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Abstract. Many types of attacks on confidentiality stem from the non-
deterministic nature of the environment that computer programs operate
in. We focus on verification of confidentiality in nondeterministic envi-
ronments by reasoning about asynchronous hyperproperties. We general-
ize the temporal logic A-HLTL to allow nested trajectory quantification,
where a trajectory determines how different execution traces may ad-
vance and stutter. We propose a bounded model checking algorithm for
A-HLTL based on QBF-solving for a fragment of A-HLTL and evaluate
it by various case studies on concurrent programs, scheduling attacks,
compiler optimization, speculative execution, and cache timing attacks.
We also rigorously analyze the complexity of model checking A-HLTL.

1 Introduction

1 Thread T1( ) {
2 await sem>0 then
3 sem = sem − 1 ;
4 pr in t ( ’ a ’ ) ;
5 v = v+1;
6 pr in t ( ’ b ’ ) ;
7 sem = sem + 1 ;
8 }
9

10 Thread T2 ( ) {
11 pr in t ( ’ c ’ ) ;
12 i f h then
13 await sem>0 then
14 sem = sem − 1 ;
15 v = v+2;
16 sem = sem + 1 ;
17 e l s e
18 sk ip ;
19 pr in t ( ’ d ’ ) ;
20 }

Fig. 1: T1 and T2 leak
the value of h.

Motivation. Consider the concurrent program [10]
shown in Fig. 1, where h is a secret variable, and await

command is a conditional critical region. This program
should satisfy the following information-flow policy: “Any
sequences of observable outputs produced by an interleav-
ing should be reproducible by some other interleaving for
a different value of h”. If this is the case, then an attacker
cannot successfully guess the value of h from the sequence
of observable outputs of the print() statements. For ex-
ample, Fig. 2 shows how one can align two interleavings
of threads T1 and T2 with respect to the observable se-
quence of outputs ‘abcd’, given two different values of
secret h. Let us call such an alignment a trajectory (il-
lustrated by the sequence of dashed lines). However, if
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thread T1 holds the semaphore and executes the critical region as an atomic
operation. Then, output ‘acdb’ arising due to concurrent execution of threads
T1 and T2 reveals the value of h as 0, as the same output cannot be reproduced
when h=1. Thus, the program in Fig. 1 violates the above policy.

1 Thread T1 ( ) {
2 whi le ( t rue ){
3 await sem>0 then
4 sem = sem − 1 ;
5 pr in t ( ’ a ’ ) ;
6 v = v+1;
7 pr in t ( ’ b ’ ) ;
8 sem = sem + 1 ;
9 }

10 }

12 Thread T2( ) {
13 whi le ( t rue )
14 h = read ( Channel1 ) ;
15 }

17 Thread T3( ) {
18 whi le ( t rue ){
19 pr in t ( ’ c ’ ) ;
20 i f (h == l ) then
21 await sem>0 then
22 sem = sem − 1 ;
23 v = v+2;
24 sem = sem + 1 ;
25 e l s e
26 sk ip ;
27 pr in t ( ‘ d ’ ) ;
28 }
29 }

31 Thread T4( ) {
32 whi le ( t rue )
33 l = read ( Channel2 ) ;
34 }

Fig. 3: T1 and T2

receive inputs from
asynch. channels read
by T3 and T4.

The above policy is an example of a hyperprop-
erty [5]; i.e., a set of sets of execution traces. In ad-
dition to information-flow requirements, hyperproper-
ties can express other complex requirements such as lin-
earizability [12] and control conditions in cyber-physical
systems such as robustness and sensitivity. The tempo-
ral logic A-HLTL [1] can express hyperproperties whose
sets of traces advance at different speeds, allowing stut-
tering steps. For example, the above policy can be ex-
pressed in A-HLTL by the following formula: φNI =
∀π.∃π′.Eτ.(hπ,τ ≠ hπ′,τ ) ∧ (obsπ,τ = obsπ′,τ ), where
obs denotes the output observations, meaning that for
all executions (i.e., interleavings) π, there should exist
another execution π′ and a trajectory τ , such that π
and π′ start from different values of h and τ can align
all the observations along π and π′ (see Fig. 2). A-HLTL
can reason about one source of nondeterminism by the
scheduler in the system that may lead to information
leak. Indeed, the model checking algorithms proposed
in [1] can discover the bug in the program in Fig. 1.

Now, consider a more complex version of the same
program shown in Fig. 3 inspired by modern program-
ming languages such as Go and P that allow CSP-style
concurrency. Here, new threads T3 and T4 read the val-
ues of secret input h and public input l from two asyn-
chronous channels, rendering two different sources of nondeterminism: (1) the
scheduler that results in different interleavings, and (2) data availability in the
channels. This, in turn, means formula φNI no longer captures the following
specification of the program, which should be:

“Any sequence of observable outputs produced by an interleaving should
be reproducible by some other interleaving such that for all alignments of
public inputs, there exists an alignment of the public outputs”.

Satisfaction of this policy (not expressible in A-HLTL as proposed in [1]) prohibits
an attacker from successfully determining the sequence of values of h.
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Fig. 2: Two secure interleavings for the program in Fig. 1
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Contributions. In this paper, we strive for a general logic-based approach that
enables model checking of a rich set of asynchronous hyperproperties. To this
end, we concentrate on A-HLTL model checking for programs subject to multiple
sources of nondeterminism. Our first contribution is a generalization of A-HLTL

that allows nested trajectory quantification. For example, the above policy re-
quires reasoning about two different trajectories that cannot be composed into
one since their sources of nondeterminism are different. This observation moti-
vates the need for enriching A-HLTL with the tools to quantify over trajectories.
This generalization enables expressing policies such as follows:

φNInd = ∀π.∃π′.Aτ.Eτ ′.
(

(hπ,τ ̸= hπ′,τ )∧ (lπ,τ = lπ′,τ )
)
→ (obsπ,τ ′ = obsπ′,τ ′),

where A and E denote the universal (res., existential) trajectory quantifiers.
Our second contribution is a bounded model checking (BMC) algorithm for

a fragment of the extended A-HLTL that allows an arbitrary number of trace
quantifier alternations and up to one trajectory quantifier alternation. Follow-
ing [15], we propose two bounded semantics (called optimistic and pessimistic)
for A-HLTL based on the satisfaction of eventualities. We introduce a reduction to
the satisfiability problem for quantified Boolean formulas (QBF) and prove that
our translation provides decision procedures for A-HLTL BMC for terminating
systems, i.e., those whose Kripke structure is acyclic. Our focus on terminating
programs is due to the general undecidability of A-HLTL model checking [1]. As
in the classic BMC for LTL, the power of our technique is in hunting bugs that
are often in the shallow parts of reachable states.

Multiple Traces – Single Trajectory

∃+E / ∀+A NL-complete

(Theorem 2)[
∃(∃/∀)+(A/E)

]k
Σp

k-complete T
h
m

3

[
∀(∃/∀)+(E/A)

]k
Πp

k -complete

Multiple Traces – Multiple Trajectories[
∃(∃/∀)+(E+E)

]k
Σp

k+1-complete T
h
m

4

[
∀(∀/∃)+(A+A)

]k
Πp

k+1-complete[
∃(∃/∀)+A+E+

]k
Σp

k+1-complete T
h
m

5

[
∀(∀/∃)+E+A+

]k
Πp

k+1-complete

A-HLTL PSPACE

Table 1: A-HLTL model checking
complexity for acyclic models.

Our third contribution is rigorous com-
plexity analysis of A-HLTL model checking
for terminating programs (see Table 1). We
show that for formulas with only one trajec-
tory quantifier the complexity is aligned with
that of classic synchronous semantics of Hy-

perLTL [4]. However, the complexity of A-HLTL
model checking with multiple trajectory quan-
tifiers is one step higher than HyperLTL model
checking in the polynomial hierarchy. An in-
teresting observation here is that the complex-
ity of model checking a formula with two exis-
tential trajectory quantifiers is one step higher
than one with only one existential quantifier
although the plurality of the quantifiers does not change. Generally speaking,
A-HLTL model checking for terminating programs remains in PSPACE.

Finally, we have implemented our BMC technique. We evaluate our imple-
mentation on verification of four case studies: (1) information-flow security in
concurrent programs, (2) information leak in speculative executions, (3) preser-
vation of security in compiler optimization, and (4) cache-based timing attacks.
These case studies exhibit a proof of concept for the highly intricate nature
of information-flow requirements and how our foundational theoretical results
handle them.
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Related Work. The concept of hyperproperties is due to Clarkson and Schnei-
der [5]. HyperLTL [4] and A-HLTL are currently the only logics for which practical
model checking algorithms are known [8,7,15,1]. For HyperLTL, the algorithms
have been implemented in the model checkers MCHyper and bounded model
checker HyperQB [14]. HyperLTL is limited to synchronous hyperproperties. The
A-HLTL model checking problem is known to be undecidable in general [1]. How-
ever, decidable fragments that can express observational determinism, noninter-
ference, and linearizability have been identified. This paper generalizes A-HLTL

by allowing nested trajectory quantifiers and due to the general undecidability
result focuses on terminating programs.

FOL[E] [6] can express a limited form of asynchronous hyperproperties. As
shown in [6], FOL[E] is subsumed by HyperLTL with additional quantification
over predicates. For S1S[E] and Hµ, the model checking problem is in general
undecidable; for Hµ, two fragments, the k-synchronous, k-context bounded frag-
ments, have been identified for which model checking remains decidable [11].
Other logical extensions of HyperLTL with asynchronous capabilities are studied
in [3], including their decidable fragments, but their model checking problems
have not been implemented and the relative expressive power with respect to
other asynchronous formalisms has not been studied.

2 Extended Asynchronous HyperLTL

Preliminaries. Given a natural number k ∈ N0, we use [k] for the set {0, . . . , k}.
Let AP be a set of atomic propositions and Σ = 2AP be the alphabet, where we
call each element of Σ a letter. A trace is an infinite sequence σ = a0a1 · · · of
letters from Σ. We denote the set of all infinite traces by Σω. We use σ(i) for ai
and σi for the suffix aiai+1 · · · . A pointed trace is a pair (σ, p), where p ∈ N0 is
a natural number (called the pointer). Pointed traces allow to traverse a trace
by moving the pointer. Given a pointed trace (σ, p) and n > 0, we use (σ, p) + n
to denote the resulting trace (σ, p + n). We denote the set of all pointed traces
by PTR = {(σ, p) | σ ∈ Σω and p ∈ N0}.

A Kripke structure is a tuple K = ⟨S, sinit , δ, L⟩, where S is a set of states,
sinit ∈ S is the initial state, δ ⊆ S × S is a transition relation, and L : S → Σ
is a labeling function on the states of K. We require that for each s ∈ S, there
exists s′ ∈ S, such that (s, s′) ∈ δ. ⊓⊔

A path of a Kripke structure K is an infinite sequence of states s(0)s(1) · · · ∈
Sω, such that s(0) = sinit and (s(i), s(i+ 1)) ∈ δ, for all i ≥ 0. A trace of K is a
sequence σ(0)σ(1)σ(2) · · · ∈ Σω, such that there exists a path s(0)s(1) · · · ∈ Sω

with σ(i) = L(s(i)) for all i ≥ 0. We denote by Traces(K, s) the set of all traces
of K with paths that start in state s ∈ S.

The directed graph F = ⟨S, δ⟩ is called the Kripke frame of the Kripke
structure K. A loop in F is a finite sequence s0s1 · · · sn, such that (si, si+1) ∈ δ,
for all 0 ≤ i < n, and (sn, s0) ∈ δ. We call a Kripke frame acyclic, if the only
loops are self-loops on terminal states, i.e., on states that have no other outgoing
transition. Acyclic Kripke structures model terminating programs.
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Extended A-HLTL. The syntax of extended A-HLTL is:

φ ::= ∃π.φ | ∀π.φ | Eτ.φ | Aτ.φ | ψ
ψ ::= true | aπ,τ | ¬ψ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ψ1 U ψ2 | ψ1 R ψ2

where a ∈ AP, π is a trace variable from an infinite supply V of trace variables,
τ is a trajectory variable from an infinite supply J of trajectory variables (see
formula φNInd in Section 1 for an example). The intended meaning of aπ,τ is
that proposition a ∈ AP holds in the current time in trace π and trajectory τ
(explained later). Trace (respectively, trajectory) quantifiers ∃π and ∀π (respec-
tively, Eτ and Aτ) allow reasoning simultaneously about different traces (respec-
tively, trajectories). The intended meaning of E is that there is a trajectory that
gives an interpretation of the relative passage of time between the traces for
which the temporal formula that relates the traces is satisfied. Dually, A means
that all trajectories satisfy the inner formula. Given an A-HLTL formula φ, we
use Paths(φ) (respectively, Trajs(φ)) for the set of trace (respectively, trajectory)
variables quantified in φ. A formula φ is well-formed if for all atoms aπ,τ in φ,
π and τ are quantified in φ (i.e., τ ∈ Trajs(φ) and π ∈ Paths(φ)) and no tra-
jectory/trace variable is quantified twice in φ. We use the usual syntactic sugar
false ≜ ¬true, and φ ≜ true Uφ, φ1 → φ2 ≜ ¬φ1∨φ2, and φ ≜ ¬ ¬φ, etc.
We choose to add R (release) and ∧ to the logic to enable negation normal form
(NNF). As our BMC algorithm cannot handle formulas that are not invariant
under stuttering, the next operator is not included.

Semantics. A trajectory t : t(0)t(1)t(2) · · · for a formula φ is an infinite sequence
of subsets of Paths(φ), i.e., each ti ⊆ Paths(φ), for all i ≥ 0. Essentially, in each
step of the trajectory one or more of the traces make progress or all may stutter.
A trajectory is fair for a trace variable π ∈ Paths(φ) if there are infinitely many
positions j such that π ∈ t(j). A trajectory is fair if it is fair for all trace
variables in Paths(φ). Given a trajectory t, by ti, we mean the suffix t(i)t(i +
1) · · · . Furthermore, for a set of trace variables V, we use TRJV for the set
of all fair trajectories for indices from V. We also use a trajectory assignment
Γ : Trajs(φ) ⇀ TRJDom(Γ ), where Dom(Γ ) is the subset of Trajs(φ) for which
Γ is defined. Given a trajectory assignment Γ , a trajectory variable τ , and a
trajectory t, we denote by Γ [τ 7→ t] the assignment that coincides with Γ for
every trajectory variable except for τ , which is mapped to t.

For the semantics of extended A-HLTL, we need asynchronous trace assign-
ments Π : Paths(φ)×Trajs(φ) → T ×N which map each pair (π, τ) formed by a
path variable and trajectory variable into a pointed trace. Given (Π,Γ ) where
Π is an asynchronous trace assignment and Γ a trajectory assignment, we use
(Π,Γ ) + 1 for the successor of (Π,Γ ) defined as (Π ′, Γ ′) where Γ ′(τ) = Γ (τ)1,
and Π ′(π, τ) = Π(π, τ) + 1 if π ∈ Γ (τ)(0) and Π ′(π, τ) = Π(π, τ) otherwise.
Note that Π can assign the same π to different pointed traces depending on the
trajectory. We use (Π,Γ ) + k as the k-th successor of (Π,Γ ). Given an asyn-
chronous trace assignment Π, a trace variable π, a trajectory variable τ a trace
σ, and a pointer p, we denote by Π[(π, τ) 7→ (σ, p)] the assignment that coincides
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Fig. 4: Kripke structure K and traces t1 and t2 of K, K |= φNInd but K ̸|= φNI.

with Π for every pair except for (π, τ), which is mapped to (σ, p). The satisfac-
tion of an A-HLTL formula φ over a trace assignment Π, a trajectory assignment
Γ , and a set of traces T is defined as follows (we omit ¬, ∧ and ∨ which are
standard):

(Π,Γ ) |=T ∃π.φ iff for some σ ∈ T :
(Π[(π, τ) 7→ (σ, 0)], Γ ) |=T φ for all τ

(Π,Γ ) |=T ∀π.φ iff for all σ ∈ T :
(Π[(π, τ) 7→ (σ, 0)], Γ ) |=T φ for all τ

(Π,Γ ) |=T Eτ.ψ iff for some t ∈ TRJDom(Π) : (Π,Γ [τ 7→ t]) |= ψ
(Π,Γ ) |=T Aτ.ψ iff for all t ∈ TRJDom(Π)(Π,Γ [τ 7→ t]) |= ψ
(Π,Γ ) |= aπ,τ iff a ∈ σ(n) where (σ, n) = Π(π, τ)
(Π,Γ ) |= ψ1 U ψ2 iff for some i ≥ 0 : (Π,Γ ) + i |= ψ2 and

for all j < i : (Π,Γ ) + j |= ψ1

(Π,Γ ) |= ψ1 R ψ2 iff for all i ≥ 0 : (Π,Γ ) + i |= ψ2, or
for some i ≥ 0 : (Π,Γ ) + i |= ψ1 and

for all j ≤ i : (Π,Γ ) + j |= ψ2

We say that a set T of traces satisfies a sentence φ, denoted by T |= φ, if
(Π∅, Γ∅) |=T φ. We say that a Kripke structure K satisfies an A-HLTL formula φ
(and write K |= φ) if and only if we have Traces(K, Sinit ) |= φ. An example is
illustrated in Fig. 4.

3 Bounded Model Checking for A-HLTL

We first introduce the bounded semantics of A-HLTL (for at most one trajec-
tory quantifier alternation but arbitrary trace quantifiers) which will be used to
generate queries to a QBF solver to aid solving the BMC problem. The main
result of this section is Theorem 1 which provides decision procedures for model
checking A-HLTL for terminating systems.

3.1 Bounded Semantics of A-HLTL

The bounded semantics corresponds to the exploration of the system up to a
certain bound. In our case, we will consider two bounds k and m (with k ≤ m).
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The bound k corresponds to the maximum depth of the unrolling of the Kripke
structures and m is the bound on trajectories length. We start by introducing
some auxiliary functions and predicates, for a given trace assignment and (Π,Γ ).
First, the family of functions posπ,τ : {0 . . .m} → N. The meaning of posπ,τ (i)
provides how many times π has been selected in {τ(0), . . . , τ (i)}. We assume that
Kripke structures are equipped with an atomic proposition halt (one per trace
variable π) which encodes whether the state is a halting state. Given (Π,Γ ) we
consider the predicate halted that holds whenever for all π and τ , halt ∈ σ(j) for
(σ, j) = Π(π, τ). In this case we write (Π,Γ, n) |= halted.

We define two bounded semantics which only differ in how they inspect be-
yond the (k,m) bounds: |=hpes

k,m , called the halting pessimistic semantics and

|=hopt
k,m , called the halting optimistic semantics. We start by defining the bounded

semantics of the quantifiers.

(Π,Γ, 0) |=k,m ∃π. ψ iff there is a σ ∈ Tπ, such that for all τ
(Π[(π, τ) → (σ, 0)], Γ, 0) |=k,m ψ (1)

(Π,Γ, 0) |=k,m ∀π. ψ iff for all σ ∈ Tπ, for all τ :
(Π[(π, τ) → (σ, 0)], Γ, 0) |=k,m ψ (2)

(Π,Γ, 0) |=k,m Eτ. ψ iff there is a t ∈ TRJDom(Π) :
(Π,Γ [τ → t], 0) |=k,m ψ (3)

(Π,Γ, 0) |=k,m Aτ. ψ iff for all t ∈ TRJDom(Π) :
(Π,Γ [τ → t], 0) |=k,m ψ (4)

For the Boolean operators, for i ≤ m:

(Π,Γ, i) |=k,m true (5)
(Π,Γ, i) |=k,m aπ,τ iff a ∈ (σ, j) where

(σ, j) = Π(π, τ)(i) and j ≤ k (6)
(Π,Γ, i) |=k,m ¬aπ,τ iff a ̸∈ (σ, j) where

(σ, j) = Π(π, τ)(i) and j ≤ k (7)
(Π,Γ, i) |=k,m ψ1 ∨ ψ2 iff (Π,Γ, i) |=k,m ψ1 or (Π,Γ, i) |=k,m ψ2 (8)
(Π,Γ, i) |=k,m ψ1 ∧ ψ2 iff (Π,Γ, i) |=k,m ψ1 and (Π,Γ, i) |=k,m ψ2 (9)

For the temporal operators, we must consider the cases of falling of the
paths (beyond k) and falling of the traces (beyond m). We define the predicate
off which holds for (Π,Γ, i) if for some (π, τ), posπ,τ (i) > k and haltπ /∈ σ(k)
where σ is the trace assigned to π. Note that halted implies that off does not
hold because all paths (including those at k or beyond) satisfy halt.

We define two semantics that differ on how to interpret when the end of
the unfolding of the traces and trajectories is reached. The halting pessimistic
semantics, denoted by |=hpes

k,m take (1)-(9) above and add (10)-(13) together with
(Π,Γ, i) ̸|=k,m off . Rules (10) and (11) define the semantics of the temporal
operators for the case i < m, that is, before the end of the unrolling of the
trajectories (recall that we do not consider ):

(Π,Γ, i) |=k,m ψ1 U ψ2 iff (Π,Γ, i) |=k,m ψ2, or (Π,Γ, i) |=k,m ψ1, and
(Π,Γ, i) + 1 |=k,m ψ1 U ψ2 (10)
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(Π,Γ, i) |=k,m ψ1 R ψ2 iff (Π,Γ, i) |=k,m ψ2, and (Π,Γ, i) |=k,m ψ1, or
(Π,Γ, i) + 1 |=k,m ψ1 R ψ2 (11)

For the case of i = m, that is, at the bound of the trajectory:

(Π,Γ,m) |=hpes
k,m ψ1 U ψ2 iff (Π,Γ,m) |=k,m ψ2 (12)

(Π,Γ,m) |=hpes
k,m ψ1 R ψ2 iff (Π,Γ,m) |=k,m ψ1 ∧ ψ2, or

(Π,Γ,m) |=k,m halted ∧ ψ2 (13)

The halting optimistic semantics, denoted by |=hopt
k,m take rules (1)-(11) and

(12′)-(13′), but now if (Π,Γ, i) |=hopt
k,m off then (Π,Γ, i) |=hopt

k,m φ holds for ev-
ery formula. Again, rules (10) and (11) define the semantics of the temporal
operators for the case i < m. Then, for i = m:

(Π,Γ,m) |=hopt
k,m ψ1 U ψ2 iff (Π,Γ,m) |=k,m ψ2, or

(Π,Γ,m) ̸|=k,m halted ∧ ψ1 (12′)

(Π,Γ,m) |=hopt
k,m ψ1 R ψ2 iff (Π,Γ,m) |=k,m ψ2 (13′)

Similar to [15] for the case of HyperLTL, the pessimistic semantics capture
the case where we assume that pending eventualities will not become true in
the future after the end of the trace (this is also assumed in LTL BMC). Dually,
the optimistic semantics assume that all pending eventualities at the end of the
trace will be fulfilled. Therefore, the following hold (proofs in [13]).

Lemma 1. Let k ≤ k′ and m ≤ m′.

1. If (Π,Γ, 0) |=hpes
k,m φ, then (Π,Γ, 0) |=hpes

k′,m′ φ.

2. If (Π,Γ, 0) ̸|=hopt
k,m φ, then (Π,Γ, 0) ̸|=hopt

k′,m′ φ.

Lemma 2. The following hold for every k and m,

1. If (Π,Γ, 0) |=hpes
k,m φ, then (Π,Γ, 0) |= φ.

2. If (Π,Γ, 0) ̸|=hopt
k,m φ, then (Π,Γ, 0) ̸|= φ.

3.2 From Bounded Semantics to QBF Solving

Let K be a Kripke structure and φ be an A-HLTL formula. Based on the bounded
semantics introduced previously, our main approach is to generate a QBF query
(with bounds k, m), which can use either the pessimistic or the optimistic se-

mantics. We use JK, φKhpesk,m if the pessimistic semantics are used and JK, φKhoptk,m

if the optimistic semantics are used. Our translations will satisfy that

(1) if JK, φKhpesk,m is SAT, then K |= φ;

(2) if JK, φKhoptk,m is UNSAT, then K ̸|= φ;

(3) if the Kripke structure is unrolled to the diameter and the trajectories up

to a maximum length (see below), then JK, φKhpesk,m is SAT if and only if

JK, φKhoptk,m is SAT.
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The first step to define JK, φKhoptk,m and JK, φKhpesk,m is to encode the unrolling of
the models up-to a given depth k. For a path variable π corresponding to Kripke
structure K, we introduce (k + 1) copies (x0, . . . , xk) of the Boolean variables
that define the state of K and use the initial condition I and the transition
relation R of K to relate these variables. For example, for k = 3, we unroll the
transition relation up-to 3 as follows:

JKK3 = I(x0) ∧R(x0, x1) ∧R(x1, x2) ∧R(x2, x3).

Encodings of tjπ and tj
π′ :

[t0π , t1π , t2π , t3π , t4π , t5π , t6π ]

[t0
π′ , t

1
π′ , t

2
π′ , t

3
π′ , t

4
π′ , t

5
π′ , t

6
π′ ]

Encodings of posi,j
π,τ′ and posi,j

π′,τ′

[pos0,0
π,τ′ , pos0,1

π,τ′ , pos0,2
π,τ′ , pos0,3

π,τ′ ,

pos1,1
π,τ′ , pos1,2

π,τ′ , pos1,3
π,τ′ , pos1,4

π,τ′ ,

pos2,2
π,τ′ , pos2,3

π,τ′ , pos2,4
π,τ′ , pos2,5

π,τ′ ,

pos3,3
π,τ′ , pos3,4

π,τ′ , pos3,5
π,τ′ , pos3,6

π,τ′ ]

[pos0,0
π′,τ′ , pos0,1

π′,τ′ , pos0,2
π′,τ′ , pos0,3

π′,τ′ ,

pos1,1
π′,τ′ , pos1,2

π′,τ′ , pos1,3
π′,τ′ , pos1,4

π′,τ′ ,

pos2,2
π′,τ′ , pos2,3

π′,τ′ , pos2,4
π′,τ′ , pos2,5

π′,τ′ ,

pos3,3
π′,τ′ , pos3,4

π′,τ′ , pos3,5
π′,τ′ , pos3,6

π′,τ′ ]

Fig. 5: Variables for encodings of
the blue trajectory in Fig. 4,
where green variables are true and
gray variables are false.

Encoding positions. For each trajectory
variable τ and given the bound m on the
unrolling of trajectories, we add Paths(φ)×
(m + 1) variables t0π . . . t

m
π , for each π. The

intended meaning of tjπ is that tjπ is true
whenever π ∈ t(j), that is, when t dictates
that π moves at time instant j. In order
to encode sanity conditions on trajectories,
that are crucial for completeness, it is neces-
sary to introduce a family of variables that
captures how much π has moved according
to τ after j steps. There is a variable pos
for each trace variable π, each trajectory τ
and each i ≤ k and j ≤ m. We represent
this variable by posi,jπ,τ . The intention is that
pos is true whenever after j steps trajectory
τ has dictated that trace π progresses pre-
cisely i times. Fig. 5 shows encodings tjπ and
posi,jπ,τ for the traces w.r.t. the blue trajec-
tory, τ ′ in Fig. 4. We will use the auxiliary
definitions (for i ∈ {0 . . . k} and j ∈ {0 . . .m}) to force that the path π has
moved to position i after j moves from the trajectory and that π has not fallen
off the trace (and does not change position when the paths fall off the trace):

setpos i,j
π,τ

def
= posi,jπ,τ ∧

∧
n∈{0..k}\{i}

¬posn,jπ,τ ∧ ¬off j
π,τ

nopos j
π,τ

def
= off j

π,τ ∧
∧

n∈{0..k}

¬posn,jπ,τ

Initially, Ipos
def
=

∧
π,τ setpos

0,0
π,τ , where π ∈ Traces(φ) and τ ∈ TRJDom(Π).

Ipos captures that all paths are initially at position 0. Then, for every step
j ∈ {0 . . .m}, the following formulas relate the values of pos and off , depending
on whether trajectory τ moves path π or not (and on whether π has reached the
end k or halted):

step j
π,τ

def
=

∧
i∈{0..k−1}

(
posi,jπ,τ ∧ tjπ → setpos i+1,j+1

π,τ

)
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stutters j
π,τ

def
=

∧
i∈{0..k}

(
posi,jπ,τ ∧ ¬tjπ → setpos i,j+1

π,τ

)
ends j

π,τ
def
= (posk,jπ,τ ∧ tjπ) →

(
(¬halt kπ → nopos j+1

π,τ ) ∧ (halt kπ → setpos k,j+1
π,τ )

)
Then the following formula captures the correct assignment to the the pos vari-
ables, including the initial assignment:

φpos
def
= Ipos ∧

∧
j∈{0..m}

∧
π,τ

(step j
π,τ ∧ stutters j

π,τ ∧ ends j
π,τ )

For example, Fig. 5 (w.r.t. Fig. 4) encodes the blue trajectory (τ ′) of π
(i.e., t1) and π′ (i.e., t2) as follows. First, for j ∈ [0, 3), it advances t1
and stutters t2. Therefore, t

0
π, t

1
π, t

2
π are true and t0π′ , t1π′ , t2π′ are false. Notice

that for pos encodings, the π position advances according to step j
π,τ ′ (i.e.,

pos0,0π,τ ′ , pos
1,1
π,τ ′ , pos

2,2
π,τ ′ , pos

3,3
π,τ ′); while π′ stutters according to stutters j

π′,τ ′ (i.e.,

pos0,0π′,τ ′ , pos
0,1
π′,τ ′ , pos

0,2
π′,τ ′ , pos

0,3
π′,τ ′). Then, for j ∈ [3, 5], it alternatively advances

t2 which makes t3π, t
4
π, t

5
π false and t3π′ , t4π′ , t5π′ true. Similarly, the movements be-

comes pos3,4π,τ ′ , pos
3,5
π,τ ′ , pos

3,6
π,τ ′ and pos1,4π′,τ ′ , pos

2,5
π′,τ ′ , pos

3,6
π′,τ ′ . At the halting point

(i.e., j = k), both trajectory trigger ends j and do not advance anymore.

Encoding the inner LTL formula. We will use the following auxiliary predicates:

halted j def
=

∧
τ

halted j
τ off j def

=
∨
π,τ

off j
π,τ

We now give the encoding for the inner temporal formulas for a fix unrolling k
andm as follows. For the atomic and Boolean formulas, the following translations
are performed for j ∈ {0 . . .m}.

Jpπ,τ K
j
k,m :=

∨
i∈{0..k}(pos

i,j
π,τ ∧ piπ) (14)

J¬pπ,τ Kjk,m :=
∨

i∈{0..k}(pos
i,j
π,τ ∧ ¬piπ) (15)

Jψ1 ∨ ψ2K
j
k,m := Jψ1K

j
k,m ∨ Jψ2K

j
k,m (16)

Jψ1 ∧ ψ2K
j
k,m := Jψ1K

j
k,m ∧ Jψ2K

j
k,m (17)

The halting pessimistic semantics translation uses J·Khpes , taking (14)-(17)
and (18)-(21) below. For the temporal operators and j < m:

Jψ1 U ψ2K
j
k,m :=¬off j ∧

(
Jψ2K

j
k,m ∨ (Jψ1K

j
k,m ∧ Jψ1 U ψ2K

j+1
k,m)

)
(18)

Jψ1 R ψ2K
j
k,m:=¬off j ∧

(
Jψ2K

j
k,m ∧ (Jψ1K

j
k,m ∨ Jψ1 R ψ2K

j+1
k,m)

)
(19)

For j = m:

Jψ1 U ψ2Kmk,m :=Jψ2Kmk,m (20)

Jψ1 R ψ2Kmk,m:=
(
Jψ1Kmk,m ∧ Jψ2Kmk,m

)
∨
(
haltedm ∧ Jψ2Kmk,m

)
(21)



Bounded Model Checking for Asynchronous Hyperproperties 39

The halting optimistic semantics translation uses J·Khopt , taking (14)-(17)
and (18′)-(21′) as follows, For the temporal operators and j < m:

Jψ1 U ψ2K
j
k,m :=off j ∨

(
Jψ2K

j
k,m ∨ (Jψ1K

j
k,m ∧ Jψ1 U ψ2K

j+1
k,m)

)
(18′)

Jψ1 R ψ2K
j
k,m:=off j ∨

(
Jψ2K

j
k,m ∧ (Jψ1K

j
k,m ∨ Jψ1 R ψ2K

j+1
k,m)

)
(19′)

For j = m:

Jψ1 U ψ2Kmk,m :=Jψ2Kmk,m ∨
(
haltedm ∧ Jψ1Kmk,m

)
(20′)

Jψ1 R ψ2Kmk,m:=Jψ2Kmk,m (21′)

Combining the encodings. Let φ be a A-HLTL formula of the form
φ = QAπA. . . . .QZπZ .Qaτa. . . . .Qzτz.ψ. Combining all the components, the en-
coding of the A-HLTL BMC problem into QBF, for bounds k and m is:

JK, φKk,m = QAxA. · · · .QZxZ .Qata. · · · .Qztz. ∃pos. ∃off .(
JKKk ◦A · · · JKKk ◦Z (φpos ∧ enc(ψ))

)
where ◦A =→ if QA = ∀ (and ◦A =∧ if QA = ∃), and ◦B , . . . are defined
similarly. The sets pos is the set of variables posi,jπ,τ that encode the positions

and off is the set of variables off j
π,τ that encode when a trace progress has

fallen off its unrolling limit. We next define the encoding enc(ψ) of the temporal
formula ψ.

Encoding formulas with up to 1 trajectory quantifier alternations We consider
the encoding into QBF of formulas with zero and one quantifier alternation
separately. In the following, we say that at position j a collection of trajectories
U “moves” whenever either all trajectories have moved all their paths to the
halting state, or at least one of the trajectories in U makes one of the non-halted
path move at position j. Formally,

moves j
U

def
= halted j

U ∨
∨

τ∈U,π

(tjπ ∧ ¬halt jπ,τ )

– E+U.ψ: In this case, the formula generated for enc(ψ) is

(
∧

j∈{0...m}

moves j
U ) ∧ JψK0k,m

This is correct since the positions at which all trajectories stutter all paths
can be removed (obtaining a satisfying path), we can restrict the search to
non-stuttering trajectory steps.

– A+U.ψ: In this case, the formula generated for enc(ψ) is

(
∧

j∈{0...m}

moves j
U ) → JψK0k,m

The reasoning is similar as the previous case.
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– A+UAE
+UE .ψ: In this case, the formula generated for enc(ψ) is

(
∧

j∈{0...m}

moves j
UA

) →
( ∧
j∈{0...m}

(halted j
UA

→ moves j
UE

) ∧ JψK0k,m
)

Universally quantified trajectories must explore all trajectories, which must
be responded by the existential trajectories. Assume there is a strategy for
UE for the case that universal trajectories UA never stutter at any position.
This can be extended into a strategy for the case where UA can possible stut-
ter, by adding a stuttering step to the UE trajectories at the same position.
This guarantees the same evaluation. Therefore, we restrict our search for
the outer UA to non-stuttering trajectories. Finally, UE is obliged to move
after UA has halted all paths to prevent global stuttering.

– E+UEA
+UA.ψ: In this case, the formula generated for enc(ψ) is similar,( ∧

j∈{0...m}

moves j
UE

)
∧
( ∧
j∈{0...m}

(halted j
UE

→ moves j
UA

) → JψK0k,m
)

The rationale for this encoding is the following. It is not necessary to explore
a non-moving step j for the existentially quantified trajectories UE because
if this stuttering step is successful it must work for all possible moves of
the UA trajectories at the same time step j. This includes the case that all
trajectories in UA make all paths stutter (which, if we remove j one still
has all the legal trajectories for UA). Since the logic does not contain the
next operator, the evaluation for the given UE and one of the trajectories
for UA that stutter at j will be the same as for j +1 for all logical formulas.
Therefore, the trajectory that is obtained from removing step j from UE is
still a satisfying trajectory assignment. It follows that if there is a model
for UE there is a model that does not stutter. Finally, after all paths have
halted according to the UE trajectories, a step of UA that stutters all paths
that have not halted can be removed because, again the evaluation is the
same in the previous and subsequent state. It follows that if the formula has
a model, then it has a model satisfying the encoding.

Theorem 1. Let φ be an A-HLTL formula with at most one trajectory quantifier
alternation, let K be the maximum depth of a Kripke structure and let M =
K × |Paths(φ)| × |Trajs(φ)|. Then, the following hold:

– JK, φKhpesK,M is satisfiable if and only if K |= φ.

– JK, φKhoptK,M is satisfiable if and only if K |= φ.

Theorem 1 (proof in [13]) provides a model checking decision procedure. An al-
ternative decision procedure is to iteratively increase the bound of the unrollings
and invoke both semantics in parallel until the outcome coincides.

4 Complexity of A-HLTL Model Checking for Acyclic
Frames

Our goal in this section is to analyze the complexity of the A-HLTLmodel checking
problem in the size of an acyclic Kripke structure (all proofs in [13]).
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Problem Formulation. We use MC
[
Fragment

]
to distinguish different varia-

tions of the problem, where MC is the model checking decision problem, i.e.,
whether or not K |= φ, and Fragment is one of the following for φ:
– ‘[∃(∃/∀)+A/E]k’, for k ≥ 0, is the fragment with a lead existential trace

quantifier, one outermost universal or existential trajectory quantifier, and
k (counting all) quantifier alternations, where k = 0 means the existential
alternation-free fragment ‘∃+E+’. Fragment ‘[∀(∀/∃)+A/E]k’ is defined sim-
ilarly, where k = 0 is the universal alternation-free fragment ‘∀+A+’.

– Fragments ‘[∃(∃/∀)+(E+A+/A+E+/EE+/AA+)]k’, for k ≥ 1 denotes the frag-
ment with a lead existential trace quantifier, multiple outermost trajectory
quantifiers with at most one alternation, and k quantifier alternations (count-
ing all quantifiers), where k = 1 means fragment ‘∃EA’. Fragment ‘[∀(∀/∃)+
(E+A+/A+E+/EE+/AA+)]k’ is defined similarly, where k = 1 means frag-
ment ‘∀AE’.

The Complexity of A-HLTL Model Checking. We first show the A-HLTL

model checking problem for the alternation-free fragment with only one trajec-
tory quantifier is NL-complete. For example, verification of information leak in
speculative execution in sequential programs renders a formula of the form ∀4A,
which belongs to the alternation-free fragment (more details in Section 5).

Theorem 2. MC
[
∃+E

]
and MC

[
∀+A

]
are NL-complete.

We now switch to formulas with alternating trace quantifiers. The significance
of the next theorem is that a single trajectory quantifier does not change the
complexity of model checking as compared to the classic HyperLTL verification [2].
It is noteworthy to mention that several important classes of formulas belong
to this fragment. For example, according to Theorem 3 while model checking
observational determinism [20] (∀∀E), generalized noninference [16] (∀∀∃E), and
non-inference [5] (∀∃E) with a single initial input are all coNP-complete.

Theorem 3. MC
[
∃(∃/∀)+(A/E)

]
k is Σp

k-complete and MC
[
∀(∀/∃)+(E/A)

]
k is Πp

k -

complete in the size of the Kripke structure.

We now focus on formulas with multiple trajectory quantifiers. We first show
that alternation-free multiple trajectory quantifiers bumps the class of complex-
ity by one step in the polynomial hierarchy.

Theorem 4. MC
[
∃(∃/∀)+EE+

]
k is Σp

k+1-complete and MC
[
∀(∀/∃)+AA+

]
k is Πp

k+1-

complete in the Kripke structure.

Theorem 5. For k ≥ 1, MC
[
∃(∃/∀)+A+E+

]
k is Σp

k+1-complete and
MC

[
∀(∀/∃)+E+A+

]
k is Πp

k+1-complete in the size of the Kripke structure.

Finally, Theorems 3, 4, and 5 imply that the model checking problem for
acyclic Kripke structures and A-HLTL formulas with an arbitrary number of
trace quantifier alternation and only one trajectory quantifier is in PSPACE.
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5 Case Studies and Evaluation

We now evaluate our technique. The encoding in Section 3 is implemented on
top of the open-source bounded model checker HyperQB [15]. All experiments
are executed on a MacBook Pro with 2.2GHz processor and 16GB RAM (https:
//github.com/TART-MSU/async hltl tacas23).

1 Thread T1( ) {
2 whi le ( t rue ){
3 x := 0 ;
4 y := 0 ;
5 i f ( h == l ) then
6 x := 1 ;
7 y := 1 ;
8 e l s e
9 y := 1 ;

10 x := 1 ;
11 }
12 }
13 Thread T2( ) {
14 whi le ( t rue ) {
15 pr in t x ;
16 pr in t y ;
17 }
18 }
19 Thread T3( ) {
20 whi le ( t rue ){
21 h := 0 | | 1 ;
22 l := 0 | | 1 ;
23 }
24 }

Fig. 6: Program with
nondeterministic
sequence of inputs.

Non-interference in Concurrent Programs. We first
consider the programs presented earlier in Figs. 1 and 3
together with A-HLTL formulas φNI and φNInd from Sec-
tion 1. We receive UNSAT (for the original formula and
not its negation), which indicates that violations have
been spotted. Indeed, our implementation successfully
finds a counterexample with a specific trajectory that
prints out ‘acdb’ when the high-security value h is equal
to zero (entries of ACDB and ACDBndet in Table 3). Our
other experiment is an extension of the example in [10]
for multiple asynchronous channels (see Fig. 6) and the
following formula: φODnd

= ∀π.∀π′.Aτ. Eτ ′. (lπ,τ ↔
lπ′,τ ) → (obsπ,τ ′ ↔ obsπ′,τ ′). The results for this case
are entries of ConcLeak and ConcLeakndet in Table 3. De-
tails of the counterexample can be found in [13].

Speculative Information Flow. Speculative execution is a standard optimiza-
tion technique that allows branch prediction by the processor. Speculative non-
interference (SNI) [9] requires that two executions with the same policy p (i.e.,
initial configuration) can be observed differently in speculative semantics (e.g.,
a possible branch), if and only if their non-speculative semantics with normal
condition checks are also observed differently; i.e., the following A-HLTL formula:

φSNI = ∀π1.∀π2.︸ ︷︷ ︸
speculative

∀π′
1.∀π′

2︸ ︷︷ ︸
nonspeculative

. Aτ.
(

(obsπ1,τ ↔ obsπ2,τ )∧

(pπ1,τ ↔ pπ2,τ ) ∧ (pπ1,τ ↔ pπ′
1,τ

) ∧ (pπ2,τ ↔ pπ′
2,τ

)
)
→

(
obsπ′

1,τ
↔ obsπ′

2,τ

)
where obs is the memory footprint, traces π1 and π2 range over the (nonspecu-
lative) C code and traces π′

1 and π′
2 range over the corresponding (speculative)

assembly code. We evaluate SNI on the translation from a C program (details
in [13]), where y is the input policy p and multiple versions of x86 assembly
code [9]. The results of model checking speculative execution are in Table 3 (see
entries from SpecExcuV 1 to SpecExcuV 7). Additional versions from SpecExcuV 3

to SpecExcuV 7 are under different compilation options. Our method correctly
identify all the insecure and secure ones as stated in [9].

Compiler Optimization Security. Secure compiler optimization [17] aims at
preserving input-output behaviors of a source program (original implementation)

https://github.com/TART-MSU/async_hltl_tacas23
https://github.com/TART-MSU/async_hltl_tacas23
https://github.com/TART-MSU/async_hltl_tacas23
https://github.com/TART-MSU/async_hltl_tacas23
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and a target program (after applying optimization), including security policies.
We investigate the following optimization strategies: Dead Branch Elimination
(DBE), Loop Peeling (LP), and Expression Flattening (EF). To verify a secure
optimization, we consider two scenarios: (1) one single I/O event (one trajectory,
similar to [1]), and (2) a sequences of I/O events (two trajectories):

φSC = ∀π.∀π′.Eτ. (inπ,τ ↔ inπ′,τ ) → (outπ,τ ↔ outπ′,τ )

φSCnd
= ∀π.∀π′.Aτ. Eτ ′. (inπ,τ ↔ inπ′,τ ) → (outπ,τ ′ ↔ outπ′,τ ′),

where in is the set of inputs and out is the set of outputs. Table 3 (cases
DBE – EFLPndet) shows the verification results of each optimization strategy and
different combination of the strategies (details in [13]).

Cache-Based Timing Attacks. Asynchrony also leads to attacks when system
executions are confined to a single CPU and its cache [18]. A cache-based tim-
ing attack happens when an attacker is able to guess the values of high-security
variables when cache operations (i.e., evict, fetch) influence the scheduling of
different threads. Our case study is inspired by the cache-based timing attack
example in [18] and we use the formula of observational determinism φODnd

in-
troduced earlier in this section to find the potential attacks (see cases of CacheTA
and CacheTAndet in Table 3 with details in [13]).

5.1 Analysis of Experimental Results

Table 3 presents the diameter of the transition relation, length of trajectories
m, state spaces, and the number of trajectory variables. We also present the
total solving time of our algorithm as well as the break down: generating mod-
els (genQBF), building trajectory encodings (buildTr), and final QBF solving
(solveQBF). Our two most complex cases are concurrent leak (ConcLeakndet)
and loop peeling (LPndet). For concurrent leak, it is because there are three
threads with many interleavings (i.e., asynchronous composition), takes longer
time to build. For loop peeling, although there is no need to consider interleav-
ings except for the nondeterministic inputs; however, the diameters of traces
(DK1

, DK2
) are longer than other cases, which makes the length and size of

trajectory variables (i.e., m and |T |) grow and increases the total solving time.

MCHyper [1] This paper

Case Total[s] genQBF/ buildTr/ solveQBF[s] Total[s]

DBE 0.8 0.9 / 0.07 / 0.01 0.98

LP 365.9 1.37 / 1.40 / 1.13 3.90

EFLP 1315.2 5.11 / 8.12 / 9.35 22.58

Table 2: Comparison of model checking
compiler optimization with [1].

Our encoding is able to handle a
variety of cases with one or more
trajectories, depending on whether
multiple sources of non-determinism
is present. To see efficiency, we com-
pare the solving time for cases of
compiler optimization with one tra-
jectory with the results in [1]. This
method reduces A-HLTL model checking to HyperLTL model checking for limited
fragments and utilizes the model checker MCHyper. On the other hand, we di-
rectly handle asynchrony by trajectory encoding. Table 2 shows our algorithm
considerably outperforms the approach in [1] in larger cases.
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(model checking spec and data) (time took for solving)

Models φ DK1 DK2 m |SK1 | |SK2 | |T | QBF genQBF[s] buildTr[s] solveQBF[s] Total[s]

ACDB φNI 6 6 12 109 109 1378 UNSAT 2.80 0.32 0.23 3.35

ACDBndet φNInd 8 8 16 696 696 2754 UNSAT 7.74 2.54 3.73 14.01

ConcLeak φOD 11 11 22 597 597 6118 UNSAT 14.85 7.10 8.29 30.24

ConcLeakndet φODnd 18 18 36 2988 2988 22274 UNSAT 127.09 53.14 731.48 911.72

SpecExcuV 1 φSNI 3 6 9 132 340 1112 UNSAT 7.45 1.72 3.07 12.24

SpecExcuV 2 φSNI 3 6 9 144 168 1112 SAT 5.61 1.28 2.44 9.33

SpecExcuV 3 φSNI 3 6 9 87 340 636 UNSAT 7.30 1.68 2.97 11.95

SpecExcuV 4 φSNI 3 6 9 93 340 636 UNSAT 7.37 1.71 4.50 13.58

SpecExcuV 5 φSNI 3 6 9 132 168 636 SAT 6.23 1.23 3.48 10.94

SpecExcuV 6 φSNI 3 7 10 132 340 766 UNSAT 7.47 1.82 3.26 12.55

SpecExcuV 7 φSNI 2 5 7 144 168 352 SAT 5.83 1.28 2.58 9.69

DBE φSC 4 4 8 8 6 546 SAT 0.9 0.07 0.01 0.98

DBEndet φSCnd 13 13 26 82 72 9414 SAT 1.60 0.56 9.61 11.77

DBEndet w/ bugs φSCnd 13 13 26 82 72 9414 UNSAT 1.36 0.49 2.05 3.90

LP φSC 22 22 44 80 76 3870 SAT 1.37 1.40 1.13 3.90

LPndet φSCnd 17 17 34 558 811 19110 SAT 7.37 3.86 48.15 59.38

LPndet w/ loops φSCnd 33 35 68 757 1591 128114 SAT 30.52 34.99 4165.54 4231.05

LPndet w/ bugs φSCnd 17 17 34 558 661 19110 UNSAT 6.51 3.60 20.75 30.86

EFLP φSC 32 32 64 80 248 108290 SAT 5.11 8.12 9.35 22.58

EFLPndet φSCnd 18 22 40 582 1729 28986 SAT 15.92 8.90 135.48 160.30

EFLPndet w/ loops φSCnd 33 45 78 295 1996 178894 SAT 36.98 62.89 121.60 221.47

CacheTA φOD 13 13 26 48 48 9414 UNSAT 1.49 0.53 0.38 2.40

CacheTAndet φODnd 58 58 16 16 32 16258 UNSAT 1.95 1.33 1.02 4.30

CacheTAndet w/ loops φODnd 35 35 70 88 88 139302 UNSAT 5.50 27.65 125.92 159.07

Table 3: Case studies break down for Kripke structures: K1,K2 (all case studies
have two, e.g.,one for high-level and one for assembly code), formula: φ, diameter:
D, state space: |S|, trajectory depth: m, and size of trajectory variables: |T |.

6 Conclusion and Future Work

In this paper, we focused on the problem of A-HLTL model checking for terminat-
ing programs. We generalized A-HLTL to allow nested trajectory quantification,
where a trajectory determines how different traces may advance and stutter. We
rigorously analyzed the complexity of A-HLTL model checking for acyclic Kripke
structures. The complexity grows in the polynomial hierarchy with the number
of quantifier alternations, and, it is either aligned with that of HyperLTL or is
one step higher in the polynomial hierarchy. We also proposed a BMC algorithm
for A-HLTL based on QBF-solving and reported successful experimental results
on verification of information flow security in concurrent programs, speculative
execution, compiler optimization, and cache-based timing attacks.

Asynchronous hyperproperties enable logic-based verification for software
programs. Thus, future work includes developing different abstraction techniques
such as predicate abstraction, abstraction-refinement, etc, to develop software
model checking techniques. We also believe developing synthesis techniques for
A-HLTL creates opportunities to automatically generate secure programs and
assist in areas such as secure compilation.
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