
Tableaux for Realizability
of Safety Specifications⋆

Montserrat Hermo1 , Paqui Lucio1 , and César Sánchez2

1 University of the Basque Country, San Sebastián, Spain
2 IMDEA Software Institute, Madrid, Spain

Abstract. We introduce a tableau decision method for deciding realiz-
ability of specifications expressed in a safety fragment of LTL that in-
cludes bounded future temporal operators. Tableau decision procedures
for temporal and modal logics have been thoroughly studied for sat-
isfiability and for translating temporal formulae into equivalent Büchi
automata, and also for model checking, where a specification and system
are provided. However, to the best of our knowledge no tableau method
has been studied for the reactive synthesis problem.
Reactive synthesis starts from a specification where propositional vari-
ables are split into those controlled by the environment and those con-
trolled by the system, and consists on automatically producing a system
that guarantees the specification for all environments. Realizability is the
decision problem of whether there is one such system.
In this paper, we present a method to decide realizability of safety specifi-
cations, from which we can also extract (i.e., synthesize) a correct system
(in case the specification is realizable). The main novelty of a tableau
method is that it can be easily extended to handle richer domains (inte-
gers, etc) and bounds in the temporal operators in ways that automata
approaches for synthesis cannot.

1 Introduction

Linear Temporal Logic (LTL) [27] is modal logic for expressing correctness prop-
erties of reactive systems. Verification is the problem of deciding, given a sys-
tem S and an LTL specification φ, whether S models φ. Reactive synthesis, first
studied by Pnueli and Rosner in 1989 [29,28], is the problem of automatically
producing S from φ with the guarantee that S models φ. In the reactive syn-
thesis problem, the atomic variables are split into those variables controlled by
the environment and the rest, controlled by the system.

⋆ This work was funded in part by the European Union (ERDF funds) under grant
PID2020-112581GB-C22, European COST Action CA20111 EuroProofNet (Euro-
pean Research Network on Formal Proofs), by the University of the Basque Country
under project LoRea GIU21/044, by the Madrid Regional Government under project
S2018/TCS-4339 (BLOQUES-CM) and by a research grant from Nomadic Labs and
the Tezos Foundation.

http://orcid.org/0000-0001-5627-501X
http://orcid.org/0000-0001-7872-2685
http://orcid.org/0000-0003-3927-4773

(s ↔ pe)

(s ∧ pe) ∨ (¬s ∧ ¬pe),(s ↔ pe)

s, pe,(s ↔ pe)

(s ↔ pe)

¬s,¬pe,(s ↔ pe)

(s ↔ pe)

(s ↔ pe)

(s ∧ pe) ∨ (¬s ∧ ¬pe),(s ↔ pe)

s,pe,(s ↔ pe)

pe,(s ↔ pe)

×

¬s,¬pe,(s ↔ pe)

¬pe,(s ↔ pe)

×

Fig. 1. Tableaux for ψ1 and ψ2.

In the last two decades, the reactive synthesis problem has received lot of
attention (e.g., [5,10,15,16,21]). The approaches can be classified into three cat-
egories: (1) game-based [7], (2) approaches that cover a strict fragment of LTL,
like GR(1) specifications [26,3]; (3) bounded synthesis [30], which explores the
problem up to a fixed bound on the size of the system. In all these cases, the state
space of the game arena is either captured by an automaton or explored explic-
itly or symbolically. In this paper, we study a deductive alternative: a tableau
method for the realizability and synthesis for the class of safety specifications.

Tableau methods were originally created [2,33] as intuitive deduction proce-
dures for classical propositional and first-order logic. A tableau is a tree that
performs symbolic handling of formulas according to simple rules based on se-
mantics, model-theory and proof-theory. Classical tableaux correspond to deduc-
tive proofs in Gentzen’s sequent calculus. Tableaux have been evolving for years
to decide the satisfiability problem of many other non-classical logics (modal,
multi-valued, temporal, etc.), in some cases combined with other formal struc-
tures, such as different kinds of automata.

Traditional tableau techniques for satisfiability do not directly work for re-
alizability, where tableaux have only been used for auxiliary steps in automata-
based methods [6]. We present in this paper, a tableau-based method for the
realizability of reactive safety specifications. To illustrate the problem, consider
the following formulas where pe is an environment variable and s is a system
variable: ψ1 = s ↔ pe, ψ2 = s ↔ pe and ψ3 = s ↔ pe. Symbols  and 
are temporal operators which refer to the next instant and to all instants of time
respectively. The safety specifications ψ1 and ψ3 are realizable: consider the
system that mimics in s the value observed in e.
A temporal tableau forψ1 (shown in Fig. 1 (left)) first uses the semantics of the
 operator, which states that ψ1 = ψ1 ∧ ψ1. Then, it decomposes the for-
mula into s↔ pe,ψ1 and splits two branches for the two cases: s, pe,ψ1

and ¬s,¬pe,ψ1. Both nodes then jump to the next temporal state, so both
branches generate a loop to the root ψ1. Each branch represents a model of
the initial formula. It is tempting to interpret this tableau as a winning strategy
for the system that witnesses the realizability of ψ1. On the other hand, ψ2

is not realizable, as the system is required to guess the next value of pe, and the
environment can later emit the opposite value. The tableau for ψ2 is shown in

(s ↔ pe)

(s ∧ pe) ∨ (¬s ∧ ¬pe),(s ↔ pe)

s,pe,(s ↔ pe)

s, pe,(s ↔ pe)

×

¬s,¬pe,(s ↔ pe)

¬s,¬pe,(s ↔ pe)

×

Fig. 2. Tableau for ψ3.

Fig. 1 (right). The left branch in the tableau corresponds to the system choosing
s hoping for the environment to play pe in the next step. Since the environment
can choose ¬pe, this branch must close at node pe,ψ2 (the right branch is
similar). A branch closing condition typical of tableaux closes this branch as the
environment wins by forcing a contradiction. However, this closing condition fails
to capture the realizability of ψ3, since the resulting tableau for ψ3 would
be as shown in Fig. 2.
The previous closing condition would close the left branch (choosing ¬pe) and the
right branch (choosing pe), incorrectly concluding that ψ3 is unrealizable. The
problem here is in the splitting of the two cases s,pe and ¬s,¬pe, which
reveals too early the future move of the system given the power (incorrectly)
to the environment to create a contradiction. To overcome this problem, we
introduce in this paper the terse normal form of formulas which prevents these
incorrect splittings on formulas that reveal future choices too early. Intuitively,
at the second temporal state, our tableau will just have one node n : (s ∧
pe) ∨ (¬s ∧¬pe),ψ3. Node n has two children (one for each choice of the
environment):

pe, s,((s ∧ pe) ∨ (¬s∧¬pe)),ψ3 | ¬pe,¬s,((s ∧ pe) ∨ (¬s∧¬pe)),ψ3

Then, the next state from both nodes produces again node n. This tableau
encodes the proof that ψ3 is realizable (see Ex. 4).

We introduce in this paper realizability tableaux to fix classical temporal
tableau rules to obtain a correct decision procedure for realizability. Our tableau
method solves the realizability decision problem for a fragment of LTL, which
includes temporal operators of the form [n,m] and[n,m] (for n,m ∈ N). These
operators are very common in industrial critical specifications where the system
is supposed to respond within a predefined amount of time. Although these op-
erators can be seen as a short-hand for a Boolean combination of formulas using
only, the compact notation is effectively exploited in our tableau deductions in
a more efficient way that prevents exponential unfoldings. Consider for example
the formula ψ4 = pe → [0,2100]s. Our tableau for ψ4 splits two branches for
the two cases (¬pe ∧ ψ4) and (pe ∧ s ∧ [0,2100−1]s ∧ ψ4). The first
branch jumps to the next state, which loops to the root ψ4. The second branch

jumps to ([0,2100−1]s ∧ ψ4) which in turn spawns two new branches, both of
which loop immediately to their previous state. This very small tableaux en-
codes the ψ4 is realizable. This example illustrates a crucial difference between
automata and tableaux: the deductive power of the tableau, after checking two
successive states, is able to decide the realizability of ψ4, whereas automata
techniques require an explicit upfront elimination of the intervals. As far as we
know, this is the first temporal tableaux for solving realizability of safety LTL
specifications. Although this paper focuses on realizability, our tableaux provide
a procedures for both kinds of certificates: the realizability strategy (i.e. the
synthesis of a system) and the counterexample in the case of unrealizability.

In summary, our contributions are: (1) The introduction of the novel terse
normal form that captures in a logical form the timely choices of the environment
and the responses by the system. (2) A tableau method including all the deduc-
tive rules to build the tableau graph and rules to close the branches, with success
and with failure. (3) Sound and completeness proofs for our tableau method.
Related Work. Current approaches to reactive synthesis [5,10,15,16,21] are ei-
ther (1) based on games [7], which create a mathematical structure—like an
automaton—that capture the game arena and then explore this structure, or (2)
rely on bounded synthesis [30], which produce a set of constraints that charac-
terizes all correct systems up to fixed bound. Modern game approaches use a
symbolic representation [21], or SAT or QBF decision procedures [4]. Existing
tools for full LTL synthesis, including Unbeast [10] and Acacia+ [5] are based
on bounded synthesis. Different encoding of the constraint for a given bound
have been proposed [14,30,15,12,22,32,13,11]. Since 2014, the reactive synthesis
competition (SYNTCOMP) [1,20] compares the performance of synthesis tools
against different benchmark problems.

Reactive synthesis for full LTL is 2EXPTIME-complete [29], so LTL frag-
ments with better complexity have been identified. For example, GR(1) (general
reactivity with rank 1)—enjoy an efficient (polynomial) symbolic synthesis algo-
rithm [26,3], with practical applications [23,9]. Translating GR(1) specifications
into the safety language that we consider in this paper involves at least an expo-
nential blow-up in the worst case. All methods listed above perform an algorith-
mic exhaustive exploration of the game arena. In contrast, our deductive tableau
method is deductive. Even though some game-based tools, like Strix [25,24],
perform some on-the-fly construction of the game arena the deductive nature of
tableaux allows to skip larger portions of the state space. An explicit compar-
ison of the performance between methods requires a polished implementation,
which is out of the scope of this paper. We focus here the foundations3 of the
realizability tableau, emphasizing its power to handle richer settings and prevent
explicit blow-ups.

The first tableau method [35] for the satisfiability of LTL is not purely tree-
shape but builds a graph that is explored in a second pass. This inspired a
connection with Büchi automata [35,34], on which many decision procedures [8]

3 The full proof of correctness, including all intermediate lemmas can be found in the
extended version [19], which also includes several realizability tableaux examples.

for LTL satisfiability and model checking are based. The use of an auxiliary
structure raised two difficulties: one is the size and another is the loss of the
original correspondence with sequent proofs that could certify the result. Some
alternative ideas (e.g., [31,18]) have been developed to explore on-the-fly the
graph (or automaton) not requiring a second pass, and also for constructing one-
pass tableaux that preserve the correspondence with sequent proofs (cf. [17]).

2 Preliminaries. Safety Specifications and Games

Given a set R, R∗ denotes the set of finite strings over R and Rk the set of strings
over R of length k. Rω is the set of infinite sequences over R. We sometimes use
x to remark that string x is a sequence of elements, and use |x| for its length
and x · v for the concatenation of x with v. We use ϵ for the empty string.
Given r = r0, r1, r2 . . . ∈ Rω, and ri for ri, ri+1 . . ., we use r<i for the finite
sequence r0, . . . , ri−1 and ri..j for the finite sequence ri . . . rj−1. LTL extends
propositional logic with temporal operators  (next) and U (until). Given a
set V of propositional variables, a valuation v is a map V → B (where B is a
Boolean domain). We denote by Val(V) the set of all valuations of V. A trace σ
is an infinite sequence σ0, σ1, σ2, . . . of valuations of V. The semantics of LTL
relate formulas with traces as follows:

σ |= p iff σ0(p) σ |= ¬φ iff σ ̸|= φ

σ |= φ iff σ1 |= φ σ |= φ ∧ ψ iff σ |= φ and σ |= ψ

σ |= φU ψ iff σj |= ψ for some 0 ≤ j and σi |= φ for all i such that 0 ≤ i < j

We use standard abbreviations, like T for truth and F for falsehood, ∨,→ and
↔, andφ for TU φ and φ for ¬(TU ¬φ). A set of formulas is (syntactically)
consistent if and only if it does not contain a formula and its negation. If σ |= φ
then we say that σ is a model of φ and we use Mod(φ) to denote the set of all
models of φ. We interpret a finite set of formulas as the conjunction of all its
members, and use σ |= Φ to denote the set of traces that are models of all φ ∈ Φ.
A set of formulas Φ is satisfiable if and only if there exists at least one σ such
that σ |= Φ. Two formulas φ and ψ are logically equivalent, denoted φ ≡ ψ, if
and only if Mod(φ) = Mod(ψ). A set of traces L is a safety language whenever
for any trace σ /∈ L there exists some i > 0 such that σ<i · σ′ /∈ L for any trace
σ′. We call σ<i a witness of the violation of σ.

Safety Specifications. We split the set of propositions in a formula φ into two
disjoint subsets: Xe, controlled by the environment and Y, controlled by the
system. We use a subscript e (e.g., sensore or pe) for the elements of Xe.

We use a fragment of LTL for safety specifications. To illustrate the power
of our tableau technique to handle richer types, we do not restrict ourselves
to Boolean variables, but also consider enumerated variables and atoms x = c
where x is a variable of an enumerated type T and c is a constant value of type T .
Boolean formulas are built from atoms (Boolean variables or enumerated atoms)
using Boolean connectives. The fragment of safety LTL specifications consists of

formulas α ∧ ψ, where α, called the initial formula, is a Boolean constraint
that captures the initial states. The formula ψ, called the safety constraint,
restricts the transition relation by means of the following temporal operators:

η ::= p | x = c |¬η | η | Iη |Iη | η ∨ η | η ∧ η

where I = [n,m] for some n,m ∈ N such that n ≤ m. The semantics is:

σ |= [n,m]η iff σj |= η for all j such that n ≤ j ≤ m.
σ |=[n,m]η iff there exists j such that n ≤ j ≤ m such that σj |= η.

Note that I and I can be de-sugared using , but with an exponential
unfolding in terms m. A trace σ models α ∧ ψ whenever σ0(α) holds and
σk |= ψ for all k ≥ 0.

It is easy to see that any safety formula is logically equivalent to a formula
in Negation Normal Form (NNF) by pushing negation to the propositional level
(using equivalences ¬η ≡ ¬η, ¬Iη ≡ I¬η and ¬Iη ≡I¬η):

ℓ ::= p |¬p | x = c |¬(x = c) | T | F η ::= ℓ | η | Iη |Iη | η ∨ η | η ∧ η.

We assume that formulas are translated to NNF, ℓ stands for a literal, and,
for i ∈ N, i abbreviates a sequence of operators  of length i. The temporal
depth of φ is the maximum number of nested operators, where I andI are
interpreted in terms of . It is easy to see that the truth value of a formula (at
position i) of depth d only requires to inspect d positions of the trace (after i).
We define a semantics |=fin of our safety fragment of LTL on finite traces λ =
λ0 · · ·λd−1 where d ≥ 1 by:

λ |=fin ℓ iff λ0(ℓ) = 1
λ |=fin η1 ∧ η2 iff λ |=fin η1 and λ |=fin η2
λ |=fin η1 ∨ η2 iff λ |=fin η1 or λ |=fin η2
λ |=fin η iff if d > 1 then λ1..d |=fin η (remember that λ1···d denotes λ1 · · ·λd)

λ |=fin [n,m]η iff λj |=fin η for all n ≤ j ≤ min(m, d)
λ |=fin [n,m]η iff if n ≤ m < d then λj |=fin η for some n ≤ j ≤ m

Note that a witness of the violation of a safety formula η is a finite sequence
λ = λ0 · · ·λd−1 such that λ ̸|=fin η.

Given a set of formulas ∆, we denote by Val∆(V) the set of all valuations v ∈
Val(V) such that v(x) for every Boolean variable x ∈ ∆, ¬v(x) for every Boolean
variable ¬x ∈ ∆, v(x) = c for every x of enumerated type such that x = c ∈ ∆,
and v(x) ̸= c for every x of enumerated type such that ¬(x = c) ∈ ∆. Note that
if x does not occur in ∆, there are many v ∈ Val∆(V) with different values for
v(x). If ∆ is a set of literals then λ0 |=fin ∆ if and only if λ0 ∈ Val∆(V). Given
v ∈ Val(Xe) and w ∈ Val(Y), we denote by v+w the valuation in z ∈ Val(Xe∪Y)
such that z(p) = v(p) if z ∈ Xe and z(p) = w(p) if z ∈ Y. This notation is
extended to pairs of finite traces λ on Xe and λ′ on Y of the same length d, i.e.,
λ + λ′ denotes the trace (λ0 + λ′0) · · · (λd−1 + λ′d−1). It is easy to see that our
fragment of safety specifications can only describe safety languages.

Lemma 1. Given a safety spec. φ = α ∧ ψ and a trace σ, σ ̸|= φ iff either
(i) σ0 is a witness of the violation of α ∧ ψ, or
(ii) for some i and d ≤ depth(ψ) σi..i+(d+1) is a witness of the violation of ψ.

Safety Games. A safety game ⟨I, P, PE , PS , T, B⟩ is played by two players E (the
environment) and S (the system), where (1) P is the set of positions, partitioned
into P = PE ∪ PS ; (2) I ⊆ P is the initial positions; (3) T ⊆ (P × P) is the set
of moves; and (4) B ⊆ P is the safety winning condition. E moves at positions
PE and S moves at PS , choosing a successor. A play π : v0v1v2 . . . is an infinite
sequence of positions, related by moves. We assume that every position has a
successor so we do not have to deal with finite plays. A play π is winning for S
if for all i, π(i) /∈ B. A memoryless strategy ρS for S is a map ρS : PS → P ,
such that (p, ρS(p)) ∈ T is a move for all p ∈ PS .

Strategies for E are defined analogously. A play π is played according to a
strategy ρS if for every i, if π(i) ∈ PS then π(i + 1) = ρS(π(i)). A strategy ρS
of S is winning if every initial play π played according to ρS is winning for S.
It is well-known that safety games are memoryless determined (either S or E
have a memoryless winning strategy). We now construct a safety game from a
specification φ over Xe and Y:
– PE = {Val(Xe)k × Val(Y)k | k ∈ N}. We use P kE = {(x, y)| |x| = |y| = k}.
– PS = {Val(Xe)k+1 × Val(Y)k | k ∈ N}. We use P k+1

S = {(x, y)| |x| = k +
1 and |y| = k}.

– T contains two types of edges T = TE ∪TS defined as follows for each k ∈ N:
• TE ⊆ (P kE , P

k+1
S) such that ((x, y), (x · v, y)) ∈ TE iff v ∈ Val(Xe).

• TS ⊆ (P k+1
S , P k+1

E) such that ((x · v, y), (x · v, y ·w)) ∈ TS iff w ∈ Val(Y).
– I = {(ϵ, ϵ)}.

Note that E and S alternate playing. Given a position p ∈ PE \ I of the form
(x ·v, y ·w) we use move(p) = (v+w) for the valuation of the variables of Xe∪Y
according to v and w. Given a play π we use trace(π) for the trace σ such that
σ(i) = move(π(2i+1)), which corresponds to the sequence of valuations that E
and S pick. This arena is essentially an infinite tree that records the valuations
chosen. We define the set of bad states as the safety winning condition:

Bφ = {(x, y) | there is v ∈ Val(Xe), for all w ∈ Val(Y) : x · v + y · w ̸|=fin φ}.

We use G(φ) : ⟨P, PE , PS , I, T,Bφ⟩ for the safety specification game for φ.

Lemma 2. A safety spec. φ is realizable if and only if G(φ) is winning for S.

3 Realizability Tableaux

We introduce now the main technical contribution of this paper, a tableau
method for deciding the realizability of a safety specifications, which also al-
lows to synthesize a winning strategy for realizable specifications.

3.1 Terse Normal Form

Our tableau for φ will cover the plays of G(φ), where the environment chooses
a move on its variables Xe and, then, the system responds with a move on Y.
In order for branches to represent real plays, the formula in a node should de-
termine the true strict-future possibilities at the current position. Consider that
the formula φ2 = (¬s) ∨ (pe ∧ s) represents the possible moves at some
position in a game. Satisfying (¬s) would fulfill the specification. Also, if the
environment moves pe boths and¬s would satisfy φ2. However, a classical
tableau-style analysis would split φ2 into two branches such that the one con-
taining pe requires s to satisfy the specification, precluding the possibility of
¬s. Note also that the formula φ3 = (pe ∧ (¬s ∨ s)) ∨ (¬pe ∧ ¬s) is
logically equivalent to φ2, but suitable for a tableau-style analysis of realizabil-
ity. We now introduce the Terse Normal Form (TNF) for safety formulas that
associates moves with formulas that capture the condition that any trace must
satisfy in the (strict) future to be coherent with the current safety specification.
The formula φ3 above is in TNF.

Basic (sub)formulas of a safety formula are of the form ℓ, nη, Iη or
Iη. We classify these into from-now formulas: ℓ,[0,m]η,[0,m]η and from-
next formulas: η, [n,m]η and [n,m]η (for any m ≥ n ≥ 1).

Definition 1 (Strict-future and separated). A strict-future formula is a
DNF combination of from-next formulas. A separated formula is the conjunction
of a set of Boolean literals (possibly empty) and (at most) one strict-future for-
mula. If π is a separated formula, then L(π) denotes the set of literals in π and
F(π) denotes the strict-future formula in π.

Definition 2 (TNF). A safety formula η in Terse Normal Form (TNF) is a
disjunction

∨n
i=1 πi such that each πi is a separated formula, and for all 1 ≤ i ̸=

j ≤ n there is at least one literal ℓ such that ℓ ∈ L(πi) and ¬ℓ ∈ L(πj).

Proposition 1. For any safety formula η there is a logically equivalent safety
formula, called TNF(η), that is in TNF.

Example 1. The TNF for pe ↔ s andpe ↔ s from Section 1 are TNF(pe ↔
s) ≡ (pe ∧ s) ∨ (¬pe ∧ ¬s) and TNF(pe ↔ s) ≡ (pe ∧ s) ∨
(¬pe ∧ ¬s). Finally, for η = c ∧ (¬pe → [0,9]¬c) ∧ ([0,9]c ∨ [0,2]¬c):
TNF(η) ≡ (pe ∧ c ∧ ([0,1]¬c ∨ [0,8]c)) ∨ (¬pe ∧ c ∧ [0,8]c).

Definition 3 (Moves). Given
∨n
i=1 πi in TNF we call each πi a move.

Note that Valπi
= ValL(πi) for any move πi of any formula in TNF. In Ex. 1,

TNF(pe ↔ s) contains two moves, each having a literal and a strict-future
formula, but TNF(pe ↔ s) has only one move (the empty set of literals)
with one future-strict formula (which is a disjunction).

Proposition 2. Let η be a safety formula and let TNF(η) =
∨n
i=1 πi. Then,

(a) For any trace σ, σ |= η iff σ |= πi for exactly one 1 ≤ i ≤ n.

(b) For any finite trace λ, λ |=fin η iff λ |=fin πi for exactly one 1 ≤ i ≤ n.
(c) Let σ be such that σ |= η and let 1 ≤ i ≤ n. Then, σ |= L(πi) → F(πi).

We define now a special subset of moves in a TNF that are called Xe-coverings.

Definition 4. A formula
∨n
i=1 πi in TNF with ∪ni=1Valπi

(Xe) = Val(Xe) is called
an Xe-covering. An Xe-covering is minimal if

∨n
i=1,i̸=j πi is not an Xe-covering

for any 1 ≤ j ≤ n.

Intuitively, a minimal Xe-covering represents a system strategy from the cur-
rent position. Therefore, the collection of all minimal coverings represents all
possible strategies. Moreover, each move in a strategy contains all the strict-
future possibilities for this move.

Example 2. Let TNF(η) = (pe ∧ c ∧ η1) ∨ (¬pe ∧ c ∧ η2) ∨ (¬c ∧ η3) where
η1, η2, η3 are strict-future formulas and Xe = {pe}. It is a non-minimal Xe-
covering, but the third move (¬c ∧ η3) is a minimal one. The two first moves
together also provide a minimal Xe-covering.

We say that a set of indices I is a (minimal) Xe-covering when
∨
i∈I πi is a

(minimal) Xe-covering.

Proposition 3. Let Φ be a set of safety formulas and TNF(Φ ∧ ψ) =
∨
i∈I πi.

(a) If I is not an Xe-covering, then for some v ∈ Val(Xe), v ̸|=fin Φ ∧ ψ.
(b) If I is a minimal Xe-covering, then for all i ∈ I and all v ∈ Valπi(Xe), there

exists some v′ ∈ Valπi(Y) such that v + v′ ∈ Valπi(Xe ∪ Y).
(c) If for each v ∈ Val(Xe) there exists v′ ∈ Val(Y) such that v + v′ |=fin Φ ∧ ψ,

then there exists some minimal Xe-covering J ⊆ I.

To handle strict-future formulas F(π) in the tableau rules we introduce the sym-
bol ∨̈ which is semantically equivalent to ∨, but our tableau rules deal differently
with both disjunctive operators. More precisely, strict-future subformulas F(π)

(inside moves of TNF formulas) will be written as
∨̈m

i=1δi.

3.2 Tableaux

Realizability tableaux are AND-OR trees, where each node is labelled by a set
of formulas4. A node is said to be the parent of its successors nodes. The root of
the tree is labelled with the input safety specification. The tableau is constructed
using the set of tableau rules shown in Fig. 3. Each rule determines the labels
on the children of a node and the kind (AND or OR) of its successors. A tableau
is completed when no further rule can be applied. Rules apply only to nodes
in branches that are neither failed nor successful. A node is called a leaf when
no rule can be applied to it. There are two kinds of leaves. Failure leaves are
labelled by (syntactically) inconsistent sets of formulas, which indicates that the
4 We graphically represent AND-nodes with an arc embracing all the edges to the

AND-successors of a node.

branch from the root to the leaf is failed. Successful leaves are labelled by sets
of formulas that are subsumed (in the sense we will make precise in Def. 6) by
some previous node in the branch from the root to the leaf.

Before we introduce the tableau rules, we define the finite set of all formulas
that could appear in the construction of a tableau for φ, denoted as Clo(φ).

Definition 5. Given a formula β, we denote by SubFm(β) the set of all subfor-
mulas of β. In particular, SubFm(iβ) = {jβ | 0 ≤ j ≤ i} ∪ SubFm(β). For
a given safety formula ψ, we define Varnt(ψ) to be the union of the following
four sets that collects all the variants of subformulas I and I that the tableau
rules could introduce.

{[n,m′]β,[n,m′]β |[n,m]β ∈ SubFm(ψ), n ≤ m′ < m} ∪
{[n,m′]β,[n,m′]β | [n,m]β ∈ SubFm(ψ), n ≤ m′ < m} ∪
{SubFm(iβ) |[n,m]β ∈ SubFm(ψ), 0 ≤ i ≤ n} ∪
{SubFm(iβ) | [n,m]β ∈ SubFm(ψ), 0 ≤ i ≤ n}

The set Ordnf(ψ) consists of all formulas of the form
∨̈n

i=1

∧m
j=1 βi,j where each

βi,j is in Varnt(ψ). Then, the closure of a safety specification φ = α ∧ ψ is
the finite set Clo(φ) = Preclo(φ) ∪ {ψ,ψ} where Preclo(φ) = SubFm(α ∧
ψ) ∪ Varnt(ψ) ∪ Ordnf(ψ).

Realizability Tableaux. A tableau for a safety specification φ = α ∧ ψ is a
labelled tree Tab(φ) = (N, τ,R), where N is a set of nodes, τ is a map from N
to Clo(φ) and R ⊆ N ×N , such that the following conditions hold:
– The root is labelled by {α,ψ}.
– For any (n, n′) ∈ R, τ(n′) is the set of formulas obtained as the result of the

application of one of the tableau rules (in Fig. 3) to τ(n). If the applied rule
is ρ, we say that n′ is a ρ-successor of n.

– For every success or failure leaf n there is no n′ ∈ N s.t. (n, n′) ∈ R where:
• A failure leaf is a node n ∈ N s.t. Incnst(τ(n)) (see Def. 7).
• A success leaf is a node n ∈ N such that ψ ∈ τ(n) and there exists
k ≥ 0, n0, . . . , nk ∈ N such that (ni, ni+1) ∈ R for all 0 ≤ i < k,
(nk, n) ∈ R and τ(n0)⋖ τ(n) (see Def. 8).

3.3 Subsumption and Syntactical Inconsistency

Subsumption rules allow to control the potential set of labellings of the tableau
nodes. We use β ⊑ γ to denote that β subsumes γ or that γ is subsumed by β.
Subsumption is related to logical implication, if β ⊑ γ, then Mod(β) ⊆ Mod(γ).
Classical subsumption rules include β ⊑ β, β ∧ γ ⊑ β, and β ⊑ β ∨ γ. The set
of formulas used to label our tableau nodes are subsumption-free with respect to
classical subsumption on Boolean formulas and the following subsumption rules
for temporal operators.

Definition 6. The subsumption rules for temporal formulas are:
– For all n ≤ n′ and m′ ≤ m,
[n′,m′]β ⊑[n,m]β, [n,m]β ⊑ [n′,m′]β, and [n′,m′]β ⊑[n,m]β.

– For all n ≤ k ≤ m: kβ ⊑[n,m]β and [n,m]β ⊑ kβ.

The following result easily follows from Def. 6 and semantics.

Proposition 4. Let β ⊑ γ be a pair of formulas. For any trace σ, if σ |= β
then σ |= γ. For any finite trace λ, if λ |=fin β then λ |=fin γ. Consequently,
σ ̸|= β ∧ γ̃ and λ ̸|=fin β ∧ γ̃ for any σ and λ, where γ̃ is the NNF of ¬γ.

Definition 7. A set of formulas Φ is (syntactically) inconsistent (denoted by
Incnst(Φ)) whenever one of the following four conditions hold:
(a) F ∈ Φ
(b) {β, γ̃} ⊆ Φ for some β, γ such that β ⊑ γ
(c) {x = c1, x = c2} ⊆ Φ for some c1 ̸= c2
(d) {¬(x = c) | c ∈ T} ⊆ Φ for some enumerated type T .
Otherwise, Φ is (syntactically) consistent, denoted Cnst(Φ).

A node that is labelled by an inconsistent set is a failure leaf and no rule is applied
to it. We now define a subsumption-based order relation on sets of formulas to
detect successful leaves.

Definition 8. For two given set of formulas Φ and Φ′, we say that Φ ⋖ Φ′ if
and only if for every formula β ∈ Φ there exists some β′ ∈ Φ′ such that β ⊑ β′.
For two given strict-future formulas,

∨̈n

i=1∆i ⊑
∨̈m

j=1Γj if and only if for all
1 ≤ i ≤ n there exists 1 ≤ j ≤ m such that ∆i ⋖ Γj.

The following result follows from Def. 8 and Prop. 4.

Proposition 5. For any finite trace λ and any pair of set of formulas Φ and Φ′

such that Φ⋖ Φ′, if λ |=fin Φ then λ |=fin Φ′.

No rule is applied to a node that is labelled by a set Φ′ such that Φ⋖Φ′ for some
previous label Φ in the same branch, because it is a successful leaf.

3.4 Tableau Rules

First, the Always Rules in Fig.3(a) provides a non-deterministic procedure for
analyzing the minimal Xe-coverings in TNF(Φ ∧ ψ) (see Def. 4 and Prop. 3).
Rule (∧) is the only rule in our system that produces AND-successors, by
splitting the cases of each minimal Xe-covering. We introduce the rules that
decompose formulas into their constituents, using saturation as usual in tableau
methods. The decomposing of formulas inside the conjunctions connected by ∨̈
is just an unfolding in the formula. The Saturation Rules in Fig. 3(b) saturate
with respect to ∧ and ∨ (including ∨̈) and temporal operators I and I . The
following property of saturation rules is proved by routinely applying semantics.

Proposition 6. For any saturation rule Φ
Φ1|···|Φk , it holds that σ |= Φ if and

only if σ |= Φi for some 1 ≤ i ≤ k.

(F)
Φ,ψ
F,ψ

if TNF(Φ ∧ ψ) is not an Xe-covering

(∨) Φ,ψ∨
i∈J1

πi,ψ | · · · |
∨

i∈Jm
πi,ψ

if J1, . . . , Jm is the collection of all minimal
Xe-covering of TNF(Φ ∧ ψ)

(∧)
∨

i∈I πi,ψ

π1,ψ & . . . & πn,ψ
if I is a minimal Xe-covering

(a) Always Rules (where τ denotes TNF(Φ ∧ ψ))

(∨) Φ, β ∨ γ

Φ, β | Φ, γ (∧) Φ, β ∧ γ

Φ, β, γ
(∨̈ ∧) Φ, (η ∧ (β ∨ γ))∨̈δ

Φ, (η ∧ β)∨̈(η ∧ γ)∨̈δ

(<)
Φ, [n,m]β

Φ, nβ | Φ, [n,m−1]β
if n < m

(∨̈<)
Φ, (η ∧[n,m]β)∨̈δ

Φ, (η ∧ nβ)∨̈(η ∧ [n,m−1]β}∨̈δ
if n < m

(=)
Φ, [n,n]β

Φ, nβ
(=)

Φ, [n,n]β

Φ, nβ
(∨̈=)

Φ, (η ∧[n,n]β)∨̈δ
Φ, (η ∧ nβ)∨̈δ

(<)
Φ, [n,m]β

Φ, nβ, [n,m−1]β
if n < m (∨̈=)

Φ, (η ∧ [n,n]β)∨̈δ
Φ, (η ∧ nβ)∨̈δ

(∨̈<)
Φ, (η ∧ [n,m]β)∨̈δ

Φ, (η ∧ nβ ∧ [n,m−1]β)∨̈δ
if n < m

(b) Saturation Rules

()
Φ, η,ψ
η↓,ψ

if Φ∪{η} is elementary and η is strict-future

(c) Next-state Rule

Fig. 3. Realizability Tableau Rules

Definition 9. A next-formula is a formula whose first symbol is . A strict-
future formula

∨̈n

i=1∆i is elementary if every formula in the set
⋃n
i=1∆i is a

next-formula.
The successive application of the rules (∨̈ ∧), (∨̈ <), (∨̈ =), (∨̈ <) and

(∨̈ =) ensures the following proposition.

Proposition 7. Given a strict-future formula δ, there is an elementary formula
δE such that δ ≡ δE and δE is in DNF.

Definition 10. A set ∆ is saturated whenever for all δ ∈ ∆ the following hold:
– If δ = β ∧ γ, then {β, γ} ∈ ∆. If δ = β ∨ γ, then β ∈ ∆ or γ ∈ ∆.
– If δ = [n,m]β and n < m, then {nβ,[n,m−1]β} ⊆ ∆.

– If δ =[n,m]β and n < m, then either nβ ∈ ∆ or [n,m−1]β ∈ ∆
– If δ = [n,n]β or γ =[n,n]β, then nβ ∈ ∆.
– If δ is a strict-future formula, then δE ∈ ∆

We use Stt(∆) to denote the set of all (minimal) saturated sets that contains ∆.

Proposition 8. Let ∆ be a set of formulas, σ a trace and λ a finite trace.
– σ |= ∆ if and only if σ |= Φ for some Φ ∈ Stt(∆).
– λ |=fin ∆ if and only if λ |=fin Φ for some Φ ∈ Stt(∆).

By Prop. 2 and 8, we obtain the next result.

Proposition 9. Let Φ be a set of safety formulas and let J1, . . . , Jm be the
collection of all minimal Xe-coverings in TNF(Φ ∧ ψ) =

∨
i∈I πi. Then

(a) For any trace σ, σ |= Φ,ψ iff σ |= πi,ψ holds for some i ∈ Jk for each
1 ≤ k ≤ m. Let λ be finite trace, λ |=fin Φ ∧ ψ iff λ |=fin πi for some i ∈ Jk
for each 1 ≤ k ≤ m.

(b) For any 1 ≤ k ≤ m and any i ∈ Jk the following two facts hold:
(i) If Incnst(∆) for all ∆ ∈ Stt(Φ∪ {πi}), then every λ0 ∈ Val∆(Xe ∪Y) is

a witness of the violation of Φ ∧ ψ.
(ii) Let ∆ ∈ Stt(Φ ∪ {πi}) be s.t. Cnst(∆). Then, λ0 |=fin Φ ∧ ψ for every

λ0 ∈ Val∆(Xe ∪ Y).

Prop. 10 follows from the fact that, by Def. 4, there is some v ∈ Val(Xe) \
ValΦ∧ψ(Xe).

Proposition 10. Let Φ be a set of formulas. If TNF(Φ ∧ ψ) is not an Xe-
covering, then there is a v ∈ Val(Xe) s.t. for all v′ ∈ Val(Y), v + v′ ̸|=fin Φ ∧ ψ.

Proposition 11. Let Φ be a set of formulas, TNF(Φ ∧ ψ) =
∨
i∈I πi be an Xe-

covering and J1, . . . , Jm be the collection of all minimal Xe-coverings in I. If for
every 1 ≤ k ≤ m there exists some i ∈ Jk such that Incnst(∆) for all ∆ ∈ Stt(πi),
then there exists some v ∈ Val(Xe) such that for all v′ ∈ Val(Y), v+v′ ̸|=fin Φ∧ψ.

Finally, the tableau rules also include the Next-state rule in Fig. 3(c). This
rule is used to generate a new tableau node, that is to jump from a temporal
position to the next. Its formalization is based on the following definitions.

Definition 11. Given an elementary strict-future formula η =
∨̈n

i=1

∧m
j=1βi,j,

the formula η↓ is
∨̈n

i=1

∧m
j=1 βi,j.

Example 3. Consider the strict-future formula δ =[1,2]a ∨̈ [1,3]b. Then, δE =

a ∨̈ [1,1]a ∨̈ (b ∧ [1,2]b) and δE↓ = a∨̈ [1,1]a∨̈(b ∧ [1,2]b). Note
that the only effect of ↓ is to remove the -operators in each term of δE .

Definition 12. A set of formulas Φ is elementary if it consists of a set of literals
and one elementary strict-future formula.

Basically, the application of the Next-state rule to an elementary set that labels
a node, removes all literals and removes the -operators (in each term) from
the single elementary strict-future formula.

Proposition 12. Let Φ∪{η} be a consistent and elementary set of formulas with
strict-future formula η. Then, (a) For any trace σ, if σ |= Φ, η,ψ then σ1 |=
η↓,ψ; (b) let λ = λ0, . . . λk−1 be a pre-witness of α ∧ ψ s.t. λk−1 |=fin Φ, and
let λk ∈ Val(Xe ∪Y). Then, λ ·λk is a pre-witness of α ∧ ψ iff λk |=fin η↓ ∧ ψ.

3.5 A Tableau Algorithm for Realizability

Alg. 1 provides a decision procedure for realizability. The algorithm constructs
completed tableau by expanding the minimal Xe-coverings produced by the
moves (and allowed by the input safety specification) at successive positions.
Alg. 1 uses recursion to explore in-depth the branches of the tree. The formal
parameter is given as the union of a set of formulas Φ and a formula χ that ranges
in {ψ,ψ}. For deciding realizability of a safety specification φ = α ∧ ψ,
the initial call Tab(φ) is really Tab({α,ψ}). Intuitively, player E moves when
χ = ψ (including at the start), whereas S moves when χ = ψ.

Algorithm 1: Tab(Φ ∪ {χ}) returns is_open: Boolean
1 if Φ is inconsistent then is_open := False;
2 else if χ = ψ then
3 if Φ0 ⋖ Φ for some Φ0 in the branch of Φ then
4 is_open := True

5 else if TNF(Φ ∧ ψ) is not an Xe-covering then
6 is_open := Tab({F,ψ});
7 else if TNF(Φ ∧ ψ) is a non-minimal Xe-covering then
8 Let J1, . . . , Jm be all the minimal Xe-coverings of TNF(Φ ∧ ψ);
9 i , is_open := 0 , False ;

10 while ¬is_open ∧ i < m do
11 i , is_open := i+ 1 , Tab(Ji ∪ {ψ}) ;

12 else // TNF(Φ ∧ ψ) =
∨n

i=1 πi is a minimal Xe-covering

13 i , is_open := 0 , True ;
14 while is_open ∧ i < n do
15 i , is_open := i+ 1 , Tab({πi,ψ}) ;

16 else if Φ = Λ ∪ {η} is elementary (η is strict-future) then
17 is_open := Tab({η↓,ψ});
18 else
19 ρ := select_saturation_rule(Φ);
20 Let 1 ≤ k ≤ 2 and Φ1, . . . , Φk the set of all ρ-children;
21 is_open := Tab(Φ1 ∪ {ψ});
22 if k = 2 ∧ ¬is_open then
23 is_open := Tab(Φ2 ∪ {ψ})

n1 : (pe ↔ s)

n2 : (pe ∧ s)∨̈(¬pe ∧ ¬s),ψ

n3 : (pe ∧ s)∨̈(¬pe ∧¬s),ψ

n4 : pe ∧ s ∧ (pe ∧s)∨̈(¬pe ∧¬s),ψ

n6 : pe, s, (pe ∧ s)∨̈(¬pe ∧ ¬s),ψ

n8 : (pe ∧ s)∨̈(¬pe ∧¬s),ψ

n5 :¬pe∧¬s ∧ (pe ∧s)∨̈(¬pe ∧¬s),ψ

n7 :¬pe,¬s, (pe ∧ s)∨̈(¬pe ∧ ¬s),ψ

n9 : (pe ∧ s)∨̈(¬pe ∧¬s),ψ

(∨) + (∧)

(∨) + (∧)

()

() ()

(∧)(∧)

Fig. 4. Open tableau for (pe ↔ s).

Definition 13. A branch b of a tableau is a sequence of nodes n0, . . . , nk such
that n0 is the root and (ni, ni+1) ∈ R for 0 ≤ i < k − 1. If nk is a successful
leaf, then b is called a successful branch. If nk is a failure leaf, then b is called a
failure branch.

Alg. 1 returns the Boolean variable is_open, which corresponds to whether
the completed tableau for the call parameter Φ ∪ {χ} is open or closed. Lines
1–4 deal with the simple cases of the recursion. Line 6 produces a recursive
call that immediately returns failure. A tableau is called completed when all its
branches contain a terminal node, i.e., all its branches are failure or successful.
Recursive calls in Alg. 1 and the notions of open and closed tableaux are related
to AND-nodes, for which we introduce the following definition.

Definition 14. A set of branches H of a completed tableau is called a bunch
whenever for every b ∈ H, every AND-node n ∈ b, and every n′ that is an (∧)-
successor of n, there is b′ ∈ H such that n′ ∈ b′. A completed tableau is open
when it contains at least one bunch with all its branches successful. Otherwise,
the tableau is closed.

Alg. 1 looks for bunches of successful branches as follows. Lines 7-11 of Alg. 1
invoke a recursive call for each minimal Xe-covering, according to rule (∨).
When some of these calls return is_open for a minimal Xe-covering Ji, which is
an OR-node, the iteration is finished with this result for the previous call. The
construction of the tableau for each Jk, by the rule (∧) and according to lines
12-15, produces a call for each move πi in Jk. Moves are AND-children, hence all
the calls should give is_open to obtain truth for Jk. Finally, lines 16-17 perform
the application of (), and lines 18-23 apply the saturation rules. When one
rule is applied, the second child is expanded only if the first child returns not
is_open.

Proposition 13. Alg. 1 terminates and Tab(φ) builds a completed tableau.

Example 4. We revisit the specification ψ3 with ψ3 : (pe ↔ s) discussed
in Section 1, for which TNF(pe ↔ s) = (pe ∧ s) ∨ (¬pe ∧ ¬s) is the
only minimal Xe-covering. Fig. 4 shows an open tableau for this formula.

The only child of the root, n2, is obtained by rule (∨) and then (∧). When
the () applies to n2, the label of node n3 is obtained, which is {(pe ∧ s)∨̈(¬pe ∧
¬s),ψ}. Then, TNF((pe ∧ s) ∨ (¬pe ∧¬s)) ∧ ψ) yields a minimal Xe-covering
with two moves: (pe ∧ s ∧ (pe ∧ s)∨̈(¬pe ∧ ¬s)) and (¬pe ∧¬s ∧
(pe ∧ s)∨̈(¬pe ∧ ¬s)). Hence, the rule (∨) is applied, and after it,
the rule (∧) produces one AND-node with two children, one for each move. In
both branches, after saturation and application of (), a node already in the
branch is obtained. Therefore, the completed tableau has an open bunch and
the specification is realizable. More examples can be found in [19].

Correctness. For any given specification φ, it holds that φ is realizable if and
only if the completed tableau Tab(φ) is open. We formally prove this statement
by defining a new class of games (a variation of safety games) called a safety
tableau-game T (φ) where players E and S play with game rules that correspond
to the tableau rules. Then we connect winning strategies for S in Tab(φ) with
winning strategies for S in T (φ). The full proof is in [19].

4 Conclusions

We have introduced the first tableau method to decide realizability of temporal
safety formulas. Our tableau method allows to synthesize a system when the
specification is realizable because a (memoryless) winning strategy for the system
can be extracted from an open tableau (the technical details of synthesizing the
system is out of the scope of this paper and how to efficiently extract and encode
this strategy is ongoing work).

Our tableau method is based on the novel notion of terse normal form (TNF)
of formulas that is crucial in the formulation of the realizability tableau. The
tableau rules make use of the terse normal form to precisely capture the infor-
mation that each player (environment and system) has to reveal at each step.
We have proved soundness and completeness of the proposed method.

Future work includes the implementation of the method presented in this
paper and to experiment with the resulting prototype in a collection of bench-
marks. We would ultimately like to compare an efficient implementation of the
realizability tableau with mature tools from the SYNTCOMP competition.

We also plan to extend the method to more expressive languages, including
the handling of richer propositions (like numeric variables and expressions) by
combining realizability tableau rules with tableau reasoning capabilities for these
domains. We have illustrated this path in this paper by the introduction of enu-
merated types. Another interesting extension is a deeper analysis, including new
rules, to handle upper and lower bounds of intervals in temporal operators, for
example to accelerate a branch to reach the lower bound a of an [a,b] operator.
We would like to ultimately extend our tableau method to richer fragments of
LTL.

Finally, future work includes a precise analysis of the complexity of the real-
izability tableau and its different instances.

References

1. https://syntcomp.org.
2. Beth. The Foundation of Mathematics. North-Holland, 1959.
3. Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir. Pnueli, and Yaniv

Sa’ar. Synthesis of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.
4. Roderick Bloem, Bettina Könighofer, and Martina Seidl. SAT-based synthesis

methods for safety specs. In Proc. of VMCAI’14, volume 8318 of LNCS, pages
1–20, 2014.

5. Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin, and cois Raskin
Jean-Fran˙Acacia+, a tool for LTL synthesis. In Proc. of CAV’12, volume 7358 of
LNCS, pages 652–657. Springer, 2012.

6. Romain Brenguier, Guillermo A. Pérez, Jean-François Raskin, and Ocan Sankur.
AbsSynthe: abstract synthesis from succinct safety specifications. In Proc. of the
3rd Workshop in Syntehsis (SYNT’14), volume 157 of EPTCS, pages 100–116,
2014.

7. J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by
finite-state strategies. Transactions of the American Mathematical Society, 138,
1969.

8. Martin De Wulf, Laurent Doyen, Nicolas Maquet, and Jean-François Raskin.
Alaska: Antichains for logic, automata and symbolic kripke structures analysis. In
Proc. of the 6th Int’l Symp. on Automated Technology for Verification and Analysis
(ATVA’08), volume 5311 of LNCS, pages 240–245. Springer, 2008.

9. Nicolás D’Ippolito, Victor A. Braberman, Nir Piterman, and Sebastian Uchitel.
Synthesizing nonanomalous event-based controllers for liveness goals. ACM Trans.
Softw. Eng. Methodol., 22(1), 2013.

10. Rüdiger Ehlers. Unbeast: Symbolic bounded synthesis. In Proc. of TACAS’11,
volume 6605 of LNCS, pages 272–275. Springer, 2011.

11. Bernd Finkbeiner. Bounded synthesis for Petri games. In Proc. of the Symp. in
Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday, volume
9360, pages 223–237. Springer, 2015.

12. Bernd Finkbeiner and Swen Jacobs. Lazy synthesis. In Proc. of VMCAI’12, volume
7148 of LNCS, pages 219–234. Springer, 2012.

13. Bernd Finkbeiner and F. Klein. Bounded cycle synthesis. In Proc. of CAV’16,
volume 9779 of LNCS, pages 118–135. Springer, 2016.

14. Bernd Finkbeiner and Sven Schewe. SMT-based synthesis of distributed systems.
In Proc. of the 2nd Workshop on Automated Formal Methods (AFM’07), pages
69–76. ACM, 2007.

15. Bernd Finkbeiner and Sven Schewe. Bounded synthesis. Int. J. Softw. Tools
Technol. Transf., 15(5-6):519–539, 2013.

16. Bernd Finkbeiner and Leander Tentrup. Detecting unrealizable specifications of
distributed systems. In Proc. of TACAS’14, volume 8413 of LNCS, pages 78–92.
Springer, 2014.

17. Jose Gaintzarain, Montserrat Hermo, Paqui Lucio, Marisa Navarro, and Fernando
Orejas. Dual systems of tableaux and sequents for PLTL. Journal of Logic and
Algebraic Programming, 78(8):701–722, 2009.

18. Rajeev Goré and Florian Widmann. An optimal on-the-fly tableau-based decision
procedure for PDL-satisfiability. In Proc. of the 22nd Int. Conf. on Automated
Deduction (CADE’09), volume 5663 of LNCS, pages 437–452. Springer, 2009.

https://syntcomp.org

19. Montserrat Hermo, Paqui Lucio, and César Sánchez. A tableau method for the
realizability and synthesis of reactive safety specifications. arXiv, 2022.

20. Swen Jacobs, Nicolas Basset, Roderick Bloem, Romain Brenguier, Maximilien
Colange, Peter Faymonville, Bernd Finkbeiner, Ayrat Khalimov, Felix Klein,
Thibaud Michaud, Guillermo A. Pérez, Jean-François Raskin, Ocan Sankur, and
Leander Tentrup. The 4th reactive synthesis competition (SYNTCOMP 2017):
Benchmarks, participants & results. In Proc. of the 6th Workshop on Synthesis
(SYNT@CAV 2017), volume 260 of EPTCS, pages 116–143, 2017.

21. Barbara Jobstmann, Stefan Galler, Martin Weiglhofer, and Roderick Bloem. Anzu:
A tool for property synthesis. In Proc. of CAV’07, volume 4590, pages 258–262.
Springer, 2007.

22. Ayrat Khalimov, Swen Jacobs, and Roderick Bloem. Towards efficient parame-
terized synthesis. In Proc. of VMCAI’13, volume 7737 of LNCS, pages 108–123.
Springer, 2013.

23. Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Temporal-logic-
based reactive mission and motion planning. IEEE Transactions on Robotics,
25:1370–1381, 2009.

24. Michael Luttenberger, Philipp J. Meyer, and Salomon Sickert. Practical synthesis
of reactive systems from LTL specifications via parity games. Acta Informatica,
57(1-2):3–36, 2020.

25. Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. Strix: Explicit re-
active synthesis strikes back! In Proc. of 30th Int’l Conf. on Computer Aided
Verification (CAV’18), volume 10981 of LNCS, pages 578–586. Springer, 2018.

26. Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In
Proc. of VMCAI’06, volume 3855 of LNCS, pages 364–380. Springer, 2006.

27. Amir Pnueli. The temporal logic of programs. In Proc. of the 18th IEEE Symp. on
Foundations of Computer Science (FOCS’77), pages 46–67. IEEE CS Press, 1977.

28. Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proc. of
POPL’89, pages 179–190. ACM, 1989.

29. Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive mod-
ule. In Proc. of ICALP’89, volume 372 of LNCS, pages 652–671. Springer, 1989.

30. Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In Proc. of ATVA’07,
volume 4762 of LNCS. Springer, 2007.

31. Stefan Schwendimann. A new one-pass tableau calculus for PLTL. In International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods,
pages 277–291. Springer, 1998.

32. Masaya Shimakawa, Shigeki Hagihara, and Naoki Yonezaki. Reducing bounded
realizability analysis to reachability checking. In Proc. of RP’15, volume 9328 of
LNCS, pages 140–152. Springer, 2015.

33. Raymond M. Smullyan. First-Order Logic. Springer-Verlag, 1968.
34. Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. In-

formation and computation, 115(1):1–37, 1994.
35. Pierre Wolper. The tableau method for temporal logic: An overview. Logique et

Analyse, 28:119–136, 1985.

	Tableaux for Realizability of Safety Specifications

