
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

General Anticipatory Runtime Verification⋆

Raik Hipler1 , Hannes Kallwies1 , Martin Leucker1 , and César Sánchez2

1 University of Lübeck, Lübeck, Germany
{hipler,kallwies,leucker}@isp.uni-luebeck.de

2 IMDEA Software Institute, Madrid, Spain
cesar.sanchez@imdea.org

Abstract. Runtime verification is a technique for monitoring a system’s
behavior against a formal specification. Monitors must produce verdicts
that are sound with respect to the specification. Anticipation is the abil-
ity to immediately produce verdicts when the monitor can confidently
predict the inevitability of the verdict.
Stream runtime verification is a specialized form of runtime verification
tailored to the monitoring and verification of data streams. In this paper
we study anticipatory monitoring for stream runtime verification. More
specifically, we present an algorithm with anticipation for monitoring of
Lola specifications, which we then extend to exploit assumptions and tol-
erate uncertainties. As perfect anticipation is in general not computable,
we use techniques from abstract interpretation, especially widening, to
approximate anticipatory monitoring verdicts. Finally, we report on three
empirical cases studies using a prototype implementation of a symbolic
instantiation of our approach.

1 Introduction

In its simplest definition, runtime verification (RV) [26] solves the word problem:
whether a certain property (for example, expressed as an LTL formula) is satis-
fied for a system run, given the run or a prefix of it. In recent years, advanced RV
paradigms have emerged, such as stream runtime verification (SRV), extending
the traditional notion of runtime verification. First, SRV allows computations
and outputs over arbitrary data domains, not only atomic Boolean propositions
and verdicts like for LTL. Second, they specify “point-wise properties”, which
assign outputs to every position of the trace (instead of a single verdict for the
trace as a whole). This is especially useful to identify points in a trace, e.g. an
error location.

Fig. 1 shows an SRV specification in the pioneering formalism Lola [9] (see
Section 2), which we will use as a running example. The scenario models a

⋆ This work was funded in part by PRODIGY Project (TED2021-132464B-
I00)—funded by MCIN/AEI/10.13039/501100011033/ and the European Union
NextGenerationEU/PRTR—by DECO Project (PID2022-138072OB-I00)—funded
by MCIN/AEI/10.13039/501100011033 and by the ESF+—and by a research grant
from Nomadic Labs and the Tezos Foundation.

https://doi.org/10.5281/zenodo.10948637
http://orcid.org/0009-0007-8348-6163
http://orcid.org/0000-0002-8301-4752
http://orcid.org/0000-0002-3696-9222
http://orcid.org/0000-0003-3927-4773

2 R. Hipler et al.

In ri∈{0,1,2,3} : Bool; e: Real

Def err := ¬r0 ∧ (e < 5)
Def Ferr := err [now] ∨ Ferr [+1 | false]

Fig. 1: Example Lola specification and room map for a vacuum cleaner robot.

vacuum cleaner robot in a house with four rooms, connected by open doors. The
charging station is located in room r0. We want to check the following property:
“The robot may not enter rooms if its battery is not charged enough to be able
to reach the base station.” The Lola specification for this property defines four
input streams of type Boolean r0, . . . , r3 and one stream e of type real. A stream
is a sequence of data values over time. The input streams originate from the
robot system and are incrementally passed to the monitor. The values (events)
of streams r0, . . . , r3 encode the current location of the robot while e contains
the battery charge (between 0% and 100%). The Lola specification defines a
Boolean output stream err that defines the error: the robot is not in room 0 and
its battery has run below 5%. Output streams contain events in synchrony with
input streams, so the values at each input stream instant produce a value of err ,
revealing whether the system has run into an error. That is, this specification is
a point-wise property. The specification also defines Ferr , which is true if either
err is true now or in the future (by referring to Ferr at the next instant, with
default value false at the trace end).

Monitoring can be performed online or offline. In offline monitoring the input
trace is completely known upfront, for example as a log file. On the other hand,
an online monitor receives the trace event by event while the observed system
is running. In this paper we deal with online runtime verification. There is a
significant difference between both kinds of monitoring when the specification
contains future references (as stream Ferr above). Future references are not
a problem in offline RV, because future input values can be easily accessed,
but future values are unknown in online monitoring. In general there are two
strategies for future references in online RV: (1) stalling calculations until all
relevant input events are accessible [9]; (2) cast at each step an output as precise
as possible with the information available (e.g. a set/interval of possible values).
For a Boolean stream these outputs could be ⊤ = {tt}, ⊥ = {ff } or ? = {tt ,ff }
when both values are possible, depending on future inputs. This strategy is used
in LTL3 monitoring [2], but not for point-wise properties. The online monitoring
of point-wise properties—while emitting the best possible sets of valuations—is
called perfect recurrent monitoring in [21,20].

A stream being defined using future references does not necessarily imply
that a ? verdict has to be cast. Consider Ferr above: if the value of err is
true at some instant then Ferr is true now, independently of future events.
Moreover, additional knowledge about the monitored system available in the
form of assumptions [18,4,24] allows to reduce the set of possible valuations.
Consider again our running example and assume that the robot consumes 3%

General Anticipatory Runtime Verification 3

of energy when passing from one room to the next. We may conclude that room
0 is not reachable without dropping below 5% battery before (and thus Ferr
is true), if the robot is in room 3 with an energy level below 8%. This kind of
monitoring is called anticipatory [3].

In this paper we study the problem of anticipatory monitoring for Lola un-
der assumptions and also uncertainties (missed or imprecise sensor values) in
the input trace. While for a propositional logic, whether a prefix satisfies or vi-
olates a property in all continuations can be modeled using (Büchi) automata,
whose emptiness can be effectively determined, the problem is more complex
for richer domains. They require reasoning about satisfiability and validity in
richer theories—which are computationally expensive or even undecidable—and
require reasoning about all futures as finite formulas (instead of automata).

Related Work. Early RV research focused mostly on the monitoring of LTL [29]
properties. The LTL3 monitoring approach [2] was the first to consider antici-
pation, by reasoning about all possible trace continuations. More expressive RV
formalisms were later introduced adding notions of time or complex data val-
ues in the traces. Examples include signal temporal logic (STL) [27], mission
time LTL [31], Eagle [14] or metric first order temporal logic (MFOTL) [1]. A
prominent class of extended RV approaches is SRV, pioneered by Lola [9], and
later extended in asynchronous languages like RTLola [11,12], TeSSLa [6,22]
and Striver [15,16]. Many RV formalisms can be encoded in Lola [20]. Recurrent
monitoring [21] was first studied in [17] for past LTL and later extended with
resets [4,5], and also for Lola [20]. The use of symbolic representations for mon-
itoring (also to handle uncertainty) has recently been studied [10,34,4,5,13] and
also applied to Lola [19]. Considering assumptions during monitoring was first
proposed in [24] (under different wording) and later successfully adapted and ex-
tended [4,5,35,19]. The topic is theoretically studied in [18]. The approach that
we present in this paper is based on the theory of abstract interpretation [8,7],
which was used in RV to handle uncertainties in [25].

The works closest to this paper are [5] and [13] which study symbolic antici-
patory LTL monitoring with linear arithmetic sub-formulas. The former [5] also
considers uncertainties and assumptions.

In this paper we first introduce variations of the original Lola semantics:
We give monitoring semantics which define the perfect monitoring results for
uncertain stream prefixes. Based on this we define the instant and then (more
importantly) transformer semantics, which also capture perfect monitoring out-
puts but discard unnecessary information about relations to all past and future
events and can be deterministically computed. We then introduce a general ab-
straction framework for the effective computation of the transformer semantics
and derive an efficient, anticipatory Lola monitoring algorithm. Provided with a
sound or perfect abstraction for the stream values (e.g. one from the various liter-
ature on abstract interpretation) we present a general algorithm to monitor Lola
specifications with future references. We give a criterion for the existence of per-
fect monitoring, and present a technique based on widening to produce a sound

4 R. Hipler et al.

monitor if perfect monitoring is impossible. Then, we instantiate our general
framework for linear real arithmetic specifications using symbolic computation.
Finally, we report on an empirical evaluation of a prototype implementation of
our approach on three complex case studies.

Contributions. Compared to previous works (esp. [5] and [13]) the main con-
tributions of our approach are:
– The anticipated monitor outputs may be of richer data types than Boolean.
– The monitor is able to produce arbitrarily many outputs per time step.
– Instead of unrolling a specification from the beginning to handle anticipation,

we unroll from the back until an invariant is found which is then used to
efficiently look ahead during the actual monitoring.

– If no perfect anticipation exists, we provide sound over-approximations in-
stead.

– We are not restricted to symbolic reasoning but provide a general abstraction-
based monitoring framework.

2 Lola Monitoring revisited

2.1 Recurrent Monitoring

Recurrent monitoring starts from a point-wise property, which assigns to every
position of a trace a valuation. Traditionally, valuations are Boolean or other
truth domains [33]. Here, we consider valuations from an arbitrary data domain.

Definition 1 (Point-wise property). A point-wise property P of words of
length n over domain Γ into domain D is a function P : Γn×{1, 2, . . . , n} → D.

In online monitoring of point-wise properties, the input w ∈ Γn is not avail-
able at once but provided incrementally, and the monitor produces an output
after each input letter. A monitor may output several possible values from D,
which in practice is encoded as an interval or ? (for all values). We identify a
monitor with its characteristic function M : Γ≤n → 2D which maps prefixes of
inputs to sets of possible outputs. After the first k letters of the input, a re-
current monitor [21] tries to evaluate the corresponding property at position k.
A sound recurrent monitor outputs a super set of the possible verdicts at the
current instant (compatible with all possible future input continuations). The
monitor is perfect if it casts exactly the set of possible property valuations.

Definition 2 (Sound/perfect recurrent monitor). Given a point-wise prop-
erty P and a non-empty input prefix w ∈ Γ≤n, the set of possible verdicts after
w is pos(w) = {P(wv, |w|) | v ∈ Γn−|w|}. A recurrent monitor M for P is sound
whenever for every w, M(w) ⊇ pos(w). M is perfect if M(w) = pos(w).

General Anticipatory Runtime Verification 5

2.2 Lola

A Lola specification defines a transformation from a tuple of input streams to
a tuple of output streams. A finite stream of type D over a time domain T =
{0, 1, . . . , tmax} is a function s : SD := T → D that assigns a data value to every
instant in T. In this work we fix tmax and thus T. We use sequences to represent
streams and their prefixes. Given s = ⟨3, 4, 2⟩ we use s(0) = 3, s(1) = 4, s(2) = 2.

A Lola specification [9] is given as an equation system, which defines output
streams in terms of input and other output streams. The set of Lola expressions
over a set of stream identifiers S, ExprS , is recursively defined as

ExprS := c | f(ExprS , . . . ,ExprS) | s[o|c]

where s ∈ S is a stream identifier, c a constant value, f a function symbol, and
o ∈ Z is an integer offset. A constant expression is interpreted as a stream with
that constant value at all instants; a function application as the stream which
results from the application of the function on the argument stream events at
every instant. The operator s[o|c], called the offset operator, describes a stream
which carries the values of stream s, shifted o instants. To refer to past events
o can be chosen to be negative. If the accessed instant does not exist because it
is beyond the trace ends (beginning or end) the default value c is used instead.
For offset operators with offset 0, the default value does not play a role, thus we
use the notation s[now] or simply s for s[0|c] for arbitrary constant c.

Syntax. A Lola specification φ = (I, S,E) is a 3-tuple where I is a finite set of
input stream identifiers; S is finite set of output stream identifiers with I∩S = ∅;
E : S → ExprI∪S assigns a defining expression to every output steam. For the
rest of the paper, we assume that specifications are flat, i.e. they only contain
offsets −1, 0,+1. Every specification can be flattened by introducing additional
streams and splitting greater offsets to a chain of ±1 offsets.

Semantics. The formal semantics of a Lola specification φ = (I, S,E) with
input streams I = {i1, . . . , in} and output streams S = {s1, . . . , sm} maps a
tuple of concrete input streams to the corresponding tuple of concrete output
streams as follows. Given a tuple of input streams Σ = (σ1, . . . , σn) the semantics
JeKΣ ∈ SD of an expression e ∈ ExprI∪S of type D is:
– JcKΣ(t) = c
– Jf(e1, . . . , en)KΣ(t) = f(Je1KΣ(t), . . . , JenKΣ(t))

– Jij [o|c]KΣ(t) =

{
σj(t+ o) if t+ o ∈ T
c otherwise

– Jsj [o|c]KΣ(t) =

{
JE(sj)K(t+ o) if t+ o ∈ T
c otherwise

The semantics of φ, JφK : SD1
× · · · × SDn

→ SD′
1
× · · · × SD′

m
is given as

JφK(Σ) = (JE(s1)KΣ , . . . , JE(sm)KΣ)

6 R. Hipler et al.

This Lola semantics is well-defined if the value of no stream event is depen-
dent on itself. This is the case when the graph of the specification contains no
self-loops, which can easily be checked [9]. We assume that all Lola specifications
are well-defined. With D := D1× · · ·×Dn and D′ := D′

1× · · ·×D′
m, the induced

pointwise property of a specification φ is the function Pφ : Dtmax × T → D′

defined as
Pφ(w, t) = (s1(t), . . . , sm(t))

where (s1, . . . , sm) = JφK(w). Thereby we implicitly understand w as a tuple of
streams.

Assumptions. Assumptions are knowledge about system and environment [18],
which allow to restrict the actual set of possible input and output traces. Con-
sider again Fig. 1. First, the robot can only be in one room at a time, so exactly
one of r0, r1, r2, r3 must be true at any instant. The map also limits the tran-
sitions, so if r1 is true at some instant, only r0, r1, r3 can be true at the next
instant, but not r2. We can also make assumptions about energy consumption
(for example at least 3% of energy is used at every instant). We follow [19] and
encode assumptions in Lola, using a special stream Λ which we assume to be
true at every instant. The assumptions above are e.g. encoded as follows:

Def Λ := (r0[now] ↔ ¬(r1[now] ∨ r2[now] ∨ r3[now])) ∧ · · · ∧
(r0[now] → (r0[1|tt] ∨ r1[1|tt] ∨ r2[1|tt])) ∧ · · · ∧
(e[now] ≤ e[−1|103]− 3)

Given a specification φ with assumption Λ and a tuple of input streams
Σ = (σ1, . . . , σn) we write Σ |=Λ φ if JφK(Σ) yields an output that only contains
tt events for Λ.

Recurrent Lola Monitoring. Based on Definition 2 we define a sound and
perfect recurrent Lola monitor as a recurrent monitor for the induced point-wise
property of a specification, taking assumptions into account.

Given a Lola specification φ over input data types D and given assumption
Λ, the set of possible verdicts after a non-empty input prefix w ∈ D≤tmax is
posφ(w) = {Pφ(wv, |w| − 1) | wv ∈ Dtmax+1 ∧ wv |=Λ φ}.

Definition 3 (Sound/perfect recurrent Lola monitor). A recurrent Lola
monitor M is:
– sound iff for every non-empty w ∈ D≤tmax , M(w) ⊇ posφ(w).
– perfect iff for every non-empty w ∈ D≤tmax , M(w) = posφ(w).

Lola monitors receive input streams instant by instant and, per input, cast
the set (or an over-approximation) of the possible output stream value tuples.

Several monitoring approaches can be reduced to recurrent monitoring by
modification of the specification. For example, consider a Boolean stream b rep-
resenting a property. The initial value of this property (the value of b at po-
sition 0) can iteratively be monitored by introduction of an additional stream

General Anticipatory Runtime Verification 7

Def s = if first then b[now] else s[−1|ff]. Note that s at instant 0 takes the
value of b and otherwise takes the previous value of s. A recurrent monitor for s
outputs increasingly precise verdicts about the initial property b. This monitor
simulates the typical initial monitor, for example for LTL3 [2]. Recurrent Lola
monitors further subsume monitoring with reset [4]; monitoring instants with a
fixed offset of k to the current instant, or a fixed size window around the cur-
rent instant; monitoring the distance to the next instant where a violation of a
property occurs (see [21]) or counting of violations, etc. All these notions can
be solved with recurrent monitoring by introducing additional streams in the
specification.

Perfect recurrent monitoring requires reasoning about possible future contin-
uations of a trace. This ability however, especially together with the presence
of assumptions makes recurrent monitors very powerful. The vacuum cleaning
robot example above could include the following four stream definitions:

Def enteri∈{0,1,2,3} := ri[+1|false] ∧ ¬Ferr [now]

Note that if a recurrent monitor yields the verdict ⊥ = {ff } for one of these
streams, entering the corresponding room will inevitably cause Ferr to be true,
which means that the base station cannot be reached anymore with the remain-
ing battery energy. On the other hand, the verdict ? = {tt ,ff } implies that it is
possible that Ferr is false when the corresponding room is entered. This way a
higher level planning system an use the information that the monitor provides
to steer and prevent the robot from going into rooms which will inevitably cause
an error. If the robot always follows a path where ? verdicts are obtained it will
eventually end up in room 0 if the battery level is critical. In this example antic-
ipatory verdicts are possible if assumptions that are included in the specification
reveal information about where the robot can drive and how much energy it
consumes.

3 Lola Recurrent Online Monitoring Semantics

We now introduce a novel Lola semantics for recurrent online monitoring. While
the original semantics from Section 2 describes a relation between fully known
input and output streams (i.e. an offline semantics), we now give a semantics that
relates prefixes of input streams with partially known output streams. We base
our definition on monitoring stream tuples (inspired by [32]) which represent a
set of possible (complete and fully known) stream tuples:

Definition 4 (Monitoring stream tuple). A monitoring stream tuple of n
streams of types D1, . . . ,Dn is an element from TD1,...,Dn := 2SD1×···×SDn .

We will use monitoring stream tuples in two ways: (1) to define input stream
prefixes, which are only known up to a certain instant t ∈ T; and (2) to encode
uncertain input readings. (Note that the first case is a special case of the second,
where all events after t are fully unknown.) The idea is that the monitoring
stream tuple is the set of all complete and fully known input streams that are
compatible with the (uncertain) input readings received so far.

8 R. Hipler et al.

Example 1. Consider again the robot example from Fig. 1 for T = {0, 1, 2, 3, 4}
and where the received trace prefix is known up to instant 3. Assume that the
robot started at room r0 and moved to r1 and then to r3; then it is uncertain
whether the robot remained in r3 or moved back to r1 again. Furthermore, the
energy started at 100% and was reduced by 3% per step, but the sensor has an
uncertainty of ±1%. This input would be encoded by the following monitoring
stream tuple, where the streams follow the order r0, r1, r2, r3, e:

s = {(⟨tt ,ff ,ff ,ff , r40⟩, ⟨ff , tt ,ff , r31, r41⟩, ⟨ff ,ff ,ff ,ff , r42⟩, ⟨ff ,ff , tt , r33, r43⟩,
⟨e0, e1, e2, e3, e4⟩) |
r31 ↔ ¬r33, e0 ∈ [99, 101], e1 ∈ [96, 98], e2 ∈ [93, 95], e3 ∈ [90, 92]}

Given a monitoring stream tuple s ∈ TD1×···×Dn
we use s(t) for t ∈ T to

denote the set of all value tuples at position t. In the example above s(3) =
{(ff , r31,ff , r33, e3) | r31 ↔ ¬r33, e3 ∈ [90, 92]}.

In this paper we restrict to “instant-wise uncertainty”: our monitoring streams
only encode uncertain values which are independent from the values at other
instants. That is, we can encode that the robot is in room 3 iff it is not in room
0, but not that the robot is in room 3 if it was in room 0 in the previous instant.
In many cases relations among instants can still be encoded as assumptions.

To simplify the definitions, for the rest of the paper we fix a Lola specification
φ = (I, S,E) with n input streams of type D1≤i≤n and m output streams of type
D′

1≤i≤m. A monitoring stream tuple Σ for the input is then Σ ∈ TD1,...,Dn
. We

define the monitoring semantics of a Lola specification as the application of the
standard Lola semantics on all streams from the input monitoring stream tuple.

Definition 5 (Lola monitoring semantics). Let φ be a specification and Σ
the monitoring stream tuple for the inputs. The monitoring semantics of φ, Σ
is defined as:

JφKmon : TD1,...,Dn
→ TD1,...,Dn,D′

1,...,D′
m

JφKmon(Σ) = {(σ1, . . . , σn) ◦ JφK(σ1, . . . , σn) | (σ1, . . . , σn) ∈ Σ}

We handle assumptions by adding the condition (σ1, . . . , σn) |=Λ φ which restrict
the input streams considered. The Lola monitoring semantics is closely related
to a perfect recurrent Lola monitor: the output of a perfect recurrent Lola mon-
itor after receiving input Σ at monitoring step t is JφKmon(Σ)(t). Receiving
tuples Σ0, Σ1, Σ2 . . . with growing information about input readings a monitor
could compute JφKmon(Σ0), JφKmon(Σ1), JφKmon(Σ2), . . . and generate the out-
puts JφKmon(Σ0)(0), JφKmon(Σ1)(1), JφKmon(Σ2)(2), This monitor, however,
computes a monitoring stream tuple of all inputs and outputs so it contains
information about all events of all streams, which makes semantics costly. Note
that for recurrent monitoring we are actually only interested in the events at the
current instant. Therefore, in the following we introduce a variation of the Lola
monitoring semantics which produces sets of possible stream value combinations

General Anticipatory Runtime Verification 9

(called configurations) for every instant, with no information relating different
instants.

We first introduce some additional notation. Given a flat specification φ =
(I, S,E) for input stream types D1, . . . ,Dn and output stream types D′

1, . . . ,D′
m,

we use Dφ = D1 × · · · ×Dn ×D′
1 × · · · ×D′

m to denote the product of all stream
types. Given d ∈ Dφ and s ∈ I∪S we use d(s) to denote the entry of stream s in d.
Elements from 2D

φ

, i.e. sets of stream value tuples, are called configuration sets.
Given an expression e ∈ ExprI∪S of type D, the following three functions JeK▷φ
and JeK◁φ (with type Dφ ×Dφ → D), and JeK▷◁φ (with type Dφ ×Dφ ×Dφ → D)
compute the value of e at the beginning, at the end and in the middle of the
trace. JeK▷φ receives the configuration for the current and subsequent instant,
JeK◁φ receives the current and previous instant, and JeK▷◁φ the configuration for
the previous, current and subsequent instant. This semantics are:

JdK▷◁φ (b, c, a) = d
Jf(e1, . . . , en)K▷◁φ (b, c, a) = f(Je1K▷◁φ (b, c, a), . . . , JenK▷◁φ (b, c, a))

Js[−1|d]K▷◁φ (b, c, a) = b(s)
Js[now]K▷◁φ (b, c, a) = c(s)
Js[+1|d]K▷◁φ (b, c, a) = a(s)

for constant d ∈ D, stream identifier s ∈ I ∪ S and sub-expressions e1, . . . , en ∈
ExprI∪S . Here, b denotes the valuation at the previous instant, c at the current
instant and a at the successor instant. The definitions for JeK▷φ and JeK◁φ are
analogous, but these use the default value for -1 and +1 references (resp.). Let
φ = (I, S,E) and let S = {s1, . . . , sn} be the output stream identifiers. We use

JφK◁(b, c) = (JE(s1)K◁φ(b, c), . . . , JE(sn)K◁φ(b, c))
JφK▷(c, a) = (JE(s1)K▷φ(c, a), . . . , JE(sn)K▷φ(c, a))

JφK▷◁(b, c, a) = (JE(s1)K▷◁φ (b, c, a), . . . , JE(sn)K▷◁φ (b, c, a))

to denote the application of the given functions on all defining expressions of φ.
We can finally define an alternative fixed point semantics which can serve as

the basis for recurrent monitoring.

Definition 6 (Lola instant semantics). Let φ be a specification and Σ a
monitoring stream tuple of the input streams. The instant semantics fixed point
equation of φ, Σ is:

JφKinst
Σ : (2D

φ

)|T| → (2D
φ

)|T|

JφKinst
Σ (V) = (V ′

0 , . . . , V
′
tmax

)

with

V ′
0 = {c | c = σ ◦ JφK▷(c, a), σ ∈ Σ(0), a ∈ V (1)}
V ′
t = {c | c = σ ◦ JφK▷◁(b, c, a), σ ∈ Σ(t), b ∈ V (t− 1), a ∈ V (t+ 1)}
V ′
tmax

= {c | c = σ ◦ JφK◁(b, c), σ ∈ Σ(tmax), b ∈ V (tmax − 1)}.
The instant semantics of φ is given as the greatest fixed point of JφKinst

Σ w.r.t.
the point-wise ⊆ order on the (2D

φ

)|T| structure:

JφKinst : TD1,...,Dn
→ (2D

φ

)|T|

JφKinst(Σ) = ν(JφKinst
Σ)

10 R. Hipler et al.

The instant semantics fixed point equation takes a structure of configuration
sets for every trace position, and returns a homogeneous structure consisting
of the possible inputs and the semantics of the output stream expressions for
the corresponding positions (based on the argument structure). Consequently, a
fixed point of this equation is a solution of the Lola specification. We define the
instant semantics as the greatest fixed point of the instant semantics fixed point
equation. One structure is greater or equal than another if at every instant it
contains at least the same configurations, i.e. is the point-wise application of ⊆.
Note that the instant semantics of φ is equivalent to the monitoring semantics
with respect to the stream events at every instant, that is

∀t ∈ T. ν(JφKinst
Σ)(t) = {T (t) | T ∈ JφKmon(Σ)}

Hence, this semantics can also be used as basis for recurrent monitoring. Comput-
ing this semantics, however, is rather complex—requiring a fixed point iteration—
and it must be recomputed every time new inputs are received (since Σ changes).
Therefore, we slightly adjust this semantics again. Instead of computing the pos-
sible value combinations (configurations sets) we now compute them parametric
in the values of the previous instant, using the structure (Dφ → 2D

φ

)|T| instead
of (2D

φ

)|T|. We call the elements of this structure transformers as they trans-
form the configurations from the previous instant to those of the current instant.
Transformers receive a configuration b ∈ Dφ at t ∈ T and return the set of all
possible configurations at t+ 1 ∈ T, provided b.

Definition 7 (Lola transformer semantics). Let φ be a specification and Σ
an input stream tuple. The transformer semantics fixed-point equation of φ and
Σ is given as:

JφKtraΣ : (Dφ → 2D
φ

)|T| → (Dφ → 2D
φ

)|T|

JφKtraΣ (V) = (V ′
0 , . . . , V

′
tmax

)

with

V ′
0(b) = {c | c = σ ◦ JφK▷(c, a), σ ∈ Σ(0), a ∈ V (1)(c)}
V ′
t (b) = {c | c = σ ◦ JφK▷◁(b, c, a), σ ∈ Σ(t), a ∈ V (t+ 1)(c)}
V ′
tmax

(b) = {c | c = σ ◦ JφK◁(b, c), σ ∈ Σ(tmax)}.

The transformer semantics of φ is the (only) fixed point of JφKtraΣ :

JφKtra : TD1,...,Dn → (2D
φ

)|T|

JφKtra(Σ) = µ(JφKtraΣ)

This semantics is basically equivalent to the instant semantics except that
V ′
t is no longer dependent on V (t − 1), as the generated transformers are pa-

rameterized in the configuration of their previous instant. Therefore, b is now a

General Anticipatory Runtime Verification 11

parameter of the single structure entries and a is still received from the argument
structure of the fixed point equation, by applying the current configuration on
the subsequent transformer (V (t+ 1)(c)).

This new semantics has several advantages for online monitoring. First, the
fixed point of the upper semantics is unique and can (as opposed to monitoring
and instant semantics) be deterministically computed from the back, as the
single transformer elements only depend on the subsequent transformer. Second,
this semantics can still conveniently be used for recurrent monitoring. One can
mutually compute the current monitor state (i.e. the currently possible stream
configurations) and the transformer to the subsequent instant and apply the
current state on the transformer (see Section 5). However, one caveat is that
computing with (Dφ → 2D

φ

)|T| is complex, as it is unclear how to represent
the elements in Dφ → 2D

φ

and in 2D
φ

. Furthermore, the recursively defined
sets V ′

i are hard to determine. Therefore, we introduce a framework for abstract
computation of this semantics.

4 An Abstraction Framework for Lola Monitoring

We borrow concepts from abstract interpretation to efficiently implement the
transformer semantics. The main element is an abstract domain which is a per-
fect representation (or a sound over-approximation) of the transformer or config-
uration set domain. An appropriate abstract domain must be easy to represent
in memory and enable efficient computations.

We introduce two domains: A, whose elements abstract concrete configura-
tion sets from Section 3, and Ã that contains abstractions of the transformers.
We require that (A,⊑A) and (Ã,⊑Ã) are complete lattices, that is, partial orders
where every subset has a least upper bound and a greatest lower bound. The re-
lation a ⊑A b indicates that b over-approximates a, i.e. that every configuration
represented by a is also represented by b. The same holds for ⊑Ã. We demand
the existence of functions:

γA : A→ 2D
φ

αA : 2D
φ → A

γÃ : Ã→ (Dφ → 2D
φ

) αÃ : (Dφ → 2D
φ

) → Ã

which are able to translate from the concrete configuration set or transformer
domain to the abstract counterpart and back. We require that these function
pairs are Galois connections:

∀a ∈ A, c ∈ 2D
φ

: αA(c) ⊑A a↔ c ⊆ γA(a)

∀a ∈ A, c ∈ (Dφ → 2D
φ

) : αÃ(c) ⊑Ã a↔ c ⊴ γÃ(a)

Here, ⊴ denotes the pointwise application of ⊆ on all corresponding configura-
tions sets where the functions from (Dφ → 2D

φ

) map to. Galois connections
ensure that a translation from the concrete to the abstract domain and back
leads to an over-approximation, so abstract computations in the abstract do-
main produce sound monitor outputs.

12 R. Hipler et al.

We say that A is a perfect configuration set abstraction if for all c ∈ 2D
φ

,
γA(αA(c)) = c. Analogously Ã is a perfect transformer abstraction if for all
c ∈ (Dφ → 2D

φ

), γÃ(αÃ(c)) = c.

Symbolic abstraction. We introduce now a perfect abstract transformer and
configuration set abstract domain based on symbolic constraints, which will be
later used for an anticipatory Lola monitoring algorithm in Section 6. For the
symbolic abstraction we use symbolic constraints (i.e. quantifier-free first order
logic expressions) that perfectly describe the relation among all possible values
of a configuration or transformer.

We start with the symbolic representation of the configuration sets. We use
a symbolic constraint where every stream value is represented by its own vari-
able. For example, C = {(tt , 3), (ff , 5)}—for two streams b (of type bool) and
r (of type real)—captures values that can either be tt and 3 or ff and 5, This
configuration set can be expressed as (b → (r = 3)) ∧ (¬b → (r = 5)). Our
symbolic computation is restricted to those configuration sets which are sym-
bolically representable, thus the theory of choice (e.g. Boolean algebra or linear
real arithmetic) determines the capabilities of the monitor. We assume that the
chosen algebra can encode all monitor inputs and operations in the specification.

The concretization function of a symbolic constraint ψ is:

γ(ψ) = {v ∈ Dφ |
(∧
s∈I∪S

s = v(s)
)
|= ψ}

Recall that v(s) denotes the value of stream s in a configuration v ∈ Dφ. We
implicitly define α s.t. for any configuration set C ∈ 2D

φ

, γ(α(C)) = C. That is,
every configuration set C has a canonical symbolic encoding. In the algorithm
we only require α for translating uncertain input readings to symbolic represen-
tations. Note that by the given definition of α the symbolic domain is a perfect
configuration set abstraction. Also note that while our symbolic domain is de-
fined as abstraction of configuration sets over all streams, it is also possible to
encode only sets of sub-configurations, e.g. only input stream values.

Consider for example Fig. 1 and the following configuration set v = {(ff , r31,
ff , r33, e3) | ¬(r31 ↔ r33), e3 ∈ [90, 92]}, which represents the uncertain input for
instant 3 from the example above. A symbolic representation of this configuration
set is α(v) = ¬r0 ∧ ¬r2 ∧ ¬(r1 ↔ r3) ∧ (90 ≤ e ≤ 92).

We also encode transformers symbolically, extending the variables of our
constraints to I ∪S∪{s−1 | s ∈ I ∪S}, where s−1 represent the stream values at
the previous instant in which the transformer is parametric. The corresponding
concretization function for transformers is given as γ(ψ) = τ s.t.

∀v ∈ Dφ : τ(v) = {u ∈ Dφ |
(∧
s∈I∪S

((s−1 = v(s)) ∧ (s = u(s)))
)
|= ψ}.

Abstract Transformer Semantics Computation. We now present the com-
putation of an alternative, abstract transformer semantics, related to the con-
crete semantics given in Definition 7. This semantics is computed in an Ã|T|

General Anticipatory Runtime Verification 13

structure where each entry contains the abstract transformer for the correspond-
ing trace position.

We fix an abstract transformer domain Ã with translation functions γÃ :

Ã→ (Dφ → 2D
φ

) and αÃ : (Dφ → 2D
φ

) → Ã.

Definition 8 (Abstract Lola transformer semantics). A fixed point equa-
tion for φ, Σ is called abstract Lola transformer fixed point equation if

JφK♯Σ : Ã|T| → Ã|T|

JφK♯Σ(V) = (τ0φ,Σ(V (1)), τ1φ,Σ(V (2)), . . . , τ tmax
φ,Σ)

with τ tmax
φ,Σ : Ã and τ tφ,Σ : Ã→ Ã for t ∈ {0, . . . , tmax − 1} s.t.

τ0φ,Σ(V1) ⊒Ã αÃ(b 7→ {c | c = σ ◦ JφK▷(c, a) | σ ∈ Σ(0), a ∈ γÃ(V1)(c)})
τ tφ,Σ(Vt+1) ⊒Ã αÃ(b 7→ {c | c = σ ◦ JφK▷◁(b, c, a) | σ ∈ Σ(t), a ∈ γÃ(Vt+1)(c)})
τ tmax
φ,Σ ⊒Ã αÃ(b 7→ {c | c = σ ◦ JφK◁(b, c) | σ ∈ Σ(tmax)}).

This corresponds to a computation in the abstract structure Ã|T| where all the
entries are over-approximations of the transformers of the concrete Lola trans-
former semantics. If the ⊒Ã relation in the above definitions is an equality then
JφK♯Σ is called a perfect abstract Lola transformer fixed point equation. We will
later in Section 6 provide the abstract transformer constructors τ tφ,Σ for the
symbolic abstract domain introduced above.

As in the concrete case, the abstract transformer fixed point equation above
has a unique fixed point µ(JφK♯Σ), as it can be computed deterministically from
back to front given a particular input Σ. We say that our abstract trans-
former semantics is sound in relation to the concrete semantics if for all t ∈ T,
µ(JφKtraΣ)(t) ⊆ γÃ(µ(JφK♯Σ)(t)) and perfect if µ(JφKtraΣ)(t) = γÃ(µ(JφK♯Σ)(t)). By
properties of abstract interpretation the following holds:

Theorem 1. Let µ(JφK♯Σ) be an abstract transformer semantics for φ. Then:
– µ(JφK♯Σ) is sound.
– µ(JφK♯Σ) is perfect if JφK♯Σ is a perfect abstract Lola transformer fixed point

equation and Ã is a perfect transformer abstraction.

This justifies that we can build a sound or perfect recurrent Lola monitor
based on this abstract semantics. Consider the computation of the fixed point
µ(JφK♯⊤), where ⊤ is the maximal element in TD1,...,Dn

(i.e. the input monitor-
ing stream tuple where no information about any input streams is available).
The abstract transformer structure chosen for the abstract semantics has one
significant advantage in terms of the computation of this fixed point: As soon
as a single element in S = µ(JφK♯⊤) repeats, all entries of the structure (except
the one for instant 0) are known. This is because if S(t) = S(t + k) for k > 0,
t ∈ T, then also S(t − 1) = S(t + k − 1) are equal (as no input information is
available with Σ = ⊤). Therefore, all entries in S can be filled up to instant
1 without new computations being required. Hence, µ(JφK♯⊤) can be computed

14 R. Hipler et al.

back to front until the first instant at which µ(JφK♯⊤)(t) = µ(JφK♯⊤)(t+k) occurs,
and then the values at all instants are determined (except for the first entry). If
the number of elements in the abstract domain Ã is bounded by c, (e.g. Boolean
specifications) then after at most c iterations a loop in µ(JφK♯⊤) is found. There
are domains beyond Booleans for which finite perfect representations exist [13].

For abstract domains where |Ã| is unbounded one can use a widening opera-
tor [8,7]. For example, using µ(JφK♯⊤)(t)

`
µ(JφK♯⊤)(t−1) instead of µ(JφK♯⊤)(t−1)

in the fixed point computation where the operator
`

: Ã × Ã → Ã yields an
over-approximation of the arguments by taking all unstable components of the
abstractions directly to the extreme limits and thus enforcing a loop in µ(JφK♯⊤).

Based on these observations we build in the next section an efficient sound
(or perfect) recurrent Lola monitoring algorithm.

5 Abstraction-Based Recurrent Lola Monitoring

We introduce our monitor construction based on the abstract structure from the
previous section. At runtime the monitor receives information incrementally, so
there is a sequence of extending input monitoring stream tuplesΣ0, Σ1, . . . , Σtmax

where in Σt all streams are fully unknown for instants larger than t and equal
to Σt−1 for instants smaller than t. Based on this observation we introduce the
online monitoring algorithm Algorithm 1.

Algorithm 1 Abstract Lola monitoring algorithm
Compute (over-approximation of) µ(JφK♯⊤)
s♯ ← ⊤A

foreach t ∈ T do
Read inputs for t
Compute µ(JφK♯Σt

)(t) = τ t
φ,Σt

(µ(JφK♯⊤)(t+ 1))

s♯ ← µ(JφK♯Σt
)(t)(s♯)

Output γ(s♯)
end

The algorithm first determines µ(JφK♯⊤), which is not dependent on inputs and
can thus be computed statically as part of the monitor synthesis (as described
at the end of the previous section). Then, at runtime the monitor receives iter-
atively the (possibly uncertain) inputs for the current instant t and computes
µ(JφK♯Σt

)(t). By definition

µ(JφK♯Σt
)(t) = τ tφ,Σt

(µ(JφK♯Σt
)(t+ 1)).

However, µ(JφK♯Σt
)(t + 1) = µ(JφK♯⊤)(t + 1) because for all t′ > t no inputs

are available yet. This can be taken from the pre-computed µ(JφK♯⊤), and hence

General Anticipatory Runtime Verification 15

µ(JφK♯Σt
)(t) can be efficiently determined by applying τ tφ,Σt

once without requir-
ing a full computation of the fixed point µ(JφK♯Σt

) from the end.
Then, the algorithm applies the abstracted configuration set from the previ-

ous step, stored in s♯ (of type A) on the computed transformer µ(JφK♯Σt
)(t) and

assigns the result to s♯ again. In this manner s♯ represents the monitor state:
the set of possible stream configurations at the current instant t. Note that s♯ is
not available for t = 0 as there is no previous instant and thus also no monitor
state. Yet µ(JφK♯Σ0

)(0) yields (by definition) a transformer which is independent
of the predecessor argument. The concrete representation of s♯ is γ(s♯) which
consists of a set of possible value tuples for all streams, and serves as the monitor
output. This output is perfect if and only if the chosen abstract domains A and
Ã are perfect configuration set and transformer abstractions and the abstract
transformer semantics is also perfect (see Theorem 1).

The application of an abstract transformer T ∈ Ã on a configuration set
abstraction s ∈ A is technically defined as T (s) = αA({γÃ(T)(c) | c ∈ γA(s)}).
Depending on the concrete abstractions there may be easier ways to achieve the
application, for example using symbolic constraints, as we will see in the next
section.

The size of s♯ may grow over time, so for a constant-size monitor it may be
necessary to find an over-approximation. In conclusion the following holds:

Theorem 2. Let φ be a Lola specification let Σ0, Σ1, . . . , Σtmax be an extending
sequence of input monitoring stream tuples where Σt contains the input readings
for instant t. Algorithm 1 yields a sound recurrent Lola monitor and a perfect
recurrent Lola monitor if JφK♯Σ is a perfect abstract Lola transformer fixed point
equation and Ã is a perfect transformer abstraction.

6 Symbolic Recurrent Lola Monitoring

yy We now show a symbolic monitoring strategy under assumptions that tol-
erates uncertainty, for linear real arithmetic Lola specifications based on the
general framework from the previous section. This theory supports real and
Boolean streams, and the common Boolean operations, additions, constant mul-
tiplications and comparisons among real streams.

We will use the symbolic abstract domain to symbolically represent config-
urations and transformers. For convenience we use instant variables formed by
stream names with the corresponding instant in the exponent of the symbolic
variables. For example, s3 indicates the value of the event in stream s at instant
3. Abstractions of configuration sets only contain variables of a single instant,
transformer abstractions those of the current and previous instant.

Example 2. Consider a specification with a single stream e of type real. The
configuration set that states the value of e at instant 3 is between 90 and 92
(both inclusive) would be represented by the constraint 90 ≤ e3 ≤ 92. To express
that the value of e at instant 4 is at least 3 less than the value one instant before,
that is, the transformer T (e) = {e′ | e′ ≤ e− 3}, we could use e4 ≤ e3 − 3.

16 R. Hipler et al.

A perfect monitoring procedure requires—besides perfect abstract domains
Ã and A—perfect symbolic constructions for the transformers τ tφ,Σ . This can be
achieved in a straight forward manner as follows. To compute the transformer at
instant t we take the symbolic representation of the subsequent transformer in
the structure, and conjunct it with the symbolic instantiation of the specification
at the current instant and the input readings for the current instant. This works
because we required the input values of different instants to be independent of
each other. For t = 0 or t = tmax we use the default values.

Example 3. Consider again the specification from Fig. 1 (for this example with-
out the parts added later like assumptions) and the situation where no inputs are
known, which can be encoded by the symbolic constraint tt , and T = {0, . . . , 10}.
The symbolic transformer τ tmax

φ,⊤ for tmax = 10 is:

µ(JφK♯⊤)(10) = τ10φ,⊤ = (err10 = ¬r100 ∧ (e10 < 5)) ∧ (Ferr10 = err10)

and τ9φ,⊤ applied on µ(JφK♯⊤)(10) is

µ(JφK♯⊤)(9) = τ9φ,⊤(µ(JφK♯⊤)(10)) = (err10 = ¬r100 ∧ (e10 < 5)) ∧ (Ferr10 = err10)

∧ (err9 = ¬r90 ∧ (e9 < 5)) ∧ (Ferr9 = err9 ∨ Ferr10).

Applying this strategy, the resulting formulas can grow and ultimately involve
all instant variables from the current instant up to the trace end. Likewise instant
variables from later instants are included, which are actually not allowed to
be included in the transformers because their presence could prevent finding a
repeated element in Ã and result in full unrolling of the specification. The fully
computed transformers would express relations among all the instant variables
to the stream end. In contrast, our online monitoring only preserves the relation
among the variables for the current and previous instant, so we search for an
alternative representation of the formula above which is equivalent w.r.t. the
instant variables at the current and previous time points. This is equivalent to
existentially quantifying over the variables to be removed and apply quantifier
elimination if it can be used.

Example 4. Revisiting the previous example, real linear arithmetic quantifier
elimination determines that µ(JφK♯⊤)(9) is

µ(JφK♯⊤)(9) = ∃r100 , err10,Ferr10, e10.(err10 = ¬r100 ∧ (e10 < 5)) ∧
(Ferr10 = err10) ∧ (err9 = ¬r90 ∧ (e9 < 5)) ∧ (Ferr9 = err9 ∨ Ferr10)

= (err9 = ¬r90 ∧ (e9 < 5)) ∧ (err9 → Ferr9)

Following this strategy for µ(JφK♯⊤)(8):

µ(JφK♯⊤)(8) = ∃¬r90, err9,Ferr9, e9.(err9 = ¬r90 ∧ (e9 < 5)) ∧
(err9 → Ferr9) ∧ (err8 = ¬r80 ∧ (e8 < 5)) ∧ (Ferr8 = err8 ∨ Ferr9)

= (err8 = ¬r80 ∧ (e8 < 5)) ∧ (err8 → Ferr8)

General Anticipatory Runtime Verification 17

Thus µ(JφK♯⊤)(9) and µ(JφK♯⊤)(8) are (modulo instant variable timestamps) equal
to each other and consequently also to µ(JφK♯⊤)(7), . . . , µ(JφK♯⊤)(1). Hence, after
three computation steps µ(JφK♯⊤) is fully computed, independent of the concrete
tmax (except for the entry at instant 0).

If the specification contains assumptions, we also add . . .∧Λt to each symbolic
transformer. Unfortunately, quantifier elimination does not guarantee to reach
a stabilized formula as above. Therefore, we propose the following three stage
strategy for the computation of the initial fixed point, which may ultimately
lead to an over-approximation of µ(JφK♯⊤):
1. Compute the elements of µ(JφK♯⊤) from back to front applying quantifier

elimination for k steps.
2. If no repeating entry is found for l steps, the elements of µ(JφK♯⊤) are de-

termined but besides variables of future instants all real variables are elimi-
nated. For the current instant real variables’ maximal and minimal bounds
are determined based on the computed symbolic representation and added
to the final symbolic representation (see [19]).

3. If still no repeating element is found, the strategy is applied again but with
widening [7] on the bounds of two subsequent instants interval. For example,
let [a, b] be the previously computed interval and [a′, b′] the new one. The
lower widened interval bound is −∞ if a′ < a and a otherwise. Dually, the
upper widened interval bound is ∞ if b′ > b and b otherwise.
As all constraints over a fixed number of Boolean variables can be represented

in a formula of constant length and the bounds of all real variables either stabilize
or are brought to ±∞ by widening, it is guaranteed that a repeating element will
be found in the third stage. Note that eliminating real variables and replacing
their constraints with bounds leads to an over-approximation. The resulting
transformer and monitor are still sound but not necessarily perfect.

For the monitoring we finally recompute µ(JφK♯Σt)(t) for each timestamp t.
We do this analogously to the initial fixed point computation before, but also
add the new input constraints α(Σt)\α(Σt−1) (i.e. the input readings of the
current instant).

When it comes to the application of the computed transformer to the current
monitor state we can simply conjunct the constraints of the transformer and
the current monitor state and again use quantifier elimination to eliminate the
variables from the previous instant.

Example 5. Take again the transformer τ = (e4 ≤ e3 − 3) from Example 2 and
the monitoring state s♯ = (90 ≤ e3 ≤ 92) from above, we get τ(s) = ∃e3.(e4 ≤
e3 − 3) ∧ (90 ≤ e3 ≤ 92). After application of quantifier elimination this would
lead to state s♯ = e4 ≤ 89.

If the monitor state grows too large we can also apply the second stage of
the above strategy to reduce its size at the cost of making the monitor state
less precise. As a further optimization, note that from the first fixed point (for
Σ = ⊤), we only need the relation between those variables that are referenced

18 R. Hipler et al.

by +1 offsets in the specification. Therefore, during quantifier elimination for
the initial fixed point we can also remove all variables from the current instant
which are not referenced in this way.

7 Empirical Evaluation

We developed a prototype for symbolic recurrent Lola monitoring in Scala using
Z3 [28] as backend solver for symbolic reasoning and quantifier elimination. We
evaluated our tool on three case studies running on a 64-bit Linux machine with
an Intel Core i7-1365U CPU and 32GB of RAM.

Path Planning. The first case study examines a variation of the vacuum clean-
ing robot from Fig. 1. The example was extended such that the output does not
only specify whether a room can be safely entered but also with how much sur-
plus or missing energy. This information could then be used to control the robot’s
behavior, e.g. switching to a power-saving mode, showing the advantages of a
monitoring approach which is able to compute richer verdicts than just Booleans.

We analyzed the monitor’s synthesis time (i.e. the time for the computation
of the initial fixed point), and the monitor time per instant at runtime for a
variable number of rooms by simulating a random walk according to the moni-
tor’s output. In this case study, the initial semantics could be fully determined
without widening, as a repeating symbolic transformer element was found after
a few computations. As Fig. 2a shows, the synthesis time grows non-linearly.
This is because the backwards calculation becomes more expensive with longer
paths. This can be remedied by simplifying the symbolic representation of formu-
las during computation. However, Z3 is rather optimized for satisfiability checks
but not for simplifying symbolic constraints. We will explore the benefits of spe-
cialized simplifiers and further optimizations for reducing the synthesis time as
future work.

More important than synthesis time is the execution time of the monitors.
The average computation time per instant during the monitor execution, mea-
sured with different degrees of induced uncertainty, is shown in Fig. 2b. Runtime
increases when uncertainty is introduced but the time-per-event is still small (384
ms) in the worst case.

s #states

6 8 10 12 14 16 18 20

25
50
75

100

2
4
6
8

2a: Monitor synthesis per number of
rooms. Synthesis time in seconds () and
number of computed states ().

ms

6 8 10 12 14 16 18 20

100
200
300
400

2b: Avg. runtime (ms) per instant for dif-
ferent room numbers. Full certain (), 30%
noisy () and 15% entirely unknown ().

General Anticipatory Runtime Verification 19

Collision Avoidance. In the second case study a robot uses a Lola monitor to
navigate through an area with obstacles. The robot receives a set of waypoints
from the user and tries to follow them while avoiding the obstacles. The monitor
receives as inputs the distance dist to the closest obstacle in front of the robot,
as well as its leftmost and rightmost points left and right . The monitor outputs
the possible steering angles to avoid collisions in the future (see Fig. 3a). As-
sumptions define parameters like the maximum possible steering angle and the
bounding box of the robot (see b and d in Fig. 3a).

left right

angle

d

b

0

di
st

3a: Collision avoidance (scheme). 3b: Screenshot of the simulation in Gazebo.

The study was qualitatively evaluated by integrating our Lola monitoring
tool with the robot operating system ROS [30] running on a turtlebot3 in-
side the simulation environment Gazebo [23] (see Fig. 3b). The robot follows
a user defined path, periodically calling the monitor for the closest obstacle
in front obtaining safe steering angles, from which the robot chooses the one

ms

0 10 20 30

100

300

Fig. 4: Average runtime (ms) for
uncertainty margins from 0% to
30%.

closest to the defined path. The monitor
was able to steer the robot without collision
with an uncertainty margin of up to 30%.
We additionally extracted execution traces
and evaluated the performance of the mon-
itor offline. Fig. 4 shows the runtime per
instant, which increases with growing input
uncertainty due to the increasing complex-
ity of the constraint states.

Program Monitoring. In the third case study we use our approach for tra-
ditional program monitoring. An excerpt of the monitored program is shown
below on the left.

3 https://www.turtlebot.com/

https://www.turtlebot.com/

20 R. Hipler et al.

1 x = getInput ();
2 [...]
3 y = 0;
4 while (x > 0) {
5 x--;
6 y += 2;
7 }
8 assert y >= 15;

At the end of the program we wanted to en-
sure that the value of variable y which is pre-
viously computed in a while loop does ex-
ceed 15. We have created a Lola specification
which receives the current variable values as
input streams and the current program line.
Furthermore the program behavior itself was
encoded in a straight-forward manner as as-

sumption in the Lola specification. With its anticipation capabilities the monitor
was able to compute legal values for the variables at certain program positions
s.t. the assertion at the end is satisfied. Thus, it was able to detect program
failures at an early stage during program execution.

Since the valid variable values depend on the number of while loop executions
in the program (and thus the remaining trace length), the initial transformer
semantics computation of our approach did not find a repeating transformer.
Consequently the widening strategy described above has been applied to yield
a sound recurrent Lola monitor for the specification. In the particular example
however the simple interval widening was still able to capture that before en-
tering the while loop variable x has to be at least 8, yet some other variable
connections have been over-approximated. Yet, when in line 1 an input was en-
tered which ultimately lead to x < 8 in line 3 the monitor was able to detect
the failure right there. Altogether this provides an illustrative example how the
approach from this paper could be used for a mixture of static and dynamic pro-
gram analysis, which in a large scale however would require more sophisticated
widening techniques than in the current implementation.

8 Conclusion

In this paper we have studied general anticipatory monitoring of Lola specifica-
tions under uncertainties and assumptions. We have introduced a hierarchy of
monitoring semantics and presented an abstraction based framework for mon-
itoring, from which we developed a general sound or perfect online monitoring
algorithm for Lola. This algorithm considers future continuations of the received
input, provided an abstraction of stream data values. Finally, we have presented
an instantiation of this algorithm based on a symbolic representation. and eval-
uated the approach in three practical scenarios. Due to Lola’s universality, our
theory can also serve a general framework for anticipatory monitoring of syn-
chronous RV formalisms.

Future work includes a more efficient implementation, especially improving
the simplification of the symbolic constraints applied during monitoring, and
applications to other Lola fragments beyond linear arithmetic. We also plan to
extend the approach to infinite traces and asynchronous SRV formalisms.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

General Anticipatory Runtime Verification 21

References

1. Basin, D.A., Harvan, M., Klaedtke, F., Zalinescu, E.: MONPOLY: monitoring
usage-control policies. In: Proc. of the 2nd Int’l Conf on Runtime Verification
(RV’11). LNCS, vol. 7186, pp. 360–364. Springer (2011). https://doi.org/10.
1007/978-3-642-29860-8_27

2. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Proc.
of the 26th Int’l Conf. on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’06). LNCS, vol. 4337, pp. 260–272. Springer (2006).
https://doi.org/10.1007/11944836_25

3. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010). https://doi.org/10.1093/
logcom/exn075

4. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification with
partial observability and resets. In: Pro. of the 19th International Conference on
Runtime Verification (RV’19). LNCS, vol. 11757, pp. 165–184. Springer (2019).
https://doi.org/10.1007/978-3-030-32079-9_10

5. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification of
infinite-state systems. In: Proc. of the 21st Int’l Conf. on Runtime Verification
(RV’21). LNCS, vol. 12974, pp. 207–227. Springer (2021). https://doi.org/10.
1007/978-3-030-88494-9_11

6. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: Temporal stream-based specification language. In: Proc. of teh 21st Brazil-
ian Symposium on Formal Methods: Foundations and Applications (SBMF’18).
LNCS, vol. 11254, pp. 144–162. Springer (2018). https://doi.org/10.1007/
978-3-030-03044-5_10

7. Cousot, P.: Principles of abstract interpretation. The MIT Press (2021)
8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Proc. of the
4th ACM Symp. on Principles of Programming Languages (POL’77). pp. 238–252.
ACM (1977). https://doi.org/10.1145/512950.512973

9. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner,
B., Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of syn-
chronous systems. In: Proc. of the 12th Int’l Symp. of Temporal Representa-
tion and Reasoning (TIME’05). pp. 166–174. IEEE Computer Society (2005).
https://doi.org/10.1109/TIME.2005.26

10. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. Int. J.
Softw. Tools Technol. Transf. 18(2), 205–225 (2016). https://doi.org/10.1007/
s10009-015-0380-3

11. Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger, M.,
Tentrup, L., Torfah, H.: Streamlab: Stream-based monitoring of cyber-physical
systems. In: Proc. of the 31st Int’l Conf. on Computer Aided Verification (CAV’19)
Part I. LNCS, vol. 11561, pp. 421–431. Springer (2019). https://doi.org/10.
1007/978-3-030-25540-4_24

12. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring. CoRR abs/1711.03829 (2017), http://arxiv.org/abs/1711.03829

13. Felli, P., Montali, M., Patrizi, F., Winkler, S.: Monitoring arithmetic temporal
properties on finite traces. In: Proce. of the 37th AAAI Conference on Artificial
Intelligence (AAAI’23). pp. 6346–6354. AAAI Press (2023). https://doi.org/10.
1609/aaai.v37i5.25781

https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/11944836_25
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/s10009-015-0380-3
https://doi.org/10.1007/s10009-015-0380-3
https://doi.org/10.1007/s10009-015-0380-3
https://doi.org/10.1007/s10009-015-0380-3
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-25540-4_24
http://arxiv.org/abs/1711.03829
https://doi.org/10.1609/aaai.v37i5.25781
https://doi.org/10.1609/aaai.v37i5.25781
https://doi.org/10.1609/aaai.v37i5.25781
https://doi.org/10.1609/aaai.v37i5.25781

22 R. Hipler et al.

14. Goldberg, A., Havelund, K.: Automated runtime verification with Eagle. In: Proc.
of the 3rd Int’l Workshop on Modelling, Simulation, Verification and Validation of
Enterprise Information Systems, (MSVVEIS’05). INSTICC Press (2005)

15. Gorostiaga, F., Sánchez, C.: Striver: Stream runtime verification for real-time
event-streams. In: Proc. of the 18th Int’l Conf. on Runtime Verification (RV’18).
LNCS, vol. 11237, pp. 282–298. Springer (2018). https://doi.org/10.1007/
978-3-030-03769-7_16

16. Gorostiaga, F., Sánchez, C.: Stream runtime verification of real-time event streams
with the Striver language. International Journal on Software Tools for Technology
Transfer 23, 157–183 (2021). https://doi.org/10.1007/s10009-021-00605-3

17. Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Proc. of
the 8th Int’l Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’02). LNCS, vol. 2280, pp. 342–356. Springer (2002). https:
//doi.org/10.1007/3-540-46002-0_24

18. Henzinger, T.A., Saraç, N.E.: Monitorability under assumptions. In: Proc. of the
20th Int’l Conf. on Runtime Verification (RV’20). LNCS, vol. 12399, pp. 3–18.
Springer (2020). https://doi.org/10.1007/978-3-030-60508-7_1

19. Kallwies, H., Leucker, M., Sánchez, C.: Symbolic runtime verification for moni-
toring under uncertainties and assumptions. In: Proc. of the 20th Int’l Symp. on
Automated Technology for Verification and Analysis (ATVA’22). LNCS, vol. 13505,
pp. 117–134. Springer (2022). https://doi.org/10.1007/978-3-031-19992-9_8

20. Kallwies, H., Leucker, M., Sánchez, C.: General anticipatory monitoring for tempo-
ral logics on finite traces. In: Proc. of the 23rd Int’l Conf. on Runtime Verification
(RV’23). LNCS, vol. 14245, pp. 106–125. Springer (2023). https://doi.org/10.
1007/978-3-031-44267-4_6

21. Kallwies, H., Leucker, M., Sánchez, C., Scheffel, T.: Anticipatory recurrent mon-
itoring with uncertainty and assumptions. In: Proc. of the 22nd Int’l Conf. on
Runtime Verification (RV’22). LNCS, vol. 13498, pp. 181–199. Springer (2022).
https://doi.org/10.1007/978-3-031-17196-3_10

22. Kallwies, H., Leucker, M., Schmitz, M., Schulz, A., Thoma, D., Weiss, A.: TeSSLa -
an ecosystem for runtime verification. In: Proc. of the 22nd Int’l Conf. on Runtime
Verification (RV’22). LNCS, vol. 13498, pp. 314–324. Springer (2022). https://
doi.org/10.1007/978-3-031-17196-3_20

23. Koenig, N.P., Howard, A.: Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In: Proc. of the 2004 IEEE/RSJ Int’l Conf. on Intelligent
Robots and Systems (IROS’04). vol. 3, pp. 2149–2154 vol.3. IEEE (2004). https:
//doi.org/10.1109/IROS.2004.1389727

24. Leucker, M.: Sliding between model checking and runtime verification. In: Proc. of
the 3rd Int’l Conf. on Runtime Verification (RV’12). LNCS, vol. 7687, pp. 82–87.
Springer (2012). https://doi.org/10.1007/978-3-642-35632-2_10

25. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Thoma, D.: Runtime verifica-
tion for timed event streams with partial information. In: Proc. of the 19th Int’l
Conf. on Runtime Verification (RV’19). LNCS, vol. 11757, pp. 273–291. Springer
(2019). https://doi.org/10.1007/978-3-030-32079-9_16

26. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Al-
gebraic Methods Program. 78(5), 293–303 (2009). https://doi.org/10.1016/j.
jlap.2008.08.004

27. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Proc. of the Joint International Conferences on Formal Modelling and Analysis of

https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/s10009-021-00605-3
https://doi.org/10.1007/s10009-021-00605-3
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1007/978-3-031-19992-9_8
https://doi.org/10.1007/978-3-031-19992-9_8
https://doi.org/10.1007/978-3-031-44267-4_6
https://doi.org/10.1007/978-3-031-44267-4_6
https://doi.org/10.1007/978-3-031-44267-4_6
https://doi.org/10.1007/978-3-031-44267-4_6
https://doi.org/10.1007/978-3-031-17196-3_10
https://doi.org/10.1007/978-3-031-17196-3_10
https://doi.org/10.1007/978-3-031-17196-3_20
https://doi.org/10.1007/978-3-031-17196-3_20
https://doi.org/10.1007/978-3-031-17196-3_20
https://doi.org/10.1007/978-3-031-17196-3_20
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.1007/978-3-030-32079-9_16
https://doi.org/10.1007/978-3-030-32079-9_16
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004

General Anticipatory Runtime Verification 23

Timed Systems (FORMATS’04) and Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT’04). LNCS, vol. 3253, pp. 152–166. Springer (2004).
https://doi.org/10.1007/978-3-540-30206-3_12

28. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. of the 14th
Int’l Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08). LNCS, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/
10.1007/978-3-540-78800-3_24

29. Pnueli, A.: The temporal logic of programs. In: Proc. of the 18th IEEE Symp.
on the Foundations of Computer Science (FOCS-77). pp. 46–57. IEEE Computer
Society Press (1977). https://doi.org/10.1109/SFCS.1977.32

30. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.: ROS: an open-source robot operating system. In: Workshops at the IEEE
Int’l Conf. on Robotics and Automation (ICRA’90). vol. 3 (2009)

31. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime ob-
server pairs for system health management of real-time systems. In: Proc. 20th
Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’14). LNCS, vol. 8413, pp. 357–372. Springer (2014). https://doi.org/
10.1007/978-3-642-54862-8_24

32. Schmitz, M.: Efficient implementation of stream transformations. Ph.D. the-
sis, University of Lübeck, Germany (2024), https://www.zhb.uni-luebeck.de/
epubs/ediss3011.pdf

33. Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. In: Proc. of the 15th Int’l Conf. on Com-
puter Aided Verification (CAV’03). LNCS, vol. 2725, pp. 275–287. Springer (2003).
https://doi.org/10.1007/978-3-540-45069-6_28

34. Waga, M., André, É., Hasuo, I.: Symbolic monitoring against specifications para-
metric in time and data. In: Proc. of the 31st Int’l Conf. on Computer-Aided
Verification (CAV’19) Part I. LNCS, vol. 11561, pp. 520–539. Springer (2019).
https://doi.org/10.1007/978-3-030-25540-4_30

35. Waga, M., André, É., Hasuo, I.: Model-bounded monitoring of hybrid systems.
ACM Transactions on Cyber-Physical Systems 6:4(30), 1–26 (2021). https://
doi.org/10.1145/3529095

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-642-54862-8_24
https://www.zhb.uni-luebeck.de/epubs/ediss3011.pdf
https://www.zhb.uni-luebeck.de/epubs/ediss3011.pdf
https://doi.org/10.1007/978-3-540-45069-6_28
https://doi.org/10.1007/978-3-540-45069-6_28
https://doi.org/10.1007/978-3-030-25540-4_30
https://doi.org/10.1007/978-3-030-25540-4_30
https://doi.org/10.1145/3529095
https://doi.org/10.1145/3529095
https://doi.org/10.1145/3529095
https://doi.org/10.1145/3529095

	General Anticipatory Runtime Verification

