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Abstract We study the problem of online runtime verification of real-time
event streams. Our monitors can observe concurrent systems with a shared
clock, but where each component reports observations as signals that arrive to
the monitor at different speeds and with different and varying latencies. We
start from specifications in a fragment of the TeSSLa specification language,
where streams (including inputs and final verdicts) are not restricted to be
Booleans but can be data from richer domains, including integers and reals
with arithmetic operations and aggregations. Specifications can be used both
for checking logical properties, and for computing statistics and general nu-
meric temporal metrics (and properties on these richer metrics). We present
an online evaluation algorithm for the specification language and a concurrent
implementation of the evaluation algorithm. The algorithm can tolerate and
exploit the asynchronous arrival of events without synchronizing the inputs.

Martin Leucker
Institute for Software Engineering and Programming Languages,
University of Lübeck, Germany
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Then, we introduce a theory of asynchronous transducers and show a formal
proof of the correctness such that every possible run of the monitor imple-
ments the semantics. Finally, we report an empirical evaluation of a highly
concurrent Erlang implementation of the monitoring algorithm.

1 Introduction

We study the online Runtime Verification of real-time event streams and sig-
nals that arrive at different speeds and with different and varying delays to
the monitor. Runtime verification (RV) is an applied formal technique for soft-
ware reliability. In contrast to static verification, in RV only one trace of the
system under scrutiny is considered. Thus, RV sacrifices completeness guaran-
tees to obtain an immediately applicable and formal extension of testing and
debugging. Central problems in runtime verification are (1) how to generate
monitors from formal specifications, and (2) how to evaluate these monitors
against input traces from the running system. See [21,28] for RV surveys and
the recent book [4].

In this paper we study how to perform runtime verification on concurrent
systems that have a shared global clock but whose concurrent components emit
events to the monitor at different speeds and with different and varying delays.
This assumption is common, for example, when observing embedded systems
or when observing low-level execution traces of software running on multi-core
processors. At the low-level software analysis, the signals that these systems
emit are real-time signals that remain constant between two observations, also
known as piece-wise constant signals or timed event-streams.

We are interested in online monitoring, which is performed while the sys-
tem is running (as opposed to offline monitoring through post-mortem analysis
of dumped traces). The target application of low-level software analysis of em-
bedded systems also requires non-intrusive monitoring, meaning that the mon-
itoring activity cannot perturb the execution of the system under observation.
To achieve non-intrusiveness, the monitoring infrastructure uses some hard-
ware capabilities to obtain run-time information while the concurrent system
executes. This information is dispatched to an external monitoring execut-
ing infrastructure that executes outline (as opposed to inlining the monitors
within the system itself which is common in runtime verification for high-level
software). See [26] for a definition and classification of these RV concepts.

The main goal of this paper is to study how to monitor sophisticated prop-
erties of continuous piece-wise constant signals efficiently, particularly against
systems where each component is a source that can emit events at different
speeds and with different latencies. We say that these systems emit “non-
synchronized in-order streams”. Since the order and time at which events are
processed are both important, we introduce here the distinction between sys-
tem time and monitor time. System time refers to the moments at which events
are produced within the observed system. These instants are captured by the
synchronized global clock, which is used to time-stamp events by the instru-
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mentation of the system under analysis. Monitor time refers to the instants
at which events arrive at the monitor and when these events are processed in
order to produce verdicts. This order depends not only on the implementation
of the monitor but also on the arrival time and order of the events.

Event streams from hardware processors come at very high speeds, which
imposes the additional requirement of crafting highly efficient monitoring im-
plementations. We explore here software monitors that can exploit the paral-
lelism available in multi-core platforms, while still formally guaranteeing the
correctness of the monitors. These monitors must tolerate non-synchronized
arrival of events and progress as much as possible with only events from some
sources.

Stream Runtime Verification (SRV) is very appealing as an approach to
a specification language for our purposes, because the dependencies between
streams allow to decompose specifications into components that can be exe-
cuted concurrently and asynchronously. We use here an acyclic fragment of the
TeSSLa specification language [9], an incarnation of SRV for real-time event
streams. We call this fragment TeSSLaa. TeSSLa stands for Temporal Stream-
based Specification Language, and has already been used for creating monitors
in FPGA hardware in [11,12]. Our acyclic fragment TeSSLaa restricts TeSSLa
to non-recursive specifications, which means that no cycles are allowed in a
specification. The functionality that recursion allows with a few core operators
in TeSSLa is encapsulate in TeSSLaa in a collection of building blocks. This
allows us to build a simpler asynchronous evaluation algorithm, which results
in an efficient evaluation of specifications in TeSSLaa.

Related work. Early specification languages for RV were based on their coun-
terparts in static verification, typically logics like LTL [30] or past LTL adapted
for finite paths [5,14,22]. Similar formalisms proposed are based on regular
expressions [36], timed regular expressions [2], rule based languages [3], or
rewriting [33]. Stream runtime verification, pioneered by the tool LOLA [10],
is an alternative to define monitors using streams. In SRV one describes the
dependencies between input streams of values (observable events from the sys-
tem under analysis) and defined streams (alarms, errors and output diagnosis
information). These dependencies can relate the current value of a depending
stream with the values of the same or other streams at the present moment,
in past instants (like in past temporal formulas), or in future instants. In
SRV there is a clean separation between the evaluation algorithms—that ex-
ploit the explicit dependencies between streams—and the data manipulation—
expressed by each individual operation. SRV allows to generalize well-known
evaluation algorithms from runtime verification to perform collections of nu-
meric statistics from input traces.

SRV resembles synchronous languages [8]—like Esterel [6], Lustre [20] or
Signal [17]—but these systems are causal because their intention is to describe
systems and not observations, while SRV removes the causality assumption al-
lowing to refer to future values. Another related area is Functional Reactive
Programming (FRP) [15], where reactive behaviors are defined using func-
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tional programs as building blocks to express reactions. As with synchronous
languages, FRP is a programming paradigm and not a monitoring specifica-
tion language, so future dependencies are not allowed in FRP. On the other
hand SRV, was initially conceived for monitoring synchronous systems. See [7,
18,31] for further developments on SRV. The semantics of temporal logics can
also be defined using declarative dependencies between streams of values. For
example, temporal testers [32] defined these dependencies for LTL. Likewise,
the semantics of Signal Temporal Logic (STL) [13,29] is defined in terms of
the relation between a defined signal and the signals for its sub-expressions,
based on Metric Interval Temporal Logic [1].

The specification language TeSSLaa that we use extends SRV with sup-
port for real-time piece-wise constant signals. Most previous approaches to
SRV assume synchronous sampling and synchronous arrivals of events in all
input streams. It is theoretically feasible, at least in some cases, to reduce
the setting in this paper to synchronous SRV, for example by assuming that
all samples are made at instants multiple of a minimum quantum delay, and
executing the specification synchronously after every delay. However, the fast
arrival of events would render such an approach impractical due to the large
number of processing steps that would be required. That is, the monitor must
be able to execute efficiently both at times of spread events and also under
fast bursts. There are extensions of SRV for real-time signals, most notably
RTLola [16] and Striver [19]. However, all the monitoring algorithms proposed
and implemented for these logics, similarly to full TeSSLa, are not able to
exploit concurrency and asynchronous evaluation. Moreover, the correctness
of the operational semantics of these formalisms requires synchronous arrivals.

STL has also been used to create monitors on FPGAs [24] and for mon-
itoring in different application areas (see for example [25,35]). However, the
assumptions of STL on the signals is different than ours, because the goal of
STL is to analyze arbitrary continuous signals and not necessarily changes from
digital circuits with accurate clocks. Sampling ratios and sampling instants are
important issues in STL, while the signals we assume here are accurately rep-
resented by the stream of events at the changing points of the signal. In timed
regular expressions (TRE) [2] the signals are also assumed to be piece-wise
constant. Additionally, our framework can handle much richer data domains
of data and verdicts than TREs and STL1. TREs have been combined with
STL [34] to get the advantages of both domains but again the signals an-
alyzed are not necessarily piece-wise constant. Consequently, the results are
approximate and sampling becomes, again, an important issue.

Contributions. In summary, the contributions of this paper are:

(1) A method for the systematic generation of parallel and asynchronous on-
line monitors for software monitoring TeSSLaa specifications. These mon-

1 In the synchronous non-real-time case, [7] contains a thorough theoretical comparison
of SRV versus temporal logics, regular expressions, etc. A similar comparison for real-time
piece-wise signals is out of the scope of this paper.
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itors handle the non-synchronized arrival of events from different input
stream sources.

(2) A computational model for proving correctness of asynchronous concurrent
monitors, introduced in Section 3, which enables to study a concurrent
online evaluation algorithm for TeSSLaa specifications.

(3) A prototype implementation developed in Erlang, described in Section 4,
and an empirical evaluation.

(4) The precise syntax and semantics of TeSSLaa, an acyclic fragment of
TeSSLa, presented in Section 2, including the core and library functions.

Journal Version. An earlier version of this paper appeared in [27], in the Pro-
ceedings of the 33rd Symposium on Applied Computing (SAC’18). This paper
contains the following additional contributions: Section 2 now contains a full
description of the TeSSLaa language, as well as the formal semantics of each
operator and the operational semantics of the implementation of each building
block. Section 3 now contains a revisited and extended version of the model of
computation that can now handle unbounded streams as ω-words. New theo-
rems and full proofs of all results are now presented, including the proof that
a fair scheduler is all that is needed to guarantee that all concurrent moni-
tor executions preserve the semantics. The empirical evaluation in Section 4
has also been extended to a larger study that illustrates how the implementa-
tion allows to exploit parallelism automatically. Finally, the tool chain is now
described in Section 4.2.

2 Syntax and Semantics of TeSSLaa

We describe in this section the real-time specification language TeSSLaa
2. We

first present some preliminaries, and then introduce the syntax and semantics.

2.1 Preliminaries

We use two types of stream models as underlying formalism: piece-wise con-
stant signals and event streams. We use T for the time domain (which can be
N, Q, R, etc), and D for the collection of data domains (Booleans, integers,
reals, etc). Values from these data domains model observations and the out-
put verdicts produced by the monitors. In this manner output verdicts can be
numerical statistics or complex data collected from the trace.

Definition 1 (Event stream) An event stream is a partial function η : T⇁
D such that E(η) := {t ∈ T | η(t) is defined} does not contain bounded infinite
subsets.

2 TeSSLaa is available at https://www.tessla.io/acyclic

https://www.tessla.io/acyclic
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The set of all event streams is denoted by ED. The set E(η) is called the
set of event points of η. When η is not defined at a time point t, that is
t ∈ T \E(η), we write η(t) = ⊥. We use > as the “unit” value (the only value
in a singleton domain). A finite event stream η can be naturally represented as
a timed word, that is, a sequence sη = (t0, η(t0))(t1, η(t1)) · · · ∈ (E(η) ×D)∗

ordered by time (ti < ti+1) that contains a D value at all event points.
The second type of stream model that we consider is piece-wise constant

signals, which have a value at every point in time. These signals change value
only at a discrete set of positions, and remain constant between two change
points. This allows a smoother definition of the functions available in TeSSLaa
and delivers a more convenient model to the user.

Definition 2 (Signal) A signal is a total function σ : T→ D such that the
set of change points

∆(σ) := {t ∈ T | @t′ < t : ∀t′′.t′ < t′′ < t : σ(t) = σ(t′′)}

does not contain bounded infinite subsets.

The set of all signals is denoted by SD. Every piece-wise constant signal can
be exactly represented by an event stream that contains the change points of
the signal as events, and whose value is the value of the signal after the change
point. Hence, one can convert signals into event streams and vice-versa. Note
that while in STL sampling provides an approximation of fully continuous
signals, in TeSSLaa event streams represent piece-wise constant signals with
perfect accuracy.

Example 1 Consider the following streams e, s and e2, where e and e2 are
interpreted as event streams and s as a signal.

Event stream e
0 7 2 2 15

Signal s 0 7 2 15

Event stream e2
7 2 15

The signal s has been created from e by using the value of the last event on e
as value, with a default value 0. In turn, stream e2 is defined as the changes
in value of s. When converting an event stream into a signal, only events that
represent actual changes are generated. �

We want to define monitors that run concurrently and asynchronously with
the system under analysis, and we want to reason about their correctness.
Then, it is very important to distinguish between the time at which an event
e happens and that is used to time-stamp the event, and the time at which a
given monitor receives the event. We use t(e) for the time of the occurrence of
the event in the system, and rt(e) for the time at which e reaches the specified
monitor.

Definition 3 (In-order streams) A stream s is called in-order whenever
for every two events e and e′, t(e) < t(e′)⇒ rt(e) < rt(e′) holds.
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2.2 Syntax of TeSSLaa

We begin with an example to illustrate a simple TeSSLaa specification. Spec-
ifications are declarative, defining streams in terms of other streams, and ul-
timately in terms of input streams. Streams marked as out are the verdict of
the monitor and their values will be reported to the user.

Example 2 Consider the following TeSSLaa specification:

in e: Events<Unit>
in s: Signal<Int>
define comp := eventCount(e) > s
define allowed := within(-1, 1, filter(e, comp))
define ok := implies(s > 5, allowed)
out ok

The first two lines define two input streams, e (an event stream without values)
and s (a signal of integers). The Boolean signal comp is true if the number of
events of e (denoted by eventCount(e)) is greater than the current value
of s, and false otherwise. The Boolean signal allowed is true when there is
an event that has not been filtered out from e in the interval [−1,+1] around
the current instant. The function filter eliminates an event if the Boolean
signal as the second parameter is false. Finally, the Boolean signal ok is false
whenever s is greater than 5 and allowed is false. Consider the input shown
in the box below.

Event stream e

Signal s 1 0 3 2 4 7 6

Signal comp

Signal allowed

Signal ok

When allowed is true, so will be ok. The signal ok will also be true as long
as s is lower than 5. When s becomes 7, not enough events have happened on
e and then comp is false. Consequently, no event is left through the filter and
allowed is false too. But because s is greater than 5, ok becomes false. When
s is set back to 6 and more events on e have happened, allowed becomes
true again. �
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The basic syntax of a TeSSLaa specification spec is

spec ::= define name[: stype] := texpr | out name |
in name: stype | spec spec

texpr ::= expr[: type]

expr ::= name | literal | name(texpr(, texpr)∗)

type ::= btype | stype
stype ::= Signal<btype> | Events<btype>

A name is a nonempty string. Basic types btype cover typical types found
in programming and verification like Int, Float, String or Bool. One of
the main contributions of SRV is to generalize existing monitoring algorithms
for logics (that produce Boolean verdicts) to algorithms that compute values
from richer domains. The production in introduces input stream variables,
and define introduces defined stream variables (also called output variables).
Given a specification ϕ we use I for the set of input variables and O for the set
of output variables, and write ϕ(I,O). For example, in Example 2 above, I =
{e,s} and O = {comp,allowed,ok}. The marker out is used to denote those
output variables that are the result of the specification and will be reported
to the user. Each defined variable x is associated with a defining equation Ex
given by the expression on the right hand side of the := symbol. Literals literal
denote explicit values of basic types such as integers −1, 0, 1, 2, . . . , floating
point numbers 0.1,−3.141593 or strings "foo", "bar" (enclosed in double
quotes). Available basic types and literal representation are implementation
dependent. A flat specification is one such that every defining equation Ex is
either a name, a literal or an expression of the form f(x1, . . . , xn) where xi are
all stream names. Every specification can be transformed into an equivalent
flat specification by introducing additional variables for each sub-expression.

We expand the syntax of basic TeSSLaa by adding builtin functions, user
defined macros and timing functions.

name ::= defName | timingFun | builtinFun | macro

timingFun ::= delay | shift | within

A defName is simply a name of a previously defined stream or constant. Timing
functions allow to describe timing dependencies between streams. The function
delay delays the values of a signal (or events of an event stream) by a certain
amount of time. The function shift shifts the values of an event stream one
unit into the future, that is, the first event becomes the second event, etc. The
function within defines a signal which is true as long as some event of the given
stream exists within the specified interval.

Macros are user defined functions identified by the construct fun. Macros
can be expanded at compile time using their definition on a purely syntac-
tical level because macros are not recursive. Macros can be defined with the
following production, which is added to spec:

macro := fun name(name(, name)∗) := texpr | macro macro



Runtime Verification of Non-synchronized Real-Time Event Streams 9

where the texpr can use the names of the macro arguments.

Example 3 An example of a macro has already been used in the Example 2
because implies is not a builtin function. Instead, implies is defined by the
following macro:

fun implies(x, y) := or(not(x),y)

�

The expressivity of TeSSLaa is obtained by the use a set of builtin functions.
We first define in Section 2.3 the semantics of the temporal core of TeSSLaa,
which is enough to define the semantics of TeSSLaa in Section 2.4. Then we
give semantics of the non-temporal building blocks in Section 2.5.

2.3 Semantics of Timing Functions

There are three timing functions delay, shift and within. The function delay is
overloaded for signals

delay : SD × T×D → SD

delay(σ, d, v)(t) =

{
σ(t− d) if t− d ≥ 0

v otherwise

and for event streams

delay : ED × T→ ED

delay(η, d)(t) =

{
η(t− d) if t− d ≥ 0

⊥ otherwise

The function delay delays a signal or an event stream by a given amount of
time. Since signals must always carry a value, a value v is provided as default
in case the signal being delayed is fetched ouside its domain. For event streams,
the occurrence of each event is delayed by the indicated amount of time (and an
undefined value is used if the original event is fetched outside the boundaries).

The shift function receives an event stream and produces the event stream
that results from moving the value of each event to the next event. We use the
following notation. Let sη be an arbitrary event stream:

sη = (t0, η(t0))(t1, η(t1))(t2, η(t2)) . . . ,

we use s→η for the stream (t1, η(t0))(t2, η(t1)) . . . . The signature and interpre-
tation of shift is:

shift : ED → ED

shift(sη) =

{
ε if sη = (t0, η(t0)) or sη = ε

s→η otherwise
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The last timing function is within, which already appeared in Example 2.
The function within produces a Boolean valued signal that captures whether
there is an event within the timing window provided:

within : T× T× ED → SB

within(a, b, η)(t) =

{
true if E(η) ∩ [t+ a, t+ b] 6= ∅
false otherwise

2.4 Semantics of TeSSLaa

We define the semantics of TeSSLaa in terms of evaluation models, as com-
monly done in SRV [10]. The intended meaning of TeSSLaa specifications is to
define output signals and event streams from input signals and event streams.
In case of Boolean valued outputs, these outputs are verdicts that can repre-
sent errors, but richer domains can be used to capture richer information like
statistics of the execution.

Consider a TeSSLaa specification over input variables I and defined vari-
ables O. A valuation of a signal variable x of type D is an element of SD.
Similarly, a valuation of a stream variable y of type D is an element of ED.
We extend valuations to sets of variables in the usual way. If σI and σO are
valuations of sets of variables I and O with I ∩O = ∅ then we use σI ∪ σO for
the valuation of I ∪O that coincides with σI on I and σO on O.

Let [[l]] be the value of a literal l, which is an element of its correspond-
ing domain. Also, given a function name f we use [[f ]] for the mathematical
function that gives an interpretation of f (that is, a map from elements of
the domain to an element of the co-domain). Given a valuation σ for each of
the variables I ∪ O of a specification ϕ(I,O), we can give a meaning to each
expression E over variables I and O, written [[E, σ]], recursively as follows:
– variable name (E = name):

[[name, σ]] = σ(name);

– literal (E = l):

[[l, σ]] = [[l]];

– function application (E = f(e1, . . . , en)):

[[E, σ]] = [[f ]]([[e1, σ]], . . . , [[en, σ]])

An evaluation model of a specification ϕ(I,O) is a valuation σ for variables I
and O, such that the valuation of every output x variable coincides with the
valuation of its defining equation Ex:

[[x, σ]] = [[Ex, σ]].

Informally, a valuation σ is an evaluation model whenever, for every defined
variable x, the value that results when evaluating x and when evaluating its
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ok

implies

>
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within

−1 1 filter
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eventCount
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Fig. 1 The dependency graph for the spec in Example 2. Inputs are shown in brown,
constants in blue, outputs in green, computation nodes in red and some possible merges of
computation nodes in dashed red.

defining expression Ex coincide. We say that a specification ϕ(I,O) is well-
defined whenever for every valuation σI of input variables I there is a unique
valuation σO of output variables O such that σI ∪σO is an evaluation model of
ϕ. Note that a candidate σ to be an evaluation model assigns a signal (or event
stream) to each input and output variable. In other words, the semantics we
just introduced allow to check whether a candidate output signal assignment
is an evaluation model for the given input signals. We will give in Section 3 an
iterative algorithm to compute, for a given specification, the (unique) output
for a given input.

Non-recursive specifications In order to guarantee that every specification is
well-defined, we restrict legal TeSSLaa specifications such that no variable x
can depend circularly on itself. More formally, given a specification ϕ(I,O)
we say that a variable x directly depends on a variable y if y appears in the
defining equation Ex, and we write x → y. We say that x depends on y if
x →+ y (where →+ is the transitive closure of →). The dependency relation
x →+ y gives a necessary condition for y to affect in any way the value of
x. The dependency graph has variables as nodes and the dependency relation
as edges. Note that input variables and constants are leafs in the dependency
graph. The dependency graph of legal TeSSLaa specifications must be non-
recursive (i.e. for every x, x 6→+ x), which is easily checkable at compile time.
If this is the case, the dependency graph is a DAG and a reverse topological
order gives an evaluation order to compute the unique evaluation model. If all
variables y preceding x have been assigned a valuation (the only one for which
[[y]] = [[Ey]]) then [[Ex]] can be evaluated, which is the only possible choice for
x.
Hence, this restriction guarantees that all TeSSLaa specifications are well-
defined. Figure 1 shows the dependency graph of the specification from Ex-
ample 2.
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add : SD × SD → SD, D ∈ {N,Z,R}
add (σ1, σ2)(t) := σ1(t) + σ2(t)

sub : SD × SD → SD, D ∈ {Z,R}
sub (σ1, σ2)(t) := σ1(t)− σ2(t)

mul : SD × SD → SD, D ∈ {N,Z,R}
mul (σ1, σ2)(t) := σ1(t) · σ2(t)

div : SD × SD′ → SD, D ∈ {N,Z,R}
div (σ1, σ2)(t) :=

σ1(t)
σ2(t)

D′ = D \ {0}

gt : SD × SD → SB, D ∈ {N,Z,R}
gt (σ1, σ2)(t) := σ1(t) > σ2(t)

geq : SD × SD → SB, D ∈ {N,Z,R}
geq (σ1, σ2)(t) := σ1(t) ≥ σ2(t)

leq : SD × SD → SB, D ∈ {N,Z,R}
leq (σ1, σ2)(t) := σ1(t) ≤ σ2(t)

eq : SD × SD → SB, any D with equality

eq (σ1, σ2)(t) := σ1(t) = σ2(t)

max : SD × SD → SD, D ∈ {N,Z,R}
max (σ1, σ2)(t) := max{σ1(t), σ2(t)}

min : SD × SD → SD, D ∈ {N,Z,R}
min (σ1, σ2)(t) := min{σ1(t), σ2(t)}

abs : ED → ED, D ∈ {N,Z,R}

abs (η)(t) :=

{
|η(t)| if t ∈ E(η)

⊥ otherwise

abs : SD → SD, D ∈ {N,Z,R}
abs (σ)(t) := |σ(t)|

Fig. 2 Arithmetic operations with their semantics.

In Section 3 we will use the dependency graph to define operational se-
mantics of an evaluation engine for TeSSLaa specifications. Note also that if
one merges a node n and the nodes n directly depends on, and replaces the
function of n with the composition of the functions of the merged nodes, the
resulting graph is still a DAG, and the streams computed will be the same. For
example in Figure 1 nodes > and eventCount could be merged. Such a node
is called computation node or node for short. A node either corresponds to a
single function or to multiple composed functions in the TeSSLaa specification.
LOLA [10] allows recursive specifications at the price of definedness (meaning
not all specification have a unique evaluation model). The main result in [10]
concerning well-definedness of synchronous specifications is that well-formed
specifications are well-defined. A well-formed stream specification is such that
all recursive dependencies of a variable x must be either all strictly forward or
all strictly backwards. In TeSSLaa, however, all specifications are well-defined
because dependencies are guaranteed to be non-recursive. This apparent limi-
tation however, allows the following expressive power to TeSSLaa. In TeSSLaa
the delay dependencies between one variable and another need not be re-
stricted to be constants, because the analysis of dependency cycles performed
for well-formedness is not required. A specification in TeSSLaa can allow, for
example, delays extracted from values of input signals, which are only known
dynamically. This is currently not reflected in the semantics above, but could
be a possible future extension.
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and : SB × SB → SB
and (σ1, σ2)(t) := σ1(t) ∧ σ2(t)

or : SB × SB → SB
or (σ1, σ2)(t) := σ1(t) ∨ σ2(t)

not : SB → SB
not (σ)(t) := ¬σ(t)

neg : EB → EB

neg (η)(t) :=

{
¬η(t) if t ∈ E(η)

⊥ otherwise

Fig. 3 Logical operations with their semantics.

maximum : SD → SD
maximum (σ)(t) := max{η(t′) | t′ ≤ t}

minimum : SD → SD
minimum (σ)(t) := min{η(t′) | t′ ≤ t}

maximum : ED ×D → SD
maximum (η, d)(t) :=

max({d} ∪ {η(t′) | t′ ∈ E(η), t′ ≤ t})

minimum : ED ×D → SD
minimum (η, d)(t) :=

min({d} ∪ {η(t′) | t′ ∈ E(η), t′ ≤ t})
timestamps : ED → ET

timestamps (η)(t) :=

{
t if t ∈ E(η)

⊥ otherwise

sum : ED → SD
sum (η)(t) := Σ{t′∈E(η)|t′≤t}η(t′)

sma : ED × N → ED, D ∈ {N,Z,R}
sma (η, n)(t) :=

∑
t′′∈maxn{t′∈E(η)|t′≤t} η(t

′′)

|maxn{t′∈E(η)|t′≤t}| if t ∈ E(η)

⊥ otherwise

mrv : ED ×D → SD
mrv (η, d)(t) :={

η(maxE(η) ∩ [0, t]) if E(η) ∩ [0, t] 6= ∅
d otherwise

eventCount : ED1
× ED2

→ SN
eventCount (η1, η2)(t) := |{t′ ∈ E(η1) | t′ ≤ t ∧ ∀t′′ ≤ t ∈ E(η2) : t′ > t′′}|

Fig. 4 Aggregation operators with their semantics.

2.5 A Library Builtin Functions and their Semantics

There are five types of functions in TeSSLaa, apart from logical functions:
arithmetic functions, aggregations, stream manipulators, timing functions (ex-
plained above) and temporal property functions. Figures 2–5 show the set of
functions provided by TeSSLaa as well as their semantics.

Simple arithmetic functions provide capabilities for performing arithmetic
operations on streams. In general, these functions take a set of signals as input
and output another signal. Examples include basic arithmetic operations like
add, mul, etc. More complex calculation functions in TeSSLa are aggregations,
which take event streams as input and output a signal. Examples are sum
that computes the sum of all events that happened on an event stream, and
eventCount that counts the events. Another important aggregation function
is mrv : ED × D → SD which converts an event stream into a signal that
receives the most recent value in the event stream (or a default value of type
D provided as second argument). This function is important for transforming
event streams into signals.
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changeOf : SD → E{>}

changeOf (σ)(t) :=

{
> if t ∈ ∆(σ)

⊥ otherwise

ifThen : ED1 × SD2 → ED2

ifThen (η, σ)(t) :=

{
σ(t) if t ∈ E(η)

⊥ otherwise

sample : SD1
× ED2

→ ED1

sample (σ, η) := ifThen(η, σ)

filter : ED × SB → ED

filter (η, σ)(t) :=


η(t) if t ∈ E(η)

and σ(t) = true

⊥ otherwise

ifThenElse : SB × SD × SD → SD
ifThenElse (σ1, σ2, σ3)(t) :={

σ2(t) if σ1(t) = true

σ3(t) otherwise

merge : ED × ED → ED
merge (η1, η2)(t) :=

η1(t) if t ∈ E(η1)

η2(t) if t ∈ E(η2) \ E(η1)

⊥ otherwise

occursAny : ED1
× ED2

→ E{>}
occursAny (η1, η2)(t) :={

> if t ∈ E(η1) ∪ E(η2)

⊥ otherwise

occursAll : ED1
× ED2

→ E{>}
occursAll (η1, η2)(t) :={

> if t ∈ E(η1) ∩ E(η2)

⊥ otherwise

Fig. 5 Stream manipulation operators with their semantics.

Sampling functions convert a signal into an event stream. The function
changeOf : SD → ED returns an event stream with an event at the point
in time at which the signal changes. The function sample : SD × ED → ED
samples a signal by an event stream and returns an event stream with the
values obtained from the signal. Stream manipulators allow to process event
streams. Examples include a filter operator which allows to delete events and
merge which fuses two event streams.

Example 4 Consider the following specification:

in open1: Events<Unit>
in open2: Events<Unit>
in close: Events<Unit>
define numberClose := eventCount(close)
define numberOpen := eventCount(merge(open1, open2))
define error := gt(numberClose, numberOpen)
out error

The specification is about the opening and closing of files. We assume that
there are two functions that open a file and one which closes a file in the
system under analysis. The specification establishes that the method which
closes files should not be called more often than the two which open files
together. In the first three lines, the functions to observe are declared. In the
fourth line, the number of closing events is counted and in line five, the two
open event streams are merged before the number of opens is counted. In line
six it is checked if the number of close events is larger than the number of open
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events and in line seven, the signal which is true as long as too many close
events occurred (hence, which is true if an error happened), is the output.

Event stream open1

Event stream open2

Event stream close

Signal numberClose 0 1 2 3 4 5 6 7

Signal numberOpen 0 1 2 3 4 5 6

Signal error

The stream picture above shows a possible run. �

3 Online Evaluation of Efficiently Monitorable Specifications

In runtime verification [10,28] there is a distinction between online and offline
evaluation. In online RV the monitor must respond after each stimulus while
in offline evaluation the monitor has all the trace at its disposal, like in post-
mortem analysis.

The semantics provided in the previous section is denotational in the sense
that these semantics allows to check whether an input valuation and an output
candidate valuation satisfy the specification. Even though the well-definedness
of specifications guarantees that there is a unique output for every input, these
semantics does not give a method to compute the only output for a given input.
Moreover, these denotational semantics require the whole input to be available
to the monitor. This restriction implies that a naive monitor would have to
wait for the whole execution to be available. Even worse, in this section we
consider unbounded executions as infinite traces.

The main activity in runtime verification is the study of how to gener-
ate monitors from formal specifications. In online monitoring, these monitors
inspect the input as it is received producing the verdict incrementally. We de-
velop now an iterative operational semantics for online monitoring of TeSSLaa
specifications. To ease the presentation in this section we restrict TeSSLaa
specifications to refer to present and past values only (even though the results
can be easily extended to arbitrary TeSSLaa specifications). These specifica-
tions are known as efficiently monitorable [10], and satisfy that the values
of an output stream variable x at a position t can be immediately resolved
to their unique possible values (by evaluating Ex on the variables lower in
the dependency graph) when inputs are known up to some time t′ (typically
t′ = t).

We show in this section how TeSSLaa specifications can be compiled into a
single monitor that receives multiple inputs from the system under observation.
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Each input is received at an input source, which is associated with an input
stream variable from the TeSSLaa specification. Recall that at runtime the
monitor can receive events at each input source at different speeds and with
different delays (even though all events or signal changes are stamped with
a time value from a global clock). However, at each source, the input events
received will be in order of increasing time-stamp and the output and there
are only a finite number of events between any two time instants.

3.1 Evaluation Engines

We introduce now a model of computation, called evaluation engines, to define
the operational semantics of TeSSLaa specifications and to reason about the
correctness of different implementations of the online monitors.

Given a specification ϕ(I,O) every defined stream variable is translated
into a building block called an evaluation engine node or simply a node. Nodes
communicate using event queues, including the input queues associated with
input sources. We describe now evaluation engines and later in Section 3.3
describe the specific nodes that correspond to each TeSSLaa construct.

Let ϕ(I,O) be a TeSSLaa specification (which, without loss of generality we
assume to be flat). Let G be the dependency graph of ϕ, and N the collection
of vertices of G. The evaluation engine of ϕ contains one execution node per
vertex in N . These nodes can execute concurrently and asynchronously. Nodes
that read input sources are called input nodes. Nodes communicate using timed
letters (a, t), which we call events. Evaluation engines equip each node n with
one queue for each of the node’s inputs, that is, there is one queue per edge in
the graph G. The node n will only inspect and extract events from the heads
of its input queues, while nodes that n directly depends on generate events
and insert these events through the tail of the corresponding queue. That is,
at runtime, events are sent along the reversed edges of G. For example, in the
specification in Fig. 1, there are two incoming edges to node e, one from node
eventCount and another edge from node filter. Every event received at input
source e will be copied into the input queue of node eventCount and into the
input queue of node filter. Then, the eventCount node and the filter node will
process their copy of the event independently.

Queues support the standard operations for extracting the head, and ap-
pending to the tail.

Definition 4 (Queue) A queue Q can be accessed with the following func-
tions
– enqueue(Q, a): adds a to the tail of Q,
– dequeue(Q): removes the head element from the queue and returns it,
– peek(Q): returns the same as dequeue(Q) without changing Q,
– last(Q): returns the last element which was dequeued from Q.

The only non-standard operation is last(Q) which simply allows to remem-
ber the last element extracted from the queue. Our queues are typed in the
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sense that each queue stores events (a, t) where a has sort D (the sort of the
corresponding stream variable or expression).

Formally, we model an evaluation engine as a transition system E : 〈S, T, s0〉,
where the set of states S consists of the internal state of each node n, together
with the state of each input queue of every node. In the initial state s0 ∈ S
all queues are empty and all internal states of the nodes are set to their initial
values. An evaluation engine can be fed with input events at the input sources.
During execution the evaluation engine can produce output events emitted at
the queues that correspond to output stream variables. A transition τ ∈ T of
an evaluation engine involves the execution of exactly one node. A transition
is called enabled when there is at least one event present in every input queue
of the node, or if the corresponding node is an input source and there are
input events received. Firing a transition corresponds to executing one step
of the (small step) operational semantics of the TeSSLaa operation associated
with the execution node. Firing a transition consumes at least one event from
some of the node’s input queues producing events into the output queues and
updating the internal state of the node. In particular, if t is the oldest time-
stamp among the events in the heads of the input queues, firing a node will
consume all heads of all queues that have timestamp t. The events produced
are pushed to the corresponding queues of the nodes directly depending on the
executing node. For convenience, we add the special transition λ ∈ T for the
empty transition where no event is consumed, which is always enabled. We use
apply : S×T → S for the application of a transition to a state of the evaluation
engine. It is important to remark that firing a transition only removes events
from the input queues, only places events in the output queues and preserves
the internal states of all nodes except possibly the firing node. The function
node : T \ {λ} → N provides the node corresponding to a transition. A run is
obtained by the repeated application of transitions.

Definition 5 (Run) A run of an evaluation engine E is a sequence r =
(λ, s0)(τ1, s1)(τ2, s2) . . . ∈ (T × S)ω of transitions and states such that for
every i > 1, node(τi) is enabled at state si−1 and apply(si−1, τi) = si.

We consider here finite and infinte inputs and outputs. Note that every
finite run prefix can be extended to an infinite run by adding λ transitions at
the end if necessary. A finite stream of events on source x will always contain a
final event (x, prog,∞) (see below) to indicate that the stream corresponding
to x contains no further event on any future time-stamp. We call these termi-
nating streams and they are modeled by finite strings of events. However, we
also model infinite words in which case the stream is modeled by an ω-word
whose time-stamps grow beyond any bound.

We will reason about the output of a run for a given engine and input. Let
V = I∪O be the finite collection of stream variables in a specification ϕ(I,O),
and let Dv be the sort of variable v. A timed letter is an element (v, d, t) where
v ∈ V is a stream variable, d ∈ Dv is a value, and t is a time-stamp. We use Σv
for the alphabet of timed letters (v, d, t) for stream variable v, Σin = ∪v∈IΣv
for the input alphabet and Σin = ∪v∈OΣv for the output alphabet. We use
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Σ∗in to denote finite strings from Σin (in increasing order of time-stamps), Σω
in

for ω strings of events from Σin (in increasing orther and with a finite number
of events between any two bounds) and Σ∞in for the union of Σ∗in and Σω

in. The
definitions of Σ∗out, Σ

ω
out and Σ∞out are analogous.

Given a timed letter a we use t(a) to denote its time component, we use
source(a) to represent the source of a and value(a) for the value. Given a timed
word w we use L(w) for the timed letters occurring in w and pos(w, a) for the
position of a letter a in w. The time-stamps of letters model the system time
(the time in terms of the global clock of the system at which the event was
stamped), while the position of a letter in the word models the monitoring time
(the moment at which the monitor produced or received the event, relative to
the processing instant of other events). Given a run r we use output(r) for the
concatenation of the outputs produced in r, and output(r, x) for the output
produced at the queue corresponding to stream variable x ∈ O. The notion of
output a run can also be applied to a run prefix. We will later show that every
possible execution of an evaluation engine generates an equivalent output if
each input stream is the same even if the streams are non-sychronized, as long
as these streams are in-order.

Definition 6 (In-order & Synchronized Inputs) A word w is

– in-order whenever for every a, b ∈ L(w) if pos(w, a) < pos(w, b) and
source(a) = source(b) then t(a) ≤ t(b).

– synchronized whenever for every a, b ∈ L(w) if pos(w, a) < pos(w, b) then
t(a) ≤ t(b).

Example 5 Consider two input sources x and y, and let x receive the input
(x,T, 0)(x,T, 3) and y receive (y,F, 1)(y,F, 6). The following two inputs

– w1 : (x,T, 0)(y,F, 1)(x,T, 3)(y,F, 6) and
– w2 : (x,T, 0)(y,F, 1)(y,F, 6)(x, T, 3)

are in-order. However, w1 is synchronized but w2 is not, because in w2 (x,T, 3)
is received after (y,F, 6) but 3 is an earlier time-stamp than 6. The input w2 is
still in-order because the sources are different for the letters received in reverse
order of time-stamps. �

Note that we get the output of the evaluation engine by concatenating all
the output events produced in the run. It is possible that more than one node
is enabled in a given state. A scheduler chooses a transition to fire among
the enabled transitions. We assume that all input streams are received in
increasing time order and that all nodes produce events in increasing time
order if their inputs are received in increasing time order. Even though output
events produced by any given node are produced in increasing time according
to a time-stamp, outputs produced by different nodes may not be ordered
among each other, so concatenating output streams does not necessarily lead to
a timed order sequence (that is, our streams are in-ordered but not necessarily
synchronized).
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Output Completeness and Progress

An actual event carries information about its occurrence, but we also need
to be able to convey information about the absence of events up to a given
time. Consider for example a filter node that never generates an event because
its input always gets filtered out, followed by an eventCount node. The even-
Count node would never generate an output because it will never receive an
event from the filter node. Consequently, the verdict that the output of the
eventCount node models would not be known, because the eventCount block
does not know whether there are no events or there are events but these have
not arrived. We introduce now extra events, called progress events, whose only
purpose is to inform nodes downstream about the absence of events up to the
time-stamp of the progress event. In particular, an event (a, prog,∞) corre-
sponds to the information that the stream that a models has no events in the
future (modeling a terminating stream).

Definition 7 (Output complete) A node n of an evaluation engine is called
output complete if whenever n fires it produces at least one event in its output
queue, which can either be a real event or a progress event.

In our example, if the node implementing the filter is output complete it will
inform the eventCount node about the absence of actual events (due to the
filtering) by sending a progress event. In turn, the eventCount node would not
increase the counter but emit the verdict with the same value, or a progress
event to indicate that there is no change in the total number of events counted.
As we will see, in order to guarantee progress of all nodes beyond any time
bound, we require the operational semantics of all TeSSLaa operators to be
output complete, while still implement the intended functionality.

Nodes realizing state-less functions on signals with multiple inputs (e.g.
addition) always wait until they know the values of all their input signals
in order to produce an output. If such a node n receives a progress event,
instead of an event carrying the change of a value, n knows that the signal
has not changed up to the time-stamp attached to the progress event. With
that knowledge, n can produce the output for the time instant of the change
in the other inputs (or generate itself a progress event if no input has changed
its value). Recall that nodes are enabled whenever all of their input queues
contain at least one event (real or progress). For state-full functions the change
required to process progress events depends on the particular function. It is
easy to see that with output complete building blocks all nodes, when fired,
consume at least one input and generate exactly one output.

Definition 8 (Progressing node) We say that a node n is progressing
whenever the output of n progresses beyond any time t, provided that all
its inputs are eventually available beyond any time t′ (and the node is fired
enough times).

Note that if a node n is enabled (all its inputs have at least an event), then it
will be continuously enabled until fired. This is because all other transitions
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can only add events to the input queues of n. Hence, the only requirement
to guarantee that every node eventually generates output beyond any time
bound is that the scheduler (eventually) fires all enabled nodes, a property
that is usually known as fairness of the scheduler. In particular, a run is
fair if every enabled transition is eventually taken. Using output complete
progressing nodes, in fair runs all events in all queues are eventually processed,
and all queues eventually progress beyond any bound.

Theorem 1 Let E be an evaluation engine and let all its nodes be progressing
and output complete. Then, in every fair run of E all outputs for all queues
eventually progress beyond any bound.

Proof By contradiction, assume that there is a run of E for which some node
does not progress beyond some bound t. Let n be one such node that is minimal
in a reverse topological order of G (that is, all nodes upstream between input
source nodes and n progress beyond any bound in the run). It follows, by the
progress of all nodes of E, that all queues up-stream from n progress beyond
any bound, in particular the nodes directly connected to n. Since all nodes
are complete, this means that the input queues of n contain events beyond
any bound, and therefore n is continuously enabled. If n is not taken then
the run is not fair, which is a contradiction. But since n is progressing, if n
is taken enough times it then must generate output beyond any bound, and
in particular beyond t, which contradicts our assumption. Therefore, in every
fair execution all nodes generate output beyond any bound, as desired. ut

We say that a word v is complete up-to t if the last event in v has a
time-stamp t′ with t′ ≥ t. Given a word v and a time-stamp t, we use v|t for
the word that results by eliminating all progress events and all events with a
time-stamp higher than t.

Consider two finite streams v and w for the same source x. We say that v
is complete up-to t if the last event in v has a time-stamp t′ with t′ ≥ t. We
say that v and w coincide up-to t if v|t = w|t.

3.2 Asynchronous Correctness

We introduce now a theory of time transducers to prove that evaluation engines
always compute an equivalent answer, in spite of the (fair) scheduler used and
the relative arrival times of the input events.

A “classical” synchronous transducer is simply an element of (Σin×Σout)
∗.

However, we model asynchronous transducers to decouple the rate of arrival
at input sources from the internal execution of the evaluation engine. A timed
transducer F is F ⊂ Σ∞in × Σ∞out. Our timed transducers will relate every
input to some output (possibly ε). A timed transducer F is complete if for all
w ∈ Σ∞in there is some v ∈ Σ∞out such that (w, v) ∈ F . Our intention is to use
F as the set of outputs that executions of an engine, such that by reading w,
the engine that F models can produce v.
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Definition 9 A timed transducer F is strictly deterministic if for all w ∈ Σ∞in ,
and for all v, v′ ∈ Σ∞out, if (w, v) ∈ F and (w, v′) ∈ F , then v = v′.

In the theory of transducers, a strictly deterministic transducer is some-
times called a functional transducer. For example, consider a transducer that
delays every input letter by one time instant. This transducer is complete
and strictly deterministic and would translate (a, F, 0)(b, F, 1)(a, F, 2) into
(a, F, 1)(b, F, 2)(a, F, 3). However, strict determinism is too fine grained for
our purposes because we want to allow output letters to be produced out of
order, that is, we want to allow the monitor to produce earlier a verdict with
a later timestamp (for a different output stream). We use the timed reordering
function timed : Σ∞out → Σ∞out which removes progress events and reorders
a word according to the time-stamps of its time letters (and break ties ac-
cording to some lexicographic order in the source). The following notion of
asynchronous determinism captures more precisely the deterministic nature of
asynchronous evaluation engines.

Definition 10 (Asynchronous determinism) A timed transducer F is
called asynchronous deterministic if for all w ∈ Σ∞in and for all v, v′ ∈ Σ∞out
with (w, v) ∈ F and (w, v′) ∈ F , timed(v) = timed(v′).

Asynchronous determinism allows non-deterministic transducers to produce
different outputs for the same input prefix as long as the outputs are identical
up-to reordering.

Finally, we introduce observational equivalence between transducers. We
will show that the transducers corresponding to different (fair) schedulers of
the same evaluation engine are observationally equivalent, which allows to
reason about runs using deterministic schedulers but use highly concurrent
schedulers at runtime.

Definition 11 (Observational Equivalence) Let F and G be two timed
transducers over the same input and output alphabets, and let w ∈ Σ∞in . We
say that F and G are observational equivalent, and we write F ≡O G whenever
for all v, u ∈ Σ∞out with (w, v) ∈ F and (w, u) ∈ G, timed(v) = timed(u).

It is easy to see that observational equivalence is an equivalence relation for
asynchronous deterministic transducers, because the definition of ≡O is sym-
metric and transitive, and if F is asynchronous deterministic then F ≡O F .

Before we prove the main result of evaluation engines as asynchronous
transducers, we show two auxiliary lemmas.

Lemma 1 Let r and r′ be two arbitrary runs of E on the same input. The out-
put generated at every node x is the same in r and in r′, that is output(r, x) =
output(r′, x).

Proof By contradiction, assume that the outputs are different and let n be the
lowest node in a reverse topological order in G whose output differ. Then, in r
and r′, even though the input queues to n are identical, n generates different
outputs, which is a contradiction because the individual transitions, including
n of engines are deterministic. ut
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Lemma 2 Let r and r′ be two runs of E such that output(r, x) = output(r, x′)
for every x. Then timed(output(r)) = timed(output(r′)).

Proof By contradiction, assume timed(output(r)) 6= timed(output(r′)) and let
(x, a, t) be the first event after the common prefix of r and r′. That means
that the projection on x of the common prefix of r and r′ before (x, a, t) is
equal, and (x, a, t) is the next event in output(r, x), but this event is not in
output(r′, x), which contradicts Lemma 1. ut

Lemma 2 implies directly the following result.

Theorem 2 Let E be an evaluation engine. Then

– the transducer for any set of fair runs of E is asynchronous deterministic
and

– the transducers of E for two fair schedulers are observationally equivalent.

3.3 TeSSLa Library of Builtin Functions. Operational Semantics

We now present the operational semantics of the TeSSLaa functions listed in
Section 2. All the nodes presented—when fired—only modify their internal
state, always process the oldest input event, and always generate at least one
output event (that is, all nodes are output complete). The fact that the oldest
event is always processed implies that all input events are processed beyond
any bound in a finite number of firings, because the inputs are non-zeno.
Moreover, we will show that output events generated by the nodes grow beyond
any bound in a finite number of firings (that is, all nodes are progressing).
Hence, all TeSSLaa specifications satisfy the conditions of Theorem 1 and all
runs under a fair scheduler progress beyond any bound.

The operational semantics defined here correspond with the denotational
semantics from Section 2.4. In order to see this, consider a node n that has
processed all inputs up to t and generated the output up-to t′. It is sufficient
to show that for every valuation of the input streams that extends the input
processed, the only output valuation corresponds with the output generated up
to t′. If this holds, after a finite number of firings all output streams correspond
with the only possible outputs according to the denotational semantics of
TeSSLaa. Different schedulers can produce different runs for the same inputs
(which can also arrive at different times), but after enough time every output
stream will be the same.

The computational nodes that we describe now are enabled if for all input
queues Q we have peek(Q) 6= nil. We use the statement emit(a) to indicate
that a is send to the output, that is a is enqueued to the corresponding input
queues of all nodes directly connected to the output of the running node in
the dependency graph.
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3.3.1 Binary Arithmetic Functions

We start with add : SD × SD → SD that has two input queues A and B and
the following code:

1 prog← false
2 if peek(A).time = peek(B).time then
3 a← peek(A).value, b =← peek(B).value,
4 t← peek(A).time
5 if a = progress and b = progress then
6 prog← true
7 else if a = progress then a← last(A).value
8 else if b = progress then b← last(B).value
9 dequeue(A),

10 dequeue(B)
11 else if peek(A).time < peek(B).time then
12 a← peek(A).value, b← last(B).value,
13 t← peek(A).time
14 if a = progress then prog = true
15 dequeue(A)
16 else
17 a← last(A).value, b← peek(B).value,
18 t← peek(B).time
19 if b = progress then prog← true
20 dequeue(B)
21 if prog then
22 emit(progress, time = t)
23 else
24 emit(a+ b, time = t)

Note that for the progress events we assume an automatic storage and
proper initialization of the last value, e.g. for a queue Q iff peek(Q).value =
progress we have the following implicit behavior for a call of dequeue(Q):

tmp = last(Q).value
dequeue(Q)
last(Q).value = tmp

Furthermore, for signals the command emit does only emit the first event if
called multiple times in a row with exactly the same event. Otherwise the
above implementation of processing progress events would lead to multiple
emission of the same event. Finally, unless the domain is unit, emit converts
events with a value into progress events if the value is the same as the value
of the last emitted event.

By changing the applied arithmetics, the code above can be applied to the
following binary operators on signals as well: sub, mul, div, gt, geq, leq, eq, max,
min, and and or. This is simply achieved by replacing line 24 as follows.
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– For sub:

24 emit(value = a− b, time = t)

– For mul:

24 emit(value = a · b, time = t)

– For div:

24 emit(value = a/b, time = t)

– For gt:

24 emit(value = a > b, time = t)

– For geq:

24 emit(value = a ≥ b, time = t)

– For leq:

24 emit(value = a ≤ b, time = t)

– For eq:

24 emit(value = a = b, time = t)

– For max:

24 emit(value = max(a, b), time = t)

– For min:

24 emit(value = min(a, b), time = t)

– For and:

24 emit(value = a ∧ b, time = t)

– For or:

24 emit(value = a ∨ b, time = t)

3.3.2 Unary Arithmetic Functions

For abs : SD → SD we have one input queue A and the following code:

1 if peek(A).value = progress then
2 emit(progress, time = peek(A).time)
3 else
4 emit(value = |peek(A).value|, time = peek(A).time)
5 dequeue(A)
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By changing the applied arithmetics, the code above can be applied to
the following unary operators as well: abs : ED → ED, not : SB → SB, neg :
EB → EB, timestamps : ED → ET, mrv : ED ×D → SD and changeOf : SD →
E{>}. This is accomplished by changing line 4 in the code of abs with the
corresponding operation.

3.3.3 Aggregation Functions

For sum : ED → SD we have one input queue A, the internal state ∈ D
initialized with 0 and the following code:

1 if peek(A).value = progress then
2 emit(progress, time = peek(A).time)
3 else
4 state = state + peek(A).value
5 emit(value = state, time = peek(A).time)
6 dequeue(A)

By changing the applied arithmetics, the code above can be applied to the
following aggregating operators as well: maximum : ED×D → SD, maximum :
SD → SD, minimum : ED×D → SD, minimum : SD → SD and sma : ED×D.
This is accomplished by replacing line 4 with the right operation.

For eventCount : ED1
×ED2

→ SN we have two input queues A and B, the
internal state ∈ N initialized with 0 and the following code:

1 prog← false
2 if peek(A).time = peek(B).time then
3 t← peek(B).time
4 if peek(A).value = progress and peek(B).value = progress then
5 prog← true
6 else if peek(B).value = progress then
7 state← state + 1
8 else
9 state← 0

10 dequeue(A)
11 dequeue(B)
12 else if peek(A).time < peek(B).time then
13 t← peek(A).time
14 if peek(A).value = progress then
15 prog← true
16 else
17 state = state + 1
18 dequeue(A)
19 else
20 t← peek(B).time
21 if peek(B).value = progress then
22 prog← true
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23 else
24 state = 0
25 dequeue(B)
26 if prog then
27 emit(value = progress, t)
28 else
29 emit(value = state, t)

3.3.4 Filtering Functions

For ifThen : ED1
× SD2

→ ED2
we have two input queues A and B and the

following code:

1 prog← false
2 if peek(A).time = peek(B).time then
3 t← peek(A).time
4 if peek(A).value = progress then
5 prog← true
6 else if peek(B).value = progress then
7 v ← last(B).value
8 else
9 v ← peek(B).value

10 dequeue(A), dequeue(B)
11 else if peek(A).time < peek(B).time then
12 t← peek(A).time
13 if peek(A).value = progress then
14 prog← true
15 else
16 v ← last(B).value
17 dequeue(A)
18 else
19 t← peek(B).time
20 prog← true
21 dequeue(B)
22 if prog then
23 emit(value = progress, t)
24 else
25 emit(value = v, t)

For filter : ED × SB → ED we have two input queues A and B and the
following code:

1 prog← true
2 if peek(A).time = peek(B).time then
3 t← peek(A).time
4 if (peek(B).value = progress and last(B).value) or peek(B).value then
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5 v ← peek(A).value
6 else
7 prog← true
8 dequeue(A), dequeue(B)
9 else if peek(A).time < peek(B).time then

10 t← peek(A).time
11 if last(B).value then
12 v ← peek(A).value
13 else
14 prog← true
15 dequeue(A)
16 else
17 prog← true
18 if prog then
19 emit(value = progress, time = t)
20 else
21 emit(value = v, time = t)

For ifThenElse : SB × SD × SD → SD we have three input queues A, B
and C, but apart from more cases the operative semantics is very similar to
ifThen and filter above. For merge : ED × ED → ED we have two input queues
A and B and the following code:

1 prog← false
2 if peek(A).time = peek(B).time then
3 t← peek(A).time
4 if peek(A).value = progress then
5 v ← peek(B).value
6 else
7 v ← peek(A).value
8 dequeue(A), dequeue(B)
9 else if peek(A).time < peek(B).time then

10 t← peek(A).time
11 v ← peek(A).value
12 dequeue(A)
13 else
14 t← peek(B).time
15 v ← peek(B).value
16 dequeue(B)
17 emit(value = v, time = t)

With slight modifications the code above can be applied to occursAny :
ED1
× ED2

→ E{>} and occursAll : ED1
× ED2

→ E{>} as well.
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3.3.5 Timing Functions

For delay : SD×T×D → SD we have one input queue A and a constant d ∈ T
and the following code:

1 emit(value = peek(A).value, time = peek(A).time + d)
2 dequeue(A)

Taking into account the additional default value this can be extended to delay :
ED × T → ED on signals, too. For shift : ED → ED we only have one input
queue A and the following code:

1 emit(value = last(A).value, time = peek(A).time)
2 dequeue(A)

For within : T× T× ED → SB we have one input queue X belonging to a
stream x ∈ ED and the two constants a, b ∈ T, such that the node iteratively
computes within(a, b, x). For the operative semantics we assume a < b ≤ 0.
We then have the following code:

1 if last(X).time− a < peek(X).time− b then
2 emit(value = false, time = last(X).time− a
3 emit(value = true, time = peek(X).time− b)
4 else
5 emit(value = progress, time = peek(X).time− b)
6 dequeue(X)

All the constructs are deterministic and have no loops; all constructs con-
sume at least one event from at least one input queue (all the oldest events),
and produce one event. Moreover, the inputs are consumed in increasing time-
stamps and the outputs are also generated in increasing time-stamps. The
operational semantics for all functions except the timing functions only use
time-stamps that already occur in the input for their outputs.

4 Implementation and Evaluation

We report here an empirical evaluation of an implementation of the TeSSLaa
evaluation engine3. Our implementation consists of two parts. First, a compiler
translates a TeSSLaa specification into a dependency graph (and performs type
checking, macro expansion, and type inference for the defined streams, and also
checks that the specification is non-recursive). Then, the evaluation engine,
written in Elixir, takes an input trace and the dependency graph generated
by the compiler and produces an output trace.

Elixir is built on top of Erlang, the Erlang virtual machine BEAM and the
Erlang runtime library, called The Open Telecom Platform (OTP). One of the
key concepts of Erlang/OTP is the usage of the actor model [23] to deploy

3 Tools and benchmarks available at https://www.tessla.io/acyclic

https://www.tessla.io/acyclic
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code over multiple cores or even dsitributed machines in a network. An actor
is basically a self contained entity, that holds a state and can receive and send
messages to other actors. Since an actor manages its own state and is the only
one that can manipulate it, an actor can be scheduled on any core as long as the
runtime guarantees transparent message delivery. Our implementation realizes
the computation nodes as actors and relies on Erlang/OTP for the scheduling
of those. Theorem 2 guarantees that all runs of an engine are observationally
equivalent, independently of the scheduler. Hence this implementation is cor-
rect independently of the concrete realization of the Erlang/OTP scheduler.

4.1 Evaluation

With the empirical evaluation we pursue to answer the following questions:

(A) How well does the implementation exploit parallelism? The evaluation
engine discussed in this paper uses the minimal amount of synchronization
which guarantees a correct output. Hence, our implementation should be
able to automatically utilize the parallel computational power of multiple
cores.

(B) How is the runtime influenced by the length of the input trace? The eval-
uation engine exchanges messages along the reversed dependency graph,
which is acyclic. If the runtime of the computation nodes itself is con-
stant per processed message, every additional input event should add a
constant delta to the overall runtime.

(C) What is the relation between the specification size and the runtime? Adding
one extra computation node to the specification should add a constant
delta to the runtime, because every event is now processed by one extra
computational node.

To investigate these questions and evaluate the performance of our imple-
mentation we created several artificial benchmarks. We measured the execu-
tion time in relation to the number of processor cores, the length of the input
trace and the size of the specification. This evaluation only considers compu-
tation nodes, which store at most the previous input. Hence the assumption of
constant computation time per node is justified. Furthermore, we do not filter
any events, and input values in the input events does not influence how the
events are processed. Otherwise adding more input events would not always
have the same effect and the measurements would be biased.

Under these premises we created two scenarios: the chain scenario and
the tree scenario. The chain scenario consists of a chain of abs functions.
Every computation node directly depends on the output of the previous node.
This is a worst case scenario in the sense that there are no two independent
paths in the dependency graph, and each block sequentially depends on the
previous node. The tree scenario goes one step further by first reusing the
same input event multiple times repeatedly and then recombining all those
by joining two inputs each in a logarithmic binary tree. This scenario has a
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maximal synchronization requirement, since the output node—the root of the
tree—depends on all the intermediate computation nodes. Topologically, real
TeSSLaa specifications are typically a variation and combination of these two
scenarios.

All benchmarks were performed on the same machine with up to 12 cores
and 32GB of RAM. The results displayed in Figure 6 and Tables 1–3 sum-
marize the average of 20 runs. In addition to the overall runtime, the tables
show the number of outliers ignored in the average, the error—i.e. the maxi-
mal deviation of the individual executions from the average—and the relative
runtime per event or node, respectively.

(A) Number of cores. For this benchmark we used the chain specification with
16 nodes and the tree specification with 48 nodes. The input trace contains
exactly 10, 000 events. The results in Table 1 and the first row of Figure 6
show that the execution time decreases drastically with an increase on
the number of cores available, suggesting that our implementation is able
to make an effective use of parallelism, even in the case of the completely
linear dependency graph. The answer to question (A) is that our asyn-
chronous implementation is able to exploit parallelism automatically in a
pipeline fashion.

(B) Number of events in the input. To study the dependency of the execution
time with the input length we reused the same specifications and modified
the input sizes. The results are shown in Table 2 and the second row of
Figure 6. The plot on the right shows the average time per event. With
an increase on the input length, the static overhead is quickly amortized
and the length of the trace becomes less relevant for the average event
time. Consequently, in both cases the relative time shows a decay towards
a constant as more events are added.

(C) Number of nodes in the specification. The execution time also grows more
or less linearly in the size of the specification for both specifications.
For this benchmark we used input traces of 1, 000 events and increased
the number of computation nodes in both specifications. The results are
shown in Table 3 and the bottom row of Figure 6. Again, the relative
time per event shows a decay as more nodes are added, because the static
overhead becomes less relevant. Even with the number of computation
nodes now being exactly the same in the chain and the tree specification
the runtime for the tree specification is slightly higher. The tree speci-
fication has many more edges between the computation nodes than the
chain specification and hence the message passing overhead is higher in
this benchmark.

Even though these measurements are not fully cover all arbitrary TeSSLaa
specifications, they have been chosen to represent extreme cases of the depen-
dencies between blocks. Our empirical evaluation supports the feasibility of
our distributed asynchronous monitoring approach in terms of efficiency.
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time out- error
#cores [s] liers [ms]

1 1.69650 0 3.6
2 0.84310 1 5.8
4 0.58390 1 2.5
8 0.62420 1 2.2

12 0.63550 0 3.3

time out- error
#cores [s] liers [ms]

1 3.44400 0 13.0
2 1.96590 0 7.4
4 1.31000 1 11.0
8 1.20700 0 12.0

12 1.38080 3 5.6

Table 1 Benchmarking the chain specification with 16 nodes (left) and the tree specification
with 48 nodes (right), both with 10 000 input events and a varying number of cores. Average
runtime of 20 executions without the outliers, error being the maximal deviation of the
individual executions from the average.

time out- error time/#
#events [s] liers [ms] [ms]

500 0.19599 0 0.5 0.39198
1000 0.21397 1 0.5 0.21397
1500 0.23301 0 0.6 0.15534
2000 0.25167 0 0.8 0.12584
2500 0.27487 0 0.6 0.10995
3000 0.30048 0 0.8 0.10016
3500 0.32120 0 1.4 0.09177
4000 0.34940 1 1.3 0.08735
4500 0.37226 1 1.0 0.08272
5000 0.39520 0 1.1 0.07904
5500 0.41585 1 1.0 0.07561
6000 0.44130 0 2.0 0.07355
6500 0.46030 0 1.5 0.07082
7000 0.48505 1 0.7 0.06929
7500 0.52000 0 3.8 0.06933
8000 0.54940 0 2.8 0.06868
8500 0.56480 0 2.7 0.06645
9000 0.58730 0 3.1 0.06526
9500 0.61440 0 2.7 0.06467

10000 0.64220 0 4.7 0.06422

time out- error time/#
#events [s] liers [ms] [ms]

500 0.21882 1 0.7 0.43764
1000 0.26770 0 1.6 0.26770
1500 0.32750 2 1.4 0.21833
2000 0.39510 2 1.6 0.19755
2500 0.45360 2 3.3 0.18144
3000 0.50420 0 4.0 0.16807
3500 0.59120 0 7.4 0.16891
4000 0.64950 1 4.8 0.16238
4500 0.69230 0 4.3 0.15384
5000 0.73100 0 4.4 0.14620
5500 0.78590 2 5.1 0.14289
6000 0.83300 0 7.8 0.13883
6500 0.88930 0 9.0 0.13682
7000 0.96680 1 4.7 0.13811
7500 0.98250 0 5.8 0.13100
8000 1.06570 0 9.3 0.13321
8500 1.11460 0 7.6 0.13113
9000 1.17280 2 5.9 0.13031
9500 1.22670 0 5.6 0.12913

10000 1.28500 0 12.0 0.12850

Table 2 Benchmarking the chain specification with 16 nodes (left) and the tree specification
with 48 nodes (right), both with 12 cores and a varying number of input events. Average
runtime of 20 executions without the outliers, error being the maximal deviation of the
individual executions from the average.

time out- error time/#
#nodes [s] liers [ms] [ms]

8 0.42120 0 1.6 52.65000
16 0.60930 0 4.3 38.08125
24 0.81280 0 4.1 33.86667
32 1.02110 2 4.2 31.90938
48 1.17420 0 5.9 24.46250
64 1.26470 1 4.4 19.76094
96 1.50900 0 12.0 15.71875

128 1.82700 0 27.0 14.27344

time out- error time/#
#nodes [s] liers [ms] [ms]

8 0.46220 0 3.3 57.77500
16 0.71590 0 6.1 44.74375
24 0.94260 0 5.7 39.27500
32 1.18360 1 6.6 36.98750
48 1.33200 0 12.0 27.75000
64 1.47520 1 8.1 23.05000
96 1.75950 0 8.6 18.32813

128 2.28000 1 10.0 17.81250

Table 3 Benchmarking the chain specification (left) and the tree specification (right), both
with 10 000 input events, 12 cores and a varying number of nodes in the specification.
Average runtime of 20 executions without the outliers, error being the maximal deviation
of the individual executions from the average.
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Fig. 6 Benchmarks. The plots on the left show the total time and the plots on the right
show the relative time per event or node, resp. The blue line with cross marks indicates the
runtime of the chain specification and the red line with asterisk marks indicates the runtime
of the tree specification.

4.2 Instrumentation & Tool Chain

As mentioned in the introduction, TeSSLaa is designed to simplify FPGA
based implementations of the evaluation engine. Additionally, we also imple-
mented auxiliary tools to use TeSSLaa for the runtime verification of C pro-
grams, like a simple software instrumentation tool realized as a compiler pass
of the LLVM Compiler Infrastructure. We added the TeSSLaa functions func-
tion call and function return which generate an input stream with an event
every time the function is called or returns, respectively, during the run of the
program. This additional TeSSLaa functions are pre-processed into a list of



Runtime Verification of Non-synchronized Real-Time Event Streams 33

Fig. 7 Atom plugin for TeSSLaa based runtime verification of C programs.

functions that need to be instrumented and replaced with input streams for
further processing of the specification. This leads to the following tool chain
from a TeSSLaa specification ϕ:

1. Process ϕ into dependency graph G and identify the functions to instru-
ment.

2. Compile the C code to LLVM IR code.
3. Instrument the LLVM IR code and compile the result to an executable.
4. Run the executable, which generates the input trace r.
5. Run the TeSSLaa evaluation engine with G and r as inputs.

This tool chain using the TeSSLaa evaluation engine analyzed in this paper
is available as an Atom plugin integrating all the steps described above. The
plugin for the Atom editor is shown in Figure 7. Other TeSSLa implementa-
tions not restricted to the acyclic TeSSLaa fragment are discussed in [9] and
are available on the TeSSLa website4.

5 Conclusion

We studied in this paper the problem of efficiently monitoring stream runtime
verification specifications of real-time events and signals. In particular, our
goal was to support the arrival of events at different speeds of input event
streams and with different and varying latencies. The language we support

4 https://www.tessla.io

https://www.tessla.io
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in our solution is TeSSLaa, an acyclic fragment of the stream-based runtime
verification language TeSSLa for non-synchronized streams of piece-wise con-
stant real-time signals. We introduced the notion of evaluation engines as an
abstraction of online monitors that can execute asynchronously, based on in-
dependent building blocks that communicate using message passing. The main
result is that, assuming a few local properties in each of the concurrent nodes
(output completeness and progress), all executions for a given input compute
an equivalent output. The possible differences between the outputs are in terms
of the relative order of the output produced, but not in terms of the streams
they compute. A novel notion of asynchronous transducers allows to formalize
these equivalences, both for terminating and unbounded executions.

We then defined the operational semantics of TeSSLaa in terms of eval-
uation engines. To achieve output completeness we introduce the notion of
progress events, that allows the explicit communication of the absence of events
in a given stream. Our results enable different evaluation engines, includ-
ing asynchronous evaluation engines based on actors—which allow to exploit
multi-core parallelism—and evaluation engines implemented in FPGAs which
enable the utilization of massive hardware parallelism. Finally, we report in
this paper an implementation of an evaluation engine written in Elixir/Erlang.

Future work includes the extension of the approach to support richer spec-
ification languages, as well as supporting input streams that contain missing
or approximate information or errors in their values or precise timings.
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