Also, since the verdict v is lower than d, the set
(v, d) is not empty and φ belongs to A Efd> = S

A
fd>.

□

Proposition 17 Assuming that the first value of q is
lower than 1, the property φ =p∧q belongs to region
4 (S

A
fd> ∩ A Efd> ∩ A

A
fd>).

Proof Let d be the value of q at the first instant. Since
d < 1, we can statically dismiss 1 as a potential ver-
dict. We can dismiss the values in (d, 1) finitely. Since
d < 1, the set (d, 1) is not empty, and φ belongs to
A Efd>. If d = 0, the verdict is 0 and all the values
greater than it are fd. Thus, the property belongs to
S
A
fd>.
If the verdict v is lower than d, the values in (v, d)

are fd, making φ belong to S Efd> = A
A
fd>. □

Proposition 18 Assuming that the first value of q
is lower than 1, the property q belongs to region 5
(A Efd> ∩ A

A
fd>).

Proof Let d be the value of q at the first instant.
Since d < 1, we can statically dismiss 1 as a poten-
tial verdict. We can always dismiss the values in the
non-empty set (d, 1) finitely. Thus, the property is in
A Efd> and also in A

A
fd>. □

Regions 1 and 2 are empty when we analyze
the finite dismissibility of values greater (resp.
lower) than the verdict and the totally ordered set
of potential verdicts contains a maximum (resp.
minimum) value. This is the case for LTL (where
the maximum value is true and the minimum value
is false), QLTL, and DiscLTL[D] (where the maxi-
mum value is 1 and the minimum value is 0). The
proof follows from the following proposition (for
the dismissibility analysis of values greater than
the verdict).

Proposition 19 If the set of potential verdicts D
contains a maximum value ⊤, then S

A
fd> ⊆ A Efd>.

Springer Nature 2021 LATEX template

General Monitorability of Totally Ordered Verdict Domains 15

Proof Let φ be a property in S
A
fd> = A Efd>. This

means that for every trace there is a value greater
than the verdict which is fd. If the verdict is ⊤ for φ
for any trace, then for that trace we will not be able
to find a value greater than the verdict at all, which
means that the verdict can never be ⊤ for φ for any
trace, and we can dismiss it right away. The value ⊤
is a value greater than the verdict that can always be
finitely dismissed, and thus φ belongs to A Efd>. □

The previous propositions show how assump-
tions can affect the classification of properties.
Moreover, using these assumptions we have pop-
ulated the nine regions of Fig. 3 with QLTL
properties.

As stated in Section 4, all the properties of
DiscLTL[D] that do not use the operator Uη belong
to the same classes as their LTL counterpart;
meaning that some DiscLTL[D] properties popu-
late the regions 6 to 9 of the general landscape
shown in Fig. 3 considering the finite dismissibility
of values greater or lower than the verdict.

6 Conclusion

In this paper we have presented a generalization
of the classification of Havelund and Peled [1] to
expressive verdicts. We have introduced general
definitions for admissibility and dismissibility of
verdicts and instantianted these to totally ordered
domains. Then we have illustrated the taxonomy
to two quantitative logics: quantitative LTL and
discounting LTL. Finally, we have introduced a
generalization of the framework in [38] further
breaking up one of the original classes, which
introduces duality and limits all monitorability
candidates to 9 possible cases. For LTL, only a
few of these cases are populated (apart from con-
tradictions and tautologies), which leads to the
known taxonomy of Havelund-Peled. With the use
of assumptions, we managed to populate all the 9
categories for QLTL.

Many questions remain open, including (sur-
prisingly) whether—without assumptions—the
empty categories in LTL remain empty in QLTL.
Another important problem is to study how
assumptions can affect precisely the monitorabil-
ity of a property. It is possible that a property
φ that belongs to a class without assumptions,
belongs to a different class with an assumption.
As a trivial example, if one assumes φ itself, then
φ becomes a tautology.

We also want to study the impact of composing
properties from different regions using operators
from the logic, and how adding or removing
assumptions affect the classification of a property.
Future work also includes studying other quan-
titative logics like Counting LTL [40], where the
semantics distinguish the steps necessary until sat-
isfactions, and Robust LTL [41]. We also plan
to extend our framework to general verdicts for
other classes of domains beyond totally ordered
domains.

References

[1] Havelund, K., Peled, D.: Runtime verifica-
tion: From propositional to first-order tem-
poral logic. In: Proc. of the 18th Int’l Conf.
on Runtime Verification (RV’18). LNCS, vol.
11237, pp. 90–112. Springer, Berlin, Heidel-
berg (2018)

[2] Emerson, E.A., Clarke, E.M.: Characterizing
correctness properties of parallel programs
using fixpoints. In: Proc. of the 7th Collo-
quium on Automata, Languages and Pro-
gramming (ICALP’80). LNCS, vol. 85, pp.
169–181. Springer, Berlin, Heidelberg (1980)

[3] Queille, J.-P., Sifakis, J.: Specification and
verification of concurrent systems in CESAR.
In: Symposium on Programming. LNCS, vol.
137, pp. 337–351. Springer, Berlin, Heidel-
berg (1982)

[4] Havelund, K., Goldberg, A.: Verify your runs.
In: Proc. of the First IFIP TC 2/WG 2.3
Conference on Verified Software: Theories,
Tools, Experiments (VSTTE’05). LNCS, vol.
4171, pp. 374–383. Springer, Berlin, Heidel-
berg (2005)

[5] Leucker, M., Schallhart, C.: A brief account
of runtime verification. Journal of Logic
and Algebraic Programming 78(5), 293–303
(2009)

[6] Bartocci, E., Falcone, Y. (eds.): Lectures
on Runtime Verification - Introductory
and Advanced Topics. LNCS, vol. 10457.
Springer, Berlin, Heidelberg (2018)

Springer Nature 2021 LATEX template

16 General Monitorability of Totally Ordered Verdict Domains

[7] Havelund, K., Roşu, G.: Synthesizing mon-
itors for safety properties. In: Proc. of the
8th Int’l Conf on Tools and Algorithms for
the Construction and Analysis of Systems
(TACAS’02). LNCS, vol. 2280, pp. 342–356.
Springer, Berlin, Heidelberg (2002)

[8] Eisner, C., Fisman, D., Havlicek, J., Lustig,
Y., McIsaac, A., Campenhout, D.V.: Reason-
ing with temporal logic on truncated paths.
In: Proc. of the 15th Int’l Conf on Com-
puter Aided Verification (CAV’03). LNCS,
vol. 2725, pp. 27–39. Springer, Berlin, Heidel-
berg (2003)

[9] Bauer, A., Leucker, M., Schallhart, C.: Run-
time verification for LTL and TLTL. ACM
Transactions on Software Engingeering and
Methodology 20(4), 14 (2011)

[10] Sen, K., Roşu, G.: Generating optimal moni-
tors for extended regular expressions. ENTCS
89(2), 226–245 (2003)

[11] Asarin, E., Caspi, P., Maler, O.: Timed reg-
ular expressions. Journal of the ACM 49(2),
172–206 (2002)

[12] Barringer, H., Goldberg, A., Havelund, K.,
Sen, K.: Rule-based runtime verification. In:
Proc. of the 5th Int’l Conf on Verification,
Model Checking and Abstract Interpretation
(VMCAI’04). LNCS, vol. 2937, pp. 44–57.
Springer, Berlin, Heidelberg (2004)

[13] Roşu, G., Havelund, K.: Rewriting-based
techniques for runtime verification. Auto-
mated Software Engineering 12(2), 151–197
(2005)

[14] D’Angelo, B., Sankaranarayanan, S.,
Sánchez, C., Robinson, W., Finkbeiner,
B., Sipma, H.B., Mehrotra, S., Manna, Z.:
LOLA: Runtime monitoring of synchronous
systems. In: Proc. of the 12th Int’l Symp.
of Temporal Representation and Reasoning
(TIME’05), pp. 166–174. IEEE CS Press,
Burlington, VT, USA (2005)

[15] De Giacomo, G., Vardi, M.Y.: Linear tempo-
ral logic and linear dynamic logic on finite
traces. In: Proc. of the 23rd Int’l Joint

Conf. on Artificial Intelligence (IJCAI’14),
pp. 854–860. AAAI Press, Palo Alto, Califor-
nia (2013)

[16] Reinbacher, T., Rozier, K.Y., Schumann, J.:
Temporal-logic based runtime observer pairs
for system health management of real-time
systems. In: Proc. of the 20th Int’l Conf. on
Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’14). LNCS,
vol. 8413, pp. 357–372. Springer, Berlin, Hei-
delberg (2014)

[17] Bauer, A., Leucker, M., Schallhart, C.: The
good, the bad, and the ugly—but how ugly
is ugly? In: Proc. of the 7th Int’l Workshop
on Runtime Verification (RV’07). LNCS, vol.
4839, pp. 126–138. Springer, Berlin, Heidel-
berg (2007)

[18] Stucki, S., Sánchez, C., Schneider, G.,
Bonakdarpour, B.: Gray-box monitoring of
hyperproperties. In: ter Beek, M.H., McIver,
A., Oliveira, J.N. (eds.) Formal Methods -
The Next 30 Years - Third World Congress,
FM 2019. Lecture Notes in Computer Sci-
ence, vol. 11800, pp. 406–424. Springer,
Berlin, Heidelberg (2019). https://doi.org/
10.1007/978-3-030-30942-8 25

[19] Stucki, S., Sánchez, C., Schneider, G.,
Bonarkdarpour, B.: Gray-box monitoring
of hyperproperties with an application
to privacy. Formal Methods in Systems
Desing, 1–36 (2020). https://doi.org/10.
1007/s10703-020-00358-w

[20] Pnueli, A., Zaks, A.: PSL model checking
and run-time verification via testers. In: Proc.
of the 14th Int’l Symp. on Formal Meth-
ods (FM’06). LNCS, vol. 4085, pp. 573–586.
Springer, Berlin, Heidelberg (2006)

[21] Basin, D.A., Klaedtke, F., Müller, S., Zali-
nescu, E.: Monitoring metric first-order tem-
poral properties. Journal of the ACM 62(2)
(2015)

[22] Colombo, C., Pace, G.J., Schneider, G.:
Dynamic event-based runtime monitoring
of real-time and contextual properties. In:

https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/s10703-020-00358-w
https://doi.org/10.1007/s10703-020-00358-w

Springer Nature 2021 LATEX template

General Monitorability of Totally Ordered Verdict Domains 17

Proc. of the 13th Int’l Workshop on For-
mal Methods for Industrial Critical Systems
(FMICS’08). LNCS, vol. 5596, pp. 135–149.
Springer, Berlin, Heidelberg (2008)

[23] Faella, M., Legay, A., Stoelinga, M.: Model
checking quantitative linear time logic. Elec-
tronic Notes in Theoretical Computer Science
220(3), 61–77 (2008). https://doi.org/10.
1016/j.entcs.2008.11.019. Proc. of the Sixth
Workshop on Quantitative Aspects of Pro-
gramming Languages (QAPL 2008)

[24] Sánchez, C.: Online and offline stream
runtime verification of synchronous sys-
tems. In: Proc. of the 18th Int’l Conf.
on Runtime Verification (RV’18). LNCS,
vol. 11237, pp. 138–163. Springer, Berlin,
Heidelberg (2018). https://doi.org/10.1007/
978-3-030-03769-7 9

[25] Faymonville, P., Finkbeiner, B., Schirmer, S.,
Torfah, H.: A stream-based specification lan-
guage for network monitoring. In: Proc. of
the 16th Int’l Conf. on Runtime Verifica-
tion (RV’16). LNCS, vol. 10012, pp. 152–168.
Springer, Berlin, Heidelberg (2016). https://
doi.org/10.1007/978-3-319-46982-9 10

[26] Gorostiaga, F., Sánchez, C.: Striver: Stream
runtime verification for real-time event-
streams. In: Proc. of the 18th Int’l Conf.
on Runtime Verification (RV’18). LNCS, vol.
11237, pp. 282–298. Springer, Berlin, Heidel-
berg (2018)

[27] Convent, L., Hungerecker, S., Leucker, M.,
Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: Temporal stream-based specifica-
tion language. In: Proc. of the 21st. Brazil-
ian Symp. on Formal Methods (SBMF’18).
LNCS, vol. 11254. Springer, Berlin, Heidel-
berg (2018)

[28] Henzinger, T.A., Saraç, N.E.: Quantitative
and approximate monitoring. In: Proceed-
ings of the 36th Annual ACM/IEEE Sym-
posium on Logic in Computer Science. LICS
’21. Association for Computing Machinery,
New York, NY, USA (2021). https://doi.
org/10.1109/LICS52264.2021.9470547. https:
//doi.org/10.1109/LICS52264.2021.9470547

[29] Li, Y., Droste, M., Lei, L.: Model check-
ing of linear-time properties in multi-
valued systems. Information Sciences 377,
51–74 (2017). https://doi.org/10.1016/j.ins.
2016.10.030

[30] Henzinger, T.A., Mazzocchi, N., , E.N.S.:
Quantitative safety and liveness. In: Proc.
of the 26th Int’l Conf. on Foundations of
Software Science and Computation Struc-
tures (FoSSaCS’23). LNCS, vol. 13992, pp.
349–370. Springer, Cham (2023)

[31] Alpern, B., Schneider, F.B.: Defin-
ing liveness. Information Processing
Letters 21(4), 181–185 (1985). https:
//doi.org/10.1016/0020-0190(85)90056-0

[32] Zhang, X., Leucker, M., Dong, W.: Run-
time verification with predictive semantics.
In: Proc. of the 4th Int’l Symp NASA For-
mal Methods (NFM’12). LNCS, pp. 418–432.
Springer, Berlin, Heidelberg (2012)

[33] Henzinger, T.A., Saraç, N.E.: Monitorabil-
ity under assumptions. In: Proc. of the 20th
Int’l Conf. on Runtime Verification (RV’20).
LNCS, vol. 12399, pp. 3–18. Springer, Berlin,
Heidelberg (2020)

[34] Leucker, M., Sánchez, C., Scheffel, T.,
Schmitz, M., Thoma, D.: Runtime verifica-
tion for timed event streams with partial
information. In: Proc. of the 19th Int’l Conf.
on Runtime Verification (RV’19). LNCS, vol.
11757, pp. 273–291. Springer, Berlin, Heidel-
berg (2019)

[35] Kauffman, S., Havelund, K., Fischmeister, S.:
What can we monitor over unreliable chan-
nels? International Journal on Software Tools
for Technology Transfer, 1–24 (2020)

[36] Chang, E., Manna, Z., Pnueli, A.: Charac-
terization of temporal property classes. In:
Kuich, W. (ed.) Automata, Languages and
Programming, pp. 474–486. Springer, Berlin,
Heidelberg (1992)

[37] Kallwies, H., Leucker, M., Sánchez, C.,
Scheffel, T.: Anticipatory recurrent moni-
toring with uncertainty and assumptions.

https://doi.org/10.1016/j.entcs.2008.11.019
https://doi.org/10.1016/j.entcs.2008.11.019
https://doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1016/j.ins.2016.10.030
https://doi.org/10.1016/j.ins.2016.10.030
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0

Springer Nature 2021 LATEX template

18 General Monitorability of Totally Ordered Verdict Domains

In: Proc. of the 22nd Int’l Confer-
ence on Runtime Verification (RV’22).
LNCS, vol. 13498, pp. 181–199. Springer,
Berlin, Heidelberg (2022). https://doi.
org/10.1007/978-3-031-17196-3 10. https:
//doi.org/10.1007/978-3-031-17196-3 10

[38] Gorostiaga, F., Sánchez, C.: Monitorabil-
ity of expressive verdicts. In: Proc. of the
14th Int’l Symp. on NASA Formal Methods
(NFM’22). LNCS, vol. 13260, pp. 693–712.
Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-06773-0 37. https://doi.org/
10.1007/978-3-031-06773-0 37

[39] Almagor, S., Boker, U., Kupferman, O.: Dis-
counting in LTL. In: Proc. of the 20th
Int’l Conf. on Tools and Algorithms for
the Construction and Analysis of Systems
(TACAS’14). LNCS, vol. 8413, pp. 424–439.
Springer, Berlin, Heidelberg (2014)

[40] Laroussinie, F., Meyer, A., Petonnet, E.:
Counting LTL. In: Proc. of the 2010 17th Int’l
Symp. on Temporal Representation and Rea-
soning (TIME’10), pp. 51–58. IEEE, Burling-
ton, VT, USA (2010). https://doi.org/10.
1109/TIME.2010.20

[41] Tabuada, P., Neider, D.: Robust linear tem-
poral logic. In: Proc. of the 25th EACSL
Annual Conference on Computer Science
Logic (CSL’16). LIPIcs, vol. 62, pp. 10–11021.
Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, Marseille, France (2016)

https://doi.org/10.1007/978-3-031-17196-3_10
https://doi.org/10.1007/978-3-031-17196-3_10
https://doi.org/10.1007/978-3-031-17196-3_10
https://doi.org/10.1007/978-3-031-17196-3_10
https://doi.org/10.1007/978-3-031-06773-0_37
https://doi.org/10.1007/978-3-031-06773-0_37
https://doi.org/10.1007/978-3-031-06773-0_37
https://doi.org/10.1007/978-3-031-06773-0_37
https://doi.org/10.1109/TIME.2010.20
https://doi.org/10.1109/TIME.2010.20

	Introduction
	Preliminaries
	LTL Property Classification

	A Richer View of Monitorability
	Boolean and Quantitative Totally Ordered Domains
	Property classes
	Quantitative LTL
	Discounting in LTL

	More General Monitorability Classes
	A Finer Classification of SFD
	Example Classifications
	Boolean Formalisms.
	LTL.
	QLTL.

	Conclusion

