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Abstract. Runtime Verification deals with the question of whether a run
of a system adheres to its specification. This paper studies runtime verifi-
cation in the presence of partial knowledge about the observed run, par-
ticularly where input values may not be precise or may not be observed at
all. We also allow declaring assumptions on the execution which permits
to obtain more precise verdicts also under imprecise inputs. To this end,
we show how to understand a given correctness property as a symbolic
formula and explain that monitoring boils down to solving this formula it-
eratively, whenever more and more observations of the run are given. We
base our framework on stream runtime verification, which allows to express
temporal correctness properties not only in the Boolean but also in richer
logical theories. While in general our approach requires to consider larger
and larger sets of formulas, we identify domains (including Booleans and
Linear Algebra) for which pruning strategies exist, which allows to monitor
with constant memory (i.e. independent of the length of the observation)
while preserving the same inference power as the monitor that remembers
all observations. We empirically exhibit the power of our technique using a
prototype implementation under two important cases studies: software for
testing car emissions and heart-rate monitoring.

1 Introduction

In this paper we study runtime verification (RV) for imprecise and erroneous inputs,
and describe a solution—called symbolic monitoring—that can exploit assumptions
about the input and the system under analysis. Runtime verification is a dynamic
verification technique in which a given run of a system is checked against a spec-
ification, typically a correctness property (see [13,22,1]). In online monitoring a
monitor is synthesized from the given correctness property, which attempts to pro-
duce a verdict incrementally from the input trace. Originally, variants of LTL [25]
tailored to finite runs have been employed in RV to formulate properties (see [3] for
a comparison on such logics). However, since RV requires to solve a variation of the
word problem and not the harder model-checking problem, richer logics than LTL
have been proposed that allow richer data and verdicts [10,14]. Lola [9] proposes
stream runtime verification (SRV) where monitors are described declaratively and
compute output streams of verdicts from inputs streams (see also [20,12]). The
development of this paper is based on Lola.
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In ld: Real
Def acc := acc[−1|0] + ld [now ]− ld [−3|0]

Def ok := (acc[now ] ≤ 15)

3 4 5 7

3 7 12 16

tt tt tt ff

(a) A Specification (b) Monitor run with perfect information

[1,5] 4 5 7

[1,5] [5,9] [10,14] [12,20]

tt tt tt ?

ld0 4 5 7

ld0 ld0+4 ld0+9 16

tt tt tt ff

(c) Interval abstraction (d) Symbolic Monitor

Fig. 1. An example specification (a) and three monitors: (b) with perfect observability,
(c) with an interval abstract domain, (d) a symbolic monitor developed in this paper.
The symbolic monitor is enriched with the additional constraint that 1 ≤ ld0 ≤ 5.

Example 1. Fig. 1(a) shows a Lola specification with ld as input stream (the load of
a CPU), acc as an output stream that represents the accumulated load, computed
by adding the current value of ld and subtracting the third last value. Finally, ok
checks whether acc is below 15. The expression acc[−1|0] denotes the value of acc
in the previous time point and 0 as default value if no previous time point exists.

Such a specification allows a direct evaluation strategy whenever values on the
input streams arrive. If, for example, ld = 3 in the first instant, acc and ok evaluate
to 3 and tt , respectively. Reading subsequently 4, 5, 7 results in 7, 12, 16 for acc and
a violation is identified on stream ok . This is shown in Fig. 1(b).

A common obstacle in runtime verification is that in practice sometimes input
values are not available or not given precisely, due to errors in the underlying
logging functionality or technical limitations of sensors. In Fig. 1(c) the first value
on ld is not obtained (but we assume that all values of ld are between 1 and 5).
One approach is to use interval arithmetic, which can be easily encoded as a rich
domain in Lola, and continue the computation when obtaining 4, 5 and 7. However,
at time 4 the monitor cannot know for sure whether ok has been violated, as the
interval [12, 20] contains 15. This approach based on abstract interpretation [8]
was pursued in [21] and suffers from this limitation. If the unknown input on ld
is denoted symbolically by ld0 we still deduce that ok holds at time points 1 to 3.
For time point 4, however, the symbolic representation acc4 = acc3 + 7 − ld0 =
ld0 + 9 + 7− ld0 = 16 allows to infer that ok is clearly violated! This is shown in
Fig. 1(d). ut

Example 1 illustrates the first insight pursued in this paper: that Symbolic moni-
toring is more precise than monitoring using abstract domains.

Clearly, an infinite symbolic unfolding of a specification and all the assumptions
with subsequent deduction is practically infeasible. Therefore, we perform online
monitoring unfolding the specification as time increases. We show that a monitor
based on deducing verdicts using this partial symbolic unfolding is both sound and
perfect in the sense that the monitor only produces correct verdicts and these are
as precise verdicts as possible with the information provided. Symbolic monitoring
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done in this straightforward way, however, comes at a price: the unfolded specifi-
cation grows as more unknowns and their inter-dependencies become part of the
symbolic unfolding. For example, in the run in Fig. 1(d) as more unknown ld values
are received, more variables ld i will be introduced, which may make the size of the
symbolic formula dependent on the trace length. We show that for certain logical
theories, the current verdict may be still be computed even after summarizing the
history into a compact symbolic representation, whose size is independent of the
trace length. For other theories, preserving the full precision of symbolic moni-
toring requires an amount of memory that can grow with the trace length. More
precisely, we show that for the theories of Booleans and of Linear Algebra, bounded
symbolic monitors exist while this is not the case for the combined theory, which
is the second insight presented in this paper.

We have evaluated our approach on two realistic cases studies, the Legal Driving
Cycle [18,5] and an ECG heartbeat analysis (following the Lola implementation
in [11], see also [24,26]) which empirically validate our symbolic monitoring ap-
proach, including constant monitoring on long traces. When intervals are given for
unknown values, our method provides precise answers more often than previous
approaches based on interval domains [21]. Especially in the ECG example, these
methods are unable to recover once the input is unknown for even a short time,
but our symbolic monitors recover and provide again precise results, even when
the input was unknown for a larger period.

Related Work. Monitoring LTL for traces with mutations (errors) is studied in [16]
where properties are classified according to whether monitors can be built that are
resilient against the mutation. However, [16] only considers Boolean verdicts and
does not consider assumptions. The work in [21] uses abstract interpretation to
soundly approximate the possible verdict values when inputs contain errors for the
SRV language TeSSLa [7].

Calculating and approximating the values that programs compute is central
to static analysis and program verification. Two traditional approaches are sym-
bolic execution [17] and abstract interpretation [8] which frequently require over-
approximations to handle loops. In monitoring, a step typically does not contain
loops, but the set of input variables (unlike in program analysis) grows. Also, a
main concern of RV is to investigate monitoring algorithms that are guaranteed to
execute with constant resources. Works that incorporate assumptions when moni-
toring include [15,6,19] but uncertainty is not considered in these works, and ver-
dicts are typically Boolean. Note that bounded model checking [4] also considers
bounded unfoldings, but it does not solve the problem of building monitors of
constant memory for successive iterations.

In summary, our contributions are: (1) A symbolic monitoring algorithm that
dynamically unfolds the specification, collects precise and imprecise input readings,
and instantiates assumptions generating a conjunction of formulas. This represen-
tation can be used to deduce verdicts even under uncertainty, to precisely recover
automatically for example under windows of uncertainty, and even to anticipate
verdicts. (2) A pruning method for certain theories (Booleans and Linear Algebra)
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that guarantees bounded monitoring preserving the power to compute verdicts.
(3) A prototype implementation and empirical evaluation on realistic case studies.

All missing proofs appear in the appendix.

2 Preliminaries

We use Lola [9] to express our monitors. Lola uses first-order sorted theories to
build expressions. These theories are interpreted in the sense that every symbol is
a both constructor to build expressions, and an evaluation function that produces
values from the domain of results from values from the domains of the arguments.
All sorts of all theories that we consider include the = predicate.

A synchronous stream s over a non-empty data domain D is a function s :
SD := T → D assigning a value of D to every element of T (timestamp). We
consider infinite streams (T = N) or finite streams with a maximal timestamp tmax
(T = [0 . . . tmax]). For readability we denote streams as sequences, so s = 〈1, 2, 4〉
stands for s : {1, 2, 3} → N with s(0) = 1, s(1) = 2, s(2) = 4. A Lola specification
describes a transformation from a set of input streams to a set of output streams.

Syntax. A Lola specification ϕ = (I,O,E) consists of a set I of typed variables
that denote the input streams, a set O of typed variables that denote the output
steams, and E which assigns to every output stream variable y ∈ O a defining
expression Ey. The set of expressions over I ∪O of type D is denoted by ED and is
recursively defined as: ED = c | s[o|c] | f(ED1 , ..., EDn) | ite(EB, ED, ED), where c is
a constant of type D, s ∈ I∪O is a stream variable of type D, o ∈ Z is an offset and
f a total function D1 × · · · × Dn → D (ite is a special function symbol to denote
if-then-else). The intended meaning of the offset operator s[o|c] is to represent the
stream that has at time t the value of stream s at t+o, and value c used if t+o /∈ T.
A particular case is when the offset is o = 0 in which case c is not needed, which we
shorten by s[now ]. Function symbols allow to build terms that represent complex
expressions. The intended meaning of the defining equation Ey for output variable
y is to declaratively define the values of stream y in terms of the values of other
streams.

Semantics. The semantics of a Lola specification ϕ is a mapping from input to
output streams. Given a tuple of concrete input streams (Σ = (σ1, . . . , σn) ∈ SD1×
· · ·×SDn) corresponding to input stream identifier s1, . . . , sn and a specification ϕ
the semantics of an expression J·KΣ,ϕ : ED → SD is iteratively defined as:
– JcKΣ,ϕ(t) = c

– Js[o|c]KΣ,ϕ(t) =


σi(t+ o) if t+ o ∈ T and s = si ∈ I (input stream)
JeKΣ,ϕ(t+ o) if t+ o ∈ T and Es = e (output stream)
c otherwise

– Jf(e1, ..., en)KΣ,ϕ(t) = f(Je1KΣ,ϕ(t), . . . , JenKΣ,ϕ(t))

– Jite(e1, e2, e3)KΣ,ϕ(t) =

{
Je2KΣ,ϕ(t) if Je1KΣ,ϕ(t) = tt
Je3KΣ,ϕ(t) if Je1KΣ,ϕ(t) = ff
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The semantics of ϕ is a map (JϕK : (SD1
×· · ·×SDn

)→ (SD′1×· · ·×SD′m) defined as
JϕK(σ1, ..., σn) = (Je′1KΣ,ϕ, . . . , Je′mKΣ,ϕ). The evaluation map J·KΣ,ϕ is well-defined
if the recursive evaluation above has no cycles. This acyclicity can be easily checked
statically (see [9]).

In online monitoring monitors receive the values incrementally. The very effi-
ciently monitorable fragment of Lola consists of specifications where all offsets are
negative or 0 (without transitive 0 cycles). It is well-known that the very efficiently
monitorable specifications (under perfect information) can be monitored online in
a trace length independent manner. In the rest of the paper we also assume that all
Lola specifications come with −1 or 0 offsets. Every specification can be translated
into such a normal form by introducing additional streams (flattening).

In this paper we investigate online monitoring under uncertainty for three spe-
cial fragments of Lola, depending on the data theories used:
– Propositional Logic (LolaB): The data domain of all streams is the Boolean

domain D = B = {tt ,ff } and available functions are ∧,¬.
– Linear Algebra (LolaLA): The data domain of all streams are real numbers

D = R and every stream definition has the form c0 + c1 ∗ s0[o1|d1] + · · ·+ cn ∗
sn[on|dn] where ci are constants.

– Mixed (LolaB/LA): The data domain is B or R. Every stream definition is
either contained in the Propositional Logic fragment extended by the functions
<,≤,= or in the Linear Algebra fragment.

3 A Framework for Symbolic Monitoring

In this section we introduce a general framework for monitoring using symbolic
computation, where the specification and the information collected by the moni-
tor (including assumptions and precise and imprecise observations) are presented
symbolically.

3.1 Symbolic Expressions

Consider a specification ϕ = (I,O,E). We will use symbolic expressions to capture
the relations between the different streams at different points in time. We introduce
the instant variables xt for a given stream variable x ∈ I ∪ O and instant t ∈ T.
The type of xt is that of x. Considering Example 1, ld3 represents the real value
that corresponds to the input stream ld at instant 3 which is 7. The set of instant
variables is V = (I ∪O)× T.

Definition 1 (Symbolic Expression). Let ϕ be a specification and A a set of
variables that contains all instant variables (that is V ⊆ A), the set of symbolic
expressions D is the smallest set containing (1) all constants c and all symbols in
a ∈ A, (2) all expressions f(t1, . . . , tn) where f is a constructor symbol of type
D1 × · · · × Dn → D and ti are elements of D of type Di.

We use ExprDϕ(A) for the set of symbolic expressions of type D (and drop ϕ and A
when it is clear from the context).



6 Hannes Kallwies, Martin Leucker, and César Sánchez

Example 2. Consider again Example 1. The symbolic expression acc3+ ld4, of type
R, represents the addition of the load at instant 4 and the accumulator at instant
3. Also, acc4 = acc3 + ld4 is a predicate (that is, a B expression) that captures
the value of acc at instant 4. The symbolic expression ld1 = 4 corresponds to the
reading of the value 4 for input stream ld at instant 1. Finally, 1 ≤ ld0 ∧ ld0 ≤ 5
corresponds to the assumption at time 0 that ld has value between 1 and 5. ut

3.2 Symbolic Monitor Semantics

We define the symbolic semantics of a Lola specification ϕ = (I,O,E) as the
expressions that result by instantiating the defining equations E.

Definition 2 (Symbolic Monitor Semantics). The map J·Kϕ : ED → T →
ExprDϕ is defined as JcKϕ(t) = c for constants, and
– Jf(e1, . . . , en)Kϕ(t) = f(Je1Kϕ(t), . . . , JenKϕ(t))
– Js[o|c]Kϕ(t) = st+o if t+ o ∈ T, or Js[o|c]Kϕ(t) = c otherwise.

The symbolic semantics of a specification ϕ is the map J·Ksym : T→ 2Expr
B
ϕ defined

as JϕKtsym = {yt = JEyKϕ(t) | for every y ∈ O}.

A slight modification of the symbolic semantics allows to obtain equations whose
right hand sides only have input instant variables:
– Js[o|c]Kϕ(t) = st+o if t+ o ∈ T and s ∈ I
– Js[o|c]Kϕ(t) = JesK(t+ o) if t+ o ∈ T and s ∈ O
– Js[o|c]Kϕ(t) = c otherwise

We call this semantics the symbolic unrolled semantics, which corresponds to what
would be obtained by performing equational reasoning (by equational substitution)
in the symbolic semantics.

Example 3. Consider again the specification ϕ in Example 1. The first four ele-
ments of JϕKsym are (after simplifications like 0 + x = x etc.):

0 1 2 3

acc0 = ld0 acc1 = acc0 + ld1 acc2 = acc1 + ld2 acc3 = acc2 + ld3 − ld0

ok0 = acc0 ≤ 15 ok1 = acc1 ≤ 15 ok2 = acc2 ≤ 15 ok3 = acc3 ≤ 15

Using the unrolled semantics the equations for ok would be, at time 0, ok0 =
ld0 ≤ 15, and at time 1, ok1 = ld0 + ld1 ≤ 15. In the unrolled semantics all
equations contain only instant variables that represent inputs. ut

Recall that the denotational semantics of Lola monitor specifications in Sec-
tion 2 maps every tuple of input streams into a tuple of output streams, that is
JϕK : SD1

× · · · × SDn
→ SD′1 × · · · × SD′m . The symbolic semantics also has a

denotational meaning even without receiving the input stream, defined as follows.

Definition 3 (Denotational semantics). Let ϕ = (I,O,E) be a specification
with I = (x1, . . . , xn) and O = (y1, . . . , ym). The denotational semantics of a set
of equations E ⊆ ExprBϕ JEKden ⊆ SD1

× · · · × SDn
× SD′1 × · · · × SD′m is:

JEKden = {(σ1, . . . , σn, σ′1, . . . , σ′m) | for every e ∈ E
{xt1 = σ1(t), . . . , x

t
n = σn(t), y

t
1 = σ′1(t), . . . , y

t
m = σ′m(t)} |= e}
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Using the previous definition, J
⋃
i≤tJϕKisymKden corresponds to all the tuples of

streams of inputs and outputs that satisfy the specification ϕ up to time t.

A Symbolic Encoding of Inputs, Constraints and Assumptions. Input
readings can also be defined symbolically as follows. Given an instant t, an input
stream variable x and a value v, the expression xt = v captures the precise reading
of v at t on x. Imprecise readings can also be encoded easily. For example, if at
instant 3 an input of value 7 for ld is received by a noisy sensor (consider a 1 unit
of tolerance), then 6 ≤ ld3 ≤ 8 represents the imprecise reading.

Assumptions are relations between the variables that we assume to hold at all
positions, which can be encoded as stream expressions of type B. For example, the
assumption that the load is always between 1 and 10 is 1 ≤ ld [now ] ≤ 10. Another
example, ld [−1|0] + 1 ≥ ld [now ] which encodes that ld cannot increase more than
1 per unit of time. We use A for the set of assumptions associated with a Lola
specification ϕ (which are a set of stream expressions of type B over I ∪O).

3.3 A Symbolic Monitoring Algorithm

Based on the previous definitions we develop our symbolic monitoring algorithm
shown in Alg. 1. Line 3 instantiates the new equations and assumptions from the
specification for time t. Line 4 incorporates the readings (perfect or imperfect).
Line 5 performs evaluations and simplifications, which is dependent on the partic-
ular theory. In the case of past-specifications with perfect information this step boils
down to substitution and evaluation. Line 6 produces the output of the monitor.

Alg. 1:Online Symbolic Monitor for ϕ
1 t← 0 and E ← ∅;
2 while t ∈ T do
3 E ← E ∪ JϕKtsym ∪ JAtKϕ;
4 E ← E ∪ {xt = v | for inputs x};
5 Evaluate and Simplify;
6 Output;
7 Prune;
8 t← t+ 1 ;

Again, this is application depen-
dent. In the case of past specifica-
tions with perfect information the
output value will be computed with-
out delay and emitted in this step.
In the case of B outputs with im-
perfect information, an SMT solver
can be used to discard a verdict. For
example, to determine the value of
ok at time t, the verdict tt can be
discarded if ∃ ∗ .okt is UNSAT, and

the verdict ff can be discarded if ∃ ∗ .¬okt is UNSAT. For richer domains spe-
cific reasoning can be used, like emitting lower and upper bounds or the set of
constraints deduced. Finally, Line 7 eliminates constraints that will not be neces-
sary for future deductions and performs variable renaming and summarization to
restrict the memory usage of the monitor (see Section 4). For past specifications
with perfect information, after step 5 every equation will be evaluated to yt = v
and the pruning will remove from E all the values that will never be accessed
again. Example 3 in Appendix A illustrates how the algorithm handles imperfect
information and pruning for the specification of Example 1.

The symbolic monitoring algorithm generalizes the concrete monitoring algo-
rithm by allowing to reason about uncertain values, while it still obtains the same
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results and performance under certainty. Concrete monitoring allows to monitor
with constant amount of resources specifications with bounded future references
when inputs are known with perfect certainty.

Symbolic monitoring, additionally, allows to handle uncertainties and assump-
tions, because the monitor stores equations that include variables that capture the
unknown information, for example the unknown input values. We characterize a
symbolic monitor as a step function M : 2Exprϕ → 2Exprϕ that transforms expres-
sions into expressions. At a given instant t the monitor collects readings ψt ∈ Exprϕ
about the input values and applies the step function to the previous information
and the new information. Given a sequence of input readings ψ1, ψ2 . . . we use
M0 = M(ψ0) and M i+1 = M(M i ∪ ψi+1) for the sequence of monitor states
reached by the repeated applications of M . We use Φt = ∪i≤t(JϕKisym ∪ JAiKϕ ∪ψi)
for the formula that represents the unrolling of the specification and the current
assumptions together with the knowledge about inputs collected up-to t.

Definition 4 (Sound and Perfect monitoring). Let ϕ be a specification, M
a monitor for ϕ, ψ1, ψ2 . . . a sequence of input observations, and M1,M2 . . . the
monitor states reached after repeatedly applyingM . Consider an arbitrary predicate
α involving only instant variables xt at time t.
– M t is sound if whenever M t |= α then Φt |= α.
– M t is perfect if it is sound and if Φt |= α then M t |= α.

Note that soundness and perfectness is defined in terms of the ability to infer
predicates that only involve instant variables at time t, so the monitor is allowed
to eliminate, rename or summarize the rest of the variables. It is trivial to extend
this definition to expressions α that can use instant variables xt

′
with (t−d) ≤ t′ ≤ t

for some constant d. If a monitor is perfect in this extended definition it will be
able to answer questions for variables within the last d steps.

The version of the symbolic algorithm presented in Alg. 1 that never prunes
(removing line 7) and computes at all steps Φt is a sound and perfect monitor.
However, the memory that the monitor needs grows without bound if the number
of uncertain items also grows without bound. In the next section we show that
(1) trace length independent perfect monitoring under uncertainty is not possible
in general, even for past only specifications and (2) we identify concrete theories,
namely Booleans and Linear Algebra and show that these theories allow perfect
monitoring with constant resources under unbounded uncertainty.

4 Symbolic Monitoring at Work

Example 4. Consider the Lola specification on the left, where the Real input
stream ld indicates the current CPU load and the Boolean input stream usra
indicates if the currently active user is user A. This specification checks whether the
accumulated load of user A is at most 50% of the total accumulated load. Consider
the inputs ld = 〈?, 10, 4, ?, ?, 1, 9, . . . 〉, usra = 〈ff ,ff ,ff , tt , tt , tt ,ff , . . . 〉 from 0 to 6.
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acc := acc[−1|0] + ld[now ]
acca := acca[−1|0] + ite(usra[now ],

ld [now ], 0)
ok := acca ≤ 0.5 ∗ acc

Also, assume that at every instant t,
0 ≤ ldt ≤ 10. At instant 6 our monitor-
ing algorithm would yield the symbolic
constraints (acc6 = 24+ ld0+ ld3+ ld4)
and (acc6a = 1+ ld3 + ld4) for acc6 and

acc6a, and the additional (0 ≤ ld0 ≤ 10 ∧ 0 ≤ ld3 ≤ 10 ∧ 0 ≤ ld4 ≤ 10). An
existential query to an SMT solver allows to conclude that ok6 is true since acc6a
is at most 21 but then acc6 is 44. However, every unknown variable from the input
will appear in one of the constraints stored and will remain there during the whole
monitoring process. ut

When symbolic computation is used in static analysis, it is not a common
concern to deal with a growing number of unknowns as usually the number of
inputs is fixed a-priori. In contrast, a goal in RV is to build online monitors that
are trace-length independent, which means that the calculation time and memory
consumption of a monitor stays below a constant bound and does not increase
with the received number of inputs. In Example 4 above this issue can be tackled
by rewriting the constraints as part of the monitor’s pruning step using n ← ld0,
m ← (ld3 + ld4) to obtain (acct = 24 + n + m), (accta = 1 + m) and (0 ≤ n ≤
10) ∧ (0 ≤ m ≤ 20). From the rewritten constraints it can still be deduced that
acc6a ≤ 0.5 ∗ acc6. Note also that every instant variable in the specification only
refers to previous instant variables. Thus for all t ≥ 7, there is no direct reference
to either ld3 or ld4. Variables ld3 and ld4 are, individually, no longer relevant for
the verdict and it does not harm to denote ld3 + ld4 by a single variable m. We
call this step of rewriting pruning (of non-relevant variables).

Let Ct ⊆ ExprBϕ be the set of constraints maintained by the monitor that encode
its knowledge about inputs and assumptions for the given specification. In general,
pruning is a transformation of a set of constraints Ct into a new set C′t requiring
less memory, but is still describing the same relations between the instant variables:

Definition 5 (Pruning strategy). Let C ⊆ ExprB be a set of propositions over
variables A and R = {r1, . . . , rn} ⊆ A the subset of relevant variables. We use
|C| for a measure on the size of C. A pruning strategy P : 2Expr

B → 2Expr
B
is

a transformation such that for all C ∈ ExprB, |P(C)| ≤ |C|. A Pruning strategy
P : 2B → 2B is called
– sound, whenever for all C ⊆ ExprB, JCKR ⊆ JP(C)KR,
– perfect, whenever for all C ⊆ ExprB, JCKR = JP(C)KR,

where JCKR = {(v1, . . . , vn)|(r1 = v1 ∧ · · · ∧ rn = vn) |= C} is the set of all value
tuples for R that entail the constraint set C. We say that the pruning strategy is
constant if for all C ⊆ ExprB : |P(C)| ≤ c for a constant c ∈ N.

A monitor that exclusively stores a set Ct for every t ∈ T is called a constant-
memory monitor if there is a constant c ∈ N such that for all t, |Ct| ≤ c.

Previously we defined an online monitor M as a function that iteratively maps
sets of expressions to sets of expressions. Clearly, the amount of information to
maintain grows unlimited if we allow the monitor to receive constraints that contain
information of an instant variable at time t at any other time t′. Consequently, we
first restrict our attention to atemporal monitors, defined as those which receive
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proposition sets that only contain instant variables of the current instant of time.
Atemporal monitors cannot handle assumptions like ld[−1|0] ≤ 1.1 ∗ ld[now ]. At
the end of this section we will extend our technique to monitors that may refer n
instants to the past.

Theorem 1. Given a specification ϕ and a constant pruning strategy P for ExprBϕ,
there is an atemporal constant-memory monitor Mϕ s.t.
– Mϕ is sound if the pruning strategy is sound.
– Mϕ is perfect if the pruning strategy is perfect.

Yet we have not given a complexity measure for our constraint sets. For our ap-
proach we use the number of variables and constants in the constraints, that is |C| =∑
ϕ∈C |ϕ| and |c| = 1, |v| = 1, |f(e1, . . . , en)| = |e1| + · · · + |en|, |ite(e1, e2, e3)| =

|e1|+ |e2|+ |e3| for a constant c and an atomic proposition v.

4.1 Application to Lola fragments

We describe now perfect pruning strategies for LolaB and LolaLA. For LolaB/LA
we will show that no such perfect pruning strategy exists but present a sound and
constant pruning strategy.

LolaB: First we consider the fragment LolaB where all input and output streams,
constants and functions are of type Boolean. Consequently, constraints given to
the monitor only contain variables, constants and functions of type Boolean.

Example 5. Consider the following specification (where all inputs are uncertain,
⊕ denotes exclusive or) shown on the left. The unrolled semantics, shown on the
right, indicates that ok is always true.

a := a[−1|ff ]⊕ x[now ]
b := b[−1|tt ]⊕ x[now ]

ok := a[now ]⊕ b[now ]

0 1 2 3 . . .
x0 x0 ⊕ x1 x0 ⊕ x1 ⊕ x2 x0⊕x1⊕x2⊕x3 . . .
¬x0 ¬x0 ⊕ x1 ¬x0 ⊕ x1 ⊕ x2 ¬x0⊕x1⊕x2⊕x3 . . .
tt tt tt tt . . .

However, the Boolean formulas maintained internally by the monitor are contin-
uously increasing. Note that at time 1 the possible combinations of (a1, b1, ok1)
are (ff , tt , tt) and (tt ,ff , tt), as shown below (left). By eliminating duplicates from

(x0, x1) 00 01 10 11
a1 ff tt tt ff
b1 tt ff ff tt
ok1 tt tt tt tt

v1 0 1
a1 ff tt
b1 tt ff
ok1 tt tt

this table we obtain another table with two
columns which can be expressed by formu-
las over a single, fresh variable v1 (as shown
on the right). From this table we can directly
infer the new formulas a1 = v1, b1 = ¬v1,
ok1 = tt , which preserve the condensed infor-

mation that a1 and b1 are opposites. We can use these new formulas for further
calculation. At time 2, a2 = v1 ⊕ x2, b1 = ¬v1 ⊕ x2 which we rewrite as a2 = v2,
b1 = ¬v2 again concluding ok1 = tt . This illustrates how the pruning guarantees
a constant-memory monitor. Note that this monitor will be able to infer at every
step that ok is tt even without reading any input. ut
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The strategy from the example above can be generalized to a pruning strategy.
Let R = {r1, . . . , rm} be the set of relevant variables (in our case the output
variables sti) and V = {s1, . . . , sn}∪R all variables (in our case input variables and
fresh variables from previous pruning applications). Let C be a set of constraints
over r1, . . . , rm, s1, . . . , sm, which can be rewritten as a Boolean expression γ by
conjoining all constraints.

The method generates a value table T which includes as columns all value
combinations of (v1, . . . , vm) for (r1, . . . , rm) such that (r1 = v1)∧· · ·∧(rm = vm) |=
γ. Then it builds a new constraint set C′ with an expression ri = ψi(v1, . . . , vk)
for every 1 ≤ i ≤ m over k fresh variables, where the ψi are generated from the
rows of the value table. The number of variables is k = dlog(c)e with c being the
number of columns in the table (i.e. combinations of ri satisfying γ). This method
is the LolaB pruning strategy which is perfect. By Theorem 1 this allows to build
a perfect atemporal constant-memory monitor for LolaB.

Lemma 1. The LolaB pruning strategy is perfect and constant.

LolaLA: The same idea used for LolaB can be adapted to Linear Algebra.

Example 6. Consider the specification on the left. The main idea is that acca

acca := acca[−1|0] + lda[now ]
accb := accb[−1|0] + ldb[now ]
total := total [−1|0] + 1

2 (lda[now ]+
ldb[now ])

accumulates the load of CPU A (as in-
dicated by lda), and similarly accb accu-
mulates the load of CPU B (as indicated
by ldb). Then, total keeps the average of
lda and ldb. The unrolled semantics is

0 1 2 . . .
ld0

a ld0
a + ld1

a ld0
a + ld1

a + ld2
a . . .

ld0
b ld0

b + ld1
b ld0

b + ld1
b + ld2

b . . .
1
2
(ld0

a+ld0
b)

1
2
((ld0

a+ld0
b)+(ld1

a+ld1
b))

1
2
((ld0

a+ ld0
b)+(ld1

a+ ld1
b)+(ld2

a+ ld2
b)) . . .

Again, the formulas maintained during monitoring are increasing. The formulas
at 0 cannot be simplified, but at 1, ld0

a and ld1
a have exactly the same influence

on acc1a, acc1b and total . To see this consider (acc1a, acc1b , total
1) as matrix mul-

tiplication shown below on the left. The matrix in the middle just contains two
linearly independent vectors. Hence the system of equations can be equally written
as shown in the right, over two fresh variables u1, v1:

 acc1a
acc1b
total1

 =

 1 0 1 0
0 1 0 1
1
2

1
2

1
2

1
2

 ∗

ld0
a

ld0
b

ld1
a

ld1
b


 acc1a

acc1b
total1

 =

 1 0
0 1
1
2

1
2

 ∗ (u1
v1

)

The rewritten formulas then again follow directly from the matrix. Repeating the
application at all times yields:
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0 1 2 . . .
ld0
a ld0

a + ld1
a ≡ u1 u1 + ld2

a ≡ u2 . . .
ld0
b ld0

b + ld1
b ≡ v1 v1 + ld2

b ≡ v2 . . .
ld0

a+ld
0
b

2
(ld0

a+ld
0
b)+(ld1

a+ld
1
b)

2 ≡ u1+v1

2
(u1+v1)+(ld2

a+ld
2
b)

2 ≡ u2+v2

2 . . .

which results in a constant monitor. ut
This pruning strategy can be generalized as well. Let R = {r1, . . . , rm} be a set

of relevant variables (in our case the output variables sti) and V = {s1, . . . , sn}∪R
be the other variables (in our case input variables or fresh variables from previous
pruning applications). Let C be a set of constraints which has to be fulfilled over
r1, . . . , rm, s1, . . . , sn, which contains equations of the form c =

∑m
i=1 cri ∗ ri +∑n

i=1 csi ∗ si + c′ where c, c′, csi , cri are constants.
If the equation system is unsolvable (which can easily be checked) we return

C′ = {0 = 1}, otherwise we can rewrite it as shown on the left. The matrix N of
this equation system has m rows and n columns. Let r be the rank of this matrix
which is limited by min{m,n}. Consequently an m × r matrix N ′ with r ≤ m
exists with the same span as N and the system can be rewritten (without loosing
solutions to (r1, . . . , rm)). From this rewritten equation system a new constraint r1

...
rm

 =

 c1,1 . . . c1,n
...

cm,1 . . . cm,n

 ∗
 s1

...
sn

+

 o1
...
om


set C′ can be generated which
contains the equations from the
system. We call this method the
LolaLA pruning strategy, which is
perfect and constant.

Lemma 2. The LolaLA pruning strategy is perfect and constant.

LolaB/LA Consider the specification below (left) where i, a and b are input streams
of type R. Consider a trace where the values of stream i are unknown until time
2, but that we have the assumption 0 ≤ i[now ] ≤ 1. The unpruned symbolic
expressions describing the values of x, y at time 2 would then be in matrix notation:

x := x[−1|0] + i[now ]
y := 2 ∗ y[−1|0] + i[now ]

ok := (a[now ] = x[now ]) ∧ (b[now ] = y[now ])

(
x2

y2

)
=

(
1 1 1
4 2 1

)
∗

 i0

i1

i2



y2

x2

0 1 2 3 4 5 6 7 8
0

1

2

3

Fig. 2. Set of possible values of x2 and y2

Since the assumption forces all ij to
be between 0 and 1 the possible set of
value combinations x and y can take
at time 2 is described by a polyhedron
with 6 edges depicted in Fig. 2. De-
scribing this polygon requires 3 vectors.
It is easy to see that each new unknown
input generates a new vector, which is
not multiple of another. Hence for n
unknown inputs on stream i the set of possible value combinations for (xt, yt) is
described by a polygon with 2n edges for which a constraint set of size O(n) is re-
quired. This counterexample implies that for LolaB/LA there is no perfect pruning
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strategy. However, one can apply the following approximation: Given a constraint
set C over V = {s1, . . . , sn}∪R with R = {r1, . . . , rm} the set of relevant variables.
1. Split the set of relevant variables into RB containing those of type Boolean and
RR containing those of type Real.

2. For RB do the rewriting as for LolaB obtaining C′B.
3. For RR do the rewriting as for LolaLA over CLE with CLE ⊆ C being the set of

all linear equations in C, obtaining C′R.
4. For all fresh variables vi with 1 ≤ i ≤ k in C′R calculate a minimum bound
li and maximum bound gi (may be over-approximating) over the constraints
C ∪ C′R and build C′′R = C′R ∪ {li ≤ vi ≤ gi|1 ≤ i ≤ k}.

5. Return C′ = C′B ∪ C′′R
We call this strategy the LolaB/LA pruning strategy, which allows to build an
atemporal (imperfect but sound) constant-memory monitor.

Lemma 3. The LolaB/LA pruning strategy is sound and constant.

Note that with the LolaB/LA fragment we can also support if-then-else expres-
sions. A definition s = ite(c, t, e) can be rewritten to handle s as an input stream
adding assumption (c ∧ s = t) ∨ (¬c ∧ s = e). After applying this strategy the
specification is within the LolaB/LA fragment and as a consequence the sound (but
imperfect) pruning algorithms from there can be applied.

4.2 Temporal assumptions

We study now how to handle temporal assumptions. Consider again Example 4,
but instead of the assumption 0 ≤ ld[now ] ≤ 10 take 0.9 ∗ ld[−1, 0] ≤ ld[now ] ≤
1.1∗ld[−1, 100]. In this case it would not be possible to apply the presented pruning
algorithms. In the pruning process at time 1 we would rewrite our formulas in a
fashion that they do not contain ld1 anymore, but at time 2 we would receive the
constraint 0.9 ∗ ld1 ≤ ld2 ≤ 1.1 ∗ ld1 from the assumption.

Pruning strategies can be extended to consider variables which may be refer-
enced by input constraints at a later time as relevant variables, hence they will
not be pruned. A monitor which receives constraint sets over the last l instants
is called an l-lookback monitor. An atemporal monitor is therefore a 0-lookback
monitor. For an l-lookback monitor the number of variables that are referenced at
a later timestamp is constant, so our pruning strategies remain constant. Hence,
the following theorem is applicable to our pruning strategies and as a consequence
our solutions for atemporal monitors can be adapted to l-lookback monitors (for
constant l).

Theorem 2. Given a Lola specification ϕ and a constant pruning strategy P for
ExprBϕ there is a constant-memory l-lookback monitor Mϕ such that
– Mϕ is sound if the pruning strategy is sound.
– Mϕ is perfect if the pruning strategy is perfect.
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5 Implementation and Empirical Evaluation

We have developed a prototype implementation of the symbolic algorithm for past-
only Lola in Scala, using Z3 [23] as solver. Our tool supports Reals and Booleans
with their standard operations, ranges (e.g. [3, 10.5]) and ? for unknowns. Assump-
tions can be encoded using the keyword ASSUMPTION.3 Our tool performs pruning
(Section 4.1) at every instant, printing precise outputs when possible. If an output
value is uncertain the formula and a range of possible values is printed.

We evaluated two realistic case studies, a test drive data emission monitor-
ing [18] and an electrocardiogram (ECG) peak detector [11]. All measurements
were done on a 64-bit Linux machine with an Intel Core i7 and 8 GB RAM. We
measured the processing time of single events in our evaluation, for inputs from 0
up to 20% of uncertain values, resulting in average of 25 ms per event (emissions
case study) and 97 ms per event (ECG). In both cases the runtime per event did
not depend on the length of the trace (as predicted theoretically). The longer run-
time per event in the second case study is explained because of the window of size
100 which is unrolled to 100 streams, and using Z3 naively to deduce bounds of
unknown variables. We discuss the two case studies separately.

Case study #1: Emission Monitoring The first example is a specification that
receives test drive data from a car (including speed, altitude, NOx emissions,. . . )
from [18]. The Lola specification is within LolaB/LA (with ite), and checks several
properties, including trip_valid which captures if the trip was a valid test ride.
The specification contains around 50 stream definitions in total. We used two real
trips as inputs, one where the allowed NOx emission was violated and one where
the emission specification was satisfied.

We injected uncertainty into the two traces by randomly selecting x% of the
events and modifying the value within an interval ±y%. The figure on the left
shows the result of executing this experiment for all integer combinations of x and y

1 CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT

2 CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT

3 CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT

4 CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT

5 CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT

6 CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT

7 CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT

8 CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT UNKNOWN CORRECT CORRECT UNKNOWN

9 CORRECT CORRECT CORRECT UNKNOWN CORRECT UNKNOWN CORRECT UNKNOWN CORRECT CORRECT CORRECT UNKNOWN CORRECT UNKNOWN CORRECT CORRECT CORRECT UNKNOWN CORRECT UNKNOWN

10 CORRECT CORRECT CORRECT CORRECT UNKNOWN UNKNOWN CORRECT UNKNOWN UNKNOWN UNKNOWN CORRECT CORRECT UNKNOWN UNKNOWN CORRECT UNKNOWN UNKNOWN UNKNOWN UNKNOWN CORRECT

11 CORRECT UNKNOWN CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT UNKNOWN UNKNOWN CORRECT UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

12 CORRECT CORRECT CORRECT UNKNOWN CORRECT UNKNOWN UNKNOWN CORRECT UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

13 CORRECT UNKNOWN CORRECT UNKNOWN UNKNOWN CORRECT UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

14 CORRECT CORRECT CORRECT UNKNOWN UNKNOWN CORRECT UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

15 CORRECT UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

16 UNKNOWN UNKNOWN CORRECT CORRECT UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

17 UNKNOWN CORRECT UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

18 UNKNOWN CORRECT CORRECT CORRECT UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

19 CORRECT UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

20 CORRECT UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of uncertain events [%]
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 ra
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e 

[ %
]

between 1 and 20, for one trace. The green
space represents the cases for which the monitor
computed the valid answer and the red space
the cases where the monitor reported unknown.
In both traces, even with 20% of incorrect sam-
ples within an interval of ±7% around the cor-
rect value the monitor was able to compute the
correct answer. We also compared these results

to the value-range approach, using interval arithmetic. However, the final verdicts
do not differ here. Though the symbolic approach is able to calculate more precise
intermediate results, these do not differ enough to obtain different final Boolean
verdicts.

As expected, for fully unknown values and no assumptions, neither the symbolic
nor the interval approaches could compute any certain verdict, because the input

3 Note that for our symbolic approach assumptions can indeed be considered as a stream
specification of type Boolean which has to be true at every time instant.
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Fig. 3. ECG analysis. Left: Symbolic approach, Right: Value range approach. Green:
Certain heartbeats, Yellow: Potential heartbeats, Red: Bursts of unknown values.

values could be arbitrarily large. However, in opposite to the interval approach,
the symbolic approach allows adding assumptions (e.g. the speed or altitude does
not differ much from the previous value). With this assumption, we received the
valid result for trip_valid when up to 4% of inputs are fully uncertain. In other
words, the capability of symbolic monitoring to encode physical dependencies as
assumptions often allows our technique to compute correct verdicts in the presence
of several unknown values.

Case Study #2: Heart Rate monitoring Our second case study concerns the
peak detection in electrocardiogram (ECG) signals [11]. The specification calculates
a sliding average and stores the values of this convoluted stream in a window of
size 100. Then it checks if the central value is higher than the 50 previous and the
50 next values to identifying a peak.

We evaluated the specification against a ECG trace with 2700 events corre-
sponding to 14 heartbeats. We integrated uncertainty into the data in two different
ways. First, we modified x% percent of the events with deviations of ±y%. Even
if 20% of the values were modified with an error of ±20%, the symbolic approach
returned the perfect result, while the abstraction approach degraded over time be-
cause of accumulated uncertainties (many peaks were incorrectly “detected”, even
under 5% of unknown values with a ±20% error—see front part of traces in Fig. 3).
Second, we injected bursts of consecutive errors (? values) of different lengths into
the input data. The interval domain approach lost track after the first burst and
was unable to recover, while the symbolic approach returned some ? around the
area with the bursts and recovered when new values were received (see Fig. 3).

We exploited the ability of symbolic monitors to handle assumptions by encod-
ing that heartbeats must be apart from each other more than 160 steps (roughly
0.5 seconds), which increased the accuracy. In one example (Fig. C.8 in appendix
C) the monitor correctly detected a peak right after a burst of errors. The as-
sumption allows the monitor to infer that the unknown burst of values are below a
certain threshold, which enables the detection of the next heartbeat. If instead of
the assumption heartbeats that are not at least 160 steps apart were simply filtered
out, future heartbeats could not be detected correctly (Fig. C.8(b) in appendix C),
because no ranges of the values of unknown events can be deduced.
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6 Conclusion

We have introduced the concept of symbolic monitoring to monitor in the presence
of input uncertainties and assumptions on the system behavior. We showed theoret-
ically and empirically that symbolic monitoring is more precise than a straightfor-
ward abstract interpretation approach, and have identified logical theories in which
perfect symbolic approach can be implemented efficiently (constant monitoring).
Future work includes: (1) to identify other logical theories and their combinations
that guarantee perfect trace length independent monitoring; (2) to be able to an-
ticipate verdicts ahead of time for rich data domains by unfolding the symbolic
representation of the specification beyond, along the lines of [2,19,27] for Booleans;

Finally, we envision that symbolic monitoring can become a general, founda-
tional approach for monitoring that will allow to explain many existing monitoring
approaches as instances of the general schema.
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A Further Examples

Example 7. Consider again ϕ in Example 1, with the prefect readings in Fig. 1(b).
We show for time steps 0, 1, 2 an 3 the equations before and after evaluation and
simplification, in the upper and lower rows, resp.

0 1 2 3

ld0 = 3 ld1 = 4 ld2 = 5 ld2 = 7
acc0 = ld0 acc1 = acc0 + ld1 acc2 = acc1 + ld2 acc3 = acc2 + ld3 − ld0

ok0 = acc0 ≤ 15 ok1 = acc1 ≤ 15 ok2 = acc2 ≤ 15 ok3 = acc3 ≤ 15

ld0 = 3 ld0 = 3, ld1 = 4 ld1 = 4, ld2 = 5
ld0 = 3 ld1 = 4 ld2 = 5 ld3 = 7
acc0 = 3 acc1 = 7 acc2 = 12 acc3 = 16
ok0 = tt ok1 = tt ok2 = tt ok3 = ff

All equations are fully resolved at every step. Also, ld0 is pruned at 3 because ld0

will not be used in the future. Consider now the imperfect input in Fig.1(d):

0 1 2 3

1 ≤ ld0 ≤ 5 ld1 = 4 ld2 = 5 ld2 = 7
acc0 = ld0 acc1 = acc0 + ld1 acc2 = acc1 + ld2 acc3 = acc2 + ld3 − ld0

ok0 = acc0 ≤ 15 ok1 = acc1 ≤ 15 ok2 = acc2 ≤ 15 ok3 = acc3 ≤ 15

1 ≤ ld0 ≤ 5 ld1 = 4 ld2 = 5 ld3 = 7
1 ≤ ld0 ≤ 5 1 ≤ ld0 ≤ 5, ld1 = 4 ld1 = 4, ld2 = 5

acc0 = ld0 acc1 = ld0 + 4 acc2 = ld0 + 9 acc3 = 16
ok0 = tt ok1 = tt ok2 = tt ok3 = ff

At time 2, ok2 = tt is inferred from {1 ≤ ld0 ≤ 5, ld1 = 4, acc2 = ld0 + 9, ok2 =
acc2 ≤ 15}. At time 3 the dependency to the unknown value ld0 is eliminated from
acc3 = acc2 + ld2 − acc0 by symbolic manipulation. ut

B Missing Proofs

Theorem 1. Given a specification ϕ and a constant pruning strategy P for ExprBϕ,
there is an atemporal constant-memory monitor Mϕ s.t.
– Mϕ is sound if the pruning strategy is sound.
– Mϕ is perfect if the pruning strategy is perfect.

Proof. Let ϕ = (I,O,E) be the atemporal specification.

We will show the theorem by constructing a monitor that generates expression
sets which satisfy the relation to Φi demanded in Definition 4.

In general a monitor M is perfect with respect to ϕ, if it generates M i, s.t.
JΦiKRi = JM iKRi and sound, if it generates M ′i, s.t. JΦiKRi ⊆ JM iKRi with
Ri = {xi|x ∈ I ∪ O}, the relevant variables for this timestamp. This follows
directly from Definition 4 and Definition 5.
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We first consider the case where the pruning strategy P (we write Pi for the
pruning according to Ri) is sound:

By using P we can construct a sound monitor M which generates outputs M0 =
P0(JϕK0sym ∪ JA(0)Kϕ ∪ ψ0) and M i = Pi(M i−1 ∪ JϕKisym ∪ JAiKϕ ∪ ψi) for i > 0.
We will now show JΦiKRi ⊆ JM iKRi for all i, i.e. that M is sound. Afterwards we
will argue M is also a constant-memory monitor.

For i = 0:
By Definition 5: JΦ0KR0 ⊆ JP0(Φ0)KR0 .
And by Definition of Φ0: JP0(Φ0)KR0 = JP(JϕK0sym ∪ JA(0)Kϕ ∪ ψ0)KR0 = JM0KR0 .

Further, for i > 0:
JΦiKRi = JΦi−1 ∪ JϕKisym ∪ JAiKϕ ∪ ψiKRi ⊆ JM i−1 ∪ JϕKisym ∪ JAiKϕ ∪ ψiKRi .
This is because of the atemporality of the monitor and the flattened form of the
specification all common variables of Φi−1 and JϕKisym ∪ JAiKϕ ∪ ψi are from Ri−1

for which JM i−1KRi−1 is known to be a superset of JΦi−1KRi−1 . Hence if for any
α we have α |= JϕKisym ∪ JAiKϕ ∪ ψi and α |= Φi−1 then also α |= M i−1. Thus,
if α |= Φi−1 ∪ JϕKisym ∪ JAiKϕ ∪ ψi then α |= M i−1 ∪ JϕKisym ∪ JAiKϕ ∪ ψi. This
fact together with the definition of J·KRi (Definition 5) implies the subset relation
above.
Furthermore JΦiKRi ⊆ JPi(M i−1 ∪ JϕKisym ∪ JAiKϕ ∪ ψi)KRi = JM iKRi again by
definition of Pi (Definition 5).
Hence, for all outputs ofM we have JΦiKRi ⊆ JM iKRi for all i and thusM is sound.

Note that for all M i we have |M i| ≤ c due to the constant pruning strategy.
However M only has to store the M i from the last step and as consequence it is
constant-memory monitor.

The case where the pruning strategy P is perfect is analogous. ut

Lemma 1. The LolaB pruning strategy is perfect and constant.

Proof. Let C be any constraint set over V = {s1, . . . , sn}∪R with relevant variables
R = {r1, . . . , rm} and C′ the set obtained after pruning.

Clearly JCKR = JC′KR since by definition JCKR = {(v1, . . . , vn)|(r1 = v1)∧· · ·∧(rn =
vn) |= C}. We only add value combinations to T which fulfill (r1 = v1)∧· · ·∧(rm =
vm) |= γ and the ψi in C′ by definition just allow exactly these combinations.

Moreover, the value table from which C′ is created has m rows and c columns.
Hence C′ contains m formulas over at most dlog(c)e variables.
According to our measure we have for every ri = ψi from C′ |ri = ψi| = 1+ |ψi| ≤
1 + dlog(c)e ∗ 2dlog(c)e ≤ c2 + 1 and consequently |C′| ≤ m ∗ (c2 + 1).
Note that for c we have c ≤ 2m (number of columns in the table) and m is the
number of streams in the flattened specification and hence constant. ut
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Lemma 2. The LolaLA pruning strategy is perfect and constant.

Proof. Let C be any constraint set over V = {s1, . . . , sn}∪R with relevant variables
R = {r1, . . . , rm} and C′ the set obtained after pruning.

The strategy is clearly perfect. If C did not have solutions we return a C′ which
also has no solutions. If C has solutions we use equivalence transformations of
the system of equations preserving the solutions for (r1, . . . , rm), hence JCKR =
{(v1, . . . , vn)|(r1 = v1) ∧ · · · ∧ (rn = vn) |= C} = JC′KR.

Note that N ′ is an m× r matrix with r ≤ m. Hence in C′ there are m expressions
of the form ri =

∑r
j=1 ci,jvj + ci with |ri =

∑r
j=1 ci,jvj + ci| = 2r + 2 and hence

|C′| = m ∗ (2r + 2) ≤ 2m2 + 2m. The value m is the number of streams in the
flattened specification and hence constant. ut

Lemma 3. The LolaB/LA pruning strategy is sound and constant.

Proof. Let C be any constraint set over V = {s1, . . . , sn}∪R with relevant variables
R = {r1, . . . , rm} and C′ the set obtained after pruning.

It follows from Lemma 1 that C′B is a perfect pruning of C forRB and from Lemma 2
that C′R is a perfect pruning of CLE for RR.
Since C ∪ C′R |= {li ≤ vi ≤ gi|1 ≤ i ≤ k} by definition of li, gi, we have:
JC′KR = JC′B ∪ C′′RKR = JC′B ∪ C′R ∪ {li ≤ vi ≤ gi|1 ≤ i ≤ k}KR ⊇ JC′B ∪ C′R ∪ CKR.

We also have that, C′B and C only share the variables RB (because our pruning
strategy for LolaB pruned all others away and only introduced fresh variables).
Furthermore JC′BKRB = JCKRB . Thus it follows for all expressions α over R, that if
α |= C then α |= C′B.
The same reasoning holds for C′R and C, i.e. α |= C then α |= C′R for all expressions
α over R.
Hence, it follows: JC′B ∪C′R ∪CKR ⊇ JCKR: The LolaB/LA pruning strategy is sound.

Moreover, the pruning strategy is also constant: From Lemmas 1 and 2 , C′B and
C′R have constant upper bounds. The number of fixed-sized constraints added in
step 3 is bounded by the number of fresh variables in the LolaLA pruning strategy
which is bounded by m. The value m is the number of streams in the flattened
specification and hence constant. Thus the size of C′ has a constant upper bound
as well. ut
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C Graphs from evaluation runs
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Figure Monitoring trip_valid for two traces with 1% to 20% of values
uncertain (range of ±1% to ±20% around correct value). Green: certain result;
red: uncertain result.

C.2 ECG (symbolic), Full run for uncertain inputs

Figure ECG analysis 20% of the values uncertain (range of ±20% around
correct value). Symbolic approach. Green: heartbeat certainly detected; yellow:
heartbeat possibly detected.

C.3 ECG (intervals), Full run for uncertain inputs

Figure ECG analysis 5% of the values uncertain (range of ±20% around correct
value). Interval approach. Green: heartbeat certainly detected; yellow: heartbeat
possibly detected.

C.4 ECG (symbolic), Full run for 5 uncertainty bursts

Figure ECG analysis with 5 bursts of fully uncertain values(5 to 20 in a row).
Symbolic approach. Orange: Burst of uncertain values; green: heartbeat certainly
detected; yellow: heartbeat possibly detected.
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C.5 ECG (intervals), Full run for 5 uncertainty bursts

Figure ECG analysis with 5 bursts of fully uncertain values(5 to 20 in a row).
Interval approach. Orange: Burst of uncertain values; green: heartbeat certainly
detected; yellow: heartbeat possibly detected.

C.6 ECG (symbolic), Full run for 5 uncertainty bursts (with
assumption)

Figure ECG analysis with 5 bursts of fully uncertain values(5 to 20 in a row).
Symbolic approach with assumption. Orange: Burst of uncertain values, green:
heartbeat certainly detected, yellow: heartbeat possibly detected.

C.7 ECG (symbolic), Full run for 5 uncertainty bursts (with filter)

Figure ECG analysis with 5 bursts of fully uncertain values(5 to 20 in a row).
Symbolic approach with filter. Orange: Burst of uncertain values; green:
heartbeat certainly detected; yellow: heartbeat possibly detected.

C.8 ECG (symbolic), Bursts: Comparison Assumptions and Filter

Figure ECG analysis with bursts. Left: Usage of assumption. Right: Additional
condition added to output stream. Orange: Burst of uncertain values; green:
heartbeat certainly detected; yellow: heartbeat possibly detected.
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