
General Anticipatory Monitoring
for Temporal Logics on Finite Traces⋆

Hannes Kallwies1 , Martin Leucker1 , and César Sánchez2

1 University of Lübeck, Lübeck, Germany
{kallwies,leucker}@isp.uni-luebeck.de
2 IMDEA Software Institute, Madrid, Spain

cesar.sanchez@imdea.org

Abstract. Runtime Verification studies how to check a run of a system
against a formal specification, typically expressed in some temporal logic.
A monitor must produce a verdict at each step that is sound with respect
to the specification. It is often the case that a monitor must produce a
? verdict and wait for more observations. On the other hand, sometimes
a verdict is inevitable but monitoring algorithms wait to produce the
verdict, because it seemingly depends on future inputs. Anticipation is
the property of a monitor to immediately produce inevitable verdicts,
which has been studied for logics on infinite traces.
Monitoring problems depend on the logic and on the semantics that the
monitor follows. In initial monitoring, at every instant the monitor an-
swers whether the specification holds for the observed trace from the
initial state. In recurrent monitoring, the monitor answers at every in-
stant whether the specification holds at that time.
In this paper we study anticipatory monitoring for temporal logics on
finite traces. We first show that many logics on finite traces can be re-
duced linearly to Boolean Lola specifications and that initial monitoring
can be reduced to recurrent monitoring for Lola. Then we present an
algorithm with perfect anticipation for recurrent monitoring of Boolean
Lola specifications, which we then extend to exploit assumptions and
tolerate uncertainties.

1 Introduction

In this paper we study the anticipatory recurrent monitoring problem for runtime
verification of temporal logics on finite traces. We provide a general solution and
extend it to handle assumptions and uncertainties.

Runtime verification (RV) is a lightweight formal dynamic verification tech-
nique analyzing single executions of systems wrt. given correctness properties.

⋆ This work was funded in part by PRODIGY Project (TED2021-132464B-I00)
funded by MCIN/AEI/10.13039/501100011033/ and the European Union NextGen-
erationEU/PRTR, and by a research grant from Nomadic Labs and the Tezos Foun-
dation.

http://orcid.org/0000-0002-8301-4752
http://orcid.org/0000-0002-3696-9222
http://orcid.org/0000-0003-3927-4773

2 H. Kallwies et al.

RV has been studied both in theory and practical applications [25,1]. The start-
ing point is a formal specification of the property to monitor. A common speci-
fication language is Linear-time Temporal Logic (LTL) [30] which was originally
introduced for infinite runs. Since in monitoring the sequence of observations at
any point in time is necessarily finite, LTL has been adapted to finite traces,
including infinite extensions of the finite prefix seen so far [4], limiting the logic
to use only the next-operator [22], or finite version of LTL [26], strong and weak
versions of LTL [14] or the so-called mission time LTL [32]. These monitoring
approaches attempt to answer the initial monitoring problem: whether the trace
at the initial position satisfies the property. Monitoring ongoing executions re-
quires to emit a verdict for every event observed, so an uncertain verdict “?”
is temporarily produced if the trace observed is not yet guaranteed to be only
extendable into a model (verdict tt) or only extendable into a counter-model
(verdict ff). Consider for example (p → q) (globally a p implies that there
was once a q). The monitor emits ? until the first q or p is observed. The monitor
emits tt if q happens no later than the first p, and ff if p happens strictly before
the first q. In initial monitoring, once a certain verdict (tt ,ff) is produced it
remains fixed.

The seminal work by Havelund and Rosu [18] considers an alternative ap-
proach. Starting from specifications of past LTL formulas, the monitors in [18]
produce at instant i a fresh verdict about whether the property holds at i, thus
recurrently producing potentially different outcomes. We call this variant recur-
rent monitoring. As the current position is shifted with every new observation,
recurrent monitoring performs a different evaluation at every instant. When re-
currently monitoring(p→q), the monitor emits a ff for each p that is before
the first q, then recovers and starts emitting ? attempting to see a q before the
next p (moving then to tt). These two approaches are unified in [19], separating
the monitoring time at which the questions are answered from the time at which
the verdict is referring to.

In recurrent monitoring, the output for the specification at time i is either
produced, or a “?” is cast and the concrete verdict for time i is never cast.
An alternative family of formalisms for runtime verification are stream-based
runtime verification (SRV), pioneered by Lola [12], which produce one output
stream value for each input position (delaying if necessary the production of the
outcome of the monitor for input i until a later instant). We call this variant
the universal monitoring because the monitors ultimately produce (sooner or
later or even at the end of the trace) all verdicts for all positions. Even though
the common use of SRV is to encode recurrent monitoring problems for past
(or at least bounded future) specifications future universal monitoring can be
performed at the price of (1) unbounded resources and (2) only guaranteeing all
verdicts at the end of the trace. Modern SRV systems (both synchronous and
asynchronous) including RTLola [7], Lola2.0 [15], CoPilot [29], TeSSLa [11] and
Striver [17] follow this approach. In summary,
– initial monitoring attempts to answer, at every instant t, whether the ob-

served trace satisfies the specification if evaluated at time 0.

Anticipatory Monitoring for Temporal Logics on Finite Traces 3

– recurrent monitoring attempts to answer, at every instant t, whether the
observed trace satisfies the specification if evaluated at t.

– universal monitoring attempts to answer, as soon as possible and for every
position t, whether the observed trace satisfies the specification at t.
It is desirable that a monitor produces a verdict as soon as possible when this

verdict is inevitable, a feature called anticipation. For example, a naive monitor
for the initial monitoring for (XX false) would wait two steps until false is en-
countered to produce ff as verdict. An anticipatory monitor would immediately
produce the correct verdict ff at time 0. As another example, X(p → (X false))
would require to check whether p holds at the first instant (producing ff if p
holds and tt if p does not hold), under perfect anticipation. Anticipation has
been solved for LTL on ω-words [5] where all (infinite) futures are explored at
every step and deciding an outcome when the opposite is impossible. Anticipa-
tion guarantees that equivalent specifications produce the same outputs for the
same inputs and at the same times.

The contributions of this paper are the following. We consider many logics
for finite traces (in Section 2) and translate them into SRV language Lola on
Boolean streams (in Section 3), and show that initial monitoring can be reduced
to recurrent monitoring for Lola. Section 4 gives a recurrent monitoring algo-
rithm with perfect anticipation for Lola, and extends it to exploit assumptions
and tolerate uncertainties. We have implemented our approach in a prototype
tool and report on a preliminary empirical evaluation (Section 5).

2 Temporal Logics on Finite Traces

Preliminaries. We use Z for the set of integers and T = {0 . . . N − 1} for the
natural numbers from 0 to N − 1. Given a set of propositions AP the alphabet
Σ = 2AP consists of subsets of atomic propositions. A word σ is an element of
Σ+, and |σ| is the length of σ. We say that a natural number i is an index or
position of a word σ whenever 0 ≤ i < |σ|. Given a word σ and an index i, we
use σ(i) for the letter at position i, (σ, i) is called a “pointed word”, and (σ, i, j)
is called a “segment”. A basic expression is a Boolean combination of elements
from AP, defined as follows:

β ::= true
∣∣ a ∣∣ β ∧ β

∣∣ β ∨ β
∣∣ ¬β

where a ∈ AP is an atomic proposition. Given a letter s from Σ, s |= p is defined
as s |= a whenever a ∈ s, and the usual definitions for Boolean operators.

We define non-deterministic finite automata with a forward and backwards
acceptance, in terms of segments of words. An ϵ-NFA over alphabet Σ is a
tuple (Q, q0, δ, δϵ, F) where Q is a finite set of states, q0 is the initial state,
F ⊆ Q is a set of final states, δ ⊆ Q × Σ × Q is the transition relation and
δϵ ⊆ Q × Q is the epsilon transition relation. Given a word σ, two positions
0 ≤ i, j < |σ| and an ϵ-NFA A, we say that A accepts (σ, i, j) in the forward
manner, denoted (σ, i, j) |= A if there is a sequence of states and positions
(q0, i0), (q1, i1) . . . (qn, in) starting at q0 such that (1) i0 = i and in = j; (2)

4 H. Kallwies et al.

qn ∈ F ; and (3) for every 0 ≤ k < n, either (qk, σ(ik), qk+1) ∈ δ and ik+1 = ik+1,
or (qk, qk+1) ∈ δϵ and ik+1 = ik.

Similarly, A accepts (σ, i, j) in the backwards manner, denoted (σ, i, j) |= A−1

if there is a sequence of states and positions (q0, i0), (q1, i1) . . . (qn, in) starting
at q0 such that (1) i0 = i and in = j, (2) qn ∈ F and (3) for every 0 ≤ k < n,
either (qk, σ(ik), qk+1) ∈ δ and ik+1 = ik − 1, or (qk, qk+1) ∈ δϵ and ik+1 = ik.

2.1 Temporal Logics and Formalisms on Finite Traces

We now present several temporal logics over finite traces:
– LTLf : an adaptation of LTL to finite traces [27,16], with past operators.
– RE: regular expressions [21,28] extended with past.
– RLTLf : Regular Linear Temporal Logic (RLTL) [24,34,35] for finite paths.
– LDLf : linear dynamic logic on finite traces [16].
– TRLTLf : a slight variation of RLTLf introduced in this paper.
– Lola: a stream runtime verification language [12].

For all these formalisms we use basic expressions over AP for individual obser-
vations obtained from the environment.

LTLf . Manna and Pnueli [27] already studied how to adapt LTL from infinite
traces to finite traces, by observing that one can adapt the next operator (X)
into a new variant (weak next)


Xφ. Weak next is always true at the end of

the trace in spite of the sub-formula φ, while Xφ is defined to be false at the
end of the trace in spite of φ. These notions are dual to the corresponding past
operators φ (which is automatically true at the first position) and φ (which
is automatically false at the first position). The syntax of LTLf is:

φ ::= β
∣∣ φ ∧ φ

∣∣¬φ ∣∣ Xφ ∣∣Xφ ∣∣ φ U φ
∣∣φ ∣∣φ ∣∣ φ S φ

where β is a basic expression. The semantics of LTLf associates traces σ ∈ Σ+

with formulae as follows:

(σ, i) |= β iff σ(i) |= β
(σ, i) |= φ1 ∧ φ2 iff (σ, i) |= φ1 and (σ, i) |= φ2

(σ, i) |= ¬φ iff (σ, i) ̸|= φ
(σ, i) |= Xφ iff i+ 1 < |σ| and (σ, i+ 1) |= φ
(σ, i) |=


Xφ iff i+ 1 ≥ |σ| or (σ, i+ 1) |= φ

(σ, i) |= φ iff 0 > i− 1 or (σ, i− 1) |= φ
(σ, i) |= φ iff 0 ≤ i− 1 and (σ, i− 1) |= φ
(σ, i) |= φ1 U φ2 iff for some j ≥ i (σ, j) |= φ2 and for all i ≤ k < j, (σ, k) |= φ1

(σ, i) |= φ1 S φ2 iff for some j ≤ i (σ, j) |= φ2 and for all j < k ≤ i, (σ, k) |= φ1

We use common derived operators like ∨ as the dual of ∧, R as the dual of U ,
 (as true U φ) and  (as false R φ). Likewise for past:  (as true S φ). Note
that (σ, i) |= φ U ψ if and only if (σ, i) |= ψ ∨ (φ ∧ X(φ U ψ)). Also ¬Xφ is
equivalent to


X¬φ, ¬


Xφ is equivalent to X¬φ, ¬φ is equivalent to ¬φ, ¬φ

is equivalent to ¬φ. The presented logic was later re-introduced in [16] and
named LTLf .

Anticipatory Monitoring for Temporal Logics on Finite Traces 5

RE with Past. Regular expressions [21,28] is a classical formalism to express
regular sets of finite words. The syntax of RE is:

ρ ::= β
∣∣ ρ+ ρ

∣∣ ρ ; ρ
∣∣ ρ∗ρ

where β is a basic expression. For convenience, we define the semantics of regular
expressions using segments (as in [24]):

(σ, i, j) |= β iff σ(i) |= β and j = i+ 1
(σ, i, j) |= x+ y iff (σ, i, j) |= x or (σ, i, j) |= y
(σ, i, j) |= x ; y iff for some k < |σ|, (σ, i, k) |= x and (σ, k, j) |= y.
(σ, i, j) |= x∗y iff either (σ, i, j) |= y, or for some sequence (i0 = i, i1, . . . im),

(σ, ik, ik+1) |= x and (σ, im, j) |= y

We say that a finite word σ matches a regular expression ρ whenever (σ, 0, |σ|) |=
ρ. In [34] past regular expressions were introduced in the context of regular linear
temporal logic RLTL. The main idea is to define a new operator β for a basic
expression β defined as (σ, i, j) |= β iff σ(i) |= β and j = i − 1. Then, a pure
past regular expression ρ is obtained from a regular expression ρ by replacing
all basic expressions β with β. Note that all basic steps in a pure future regular
expression move forward and all basic steps in a past regular expression move
backwards. It is crucial that we have first defined basic expressions (with ∧,
∨ and ¬) that work on single letters and we do not allow ∧ and ¬ in regular
expressions, to allow linear translations into richer logics.

TRLTLf . Regular Linear Temporal Logic (RLTL) [24] (see also [34,35]) ex-
tends the expressivity of LTL to all regular languages, introducing temporal
operators that generalize both temporal operators from LTL and concatenation
from regular expressions. The resulting logic has the same complexity as LTL
and allows linear translations from both LTL and regular expressions. We now
introduce a variation of RLTL for finite traces, called TRLTLf where we also
add the capability in the regular expression layer to test previously defined for-
mulas. RLTLf is TRLTLf without the φ? operator below, which does not add
expressivity because RLTLf withour φ? can already cover all regular languages.
The resulting syntax has a regular expression layer (ρ) and a temporal layer
(φ), where α is only used to decide whether the regular expression is interpreted
forward or backwards in the trace.

ρ ::= ρ+ ρ
∣∣ ρ ; ρ

∣∣ ρ∗ρ ∣∣ β ∣∣ φ? α ::= ρ
∣∣ ρ

φ ::= true
∣∣ β

∣∣ φ ∨ φ
∣∣ φ ∧ φ

∣∣ ¬φ
∣∣ α ; φ

∣∣ φ |α⟩⟩φ

Note that the regular expression layer is extended with a “test operator” φ?
whose intention is to extend the language of atomic propositions with the capa-
bility to check previously defined expressions. We only introduce φ? to obtain
an immediate subsumption from LDLf below. The semantics of the φ? operator
is (σ, i, i) |= φ? iff (σ, i) |= φ.

6 H. Kallwies et al.

The operator φ |α⟩⟩φ is called the power operator. The power expression
x|r⟩⟩y (read x at r until y) is built from three elements: y (the attempt), x (the
obligation) and r (the delay). Informally, for x |r⟩⟩y to hold, either the attempt
holds, or the obligation is met and the whole expression evaluates successfully
after the delay. In particular, for a power expression to hold, the obligation must
be met after a finite number of delays. The power operator generalizes both
Kleene repetition (x∗y is simply true |x⟩⟩y) and the LTL Until operator (x U y
is simply x|true⟩⟩y). That is, conventional regular expressions can describe so-
phisticated delays with trivial obligations and escapes, while conventional LTLf
constructs allow complex obligations and escapes, but trivial one-step delays.
The power operator extends the expressive power of LTL, for example, Wolper’s
expression [36] “p holds at even moments”—that cannot be expressed in LTL—is
defined in TRLTLf as ¬(true |true ; true⟩⟩¬p), that is “it is not the case that
after some sequence of true ; true, there is no p”.

The completeness of TRLTLf with respect to regular languages is easily
derived from the expressibility of regular expressions. Formally, the semantics of
TRLTLf (∧, ∨ and ¬ are standard as in LTLf above):

(σ, i) |= r ; φ iff for some j (σ, i, j) |= r and (σ, j) |= φ
(σ, i) |= φ1 |r⟩⟩φ2 iff for some sequence (i0 = i, i1, . . . , im) : (σ, im) |= φ2 and

(σ, ik, ik+1) |= r and (σ, ik) |= φ1 for every k < m

It is easy to see that LTLf is subsumed by TRLTLf (using the linear translation
from U) because Xφ is true ; φ. Similarly, RE (for pure past expressions or pure
future expressions) can also be expressed in TRLTLf using the linear translation
for Kleene star.

LDLf . Linear Dynamic Logic on finite traces (LDLf) was introduced [16] as an
extension of LTLf to increase the expressivity to regular languages, inspired by
dynamic logic. As RLTL, LDLf considers a regular expression layer (extended
with test) but restricts the temporal layer to a single “dynamic operator” ⟨α⟩φ:

φ ::= φ ∨ φ
∣∣ φ ∧ φ

∣∣ ¬φ
∣∣ ⟨α⟩φ

∣∣ [α]φ

The semantics of the dynamic operator are precisely ⟨α⟩φ = α ; φ, while [α]φ
is its dual ¬(α ; ¬φ). Therefore LDLf can be translated linearly to TRLTLf .
Note that TRLTLf contains all oeprators from LDLf and RLTLf to ease the
translation from both. Since the expressive power of both LDLf and RLTLf is
the set of all regular languages they are equally expressive. We conjecture that
one can have a linear translation from LDLf into RLTLf and vice-versa, but the
proof of this conjucture is out of the scope of this paper.

The following lemma summarizes our expressivity results.

Lemma 1. For every LTLf , RE, RLTLf and LDLf expression there is an equiv-
alent TRLTLf expression of linear size.

It is well-known that RE, RLTLf (and therefore TRLTLf) and LDLf can express
all regular languages. It is an open problem whether there is a linear translation
from RLTL into LDL and from RLTLf into LDLf .

Anticipatory Monitoring for Temporal Logics on Finite Traces 7

2.2 The Stream Runtime Verification Language Lola

In this section we recall the Lola stream runtime verification language [12].
A Lola specification describes a transformation from a set of input to output
streams. Let D be an arbitrary data domain (which essentially is a collection
of types and constructor symbols, with their interpretations as values and func-
tions). We denote by SD : T → D the set of streams of type D. In this paper
we restrict ourselves to Boolean streams, i.e. domain B = {tt ,ff } with the usual
symbols true, false ∧, ∨, ¬, etc.

The output streams of a Lola specification are defined by expressions over
other stream identifiers. Given a set of Boolean stream variables S, the set of
Lola expressions ExprS is:

ExprS = true
∣∣ false

∣∣ s[o|c] ∣∣ ¬ExprS
∣∣ ExprS ∧ ExprS

∣∣ ExprS ∨ ExprS

where s ∈ S is a stream variable, o ∈ Z is an offset, and c ∈ {tt ,ff } is a Boolean
constant. Thus a Lola expression is either a constant or the application of a ¬,
∧, ∨. The intended meaning of s[o, c] is the value of stream s, o time instants
from the current position, using c as default value if this position does not exist
(because the offset takes the position beyond the beginning or end of the trace).
For example, s[3, tt] represents the value of s three instants in the future, or tt
if the trace end is reached. Note that an offset 0 references the current value
of other streams, and the index is guaranteed to be legal after adding 0. Since
in this case the default value is not necessary we use the alternatives s[now] or
s for s[0, tt]. Further we use true, false for the stream which has value tt resp.
ff at all instances. In the following we assume Lola specifications to be in a so-
called flat format, i.e. only the offsets −1, 0, 1 may be used. It is easy to see that
every Lola specification can be transformed into a flat equivalent by introducing
intermediate streams and splitting larger offsets in a sequence of +1/-1 offsets.
This translation is linear (in the unary encoding of offsets).

A Lola specification φ = (I, S,E) is given by I an ordered set of input stream
identifiers, S an ordered set of output stream identifiers disjunct from I, and
E : S → ExprS∪I a mapping which assigns to every output stream its defining
expression. The semantics of a Lola specification φ = (I = (i1, . . . , in), S =
(s1, . . . , sm), E) is a transformation from input to output streams: JφK : (SB)

n →
(SB)

m with JφK(τ1, . . . , τn) = (σ1, . . . , σm) such that σi(t) = JE(si)K(t) for all
i ∈ {1, . . . ,m}, t ∈ T where the semantics of the defining expression is given as
follows (for c ∈ B, o ∈ Z, e1, e2 ∈ ExprS∪I , stream σ corresponding to identifier
s ∈ S ∪ I):

JtrueK(t) = tt
JfalseK(t) = ff

Je1 ∧ e2K(t) = Je1K(t) ∧ Je2K(t)
Je1 ∨ e2K(t) = Je1K(t) ∨ Je2K(t)

J¬e1K(t) = ¬Je1K(t)

Js[o|c]K(t) =

{
σ(t+ o) if t+ o ∈ T
c else

The semantics of φ is well defined if no stream instant is dependent on
itself. We only allow Lola specifications where this is guaranteed (which can
be statically checked [12,33]).

8 H. Kallwies et al.

3 Translating TRLTLf to Lola

In this section, we describe how to translate TRLTLf into Lola. More specifically,
given a TRLTLf formula φ, we derive a corresponding Boolean Lola specification
Lφ with a distinguished stream for sφ that is true at position i whenever the
input word satisfies φ in position i. The input streams of the Lola specification
are given by the atomic propositions. We will introduce one input stream variable
tp for each p ∈ AP. Given a word σ and an atomic proposition p, the input stream
corresponding to tp, τtp(i), is true if and only if p ∈ σ(i). Abusing notation, given
a stream s and a set of streams S we use s∪S for {s}∪S. We also use (s = e)∪E
for {s = e} ∪ E.

The idea of the translation is as follows. Given a TRLTLf formula φ we
create for each sub-formula ψ a fresh new stream sψ that captures the truth
value of ψ at each position, depending on the truth value of the streams for its
sub-expressions. For atomic propositions, the definition is immediate as it has to
coincide with the corresponding proposition on the input word. Boolean combi-
nations of subformulas translate to the corresponding Boolean combinations of
the corresponding streams. The syntax for sequential operators take a regular
expression (with its direction of the evaluation) followed by another formula. The
regular expressions are first transformed linearly into their corresponding ϵ-NFA
representation. Without loss of generality we assume that final states have no
successor3. We will introduce a fresh stream variable for each state of the ϵ-NFA
mimicking the evaluation of the automata followed by the continuing expression.
Whenever a testing operator ψ? is used within the regular expression, we refer
to the stream variable sψ and take a transition in the NFA only if sψ is true
at the current position. The power operator in TRLTLf is translated similarly,
according its unwinding law φ |α⟩⟩ψ ≡ ψ ∨ (φ ∧ α ; φ |α⟩⟩ψ).

Let us now formally describe the translation, which is given inductively by
providing a transformer for each operator of TRLTLf . Each transformer takes a
subformula φ and delivers a pair (sφ,Lφ) where sφ is the distinguished stream
of the Lola specification Lφ. Therefore, we give the translation of φ as (sφ,Lφ)
and only need to define Lφ as follows.

– For true, Ltrue is (I, {strue}, {strue = true}). For atomic propositions p ∈
AP, Lp is (I, {sp}, {sp = tp[now]}). For ∨:

Lφ∨ψ := (I, (sφ∨ψ ∪ Sφ ∪ Sψ), (sφ∨ψ = sφ ∨ sψ) ∪ Eφ ∪ Eψ)

Conjunction and negation can be processed in a similar manner. Basic ex-
pressions β are also inductively processed using conjunctions, disjunctions,
complementation and atomic propositions.

– For α ; φ with forward α = ρ, let (Q, q0, δ, δϵ, F) be the ϵ-NFA accepting the
language defined by α, obtained using standard constructions. In the regular

3 Every ϵ-NFA can be linearly transformed into such a representation by duplicating
final states that have successors into two copies: one (final) with no successor and
the other (non-final) with the successors.

Anticipatory Monitoring for Temporal Logics on Finite Traces 9

expression, we treat any testing operator ψ? as a single letter. To define Lα;φ
we add a stream for each state of the automaton and one equation following
the execution of the automaton. We use SQ and EQ for these sets of streams
and equations. Let us first consider non-final states (q /∈ F), for which the
automaton in state q may choose a letter a to proceed to some next state
(processing an input letter), may choose an ϵ-transition to proceed to some
next state or may perform a check ψ? (at the current input). The equation
that we add for state q /∈ F is:

sq =
∨

(q,a,q′)∈δ

(sa ∧ sq′ [+1|ff]) ∨
∨

(q,q′)∈δϵ

sq′ ∨
∨

(q,ψ?,q′)∈δ

(sψ ∧ sq′)

For final states q ∈ F , the formula φ has to be checked at the current state
as the only possible continuation: sq = sφ. Finally, we add the equation for
the distinguished stream sα;φ as sα;φ = sq0 , being true whenever a succesful
run of the ϵ-NFA followed by the successful evaluation of φ is achieved by
starting in the initial state.

Lα;φ = (I, (sα;φ ∪ SQ ∪ Sφ), ({sα;φ = sq0} ∪ EQ ∪ Eφ))

– For α ; φ with backward α = ρ̄, we follow a similar construction, except that
upon reading a letter the offset used to continue is −1 instead of +1. For
q /∈ F :

sq =
∨

(q,a,q′)∈δ

(sa ∧ sq′ [−1|ff]) ∨
∨

(q,q′)∈δϵ

sq′ ∨
∨

(q,ψ?,q′)∈δ

(sψ ∧ sq′)

For final states q ∈ F , sq = sφ and for the resulting specification

Lρ;φ = (I, (sρ;φ ∪ SQ ∪ Sφ), ({sρ;φ = sq0} ∪ EQ ∪ Eφ))

– For φ |α⟩⟩ψ and a forward regular expression α, let (sφ,Lφ) be the translation
of φ and (sψ,Lψ) the translation of ψ. Let also (Q, q0, δ, δϵ, F) be the ϵ-NFA
for α. The equations for sφ|α⟩⟩ψ follow the unwinding equivalence φ |α⟩⟩ψ ≡
ψ ∨ (φ ∧ α ; φ | α⟩⟩ψ). For α ; (φ | α⟩⟩ψ) we follow the construction for the
sequential operator by adding streams for each state of the automaton and
equations following the transitions. Non-final states are treated exactly as
before. For final states q ∈ F and for the distinguished stream:

sq = sφ|α⟩⟩ψ sφ|α⟩⟩ψ = sψ ∨ (sφ ∧ sq0)

Finally, Lφ|α⟩⟩ψ = (I, Sφ|α⟩⟩ψ, Eφ|α⟩⟩ψ) where

Sφ|α⟩⟩ψ = sφ|α⟩⟩ψ ∪ SQ ∪ Sφ ∪ Sψ
ELφ|α⟩⟩ψ = (sφ|α⟩⟩ψ = sψ ∨ (sφ ∧ sq0)) ∪ EQ ∪ Eφ ∪ Eψ

It is easy to see that the resulting Lola specification is linear in the length of
the formula. The following result establishes the correctness of the translation,
which can be formally shown by induction, following the inductive definition of
the construction.

10 H. Kallwies et al.

Lemma 2 (Correctness of Translation). Let φ be a TRLTLf formula and
(sφ,Lφ) be the corresponding Lola specification. Let σ ∈ Σ+ be a word. Then,
for all i ∈ {0, . . . , |σ|}, (σ, i) |= φ if and only if sφ(i) = tt.

4 General Anticipatory Monitoring

In this section we develop an anticipatory algorithm for the recurrent monitoring
problem of Lola specifications. Then, we will extend our algorithm to support
assumptions and uncertainties. Our algorithm can be used for the initial moni-
toring problem as well, because, given a Lola specification (s, (I, S,E)) that we
would like to use for initial monitoring, we can create (r, (I, S ∪ {r}, E′)) where

E′ = E ∪ {r = if false[−1|tt] then s[now] else r[−1|ff]}

We use r⟨i⟩ to denote the value of stream r at timepoint i. It is easy to see that
at each point in time r⟨i⟩ = s⟨0⟩ Therefore answering the question, at position
i, of whether r⟨i⟩ is true or false, is equivalent to answering whether s⟨0⟩ is
true of false. Thus, in the case of Lola, recurrent monitoring subsumes initial
monitoring.

In the rest of the section to simplify the definitions we assume that φ =
(I, S,E) is an arbitrary well-defined Lola specification. We start with a general
definition of recurrent monitors for Lola specifications.

4.1 Recurrent Monitors as Moore Machines

We first define the class of monitors for a Lola specification as Moore machines.
These monitors will receive as inputs the values of the input streams and produce,
at each instant, as output one Boolean verdict (or ?) per output stream.

Definition 1 (Moore Machine Monitor). Given a Lola specification φ =
(I, S,E) a Moore Machine for φ is a tuple Mφ = (P,Σ,Ω, p0, δm, ω) where
– P is a set of states and p0 ∈ P is the initial state;
– Σ = 2I is the input alphabet;
– Ω = S → {tt,ff, ?} is the output alphabet, that encodes one verdict per output

stream;
– δm : P ×Σ → P is the transition function;
– ω : P → Ω is the verdict function.

A monitor Mφ for a Lola specification φ is sound for output stream s if
after processing an input string u (of length i), it produces tt only if for all
continuations of u, the value of s⟨i⟩ is tt (analogous for ff). Note that a sound
monitor must produce ? if both tt and ff can be the result for s⟨i⟩ depending on
the continuation. Note also that a sound monitor is allowed to produce ?, even
if the verdict is definite (in the extreme case, a monitor that always produces ?
is sound).

Anticipatory Monitoring for Temporal Logics on Finite Traces 11

4.2 An Anticipatory Algorithm

In general Lola specifications may contain future offsets, which potentially make
stream events dependent on other streams at later instants. While in offline
monitoring this is not a problem, as the full input word is already accessible,
this poses a difficulty for online monitoring. The traditional online monitoring
algorithm for Lola [12] tackles this problem by stalling computations, delaying
the production of verdicts until the required values are available. This algorithm
does not produce a value even when it is inevitable.

In this section we present an alternative recurrent monitoring for Lola as
follows. A translation from Lola to DFA is presented in [8], which captures
whether a sequence of input and output stream values matches a given Lola
specification. Based on this construction, we transform a Lola specification into
a labeled transition system, from which we build a perfect anticipatory monitor.

We will define a nondeterministic transition system, where the states encode
(1) valuations of all (input and output) streams at the current instant and (2)
guesses of the valuations at the next position. A valuation v ∈ 2I∪S encodes
which inputs and outputs are true, so states are pairs of valuations 2I∪S × 2I∪S .
To encode the end of the input trace we use the symbol ⊥, so the states are
elements of 2I∪S × (2I∪S ∪{⊥}). Finally we also add an initial state # where no
input letter has been received and thus no stream has a valuation yet, resulting
in a state space

Qφ
def
= {#} ∪ (2I∪S × (2I∪S ∪ {⊥}))

Example 1. Consider for example the LTL formula φ = p ∧¬p. Following
the translation from the previous section with some trivial simplifications (like
inlining constant streams), the corresponding Lola specification would have an
input stream sp and four defined streams

s¬p = ¬sp[now] sp = sp[now] ∧ sp[+1 | tt]
s¬p = s¬p[now] ∨ s¬p[+1 | ff] sφ = sp[now] ∧ s¬p[now]

Some possible states of the transition system include

q1 = ({s¬p, s¬p}, {sp, sp}) q2 = (∅, ∅) q3 = ({sp, sp, s¬p, sφ},⊥)

State q1 encodes the situation where sp and sp are false and s¬p and s¬p
are true in the current instant. In the subsequent instant sp and sp are true
but the other streams are false. Note that in fact only q1 is compatible with the
Lola specification, but the other states are a contradiction to the equations of
the specification. State q2 is a contradiction because sp and s¬p cannot be false
at the same time. State q3 is a contradiction because when sp is true at the last
position of the trace, s¬p has to be false. ⊓⊔

Based on this encoding we build a nondeterministic transition system, where
the transition relation maps state (u, v) to state (v, w) when the first component
of the post state coincides the second component of the pre-state (unless v =

12 H. Kallwies et al.

⊥). The second component w of the post-state is not determined and different
transitions can make different guesses.

Our transition system will have Σ = 2I as input alphabet, determining which
input streams are true and which are false. Given an input b ∈ 2I and an element
(v, v′) ∈ Q we write v(b) when v coincides with b in the truth value of all input
streams (i.e. v ∩ I = b). Given v, v′, v′′ ∈ 2I∪S we further say (v, v′) |=i E if
substituting every 0 offset with the value corresponding to v and every +1 offset
with those corresponding to v′ makes all equations E in the Lola specification
φ true for position 0. We say (v, v′, v′′) |= E if substituting all 0 offset operators
with the value according v′, all −1 offsets with the value according v and all
+1 offsets with the value according v′′ makes all equations in E are satisfied.
Finally we write (v, v′) |=f E if −1 offset operators replaced by values according
to v and 0 offset operators by those according to v′ makes the equations in E
satisfied for the last instant before the trace end.

Definition 2 (Lola Nondeterministic Transition System). Let φ = (I, S,E)
be a well-defined Lola specification. The Lola nondeterministic transition system
(LNTS) for φ is a tuple Tφ = (Qφ, Σ, q0, δ), where q0 = # and
– δ(#, b) = {(v, v′) | v(b) and (v, v′) |=i E}

– δ((u, v), b) =

{
{(v, v′) | (u, v, v′) |= E} ∪ {(v,⊥) | (u, v) |=f E} if v(b)
∅ otherwise

The transition relation first checks that the guessed successor v is compatible
with inputs received and then guesses a new successor state v′ that satisfies all
equations E of the specification (including the possibility of guessing ⊥ denoting
the end of the trace).

Given a tuple of input streams τ ∈ (SB)
|I| and a well-defined Lola specifica-

tion φ, there is a unique state sequence q0, q1, . . . , q|τ | such that qi+1 ∈ δ(qi, τ(i))
and q|τ | = (v,⊥). This follows from the fact that a well-defined Lola specification
has a unique valuation (given the whole input sequence).

The LNTS Tφ allows to define a sequence of stream valuations for the current
time instant, which is consistent with the inputs received so far and with φ. To
build an anticipatory monitor for φ we determinize Tφ by applying the following
two stages:

Removing Dead States. First we remove all states from the transition system
from which a state with ⊥ in the second component is not reachable, which
corresponds to a situation where a wrong guess was made and that cannot be
completed, no matter of the future inputs. Dead states can be identified by
a depth-first search in Tφ starting at the initial state. We therefore limit the
state space Qφ to {q ∈ Qφ | ∃w ∈ Σ∗, (q′,⊥) ∈ δ̂(q, w)} where δ̂ is defined as
δ̂(q, ϵ) = q and δ̂(q, aw) = δ̂(δ(q, a), w).

Example 2. Consider again the specification for φ = p ∧¬p and the states
q1 = ({s¬p, s¬p}, {sp, sp}) and q2 = ({sp, sp, s¬p, sφ}, {sp, sp, s¬p, sφ}).
From s1 the state ({sp, sp},⊥) is reachable, because the sub-formula sp is

Anticipatory Monitoring for Temporal Logics on Finite Traces 13

satisfied at the trace end iff sp is satisfied. Thus q1 is alive. On the other hand q2
is dead, because sp, sp and s¬p being true at some instant imply that these
three streams (and thus also sφ) are also true at the next instant. Consequently
q2 is the only possible successor of q2 and especially ({sp, sp, s¬p, sφ},⊥) is
not a valid successor. ⊓⊔

Determinize. Second, we use a power set construction to determinize the re-
sulting transition system4. If the monitor is in a power state which corresponds
to states in the original transition system that have different values for an output
stream, then the monitoring output is ? for this stream. On the other hand, if
all states in the power set agree on the valuation of an output stream, the moni-
tor yields exactly this valuation. In particular, the distinguished stream receives
either the valuation ? or a definite valuation tt or ff . Formally, the resulting
monitor is defined as follows, where s(q) denotes the current valuation of stream
s ∈ I ∪ S in state q.

Definition 3 (Anticipatory Recurrent Lola monitor). Let φ = (I, S,E)
be a well-defined Lola specification and Tφ = (Qφ, Σ, q0, δ) be the corresponding
LNTS with dead states removed. The anticipatory recurrent Lola monitor for φ is
the Moore Machine Monitor Mφ : (P,Σ,Ω, p0, δm, ω) where P = 2Qφ , p0 = {q0}
and
– δm(p, x) = {δ(q, x) | q ∈ p} ∩Qφ

– ω(p)(s) =


tt if s(q) = tt for all q ∈ p

ff if s(q) = ff for all q ∈ p

? otherwise

An anticipatory monitor is a sound monitor for all output streams that pro-
duces tt if and only if the evaluation of the output stream at this position is tt
for all continuations, i.e. when the verdict is inevitable and the analogous for
ff . Such a monitor thus only yields ? when both results are possible in different
continuations.

The following result proves the correctness of our construction.

Theorem 1. Let φ = (I, S,E) be a well-defined Lola specification and Mφ the
monitor according to Definition 3. Then Mφ is an anticipatory recurrent monitor
for φ.

The proof follows because Mφ only contains states that can lead to end states,
so for every power state in Mφ there is a continuation of the input streams such
that the equations in φ are satisfied. On the other hand the power set contains all
non-dead states which are reachable from q0 after processing the input received.
A tt (resp. ff) verdict for a specific stream is cast if and only if all states agree
on that valuation and thus there is no continuation of the currently received
inputs compatible with a different verdict. It is easy to see that the size of Mφ

is 22
O(|φ|)

.
4 which can for performance reasons also be done on the fly while monitoring.

14 H. Kallwies et al.

4.3 Assumptions

Assumptions are additional knowledge about the system and its environment
and thus restrict the set of possible input sequences that may be passed to the
monitor. A general way to formalize assumptions in Lola [20] is to introduce
an output stream sa expressing the assumption and assume the stream to be
always true. We rule out those states where sa is false, or states that inevitably
lead to those states. We restrict the state space to states where the assumption
stream is true Qa

def
= {(u, v) ∈ Qφ | sa ∈ u, and v = ⊥ or sa ∈ v} and refine

the definition of alive states to aliveφa = {q ∈ Qφ | ∃w ∈ Σ∗, (q′,⊥) ∈ δ̂a(q, w)}
where δ̂a is defined as δ̂a(q, b) = δ(q, b)∩Qa and δ̂a(q, bw) = δ̂a(δ̂a(q, b), w), that
is, δ̂a is like δ̂ but only considers successor states that satisfy the assumption.
We define a recurrent Lola monitor with assumptions, which differs from the
monitor of Definition 3 by considering an advanced set of dead states.

Definition 4 (Recurrent Lola monitor with Assumptions). Let φ = (I, S,E)
be a well-defined Lola specification and let Tφ = (Qφ, Σ, q0, δ) be the correspond-
ing LNTS with dead states (not in aliveφa) removed. The anticipatory recurrent
Lola monitor for φ under assumptions is the Moore machine (P,Σ,Ω, p0, δm, ω)
where P = 2Qa and p0 = {q0} and δm(p, b) = {δ(q, b) | q ∈ p} ∩ Qa (and Σ, Ω
and ω are as before).

Note that ω(p)(sa) is forced to be tt at all states and that the new Moore
machine has fewer states compared to the previous construction.

4.4 Uncertainties

We now extend our approach to tolerate uncertain inputs, where the value of
some input is not known to be true or false. Instead of input alphabet Σ we
consider 2Σ as uncertain input alphabet where each letter encodes which certain
input letters are possible at the current instant. Consider AP = {p, q} and
Σ = 2AP, then input {∅, {p, q}} ∈ 2Σ encodes that it is uncertain if p, q hold but
it is known that they have the same value.

In the recurrent monitor with assumptions (Definition 4) we just extend the
transition function such that from a set of specific states it transitions to all
states which are reachable with one of the possible inputs:

Definition 5 (Recurrent Lola Monitor with Uncertainty and Assump-
tions). Let φ = (I, S,E) be a well-defined Lola specification and Tφ = (Qφ, Σ, q0, δ)
be the corresponding LNTS. The recurrent Lola monitor under uncertainty and
assumptions for φ is the Moore machine (P, 2Σ , Ω, p0, δm, ω) where P , p0, Ω
and ω are as before and δm(p,B) = {δ(q, b) | q ∈ p, b ∈ B} ∩Qa.

Note that δm considers all possible inputs, potentially leading to more successors.

Anticipatory Monitoring for Temporal Logics on Finite Traces 15

5 Anticipatory Monitoring in Action

We implemented the algorithm for anticipatory Lola monitoring from Section 4
in Scala5. The tool receives a Lola specification, calculates the set of empty states
and then simulates the power set monitor on the fly as described in Section 4
with minor obvious optimizations. It supports assumptions and uncertainty.

We illustrate monitoring of the following TRLTLf formula that includes past
and future operators (encoded linearly):

φ = p ∧((¬p); p→(q; p; p; p; (¬q)∗; q))

The formula holds in every position where (1) p is true and (2) if for all sub-
sequent positions matching (¬p); p, the pattern q; p; p; p; (¬q)∗; q was present
somewhere in the past.

Following Section 3 we manually transformed the formula into a Lola speci-
fication with two input streams, p and q, ten defined streams, seven future ref-
erences and one past reference. A traditional universal Lola monitor [12] would
only immediately yield the verdict ff at all positions where there is no p in the
trace. All the locations where φ holds would only be reported after the whole
trace is processed, because the  part of the formula introduces a future refer-
ence, so a monitoring algorithm without anticipation only resolves these streams
once the end of the trace is reached.

We evaluated our anticipatory monitoring approach on three randomly gen-
erated traces of length 1000. For each position, first q was selected to be true
with a probability of 66%. If q was false then p was set to true, otherwise p was
set to true with a probability of 50%. Consequently there were no positions in
the traces where p and q were simultaneously false.

We ran our monitor for each trace, one time with the additional assump-
tion (p ∨ q) in the specification and one time without. Further we executed
the monitor under presence of the assumption, but total uncertain information
about p (i.e. p = ? was sent to the monitor at all instants). The numbers of tt
resp. ff verdicts are depicted in the following table:

Trace Offline Monitor Rec. Ant. Monitor + Assumption + Uncertainty
tt ff tt ff tt ff tt ff

1 650 350 644 349 646 349 311 0
2 651 349 647 339 649 339 307 0
3 659 341 655 337 656 337 286 0

The first column shows the number of positions where φ is satisfied, which
corresponds to the output an offline monitor with full knowledge of the whole
trace would yield. The recurrent anticipatory monitor is able to cast final verdicts
as soon as it detects a sequence q; p; p; p; (¬q)∗; q in the trace, because from then

5 Tool and example are available on https://gitlab.isp.uni-luebeck.de/public_
repos/anticipatory-recurrent-artifact

https://gitlab.isp.uni-luebeck.de/public_repos/anticipatory-recurrent-artifact
https://gitlab.isp.uni-luebeck.de/public_repos/anticipatory-recurrent-artifact

16 H. Kallwies et al.

on (q; p; p; p; (¬q)∗; q) and thus ((¬p); p→(q; p; p; p; (¬q)∗; q)) is satisfied.
Hence the monitor only reports a few ? verdicts at the beginning of the trace.

When the assumption(p∨q) is present, the recurrent monitor already yields
final verdicts after receiving the sequence q; p; p; p, because from this moment on
it can conclude that whenever the premises of the implication inside the globally
operator, (¬p); p, holds, then there is a (¬p) in the trace and consequently q holds
at this position. This however implies that the trace also contains a sequence
matching q; p; p; p; (¬q)∗; q. This is why the recurrent monitor with assumption
yields a slightly higher number of certain verdicts.

If p is fully uncertain, the monitor can not directly check anymore whether
q; p; p; p is contained in the trace. Yet, again using the assumption it can conclude
that if q; (¬q); (¬q); (¬q) holds somewhere in the trace, then also q; p; p; p holds
there and thus ((¬p); p → (q; p; p; p; (¬q)∗; q)) is satisfied from that instant
on. Hence, from that position on, the monitor is able to cast tt whenever q is
false, because at these instants p must be true. However, it cannot give verdicts
at positions where q is true, including all positions where p is false, and thus never
produces ff . Note that a traditional (online or offline) Lola monitor without the
ability of handling assumptions would not be able to cast any certain verdicts
under presence of the mentioned uncertainty.

We ran our examples on a Linux machine with 8GB RAM and Intel Core
i7-8550 U (1.80GHz) CPU. The average time spent for the emptiness check was
2227 ms without assumption and 2156 ms with assumption. The processing time
per event (without I/O handling) was on average, 2.22 ms without assumption,
1.84 ms with assumption and 5.60 ms under additional presence of uncertainty.

6 Final Remarks

Anticipation states that an online monitor should emit a precise verdict as soon
as possible with the information received. This was first introduced for infinite
traces [4,6] for LTL and for timed, event-clock extensions of LTL, and later gener-
alized to all formalisms definable by Büchi automata in [13]. In [23] anticipation
is made more precise if part of the underlying system is known. All these works
consider only initial monitoring. In [18], recurrent monitoring was studied for
past-only LTL always yielding a verdict for the current position in the trace. A
generalization of the concept for future LTL formulas—but without an explicit
construction—was studied in [19] together with assumption and uncertainties
(meaning imprecise or missing inputs).

In recent years, temporal logics for finite traces have gained importance so it
is a natural question how the concept of recurrent monitoring under uncertainties
and assumptions materializes in the finite setting.

In this paper we addressed this question for the Boolean fragment of the SRV
language Lola, which is a very general formalism encompassing many temporal
logics on finite traces. We showed how many temporal logics on finite traces can
be linearly translated into TRLTLf , which we then translated into Lola. The
logic TRLTLf introduced here simply takes all operands from RLTL [24] and

Anticipatory Monitoring for Temporal Logics on Finite Traces 17

LDLf [16]. Since LDLf and RLTLf are both expressive equivalent to regular
languages they are equivalent in terms of expressive power. We are studying
whehter there are linear translations from LDLf to RLTLf and vice-versa, fol-
lowing reductions from [31] in the context of Metric Dynamic Logic (MDL) [3,2].
MDL extends LDLf with intervals and has the same expressive power.

We then presented a recurrent, anticipatory monitoring algorithm for Lola
specifications, extended it to handle uncertainties and assumptions, and pointed
out how to map initial monitoring into recurrent monitoring for Lola.

The approach most closely related to ours is [9], which also considers moni-
toring under uncertainties and assumptions. However, [9] is limited to LTL and
assumptions given as fair Kripke structures only.

We restricted our algorithm to Boolean Lola, so it is a natural question
how to deal with anticipation, assumptions, and uncertainties for specifications
over arbitrary theories. While assumptions and uncertainties for non-Boolean
theories are studied in [20], anticipation is not considered there. A solution for
LTL extended with theories, presented in [10], is based on reduction to bounded
model checking and thus not guaranteed to be perfect and not trace-length
independent.

The problem of anticipatory general Lola monitoring can also be solved eas-
ily if the length of the trace is known a-priori using a bounded-model-checking
approach, by unwinding the specification to the known length and using a sym-
bolic tool (e.g. an SMT solver) to compute definite verdicts with anticipation.
Future work includes anticipatory monitoring algorithms for richer data speci-
fications (like numerical Lola specifications) without assuming a known bound
on the length of the trace.

Future work further comprises an implementation of the translations from
logics to Lola specifications that were described in this paper and a thorough
empirical comparison to other monitoring approaches for these logics and Lola
in practical scenarios.

Acknowledgements

We would like to thank the anonymous reviewers for the thorough analysis of
the paper and their useful suggestions and future directions.

References

1. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - Introductory
and Advanced Topics, LNCS, vol. 10457. Springer (2018). https://doi.org/10.
1007/978-3-319-75632-5

2. Basin, D., Bhatt, B.N., Krstić, S., Traytel, D.: Almost event-rate independent
monitoring. Formal Methods in System Design 54, 449–478 (2019). https://doi.
org/10.1007/s10703-018-00328-3

3. Basin, D.A., Krstić, S., Traytel, D.: Almost event-rate independent monitoring of
metric dynamic logic. In: Proc. of the 17th Int’l Conf. on Runtime Verification

https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/s10703-018-00328-3

18 H. Kallwies et al.

(RV’17). LNCS, vol. 10548, pp. 85–102. Springer (2017). https://doi.org/10.
1007/978-3-319-67531-2_6

4. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Proc.
of the 26th Int’l Conf. on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’06). LNCS, vol. 4337, pp. 260–272. Springer (2006).
https://doi.org/10.1007/11944836_25

5. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010). https://doi.org/10.1093/
logcom/exn075

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011). https://doi.org/
10.1145/2000799.2000800

7. Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., Torens, C.: RTLola
cleared for take-off: Monitoring autonomous aircraft. In: Proc. of 32nd Int’l Conf.
on Computer-Aided Verification CAV’20 (Part II). LNCS, vol. 12225, pp. 28–39.
Springer (2020). https://doi.org/10.1007/978-3-030-53291-8_3

8. Bozzelli, L., Sánchez, C.: Foundations of boolean stream runtime verification.
Theor. Comput. Sci. 631, 118–138 (2016). https://doi.org/10.1016/j.tcs.
2016.04.019

9. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification with
partial observability and resets. In: Proc. of the 19th Int’l Conf. on Runtime
Verification (RV’19). LNCS, vol. 11757, pp. 165–184. Springer (2019). https:
//doi.org/10.1007/978-3-030-32079-9_10

10. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification of
infinite-state systems. In: Proc. of the 21st Int’l Conf. on Runtime Verification
(RV’21). LNCS, vol. 12974, pp. 207–227. Springer (2021). https://doi.org/10.
1007/978-3-030-88494-9_11

11. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma,
D.: TeSSLa: Temporal stream-based specification language. In: Proc. of the 21th
Brazilian Symp. on Formal Methods (SBMF’18). LNCS, vol. 11254, pp. 144–162.
Springer (2018). https://doi.org/10.1007/978-3-030-03044-5_10

12. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: Proc. of the 12th Int’l Symposium on Temporal Representation and
Reasoning (TIME’05). pp. 166–174. IEEE Computer Society (2005). https://doi.
org/10.1109/TIME.2005.26, https://doi.org/10.1109/TIME.2005.26

13. Dong, W., Leucker, M., Schallhart, C.: Impartial anticipation in runtime-
verification. In: Proc. of the 6th Int’l Symp. on Automated Technology for Veri-
fication and Analysis (ATVA’08). LNCS, vol. 5311, pp. 386–396. Springer (2008).
https://doi.org/10.1007/978-3-540-88387-6_33

14. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campenhout, D.V.:
Reasoning with temporal logic on truncated paths. In: Proc. of the 15th Int’l Conf.
on Computer Aided Verification (CAV’03). LNCS, vol. 2725, pp. 27–39. Springer
(2003). https://doi.org/10.1007/978-3-540-45069-6_3

15. Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger, M.,
Tentrup, L., Torfah, H.: StreamLAB: Stream-based monitoring of cyber-physical
systems. In: Proc. of the 31st Int’l Conf. on Computer-Aided Verification (CAV’19).
LNCS, vol. 11561, pp. 421–431. Springer (2019). https://doi.org/10.1007/
978-3-030-25540-4_24

https://doi.org/10.1007/978-3-319-67531-2_6
https://doi.org/10.1007/978-3-319-67531-2_6
https://doi.org/10.1007/978-3-319-67531-2_6
https://doi.org/10.1007/978-3-319-67531-2_6
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/11944836_25
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-3-540-88387-6_33
https://doi.org/10.1007/978-3-540-88387-6_33
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-25540-4_24

Anticipatory Monitoring for Temporal Logics on Finite Traces 19

16. Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proc. of the 23rd Int’l Joint Conf. on Artificial Intelligence (IJ-
CAI’13). pp. 854–860. IJCAI/AAAI (2013), http://www.aaai.org/ocs/index.
php/IJCAI/IJCAI13/paper/view/6997

17. Gorostiaga, F., Sánchez, C.: Stream runtime verification of real-time event streams
with the Striver language. International Journal on Software Tools for Technology
Transfer 23, 157–183 (2021). https://doi.org/10.1007/s10009-021-00605-3

18. Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Proc.
of 8th Int’l Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’02). LNCS, vol. 2280, pp. 342–356. Springer (2002). https:
//doi.org/10.1007/3-540-46002-0_24

19. Kallwies, H., Leucker, M., Sánchez, C., Scheffel, T.: Anticipatory recurrent mon-
itoring with uncertainty and assumptions. In: Proc. of the 22nd Int’l Conference
on Runtime Verification (RV’22). LNCS, vol. 13498, pp. 181–199. Springer (2022).
https://doi.org/10.1007/978-3-031-17196-3_10

20. Kallwies, H., Leucker, M., Sánchez, C.: Symbolic runtime verification for monitor-
ing under uncertainties and assumptions. In: Proc. of 20th Int’l Symp. on Auto-
mated Technology for Verification and Analysis (ATVA’22). LNCS, vol. 13505, pp.
117–134. Springer (2022). https://doi.org/10.1007/978-3-031-19992-9_8

21. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, vol. 34, pp. 3–41. Princeton
University Press, Princeton, New Jersey (1956)

22. Leucker, M.: Teaching runtime verification. In: Proc. of the 2nd Int’l Conf. on
Runtime Verification (RV’11). LNCS, vol. 7186, pp. 34–48. Springer (2011). https:
//doi.org/10.1007/978-3-642-29860-8_4

23. Leucker, M.: Sliding between model checking and runtime verification. In: Proc. of
the 3rd Int’l Conf. on Runtime Verification (RV’12). LNCS, vol. 7687, pp. 82–87.
Springer (2012). https://doi.org/10.1007/978-3-642-35632-2_10

24. Leucker, M., Sánchez, C.: Regular linear temporal logic. In: Proc. of the 4th Int’l
Colloquium on Theoretical Aspects of Computing (ICTAC’07). LNCS, vol. 4711,
pp. 291–305. Springer (2007). https://doi.org/10.1007/978-3-540-75292-9_20

25. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebr.
Progr. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.2008.08.004

26. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992)

27. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer-Verlag
(1995)

28. McNaughton, R.F., Yamada, H.: Regular expressions and state graphs for au-
tomata. IEEE Transactions on Electronic Computers 9, 39–47 (1960). https:
//doi.org/10.1109/TEC.1960.5221603

29. Perez, I., Dedden, F., Goodloe, A.: Copilot 3. Tech. Rep. NASA/TM–2020–220587,
NASA Langley Research Center (April 2020)

30. Pnueli, A.: The temporal logic of programs. In: Proc. of the 18th IEEE Symp.
on the Foundations of Computer Science (FOCS’77). pp. 46–57. IEEE Computer
Society Press (1977). https://doi.org/10.1109/SFCS.1977.32

31. Raszyk, M.: Efficient, Expressive, and Verified Temporal Query Evaluation. Ph.D.
thesis, ETH (2022). https://doi.org/10.3929/ethz-b-000553221

32. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime ob-
server pairs for system health management of real-time systems. In: Proc. 20th
Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems

http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://doi.org/10.1007/s10009-021-00605-3
https://doi.org/10.1007/s10009-021-00605-3
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-031-17196-3_10
https://doi.org/10.1007/978-3-031-17196-3_10
https://doi.org/10.1007/978-3-031-19992-9_8
https://doi.org/10.1007/978-3-031-19992-9_8
https://doi.org/10.1007/978-3-642-29860-8_4
https://doi.org/10.1007/978-3-642-29860-8_4
https://doi.org/10.1007/978-3-642-29860-8_4
https://doi.org/10.1007/978-3-642-29860-8_4
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.1007/978-3-540-75292-9_20
https://doi.org/10.1007/978-3-540-75292-9_20
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.3929/ethz-b-000553221
https://doi.org/10.3929/ethz-b-000553221

20 H. Kallwies et al.

(TACAS’14). LNCS, vol. 8413, pp. 357–372. Springer (2014). https://doi.org/
10.1007/978-3-642-54862-8_24

33. Sánchez, C.: Online and offline stream runtime verification of synchronous systems.
In: Proc. of the 18th Int’l Conf. on Runtime Verification (RV’18). LNCS, vol. 11237,
pp. 138–163. Springer (2018). https://doi.org/10.1007/978-3-030-03769-7_9

34. Sánchez, C., Leucker, M.: Regular linear temporal logic with past. In: Proc. of
the 11th Int’l Conf. on Verification, Model Checking, and Abstract Interpretation,
(VMCAI’10). LNCS, vol. 5944, pp. 295–311. Springer (2010). https://doi.org/
10.1007/978-3-642-11319-2_22

35. Sánchez, C., Samborski-Forlese, J.: Efficient regular linear temporal logic using
dualization and stratification. In: Proc. of the 19th Int’l Symp. on Temporal Rep-
resentation and Reasoning (TIME’12). pp. 13–20. IEEE Computer Society (2012).
https://doi.org/10.1109/TIME.2012.25

36. Wolper, P.: Temporal logic can be more expressive. Information and Control 56,
72–99 (1983). https://doi.org/10.1016/S0019-9958(83)80051-5

https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.1007/978-3-642-11319-2_22
https://doi.org/10.1007/978-3-642-11319-2_22
https://doi.org/10.1007/978-3-642-11319-2_22
https://doi.org/10.1007/978-3-642-11319-2_22
https://doi.org/10.1109/TIME.2012.25
https://doi.org/10.1109/TIME.2012.25
https://doi.org/10.1016/S0019-9958(83)80051-5
https://doi.org/10.1016/S0019-9958(83)80051-5

	General Anticipatory Monitoring for Temporal Logics on Finite Traces

