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Abstract. Runtime Verification is a lightweight verification approach
that aims at checking that a run of a system under observation adheres
to a formal specification. A classical approach is to synthesize a mon-
itor from an LTL property. Usually, such a monitor receives the trace
of the system under observation incrementally and checks the property
with respect to the first position of any trace that extends the received
prefix. This comes with the disadvantage that once the monitor detects
a violation or satisfaction of the verdict it cannot recover and the er-
roneous position in the trace is not explicitly disclosed. An alternative
monitoring problem, proposed for example for Past LTL evaluation, is
to evaluate the LTL property repeatedly at each position in the received
trace, which enables recovering and gives more information when the
property is breached. In this paper we study this concept of recurrent
monitoring in detail, particularly we investigate how the notion of an-
ticipation (yielding future verdicts when they are inevitable) can be ex-
tended to recurrent monitoring. Furthermore, we show how two funda-
mental approaches in Runtime Verification can be applied to recurrent
monitoring, namely Uncertainty—which deals with the handling of inac-
curate or unavailable information in the input trace—and Assumptions,
i.e. the inclusion of additional knowledge about system invariants in the
monitoring process.

1 Introduction

Runtime verification (RV) is a lightweight dynamic verification technique that
focuses on analyzing an actual execution of a system to check correctness prop-
erties, which has been studied both in theory and applications [18,1]. A common
specification language for RV is Linear-time Temporal Logic (LTL) [22] which
was originally introduced for infinite runs. However, in RV one necessarily deals
with the finite executions, and, as such, adaptions to the original semantics have
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been considered. A variety of those have been proposed in the literature includ-
ing infinite extensions of the finite prefix seen so far [2], limiting the logic to use
only the next-operator [16], or finite version of LTL [20], strong and weak ver-
sions of LTL [9] or the so-called mission time LTL [23]. However these monitoring
approaches all attempt to answer the initial word problem (whether the trace
at the initial position satisfies the property) following different maxims. While
a two valued semantics on finite words is adequate for completed, terminated
executions, ongoing executions may require semantics with multiple verdicts in
order to support both the current view and potential future changes when the
execution is continuing. Then, for example, impartiality requires a logic to not
change the verdict once the verdict true or false is declared, while different as-
sessments of the current observation may be changed once more information is
received. Anticipation takes potential look-aheads into account to sharpen the
current verdict. A comprehensive comparison of such approaches is given in [4].

The seminal work by Havelund and Rosu [12] considers a different approach
of monitoring. Starting from a past fragment of LTL, their monitors produce
a fresh verdict about whether the property holds at the current position of the
existing trace, thus recurrently answering the word problem with potentially dif-
ferent outcomes. We call this variant the recurrent word problem. While initial
approaches try to return the answer for the first position of the run, Havelund’s
and Rosu’s computes the verdict for the current position of the trace. As the cur-
rent position is changing with every new observation, their approach implicitly
restarts monitoring with every new observation. As such, while the semantics
is two valued and does not change the verdict of the position in question—and
can thus be considered impartial—the verdicts may change from true to false,
for example, as the point of interest varies during monitoring. In this paper, we
unify these two approaches (recurrent and initial monitoring), separating the
monitoring time at which the questions are answered from the time at which the
verdict is referring to.

In general, the recurrent word problem for future temporal logic cannot be
solved with an amount of memory that is independent of the length of the trace.
Consequently, most approaches with future operators are restricted to the initial
word problem. Approaches to monitoring based on stream runtime verification
(SRV), see for example Lola [8] produce one output stream value at each posi-
tion. This output value can encode the outcome of an initial word problem or of
a recurrent word problem. The common use of SRV is to encode recurrent word
monitoring problems for past (or at least bounded future) specifications because
the monitor is guaranteed to run with constant memory, independently of the
trace length. Modern SRV systems (both synchronous and asynchronous) in-
cluding RTLola [5], Lola2.0 [10], CoPilot [21], TeSSLa [7] and Striver [11] follow
this approach.

In this paper we first generalize recurrent monitoring beyond Past LTL. For
example, extending Past LTL with bounded future suggests that different in-
stants in the trace (not necessarily the current instant) could be the point of
interest for a given verdict. Anticipation has been solved for LTL3 (see [3]) so it
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is natural to ask whether recurrent monitoring can also be enriched with look-
aheads to improve the current verdict by producing it ahead of time. We show
that recurrent monitoring can indeed be extended to produce an anticipation of
the number of instants before the closest violation or satisfaction, which maybe
very useful to take preventive actions.

Also in the context of initial monitoring for LTL, monitors are capable to im-
prove the verdict using partial knowledge of the underlying system [17] or, more
generally, assumptions [14,6]. A second contribution of this paper is to improve
recurrent monitoring with assumptions. Finally, we also consider recurrent moni-
toring in the presence of uncertainties, meaning, that some of the input values are
(partially) unknown. We show a solution to recurrent monitoring that provides
anticipation, tolerates uncertainties and is capable of exploiting assumptions.

2 Preliminaries

We use Z for the set of integers, N,N+ for the set of natural numbers with and
without 0 and N∞ = N ∪ {∞}.

In this paper we deal with LTL extended with past time operators. The
syntax of LTL with past (Full LTL) is

φ ::= tt | p | (φ) | ¬φ | φ ∧ φ | φ | φ U φ | φ | φ S φ

where p ranges over a set of atomic propositions AP. An LTL formula is a
propositional logic formula over AP extended by the operators φ (next) which
checks that φ holds in the next state and φ1 U φ2 (until) that requires φ2 to
hold at some state in the future and that in all states up to that state φ1 holds.
Additionally there are the past time operators φ (previously) which checks
that φ did hold in the previous state and φ1 S φ2 (since) which enforces that
φ2 did hold at some point in the past and φ1 held at every state since then. In
order to keep following automaton constructions and proofs compact we defined
only a minimal fragment of LTL. Other common LTL and Past LTL operators
 (globally),  (finally), R (release),  (globally in the past),  (once in the
past) and Sw (weak since) can be expressed by the operators included above
(see [19]).

Given an infinite word w ∈ Σω, where the alphabet is Σ = 2AP, and given
an atomic proposition a ∈ AP we use w(t) to reference the letter of w at position
t. We write p |= w(t) whenever p ∈ w(t). Given a finite word s ∈ Σ∗ and a finite
or an infinite word w ∈ Σ∗ ∪Σω we use sw for the concatenation of s followed
by w. s is a prefix of w, denoted by s ⊑ w iff w = sw′ for some w′ ∈ Σ∗ ∪Σω.

A pointed word (w, t) is a pair consisting of a word w and a position t ∈ N+.
We define the semantics of LTL associating pointed words to formulas as follows:

(w, t) |= tt
(w, t) |= p iff p |= w(t)
(w, t) |= ¬φ iff (w, t) ̸|= φ
(w, t) |= φ1 ∧ φ2 iff (w, t) |= φ1 and (w, t) |= φ2

(w, t) |= φ iff (w, t+ 1) |= φ
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(w, t) |= φ1 U φ2 iff for some t′ ≥ t.(w, t′) |= φ2 and
for all t ≤ t′′ < t′.(w, t′′) |= φ1

(w, t) |= φ iff (t > 1 and (w, t− 1) |= φ) or
(t = 1 and (w, 1) |= φ)

(w, t) |= φ1 S φ2 iff for some 1 ≤ t′ ≤ t.(w, t′) |= φ2 and
for all t′ < t′′ ≤ t. (w, t′′) |= φ1

Besides Full LTL we will investigate the following fragments of Full LTL:

– Future LTL is Full LTL restricted to the operators ¬,∧,,U .
– Past LTL is Full LTL restricted to the operators ¬,∧,,S.
– Past LTL with Bounded Future, which is Past LTL with additionally

the operator .

2.1 Well-known Monitor constructions

We revise the well-known monitor constructions for Future LTL, Past LTL and
Past LTL with Bounded Future.

Future LTL. The standard monitor construction for LTL is described in [3]
and it is called the LTL3 construction. This construction aims at deciding the
question whether (w, 1) |= φ. Therefore it iteratively receives w ∈ Σω, letter
by letter, and calculates the verdicts ⊤ (meaning (w, 1) |= φ), ⊥ (meaning
(w, 1) ̸|= φ) or ? (meaning a proper answer cannot be given for the prefix received
up to now). Formally the output of the monitor after consumption of a finite
prefix s ⊑ w is

– ⊤ iff ∀w′ ∈ Σω.(sw′, 1) |= φ
– ⊥ iff ∀w′ ∈ Σω.(sw′, 1) ̸|= φ
– ? otherwise

In other words the verdict domain B3 = {⊤,⊥, ?} encodes the set of possible
outcomes of a monitoring question which are still possible after having pro-
cessed prefix s of w: ⊤ = {tt},⊥ = {ff }, ? = {tt ,ff }. We will use these symbols
with these meanings also for the further monitoring approaches throughout this
paper. The LTL3 construction works as follows. First, the formula φ and its
negation ¬φ are transformed into Alternating Büchi Automata by the standard
LTL translation [15], which are then further transformed to Nondeterministic
Büchi Automata (NBA). The monitor generation preprocesses each NBA deter-
mining which states are empty, (i.e. those states from which it is not possible
to access accepting states infinitely often) which are removed from the automa-
ton, resulting in an incomplete NFA, which is then determinized. Finally, the
monitor is constructed as the product monitor of the resulting automata for φ
and ¬φ. In those state pairs where the state of the negated formula is empty
the monitor casts the verdict ⊤ as the formula cannot be breached anymore for
the received prefix. In those pairs where the state of the non-negated monitor is
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q0start q1

q2

r0start r1

r2

q0,r0start q1,r1

q2,r2

{p}

{p, q}{q}

∅

∅, {p},
{q}, {p, q}

∅, {p},
{q}, {p, q}

{p}

{p, q}{q}

∅

∅, {p},
{q}, {p, q}

∅, {p},
{q}, {p, q}

{p}

{p, q}{q}

∅

∅, {p},
{q}, {p, q}

∅, {p},
{q}, {p, q}

Fig. 1. Monitor for φ = p U q with the LTL3 construction [3]. Up left: NBA of φ, Up
right: NBA of ¬φ, bottom: Monitor generated from the product automaton. Empty
states of the NBAs are marked gray. States of the monitor are marked according to
their outputs: Orange for ?; green for ⊤, red for ⊥.

empty ⊥ is cast, as the formula cannot be satisfied anymore. Otherwise, when
both states are non-empty ? is printed. An example of the monitor construction
can be found in Fig. 1.

These monitors are called impartial because the monitor does not output a
final verdict (⊤ or ⊥) as long as the corresponding LTL formula is not satisfied
or violated for all extensions of the observed word. These monitors are also
anticipatory because the monitor yields the final verdict at the first moment at
which all extensions of the consumed prefix satisfy the verdict.

Past LTL The standard monitor construction for Past LTL [13] also receives
the word letter by letter but evaluates (w, t) |= φ at every step t, printing the
outcome. In [13] the monitor is described as an imperative program that uses an
array as central data structure which stores the current value (true or false) for
every sub-formula of the given Past LTL formula φ. The program then receives
the input word letter by letter and calculates bottom-up the new value of each
sub-expression at the new instant, ultimately producing the verdict for the root
formula. The size of the mentioned array data structure is the number of sub-
formulas of a Past LTL formula and hence finite, so the imperative monitor can
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Initstart 0111 1011 1001

1000 0100

∅, {q}

{p},
{p, q}

∅, {q}

{p}, {p, q}

∅,
{q}

{p}, {p, q}

∅, {q}

{p}, {p, q}

∅, {q}

{p}, {p, q}

∅, {q}
{p},
{p, q}

Fig. 2. Monitor for p S ¬p. The states symbolize the current valuations of the sub-
formulas (p,¬p,¬p, p S ¬p)(1=true,0=false). States where the formula is satisfied
for the current position are marked gray.

directly be seen as Moore machine. The state of the Moore machine is given by
the current value of all sub-formulas.

Consider the Past LTL formula pS¬p over AP = {p, q}. The state is given
by a 4-tuple containing the current evaluation of the sub formulas (p,¬p,¬p, pS
¬p). The value of the first two entries is dependent on the current input letter.
The value of the third entry is the last value of the second entry and the value
of the last entry is true iff it was true before and the first entry is true or if the
third entry is true. The resulting automaton is depicted in Fig. 2.

Past LTL with Bounded Future Note that introducing a next operator may
make the evaluation of φ at a certain timestamp dependent on the input at
a later position. We can statically determine an upper bound ND(φ) of future
states which are required for evaluation of a formula φ by counting the maximal
depth of nested nexts adjusted by the number of surrounding previous operators
(next depth) in the syntax tree of the formula:
– ND(tt) = ND(p) = 0 for p ∈ AP
– ND(¬φ) = ND(φ)
– ND(φ1 ∧ φ2) = ND(φ1 S φ2) = max{ND(φ1),ND(φ2)}
– ND(φ) = ND(φ)− 1 and ND(φ) = ND(φ) + 1

For example for φ = ((p)Sq)∧p we have ND(φ) = 2, because (depending
on the evaluation of the since) it may be necessary to know at most two states
of the word in advance. For φ′ = q we get ND(φ′) = 0 because φ′ is only
dependent on the current position of the word.

Note that if for a formula ND(φ) = k is positive, then the formula φ′ = kφ
(k is used as syntactic sugar for a composition of k previous operators) which
expresses that φ was true k steps in the past can be rewritten to a Past LTL
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formula, without next operator. Therefore the next operators can be moved
inside the other operators (which is possible for all given operators without
changing the semantics of the formula) until a sub-formula ψ is contained,
which can then be substituted by ψ. For φ = ((p)S(q))∧p from above one
could construct2φ = 2(((p)Sq)∧p) = (((p)Sq)∧p) =
(((p) Sq)∧ p) = ((p S2q)∧p). This observation allows to transform a
Past LTL formula with bounded future φ into a Past LTL formula φ′ = ND(φ)φ
and build the corresponding monitor with the algorithm described previously.
Due to the equivalence (w, t) |= φ′ ⇐⇒ (w, t − ND(φ)) |= φ the resulting
monitor still produces the output sequence (w, 1) |= φ, (w, 2) |= φ . . . but with
a ND(φ) offset to receiving the corresponding input letters.

3 Initial and Recurrent Monitoring

Note that the monitor construction for Past LTL differs from the construction for
Future LTL. The LTL3 monitor attempts to answer the same question (w, 1) |= φ
at each step. We call this initial monitoring. The Past LTL monitor instead
continuously answers a different question, i.e. if the formula is satisfied from the
current position t ∈ N+ ((w, t) |= φ). We call this concept recurrent monitoring.
It makes sense especially for Past LTL monitoring, where the monitor can always
give the conclusive verdict ⊤ or ⊥ for the current state (in difference to LTL3). In
general, recurrent monitoring has advantages for the monitoring process, because
it checks a property with respect to a certain position in the word. Hence a breach
of the LTL property is related to a specific position in the trace and not for the
whole trace in general. More importantly, the monitor can also recover from
errors at previous positions and continue monitoring the trace after detection of
a violation.

Consider for example a robot system and a property that states whether the
robot is not too close to any objects. The intention of this monitor is to be able
to react (or perhaps to later inspect log data). This problem is better cast as a
recurrent monitoring problem, where the monitor raises an alarm at all positions
where the robot does not satisfy a property.

We now investigate the opportunities of recurrent monitoring more thor-
oughly. First we define initial and recurrent monitoring formally. The monitoring
problem is characterized by a function ω : Σ∗ → B3 from finite prefixes received
by the monitor to the usual B3 = {⊤,⊥, ?}. Recall that ⊤ = {tt},⊥ = {ff }, ? =
{tt ,ff }.

Definition 1 (Initial LTL monitoring). Given an LTL specification φ, the
following function ωinit

φ : Σ∗ → B3 is called the initial LTL monitoring function:

ωinit
φ (s) = {(sw, 1) |= φ | w ∈ Σω}

The initial LTL monitoring problem deals with providing the set of possible
verdicts for (sw, 1) |= φ given a finite prefix s. The set is naturally the set of
the verdicts for all possible infinite completions of the given prefix. Note that
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for two finite words s1 ⊑ s2, ωinit
φ (s1) ⊇ ωinit

φ (s2) holds by definition, i.e. when
calculating ωinit

φ repeatedly on growing traces, the set of verdicts gets refined as
the observed prefix gets longer.

We define next recurrent monitoring as the problem where the property is
checked at the position up to which the monitored trace has received events.

Definition 2 (Recurrent LTL monitoring). Given an LTL specification
φ, the following function ωrec

φ : Σ∗ → B3 is called the recurrent monitoring
function:

ωrec
φ (s) = {(sw, |s|) |= φ | w ∈ Σω}

Note that Def. 2 differs from Def. 1 since |= is checked at position |s| currently
received by the monitor, which is the traditional approach for monitoring Past
LTL. For Past LTL, only states from the past are necessary for the evaluation
and hence after receiving s it is always possible to cast a certain verdict (⊤, ⊥).
However this is not the case for Future LTL or Past LTL with bounded future,
where the recurrent verdict for position |s| may then yield the uncertain verdict
{tt ,ff } (a.k.a. ?). We propose an extension of the recurrent monitoring where
the verdict that the monitor must compute is shifted by a constant offset

Definition 3 (Recurrent LTL monitoring with constant offset). Given
an LTL specification φ and k ∈ Z, the recurrent k-offset monitoring function
ωrec,k
φ : Σ∗ → B3 is:

ωrec,k
φ (s) = {(sw, |s|+ k) |= φ | w ∈ Σω}

Note that the recurrent LTL monitoring function from Def. 2 is equivalent to
the 0-offset LTL monitoring function from Def. 3.

Another degree of generalization of the recurrent monitoring results if we
require the monitor to be able to return the best possible answer about any
position that cannot be predicted upfront (that is, the monitored state is fully
independent from the monitoring state).

Definition 4 (Random Access Recurrent LTL monitoring). Given an
LTL specification φ, the random access recurrent monitoring function ωφ : Σ∗ →
N+ → B3 is:

ωφ(s)(i) = {(sw, i) |= φ | w ∈ Σω}
This definition is a generalization of all previous definitions as i can be fixed
with the parameter 1, |s|, |s|+ k to receive the previous monitoring functions.

All previous definitions indeed are not restricted to any fragments of LTL. How-
ever, it is trivial to perform initial monitoring for Past LTL and in general it is
useless to do 0-offset recurrent monitoring for arbitrary Future LTL formulas. On
the other hand, it makes sense to apply k-offset or random recurrent monitoring
to Past LTL with bounded future or even for full LTL, tolerating sometimes ?
verdicts, depending on the property and the chosen offset.

We now introduce an abstract notion of RV monitor. For the purposes of this
paper, a monitor
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– receives a system trace iteratively (either online or offline)
– maintains internally a state which represents the trace that has been received

yet (State part)
– iteratively produces outputs (Question answering part)

Definition 5 (Monitor). A monitor is a 6-tuple M = (Σ,Ω,Q, q0, δ, ω) where
– Σ is a possibly infinite input alphabet.
– Ω is a possibly infinite output alphabet.
– Q is a possibly infinite state space.
– q0 ∈ Q is an initial state.
– δ : Q×Σ → Q is a transition function.
– ω : Q→ Ω is an output function.

We refer to the verdict of a monitor M = (Σ,Ω,Q, q0, δ, ω) after the con-
sumption of an input s = a1 . . . an ∈ Σ∗, ai ∈ Σ as ω̂(s) = ω(δ̂(q0, s)) with
δ̂ : Q×Σ∗ → Q defined as δ̂(q, ϵ) = q, δ̂(q, a1a2 . . . ai) = δ̂(δ(q0, a1), a2 . . . ai).

A monitor is essentially a Moore machine, except that input, output and
state space are allowed to be infinite. Monitors with an infinite state spaces are
common in Stream Runtime Verification [8,24] where the monitors are specified
in terms of streams of arbitrary data types. Since monitors in Runtime Veri-
fication usually run for an arbitrary long time and resources are limited, it is
crucial that their memory is independent of the trace length and can be bounded
a-priori. The state maintained by a monitor depends on the inputs consumed
(using sometimes knowledge about the system under analysis), but the monitor
should not need to remember the whole trace. The output part of the monitor is
tailored for the application. We call monitors, whose extended output function ω̂
is equal to one of the functions defined above, initial, recurrent, k-offset recurrent
and random access recurrent monitors. Note that for random access recurrent
monitors there is no straight-forward implementation that “prints” the output.
One alternative is that the monitor serves as an question-answering device. An-
other, which we present next, is that the monitor provides abstract information
about future positions.

4 Anticipatory Monitoring

It is often desirable to detect failures of the system under observation as early
as possible. In initial monitoring for LTL3 this boils down to raising the verdicts
⊤, ⊥ as soon as all possible extensions lead to satisfaction (resp. violation).
For recurrent monitoring there is also another dimension of anticipation. The
output of a recurrent monitor is an evaluation of the pointed semantics of an
LTL formula at increasing time instants. It is sometimes possible that a monitor
that is asked to cast the verdict for (w, t) |= φ after having received a prefix of
length t, is also able to cast a verdict for the next step (w, t + 1) |= φ (or even
further steps in the future).

While in recurrent monitoring the verdict indicates that the LTL formula
is satisfied or violated exactly at the required time instant, the user is often
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interested in knowing about a future violation as soon as possible. Consider for
example a crash of a monitored robotic system. There one is not only interested
that the monitor reports when a crash occurs, but also that it reports as soon
as a crash is inevitable. Additionally, it may be very useful to know the number
of steps in the future where there is surely no violation of the property.

Consider again pS¬p and the corresponding monitor in Fig. 2. This monitor
yields verdict for (w, t) |= φ after having received t letters. When the monitor
has received the prefix {p}{q} the monitor is in state 0100 and yields ⊥ = {ff },
since ({p}{q} . . . , 2) ̸|= φ. However at this position it is already inevitable that
the output at the next step ({p}{q} . . . , 3) |= φ is true. In Fig. 2 this can be seen
as all possible successors of 0100 are accepting states. We seek monitors that not
only generate information about the current verdict but also information about
future verdicts. We define such anticipatory monitors as follows:

Definition 6 (Anticipatory Monitor). Given a monitoring problem f :
Σ∗ → V over an arbitrary verdict domain V, a monitor M = (Σ,Ω,Q, q0, δ, ω)
with Ω = N+ → 2V is called an anticipatory monitor for f whenever for all
inputs s ∈ Σ∗ and positions i ∈ N+,

ω̂(s)(i) ⊇ {f(sr) | r ∈ Σi}

If = holds instead of ⊇ then M is called a perfect anticipatory monitor for f .

Note that anticipatory monitoring is defined relative to a given monitoring func-
tion f . The anticipatory monitor computes functions that predict the future
verdicts of the original monitor which are possible after the current observa-
tion. In practice, implementing an anticipatory monitor requires to represent
concisely the output alphabet Ω and the function ω̂ that approximates f . One
possibility is to predict only a fixed number of future states and to implicitly
map all further instants to V (all verdicts are possible). Alternatively, we propose
to compute the minimum number of future states which are guaranteed not to
be ⊤ (⊤ meaning a crash) and the maximum number of steps until the next
⊤ is guaranteed to happen. Note that such abstractions may lead to imperfect
anticipatory monitors, but the information provided may be very useful.

4.1 Anticipatory Monitors from Recurrent Monitors

We now present an algorithm to produce an anticipatory monitor for the k-offset
recurrent monitoring problem. Our monitor outputs intervals (n,m) ∈ N∞×N∞

as an abstraction of the full output map. The interval indicates a lower and
upper bound of letters that have to be received until the property is fulfilled.
Even though we only handle the steps until the formula is fulfilled, the converse
(providing the steps until the formula is violated) is analogous.

Definition 7 (Anticipatory (Recurrent) Interval Monitor). Let φ be
an LTL property. A monitor M = (Σ, IN, Q, q0, δ, ω) with IN = N∞ × N∞ is
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called k-offset anticipatory (recurrent) interval monitor whenever for all inputs
s, ω̂(s) = (n,m) where

n = min poss
m = max prefs

and

poss = {j ∈ N | for some w ∈ Σω, (sw, |s|+ j + k) |= φ}
prefs = {j ∈ N | for some w ∈ Σω, for all i < j, (sw, |s|+ i+ k) ̸|= φ}

Note that n is the shortest sequence to a violation and m is the longest sequence
without a violation. Also, n ≤ m. For example, in the case of φ = p S ¬p
and the input word w = {p}{p}{q}{p}{q} . . . an anticipatory interval monitor
would output (2,∞)(2,∞)(1, 1)(0, 0)(1, 1) . . . . This means in the first state after
receiving input {p} it must take at least two further steps until φ is satisfied
and it is also possible that φ will never be fulfilled. After receiving two further
inputs {p} and {q} the output (1, 1) indicates that it is inevitable that in the
next step the property will be fulfilled. Consequently after receiving a further
letter we get (0, 0), meaning the property holds in the current state. In practi-
cal scenarios such a monitor helps detecting inevitable situations to undertake
the right countermeasures (e.g. an emergency stop) before the failure occurs.
Likewise, the knowledge that a breach of the property is impossible for a time
horizon also helps in some scenarios allowing for example a robot to accelerate.

We can classify the meaning of an output interval (n,m) of an anticipatory
recurrent monitor as follows:

n = ∞ m = ∞ φ will never be satisfied in the future
n ∈ N m = ∞ φ may be satisfied in the future but not before n steps
n ∈ N m ∈ N+ φ is inevitable, but not before n or after m steps
n = 0 m = 0 φ is satisfied in the current state

The anticipatory monitor M ′ with the described output behavior can be
constructed directly from a given recurrent monitor M as follows. The state
space and transition function of M ′ are taken without adjustments from those
of M . The modified output function for M ′ is generated by a simple graph
traversal from M : First, every state that was labeled with output ⊤ produces
the output (0, 0). For the outputs of the other states a depth-first-search is
performed. The output of such a state is then (n,m) where n is the minimum
of the first interval component of all successor states plus 1, or 0, if the state is
labeled with ? and m is the maximum of the second interval component plus 1.
If a state is evaluated which is already on the DFS stack its output interval is
(for the pending calculation) assumed to be (∞,∞) since in this case an infinite
non-⊤-labeled loop exists in the monitor. A formalization of the algorithm in
pseudo-code can be found in Fig. 3. The resulting monitor is an anticipatory
recurrent interval monitor according to Def. 6.

Theorem 1. Given a k ∈ Z offset recurrent monitor M = (Σ,V, Q, q0, δ, ω)
for specification φ the construction from Fig. 3 produces a k-offset anticipatory
recurrent interval monitor for φ.
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Method dfs(q, stack)
if q ∈ stack then

ω′(q)← (∞,∞); //only temporarily set
else if ω(q) = ⊤

ω′(q)← (0, 0);
else

for each q′ ∈ succ(q) do dfs(q′, stack ∪{q}); end for
//get min/max of first/second component of all successor outputs
n← if ω(q) =? then 0 else minq′∈succ(q){ω′(q′)._1}+ 1;
m← maxq′∈succ(q){ω′(q′)._2}+ 1;
ω′(q)← (n,m);

end if
End Method

for each q ∈ Q
dfs(q, ∅)

end for

Fig. 3. Formalization of DFS-based algorithm for construction of the output function
ω′ of an anticipatory interval monitor M ′ = (Σ,Ω′, Q′, q′0, δ

′, ω′) based on a given
recurring monitor M = (Σ,Ω,Q, q0, δ, ω), succ(q) = {δ(q, a)|a ∈ Σ}.

(1,∞)start (0, 0) (0, 0) (0, 0)

(2,∞) (1, 1)

∅, {q}

{p},
{p, q}

∅, {q}

{p}, {p, q}

∅,
{q}

{p}, {p, q}

∅, {q}

{p}, {p, q}

∅, {q}

{p}, {p, q}

∅, {q}
{p},
{p, q}

Fig. 4. Anticipatory monitor for pS¬p based on the monitor from Fig. 2. The states
are labeled with their corresponding interval outputs.

The result of an application of the algorithm on the recurrent monitor from
Fig. 2 is depicted in Fig. 4. The output of this monitor matches the output
trace described above. Note that the anticipatory monitor can also be used to
answer the standard recurrent LTL monitoring problem: every state where the
predictive monitor casts (0, 0) is a state with verdict ⊤ in the original monitor.
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5 Uncertainty and Assumptions

In this section we show how the anticipatory recurrent monitoring approach can
be extended to handle uncertainty, in the sense that the content of some letters
of the input word is unknown. We will also show how to exploit assumptions
about the system to improve the monitoring process, where assumptions are
invariants about the environment of the monitor and assumed to be always true.

5.1 Uncertainty

We model uncertain input events as subsets of Σ, which represent the set of
possible inputs that actually happen. For example the input trace

{{p, q}, {q}} {{p}} {∅, {p}, {q}, {p, q}} . . .

encodes any trace where in the first step q holds but it is uncertain if p holds, in
the second step p and not q holds (with total certainty) and where everything is
possible in the third state (total uncertainty).

Given a finite prefix s ∈ Σ∗ and s′ ∈
(
2Σ

)∗ we write s |= s′ whenever s is
one possible concrete representation of s′, i.e. |s| = |s′| and ∀1≤i≤|s|.s(i) ∈ s′(i).
We adjust our anticipatory recurrent monitor from Def. 7 to handle uncertain
inputs.

Definition 8 (Uncertain Anticipatory Recurrent Monitor). Let φ be an
LTL property. A monitor M = (2Σ , IN, Q, q0, δ, ω) is called an uncertain k-offset
anticipatory recurrent monitor if for all inputs s ∈ (2Σ)∗, ω̂(s) = (n,m) where,

n = min{posu | for some u |= s}
m = max{prefu | for some u |= s}

This definition extends anticipatory recurrent monitoring to the minimal and
maximal distance to a ⊤-verdict over all possible concrete input words. Note that
the definition is a more general version of Def. 7, which yields the same intervals
when singleton sets (certain inputs) are provided.

The classical automata-theoretic approach to handle uncertainty is the power
set construction, where a new monitor is built whose state space is the power
set of the original monitor’s state space. When an uncertain input is received
the power set monitor changes to all possible successor states of the currently
possible states. The main remaining detail is how the power set automaton can
produce verdicts, i.e. how the intervals of the potential states of the original
monitor can be combined. We show that it suffices to take the minimum and
maximum of the interval bounds of the active states. This results in the following
monitor construction.

Theorem 2. Given φ and a k-offset anticipatory interval monitor
M = (Σ, IN, Q, q0, δ, ω) for φ, the monitor M ′ = (2Σ , IN, 2Q, {q0}, δ′, ω′) with
– δ′(S,L) = {δ(s, l)|s ∈ S, l ∈ L} for S ∈ 2Q, L ∈ 2Σ
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Input:

Output:

+ Assumption
(p → q)

{{q}, {p, q}} {{p}}
{

∅, {p}
{q}, {p, q}

}

(1,∞)

(1,∞)

(0,∞)

(0,∞)

(0,∞)

(0, 0)

(0,∞)

(0, 1)

. . .

. . .

. . .

. . .

. . .

. . .

(1,∞)start (0, 0)

(2,∞)

(0, 0)

(2,∞)

(0, 0)

(1, 1)

(2,∞)

Fig. 5. Run of the anticipatory recurrent monitor from Fig. 4 with uncertain inputs.
The states in which the monitor is potentially located in a time step and their outputs
are drawn on top of each other. The assumption (see section 5.2) (p→ q) eliminates
the grey states and transitions and leads to more precise verdicts.

– ω′(S) = (min{a|(a, b) = ω(s) for s ∈ S},max{b|(a, b) = ω(s) for s ∈ S})
is an uncertain k-offset anticipatory recurrent monitor for φ.

A run of the recurrent anticipatory monitor from Fig. 4 for the uncertain
input {{p, q}, {q}} {{p}} {∅, {p}, {q}, {p, q}} . . . from above is depicted in Fig. 5.
The output is (1,∞)(0,∞)(0,∞)(0,∞) . . . i.e. the monitor detects that there
could be three satisfactions of the property in the first three states, but depending
on the real input there also could be none.

5.2 Assumptions

Another aspect with practical impact in RV is how to exploit knowledge about
the system into the monitoring process. This information usually includes (par-
tial) knowledge about the state the system is currently in and which properties
(inputs to the monitor) may hold in the current and subsequent states. For ex-
ample, consider the assumption (p→ q), which states that every state where
proposition p holds is succeeded by a state in which q holds. This assumption im-
plies, for example, that the input word {p, q}{p} . . . will never be passed to the
monitor. Since several input words or continuations are excluded, assumptions
help to produce more precise verdicts and detect failures earlier. Note that, of
course, one could also detect traces where an assumption is not met, indicating
a severe error in the whole monitoring setting.

Especially in the presence of uncertainty in the inputs assumptions are very
useful to produce more precise (anticipatory) verdicts and recover from uncer-
tainty in the input. For example, in our assumption, observing p allows to con-
clude that q will follow, allowing to better anticipate. Also, not observing q
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q0start q1

∅, {q}
{p}, {p, q}

{q}

{p, q}

Fig. 6. Transition system corresponding to (p→ q).

allows to deduce that p did not happen in the previous step, which reduces the
uncertainty if the previous event was not properly received.

Additionally note that assumptions have to be explicitly handled by the
monitoring algorithm, as they restrict the space of possible models, and hence
cannot be encoded directly in the LTL formulas, for example as φ′ = φass → φ
or φ′ = φass ∧ φ. Such an encoding would not allow the monitor to perform
inferences about uncertain or future inputs, as it could never be sure if the
assumption φass actually holds or not.

A general way to represent assumptions and system invariants is by a Kripke
structure or equivalently a transition system.

Definition 9 (Transition System). A Transition System over a finite input
alphabet Σ is a tuple T = (Q, q0, δ) with
– Q a finite state space.
– q0 ∈ Q an initial state.
– δ ∈ Q×Q×Σ a transition relation.

A transition system T describes a subset of valid inputs JT K ⊆ Σω. For all
words w ∈ JT K there is a path q0, q1, . . . in the system such that (qi, qi+1, w(i+
1)) ∈ δ for all i ∈ N. Hence a transition system can be used as a very general way
to express assumptions. Every assumption given in LTL can be used to build
a corresponding transition system [19] (for simplicity we consider only safety
formulas as assumptions). The transition system corresponding to the formula
(p→ q) is depicted in Fig. 6.

We can further refine Def. 7 now to also support assumptions given in form
of a transition system T :

Definition 10 (Uncertain Anticipatory Recurrent Monitor with As-
sumptions). Let φ be an LTL specification and let T be a transition system
over 2Σ. A monitor M = (2Σ , IN, Q, q0, δ, ω) is called an uncertain k-offset an-
ticipatory recurrent monitor under assumption T whenever for every s ∈ (2Σ)∗,
ω̂(s) = (n,m) where,

n = min{posTu | for some u |= s}
m = max{prefTu | for some u |= s}
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and

posTs = {j ∈ N | for some w s.t. sw ∈ JT K, (sw, |s|+ j + k) |= φ}
prefTs = {j ∈ N | for some w s.t. sw ∈ JT K, for all i < j, (sw, |s|+ i+ k) ̸|= φ}

Def. 10 allows to only care about words which are also valid inputs according
to the transition system. This definition is a further generalization of Def. 8 and
both are equivalent for the uninformative transition system JT K = (2Σ)ω.

To exploit the transition system that encodes the assumption we make use of
a product construction, where states are tuples of the original monitor’s states
and transition system states. We only preserve transitions which are allowed by
the transition system.

Since the existence of assumptions improves the anticipatory capabilities of
the resulting monitor we take care already at the generation of the anticipatory
monitor. Given a recurrent monitor M = (Σ,V, Q, q0, δ, ω) for a specification φ,
and a transition system T = (QT , qT0 , δ

T ) over 2Σ we first construct the recurrent
monitor under assumption MT = (Σ,V ∪ {↓}}, Q × QT ∪ {q⊥}, (q0, qT0 ), δ′, ω′)
with

δ′(q, l) =

{
(δ(qM , l), q′

T
) if q = (qM , qT ) ̸= q⊥ and (qT , q′

T
, l) ∈ δT

q⊥ otherwise

ω′(q) =

{
ω(qM ) if q = (qM , qT ) ̸= q⊥

↓ otherwise

where q⊥ serves as an error state and ↓ indicates the breach of an assumption.
Together with the constructions from the previous sections this monitor

builds the basis for an uncertain recurrent anticipatory monitor under assump-
tion.

Theorem 3. The construction from Fig. 3 applied to a k-offset recurrent mon-
itor under assumption MT and the subsequent application of the construction
from Th. 2 yields an uncertain k-offset anticipatory recurrent monitor under
assumption T .

In the example from Fig. 5 considering the assumption leads to the monitor
run in which the grey transitions do not exist anymore in the adjusted recurrent
anticipatory monitor. This is because the second input is {p} which implies that
the first letter could not have been {p, q}, which had lead to the state labeled
with (2,∞). The uncertain monitor is capable of removing successors that would
violate the assumptions and determines more precise verdicts. In particular, this
monitor can detect a satisfaction after receiving the second letter (output (0, 0)).
Also, after receiving the third letter this monitor can conclude that the property
is fulfilled either there or at the subsequent step (output (0, 1)).
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6 Conclusion

In this paper we have studied the concept of recurrent monitoring where monitors
produce verdicts for the property at all positions. This is a promising concept
both theoretical and practical, particularly for Past LTL with bounded future,
as it provides more information on the position in a trace where a property
violation occurs and typically allows the monitor to recover afterwards.

To be able to detect situations of interest (e.g. crashes of the observed system)
as early as possible we extended the concept with a notion of anticipation and
proposed a monitor construction which gives estimates about the number of steps
until the next situation of interest could occur, and if it is even inevitable. We
presented constructions such that these monitors can further handle uncertainty
in inputs, as well as assumptions about the system, and showed how these can
lead to more precise verdicts.

In general solving the recurrent word problem for arbitrary (future and past)
LTL requires unbounded memory. Future work includes studying useful bounded
monitors that approximate this problem. Also, we would like to extend our mon-
itoring notion, particularly under uncertainty and assumptions, to more complex
recurrent monitoring settings, like Stream Runtime Verification. We also aim at
implementation, particularly of an SRV engine, and an empirical evaluation on
realistic case studies.
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