
Regular Linear-time Temporal Logic

Martin Leucker
Institut für Informatik

TU München
85748 Garching, Germany
Email: leucker@in.tum.de

César Sánchez
The IMDEA Software Institute, and

Spanish Council for Scientific Research (CSIC)
Madrid, Spain

Email: cesar.sanchez@imdea.org

Abstract—This extended abstract presents the gist of regular
linear-time temporal logic (RLTL), a logic that generalizes
linear-time temporal logic (LTL) with the ability to use reg ular
expressions arbitrarily as sub-expressions. Unlike LTL, RLTL
can define all ω-regular languages and unlike previous ap-
proaches, RLTL is defined with an algebraic signature, does not
depend on fix-points in its syntax, and provides past operators
via a single previous-step operator for basic state formulas.
The satisfiability and model checking problems for RLTL are
PSPACE-complete, which is optimal for extensions of LTL.

Keywords-temporal logic; LTL; regular expressions;

I. I NTRODUCTION

In his seminal paper [1], Pnueli proposed Linear temporal
logic (LTL) [2] as a specification language for reactive
systems. LTL is a modal logic over a linear frame, whose
formulas express properties of infinite traces using two
modalities:nexttimeanduntil. Although extending LTL with
past operators (e.g., [3]), doesnot increase its expressive
power [4], it has been widely noticed that it caters for
specifications that are shorter, easier, and more intuitive[5].
LTL is a widely accepted formalism for the specification
and verification of concurrent and reactive systems. The
problems of satisfiability and model checking are PSPACE-
complete [6] for LTL with and without past operators.

However, with regards to expressivity, Wolper [7] showed
that LTL cannot express allω-regular properties. In partic-
ular, it cannot express the property “p holds at every other
moment”. In spite of being a useful specification language,
this lack of expressivity seems to surface in practice [8].
To alleviate the expressivity problem, Wolper suggested
extended temporal logic(ETL) in which new operators are
defined using automata, and instantiated using language
composition. ETL was later extended [9], [10] to different
kinds of automata. The main drawback of these logics is that,
in order to obtain the full expressivity, an infinite number
of operators is needed. Among other consequences for its
practical usage, this implies that ETL is not algebraic.

An alternative approach consists of adapting the modal
µ-calculus [11], [12] to the linear setting (νTL) [13]. Here,
the full expressivity is obtained by the use of fix point
operators. InνTL one needs to specify recursive equations
to describe temporal properties, since the only modality is

nexttime, which tends to make typical specifications cum-
bersome.

At the same time, some studies [14] point out that regular
expressions are very convenient in addition to LTL in formal
specifications, partly because practitioners are familiarwith
regular expressions, partly because specifications are more
natural. Even though every ground regular expression can
be translated into aνTL expression [15], the concatenation
operator cannot be directly represented inνTL. No context
of νTL can capture concatenation. ExtendingνTL with
concatenation leads tofix point logic with chop(FLC) [16]
that allows expressing non-regular languages, but at the price
of undecidable satisfiability and equivalence problems.

Some dynamic logics also try to merge regular expres-
sions (for the program part) with LTL (for the action
part), for example, Regular Process Logic [17]. However,
the satisfiability problem is non-elementary because one
can combine arbitrarily negations and regular operators.
Dynamic linear-temporal logic DLTL [18] keeps the satisfi-
ability problem in PSPACE, but restricts the use of regular
expressions only as a generalization of the until operator.
It is unclear how to extend DLTL by corresponding past
operators—like temporal past operators and past regular
expressions.

The popularity of regular expressions led also to their
inclusion in the industry standard specification language
PSL [19]. While decision procedures and their complexities
for full PSL are still an area of active research, [20] shows
that the fragment of PSL that contains LTL and semi-
extended regular expressions leads to EXPSPACE-complete
satisfiability and model checking problems, which may limit
its practical applicability.

In the remainder of this extended abstract, we try to give
a flavor of RLTL. It is deliberately informal, as more and
precise information on RLTL is published in [21], [22].

II. RLTL

The logic that we present here is a generalization of
linear temporal logic andω-regular expressions, based on the
following observation. It is common for different formalisms
to find the following three components in the (recursive)
definition of operators:

1) attempt: an expression that captures the first try to
satisfy the enclosing expression.

2) obligation: an expression that must be satisfied, if the
attempt fails, to continue trying the enclosing expres-
sion. If both the attempt and the obligation fail, the
sequence is not matched.

3) delay: an expression that describes when the enclosing
expression must be started again.

For example, the binary Kleene-starz
∗
y matches a strings if

eithery (the attempt) matchess, or if afterz (the delay), the
whole expressionz∗y matches the remaining suffix. In this
case, no obligation is specified, so it is implicitly assumed
to hold. Formally, the following equivalence holdsz∗y =
y + z ; z∗y, or more explicitly

z
∗

y = y + (Σ∗ | z ; z
∗

y),

where x | y denotes the intersection operator present in
(semi-)extended regular expressions [23]. Consider also the
linear temporal logic expressionx U y. An ω-sequence
satisfies this expression if eithery does (the attempt) or else,
if x does (the obligation) and in the next step (the delay),
the whole formulax U y holds. Formally,

x U y = y ∨ (x ∧ (x U y)).

The key elements of RLTL are (two) ternarypoweroper-
ators that incorporate the three elementsattempt, obligation,
and delay. The delay parameter of a power operator is
expressed using a regular expression, while the attempt and
the obligation are defined with arbitrary RLTL expressions.

Consequently, RLTL is defined in two stages: First,
regular expressions enriched with a simple past operator
are introduced. Then, based on these expressions, RLTL is
defined as a language that describes sets of infinite words.

1) Regular Expressions with Past:Regular expressions
are built onbasic expressions, which are Boolean combina-
tions of a finite set of elementary propositions, interpreted in
a single state (or in a single action between two states) and
form the underlying alphabetΣ that includestrue (for all
propositions) andfalse for the empty set or propositions.

The language of regular expressions for finite words is
given by the following grammar:

α ::= α + α

∣

∣ α ; α

∣

∣ α ∗ α

∣

∣ p

∣

∣

−

p

wherep ranges over basic expressions. The intended inter-
pretation of the operators+, ; and∗ are the standard union,
concatenation and binary Kleene-star. There is one expres-
sion of the form−

p for each basic expressionp. Informally,p
indicates that the next “action”, or input symbol, satisfiesthe
basic expressionp; similarly,−p establishes that the previous
action or symbol satisfiesp. Expressions of the form−p are
calledbasic past expressions.
One interesting expression using past is:

notfirst
def
= −

true ; true

which matches all segments of a word that are not initial
prefixes.

2) Regular Linear Temporal Logic over Infinite Words:
The syntax of RLTL expressions is then defined by the
following grammar:

ϕ ::= ∅

∣

∣ ϕ ∨ ϕ

∣

∣ ¬ϕ

∣

∣ α ; ϕ

∣

∣ ϕ|α〉〉ϕ
∣

∣ ϕ |α〉ϕ

where α ranges over regular expressions. Informally,∨
stands for union of languages (disjunction in a logical
interpretation), and¬ represents language complement (or
negation in a logical framework). The symbol; stands for
the conventional concatenation of an expression over finite
words followed by an expression over infinite words. The
operator∅ represents the empty language (orfalse in a
logical interpretation).

The operatorsϕ|α〉〉ϕ and its weak versionϕ |α〉ϕ are the
power operators. The power expressionsx|z〉〉y andx |z〉y
(read x at z until y, and, respectively,x at z weak-until
y) are built from three elements:y (the attempt), x (the
obligation) andz (thedelay). Informally, for x|z〉〉y to hold,
either the attempt holds, or the obligation is met and the
whole expression evaluates successfully after the delay; in
particular, for a power expression to hold the obligation must
be met after a finite number of delays. On the contrary,x|z〉y
does not require the obligation to be met after a finite number
of delays. In other words, for every RLTL expressionsx

andy and regular expressionz:
• x|z〉〉y is semantically equivalent toy ∨ (x ∧ z ;x|z〉〉y).
• x |z〉y is semantically equivalent toy ∨ (x ∧ z ;x |z〉y).

which captures both the patterns of the binary Kleene-star
and of the until operator.

Past expressions are not within RLTL’s minimal set of op-
erators but are easily defined using past regular expressions.
For example, weak-previouslyx, denotedx, is given by
first ∨ −

true ; x and x back to y (x B y) is defined as
x |−true〉y, wherefirst = ¬notfirst .

III. F ROM RLTL TO AUTOMATA

The problems of emptiness and model checking for RLTL
are PSPACE complete. This is shown by a translation an
RLTL expression into a 2-way Alternating Parity Automaton
of linear size that accepts precisely the same set of words.
Since checking emptiness of2APW is PSPACE complete
[24], it follows that satisfiability of RLTL is PSPACE
complete as well. We briefly sketch that translation.

Like the definition of RLTL, the translation is done in
two stages. First, we state that each regular expression can
be translated into an equivalent2-way nondeterministic finite
automaton2NFA. Intuitively, a 2NFA works by reading an
input tape. The transition function indicates the legal moves
from a given state and character in the tape. A transition is
a successor state and the direction of the head of the tape.
A particularity in the context of RLTL is that our version of
2NFA operates on finite segments of infinite words.

In the second stage, an RLTL formula is translated into a
corresponding2-way Alternating Parity Automaton on Words
(2APW). The transition function of a2APW yields a positive
Boolean combination of successor states (rather than a set of
possible successor states in a non-deterministic automaton),
together with a direction, like in2NFA. The procedure
translating an RLTL formula works bottom-up the parse tree
of the RLTL expression, building the resulting automaton
using the subexpressions’ automata as components.

REFERENCES

[1] A. Pnueli, “The temporal logic of programs,” inProceedings
of the 18th IEEE Symposium on Foundations of Computer
Science (FOCS’77), 1977, pp. 46–67.

[2] Z. Manna and A. Pnueli,Temporal Verification of Reactive
Systems. Springer-Verlag, 1995.

[3] H. W. Kamp, “Tense logic and the theory of linear order,”
Ph.D. dissertation, University of California, Los Angeles,
1968.

[4] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, “On the
temporal basis of fairness,” inPOPL, 1980, pp. 163–173.

[5] O. Lichtenstein, A. Pnueli, and L. D. Zuck, “The glory of the
past,” in Logic of Programs, ser. Lecture Notes in Computer
Science, R. Parikh, Ed., vol. 193. Springer, 1985, pp. 196–
218.

[6] F. Laroussinie, N. Markey, and P. Schnoebelen, “Temporal
logic with forgettable past,” inProc. IEEE Symp. Logic in
Computer Science (LICS’2002), 2002, pp. 383–392. [Online].
Available: citeseer.nj.nec.com/laroussinie02temporal.html

[7] P. Wolper, “Temporal logic can be more expressive,”Infor-
mation and Control, vol. 56, pp. 72–99, 1983.

[8] A. Pnueli, “Applications of temporal logic to the specification
and verification of reactive systems – a survey of current
trends,” inCurrent Trends in Concurrency, ser. Lecture Notes
in Computer Science, vol. 224. Springer-Verlag, 1996, pp.
510–584.

[9] M. Y. Vardi and P. Wolper, “Reasoning about infinite com-
putations,”Information and Computation, vol. 115, pp. 1–37,
1994.

[10] O. Kupferman, N. Piterman, and M. Y. Vardi, “Extended
temporal logic revisited,” inProceedings of the 12th Inter-
national Conference on Concurrency Theory (CONCUR’01),
ser. Lecture Notes in Computer Science, vol. 2154. Springer-
Verlag, 2001, pp. 519–535.

[11] E. A. Emerson and E. M. Clarke, “Characterizing correctness
properties of parallel programs using fixpoints,” inProceed-
ings of the 7th Colloquium on Automata, Languages and
Programming (ICALP’80). Springer-Verlag, 1980, pp. 169–
181.

[12] D. Kozen, “Results on the propositionalµ-calculus,” inPro-
ceedings of the 9th Colloquium on Automata, Languages and
Programming (ICALP’82). Springer-Verlag, 1982, pp. 348–
359.

[13] H. Barringer, R. Kuiper, and A. Pnueli, “A really abstract
concurrent model and its temporal logic,” inProceedings
of the Thirteenth Annual ACM Symposium on Principles of
Programming Languages (POPL’86), 1986, pp. 173–183.

[14] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze,
and Y. Rodeh, “The temporal logic Sugar,” inProceedings
of the 13th International Conference on Computer Aided
Verification (CAV’01). Springer-Verlag, 2001, pp. 363–367.

[15] M. Lange, “Weak automata for the linear timeµ-calculus,”
in Proceedings of the 6th Int’l. Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI’05), ser.
Lecture Notes in Computer Science, R. Cousot, Ed., vol.
3385. Sprinter-Verlag, 2005, pp. 267–281.

[16] M. Müller-Olm, “A modal fixpoint logic with chop,” in
Proceedings of the 16th Annual Symposium on Theoretical
Aspects of Computer Science (STACS’99), ser. Lecture Notes
in Computer Science, C. Meinel and S. Tison, Eds., vol. 1563.
Springer-Verlag, 1999, pp. 510–520.

[17] D. Harel and D. Peleg, “Process logic with regular formulas,”
Theoretical Computer Science, vol. 38, pp. 307–322, 1985.

[18] J. G. Henriksen and P. S. Thiagarajan, “Dynamic linear time
temporal logic,”Annals of Pure and Applied Logic, vol. 96,
no. 1–3, pp. 187–207, 1999.

[19] D. Fisman, C. Eisner, and J. Havlicek,Formal syntax and Se-
mantics of PSL: Appendix B of Accellera Property Language
Reference Manual, Version 1.1, March 2004.

[20] M. Lange, “Linear time logics around PSL: Complexity,
expressiveness, and a little bit of succinctness,” inCONCUR,
ser. Lecture Notes in Computer Science, L. Caires and V. T.
Vasconcelos, Eds., vol. 4703. Springer, 2007, pp. 90–104.

[21] C. Sánchez and M. Leucker, “Regular linear temporal logic
with past,” in Proceedings of the 11th International Confer-
ence on Verification, Model Checking and Abstract Interpre-
tation (VMCAI’10), ser. Lecture Notes in Computer Science,
G. Barthe and M. Hermenegildo, Eds., vol. 5944. Springer,
2010, pp. 295–311.

[22] M. Leucker and C. Sánchez, “Regular linear temporal logic,”
in Proceedings of the 4th International Colloquium on Theo-
retical Aspects of Computing (ICTAC’07), ser. Lecture Notes
in Computer Science, C. B. Jones, Z. Liu, and J. Woodcock,
Eds., vol. 4711. Springer, 2007, pp. 291–305.

[23] L. J. Stockmeyer, “The computational complexity of word
problems,” Ph.D. dissertation, Massachusetts Institute of
Technology, 1974.

[24] C. Dax and F. Klaedtke, “Alternation elimination by comple-
mentation,” in Proceedings of the 15th International Con-
ference on Logic for Programming, Aritificial Intelligence
and Reasoning (LPAR’08), ser. Lecture Notes in Computer
Science, vol. 5530. Springer-Verlag, 2008, pp. 214–229.

