
XX

Fusing Statecharts and Java

MARIA-CRISTINA MARINESCU, Computer Science Dept., Universidad Carlos III, Leganés, Spain
CÉSAR SÁNCHEZ, IMDEA Software Institute, Spain and Institute for Applied Physics, CSIC, Spain

This paper presents FUSE, an approach for modeling and implementing embedded software components
which starts from a main-stream programming language and brings some of the key concepts of Statecharts
as first-class elements within this language. Our approach provides a unified programming environment
which not only preserves some of the advantages of Statecharts’ formal foundation but also directly supports
features of object-orientation and strong typing. By specifying Statecharts directly in FUSE we eliminate
the out-of-synch between the model and the generated code and we allow the tuning and debugging to be
done within the same programming model. This paper describes the main language constructs of FUSE
and presents its semantics by translation into the Java programming language. We conclude by discussing
extensions to the base language which enable the efficient static checking of program properties.

Categories and Subject Descriptors: C.2 [Special-purpose and application-based systems]: Real-time
and embedded systems; I.6.5 [Simulation and Modeling]: Model Development; D.2.2 [Software Engi-
neering]: Design Tools and Techniques; D.3.3 [Language Constructs and Features]: Control Structures

General Terms: Languages, Design, Theory

Additional Key Words and Phrases: Embedded Systems, Programming Languages, Modeling, State-charts

ACM Reference Format:
Marinescu, M. C., and Sánchez C. ACM Trans. Embedd. Comput. Syst. X, X, Article XX (March 2012), 20
pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
One of the most popular approaches to modeling embedded software components out-
side the academic world are Statecharts and related state machine abstractions. Dif-
ferent types of state machines are better suited for different kinds of embedded devices.
For example, Activity Diagrams are appropriate when state changes are a result of the
completion of internal operations rather than the occurrence of an asynchronous ex-
ternal event. Statecharts, on the other hand, are well suited to the opposite scenario
in which transitioning from one state to another happens as result of an event. Addi-
tionally, Statecharts overcome limitations of other state machine formalisms, such as
the complexity of modeling and the difficulty in modeling concurrent and distributed
systems. These are serious limitations for concurrent, real-time embedded systems
such as those used in the avionic, automobile, and medical industries. Not only must
these devices react timely to events, but they need to do it in a reliable, correct man-
ner. Other formalisms exist that allow the specification of communicating concurrent
processes such as CSP and its offshoots. In fact, for hard real-time applications Timed

Author’s addresses: Maria-Cristina Marinescu, Computer Science Dept., Universidad Carlos III de Madrid,
Leganes, Spain; César Sánchez IMDEA Software Institute, Spain and Institute for Applied Physics, CSIC,
Spain.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/03-ARTXX $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

XX:2 Marinescu et al.

CSP is usually a more suitable choice than most Statecharts implementations since
these do not usually have a notion of measured time. On the other hand, Statecharts
are better suited than CSP for describing the internal behavior of a process.

While Statecharts do allow describing the internal operation of concurrent processes,
the level of detail is not as fine as one can achieve when using a mainstream language
such as Java, C, or C++. Therefore when modeling embedded components using Stat-
echarts, programmers typically fall back to using such mainstream languages when-
ever they specify detailed behavior such as the actions or conditions associated with
Statecharts transitions. Rather than treating the native programming language and
Statecharts as separate programming models, we propose an approach for modeling,
analyzing and implementing embedded components which starts from Java and brings
some of the key concepts of Statecharts as first-class elements within this language.
One of the main difficulties faced by industrial clients when using Statecharts is the
out-of-synch that arises between the code generated from Statecharts and the original
Statecharts model when the code is modified after it is generated. Debugging and per-
formance tuning of embedded application is almost always done on the generated code;
in this phase there is little incentive to track back the changes to the model itself in
such a way that the implementation and the model remain consistent throughout their
life-cycle. This becomes a problem later on when one needs to understand the function-
ality of the application, modify the model, or prove properties about and maintain the
application. At this point, it is very difficult to automatically infer the changes in the
model based on the implementation, so Statecharts are typically used exclusively as a
starting point for modeling rather than a live application specification. In this context,
we believe that FUSE offers the following advantages:
• It reduces out-of-synch issues since the Statechart specification is part of the code.
• It helps programmers with the acceptance of modeling by replacing the burden of

documenting and maintaining the model with a unified programming framework.
• The user does not need to master two different programming languages.
• It can provide better support for debugging and software maintenance. In other ap-

proaches, when generating Object-Oriented code from Statecharts, states are trans-
formed into objects; this makes it difficult to later correlate these objects back to
states in Statecharts.

• It supports features of object-orientation, concurrency and strong typing, and incor-
porates advanced programming language concepts inspired from predicate dispatch
and multiple and dynamic classification [Chambers 1993; 1997; Ernst et al. 1998;
Millstein 2004; Sreedhar and Marinescu 2005]. Within the same unified program-
ming language we also preserve some of the the advantages of Statecharts of having
a formal basis. This feature complements the strengths of Java to allow building
complex, concurrent applications.

The rest of the paper is organized as follows. Section 2 discusses the related work. Sec-
tion 3 introduces the running example that we use to present our language. Section 4
introduces FUSE’s main language features and describes a simplified syntax for FUSE.
Section 5 presents its semantics. Section 6 summarizes the paper with a few directions
for ongoing and future work.

2. BACKGROUND
Statecharts and State Diagrams in OO Languages. Harel [Harel 1987] intro-

duced Statecharts to overcome the limitations of conventional finite state machines.
Due to their popularity, Statecharts in many semantic variations [von der Beeck 1994;
Björklund et al. 2001; Gamma et al. 1995] are part of many modeling tools. The Ob-
ject Management Group (OMG) has standardized state diagrams as part of the Unified
Modeling Language [UML 2011]. To implement Statecharts in OO languages Ran [Ran

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

Fusing Statecharts and Java XX:3

1994] represents the concept of state as OO classes. Sane and Campbell [Sane and
Campbell 1995] adopt the same mapping while representing transitions via operations
and embedded state via a table for the superstate. FUSE keeps the class hierarchy and
the chart-states separate. This helps with reducing the number of classes and using
the class hierarchy without breaking behavioral subtyping. Chow et al. [Chow 1978]
represent Statecharts states as constant attributes of a class and use an additional at-
tribute to represent the current state that the object is in. Quantum Hierarchical State
Machines [Samek 2002] is an event-based framework based on the pub-sub model and
implements run-to-completion (RTC) semantics for active objects (AO). AOs cannot
share data. QHSM follow the UML semantics for Statecharts. In comparison, FUSE is
a thin layer on top of method calls, only enriching the programming language, which in
turn can be used in both event- and data-based programming styles and frameworks,
like for example pub-sub. FUSE implements RTC semantics only for single events (as
opposed to threads/AOs). In FUSE, data sharing is possible. FUSE adpots a variant of
Pnueli/Shalev’s fix-point semantics. Lastly, the main goal of FUSE is to mechanically
generate Java code with good traceability properties.

To translate Statecharts into an OO language Ali and Tanaka [Ali and Tanaka 1999]
introduce a helper object to encapsulate all the state-specific behaviour of the object
representing a Statecharts. Transitions involve helper object creation and destruction.
Niaz and Tanaka [Niaz and Tanaka 2004] use design patterns to generate Java code
from UML state diagrams, representing states as objects and hierarchical states using
object composition and delegation. Rhapsody [Gery et al. 2002] allows creating UML
models and generates C, C++, or Java from them based on the Open XML Frame-
work (OXF)—an active object-based framework. The dynamics are defined within the
OXF framework. States are represented as data values, transitions as variable assign-
ments, and events as classes. A number of other tools support code generation from
Statecharts. iState [Sekerinski and Zurob 2001] implements a variant of UML State-
charts, is event-centric and provides a construct for parallel composition as a means to
translate concurrent states. The code generator implements RTC for transitions. Work
by Mikk et al. [Mikk et al. 1998], based on the STATEMATE semantics, accommodates
compound events without parameters, and compiles Statecharts into extended state
machines. In our experience with FUSE, the absence of event parameters simplify the
semantics but also limits the expressive power.

[Köhler et al. 2000] proposes to generate code from Statecharts in which every state
is a subclass of a generic FReactive class, which provides a pointer to the current state
and handles events via one of its methods. This approach follows the UML seman-
tics. Events are targeted to specific receivers, simulating broadcast with a pub-sub
mechanism. Tomura et al. [Tomura et al. 2001] present the Statecharts design pat-
tern for modeling the dynamic behaviour of components of an open distributed control
system. In Hugo [Knapp and Merz 2002] a state is an object with methods for activa-
tion/deactivation, initialization, and event handling.

FUSE supports the key features of Statecharts but is more expressive; it is also
unique, to the extent of our knowledge— in exploiting multiple and dynamic classifi-
cation mechanisms and predicate methods to model Statecharts.

Embedded Languages. nesC is a programming language targeted to networked
embedded systems [Gay et al. 2003] that supports asynchronous event-driven execu-
tion and a flexible concurrency model. The model of computation in languages such
as Esterel [Berry 2000] and Signal [Beneviste et al. 1999] is synchronous. The con-
currency can be compiled away, and the system behaves like a state machine. Esterel
handles reactions to absence of events. Following the tradition of fix-point semantics
in Statecharts, in FUSE the absence of an event is only evaluated at the time of reac-

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

XX:4 Marinescu et al.

tion, which only happens when another event triggers a reaction (see Section 4). Also,
logical causality checks needed in synchronous languages are not necessary in FUSE
as all programs have a unique semantics. Other approaches exist to extend traditional
programming languages by synchronous constructs. Reactive C [Boussinot 1991] is
inspired by Esterel but adopts explicit execution instead of Esterel-style FSM execu-
tion. FairThreads [Boussinot 2006] and SynchCharts in C [von Hanxleden 2009] fol-
low reactive-style semantics and provide true, and deterministic, concurrency within
C programs. In ECL [Lavagno and Sentovich 1999] C programs are annotated with
Esterel-like constructs. The Esterel-style ECL modules are compiled into EFSMs.
PRET-C [Roop et al. 2009] is another synchronous extension of C which focuses on
temporal predictability. [Edwards and Zeng 2007] propose to dynamically generate C
code that runs threads concurrently, each of which execute short groups of instruc-
tions without a context switch. Inspired by synchronous languages, SHIM [Tardieu
and Edwards 2006] uses both rendezvous-style communication as well as thread com-
munication at synchronization points. Concurrency is explicitly specified.

Pioneered by Ptolemy [Buck et al. 1994] several approaches advocate the hetero-
geneous combination of semantics to design embedded systems. Metropolis [Gößler
and Sangiovanni-Vincentelli 2002] introduces communication refinement as a mech-
anism for specializing general models of computation for specific domains. Lee and
Zheng [Lee and Zheng 2007] leverages principles of synchronous languages as a coordi-
nation language rather than a programming language. The POLIS [Balarin et al. 1999]
co-design approach uses an event-driven model for both the hardware and the software
components. galsC is a globally asynchronous and locally synchronous (GALS) model
for programming event-driven embedded systems [Cheong et al. 2003; Cheong and
Liu 2005]. Unlike galsC, FUSE supports both event-based and state-based program-
ming. SystemJ [Gruian et al. 2006] is a system-level language which extends Java with
synchronous Esterel-like features and asynchronous CSP-like constructs for modeling
GALS systems. A reaction consists of the synchronous composition of a set of threads,
that communicate and synchronize via signals. Output signals must be resolved in
each tick.

BIP [Basu et al. 2006] is a framework for modeling heterogeneous real-time com-
ponents which is more general than FUSE. BIP allows both synchronous and asyn-
chronous composition of components. Our approach follows more closely the Statechart
design methodology. While FUSE does not allow to delay the processing of events for
a later time, the coarse-grained control-flow is separated from the rest of the applica-
tion. The execution depends on the occurrence of events, the state of the charts and
the values of the program data.

3. A SIMPLE STATECHARTS EXAMPLE
This section presents the requirements and the Statecharts specification for a simple
vending machine which can deliver several types of coffee-based beverages (CVM). CVM
is expected to perform some of the following types of operations:
• Accept coins for money, making sure that all coins are either nickels, dimes, or quar-

ters. Return invalid coins.
• The customer may change her mind after inserting some coins and request a refund:

no beverage is dispensed and the money is returned.
• Accept drink selection. CVM has three buttons for selecting cafe, decafe, or choc.

Mixed drinks may be allowed; for instance, cafe and choc results in a mocha—a
50/50 mix of coffee and chocolate with a price of 85 cents. If the customer presses
more than one button and the combination is not allowed, no drink is dispensed.

• If the customer has not deposited enough money CVM does not dispense the drink
until enough money is available.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

Fusing Statecharts and Java XX:5

empty
not

empty

insert(c)[isValid(c)]/
m=m+value(c)

refund/
dispenseMoney(m),m=0

returnCoin(r)/
dispenseMoney(r),m=0

insert(c)
[isValid(c)]/

m=m+value(c)

insert(c)
[¬isValid(c)]/

dispenseMoney(c)

insert(c)
[¬isValid(c)]/

dispenseMoney(c)

placecup

removecup

cafe

decafe

choc

none brewed

enjoy

selectcafe

selectdecaf

selectchoc

[m >= 75]/
makecafe(),

r=m-75

[m >= 65]/
makedecaf()

r=m-65

[m >= 65]/
makechoc(),r=m-65

[cup=yes]/
dispense()

returnCoin(r)

Coin Cup

ControlOnOff

poweron/
m=0

poweroff /

m=0

removecup

refund

refund

refund

no yes

Fig. 1: Statechart for a simple coffee vending machine

• Change is returned after the beverage is dispensed.
• The customer is expected to place a cup which will collect the beverage. CVM does not

dispense the drink if a cup is not in place.
• There exists a light indicator which turns itself on when the CVM is turned on and

stays lit until the CVM is turned off.
• The CVM starts in the state Off. When being switched on it goes into a configuration

where no money is deposited, no cup is placed, and no beverage choice is made.
Fig. 1 illustrates a hierarchical Statechart model for a subset of the requirements
above. The events are specified in italics; the conditions are enclosed in [square brack-
ets]. This hierarchical statechart has two states: Off for power off and On for power
on. The designated Start state for CVM is Off. On consists of three and-charts: Coin, Cup,
and Control with Start states empty, no, and none. The Coin chart handles state changes
as result of a person inserting a coin, asking for a money refund, and for money be-
ing returned as change or refund. CVM only accepts valid coins and updates the total
amount of money based on each coin inserted. The transition condition [isValid(c)]
tests that the coins are either nickels, dimes, or quarters, whenever an insert(c) event
occurs. Note that events can have parameters. The Cup chart keeps track of whether
there is a cup in place for dispensing the drink or not. The Control chart allows the
user to select a drink type. When there is enough money deposited, the CVM brews the
requested drink. Note that the statechart does not order the operations of inserting
money and ordering a drink. If the cup is in place then CVM dispenses the drink into
the cup and returns the change. As part of a transition execution new events—internal
or external—may be generated. An event is external if it is a primitive event emitted
to the charts environment by the user or FUSE code. If the event is consumed within
the current execution step without it being observable by the environment it is called
internal. In our example, as result of transitioning from brewed to enjoy in Control, the
CVM generates the internal returnCoin(r) event which is consumed by the chart Coin.

The statechart in Fig. 1 does not allow to request mixed beverages such as a mocha.
Fig. 2 shows alternative specifications which support this functionality; for reasons of
space we only show the parts of the specifications which bear the changes. A new state
mocha is introduced, as well as transitions to and from this state—specifically from

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

XX:6 Marinescu et al.

cafe

choc
brewed

select
cafe

Control

mocha

selectchoc [m >= 85]/
makemocha()

r=m-85

cafe

choc
brewed

select
cafe

Control

mocha

selectchoc [m >= 85] /

makemocha()

r=m-85

timeout [m >= 75]/
makecafe(),r=m-75

timeout [m >= 65]/
makechoc(),r=m-65

nosel [m >= 65] /

makechoc(),r=m-65

nosel [m >= 75] /

makecafe(),r=m-75

Fig. 2: Statechart for a CVM dispensing mocha with (a) timeout (b) user input.

[cup = yes] /
dispense()

returnCoin(r)

Control

brewed

enjoy

nodecaf

decaf

choc

nochoc

selcafe

selchoc||
seldecaf

seldecaf

selchoc

cafe

nocafe

selcafe||
selchoc

selcafe||
seldecaf

selcafe

selchoc

[m >= 85] /

makemocha()

r=m-85

nosel [m >= 75]/
makecafe(),r=m-75

[m >= 65] /

makedecaf(),

r=m-65

nosel [m >= 65] /

makechoc(),r=m-65

Drink

none

refund

removecup

Fig. 3: Statechart for a CVM without state explosion.

cafe and choc, and into brewed. Neglect for the moment the newly introduced timeout()
and nosel() events. Each of the states cafe and choc now has two outgoing transitions:
one taken on the occurence of either selectchoc() or selectcafe(), and another one on
the occurence of any event given that the associated condition holds. If a transition
does not have a triggering event it may be triggered by any external event and it is
called a completion transition. Let’s take the case of state cafe in Fig. 2. If selectchoc()
does not occur in state cafe and m >= 75 then when any other event occurs the CVM
would move into brewed and prepare a coffee drink. What this means is that whatever
external event happens before the user has a chance to generate selectchoc() will dis-
able the choice of ordering a mocha drink. On the other hand, if the user generates a
selectchoc() event in state cafe and m >= 75 then both transitions are valid. The prior-
ity rules for FUSE give precedence to the external event selectchoc() and execute the
transition to mocha instead of the completion transition to brewed.

Fig. 2 shows two alternatives for eliminating this behavior of unwillingly trigger-
ing a completion transition. (a) employs a timeout strategy; the user is given a time
to press the coffee button in state choc or the chocolate button in state cafe. If this
time lapses without her making a choice, the CVM will dispense the beverage which
corresponds to the current chart-state. If the user chooses a mixed drink which is not

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

Fusing Statecharts and Java XX:7

allowed— such as coffee and decaf—the CVM remains in the current state. FUSE does
not allow the processing of multiple events in the same execution step, so if two ex-
ternal events timeout() and selectcafe() happen “at the same time”, their occurrence is
serialized by the runtime-system. The statechart in (b) describes an alternative de-
sign; when entering either of the states cafe or choc the CVM prompts the user whether
he wants to make a further selection for a mixed drink. If the answer is no the CVM
dispenses the coffee or the chocolate drink; otherwise it waits for a further selection.
The explicit user choice eliminates the undesirable behavior present in (a) in which
the choice of the event to process may be made based on a policy outside the control
of FUSE. To limit the state explosion in the case of allowing an increasingly large
number of drink mixes we may instead create a set of and-charts, one for each mix
component—as shown by Drink in Fig. 3. Each such and-chart can be in the state yes—
i.e. the component is part of the mix—or no—otherwise. Note that if the user chooses
a mixed drink which is not allowed the CVM goes into a state which may only be left
by requesting a refund. Other solutions are possible at the expense of introducing ex-
tra transitions. We will see that adding behavior such as ordering a mocha in FUSE
requires only small changes and no additional chart-states. It is possible to avoid in-
compatible drink choices by introducing a transition condition which disallows moving
into cafe or choc if the current state is decafe. This makes FUSE specifications more
concise than Statecharts, and modifications more independent.

4. FUSE ELEMENTS BY EXAMPLE
A FUSE program consists of classes, predicate methods, charts, and chart-states.
Classes describe the data that objects will manipulate at runtime. FUSE classes are
essentially OO classes that may have charts associated with them. In Fig. 4, in addi-
tion to all definitions allowed by Java classes, CLASS-BODY also contains transition
definitions of type METH-DECL, which we describe later in this section. FUSE charts
and chart-states model the concept of state in Statecharts. The predicate expression
of a predicate method [Chambers 1993] models the concept of a transition condition in
Statecharts; events act as triggers of predicate methods. The actions associated with
transitions are modeled as predicate methods. These methods cannot explicitly access
Statechart states but can generate events.

FUSE adopts a variant of the fix-point semantics of Pnueli and Shalev [Pnueli and
Shalev 1991]. Under the Pnueli/Shalev semantics an execution step consists of im-
mediately and logically instantaneously executing all of the transitions transitively
triggered by the occurrence of the external event in the current state. In FUSE, inter-
nally generated events are consumed in the same reaction step; they are not queued
and consequently, they are lost at the end of the step. This semantics implies that
multiple transitions in concurrent and-charts could execute in parallel but at most
one transition can be fired for each set of non-orthogonal charts. The main differences
between the Pnueli/Shalev and FUSE fix-point semantics are that we do handle data
in our model and, as we explain in Section 5, we execute a maximal compatible set
of transitions per reaction. This set is an approximation of the maximal set of transi-
tions as defined by Pnueli/Shalev. Apart from efficiency reasons when computing the
set, there could be scenarios in which it isn’t known upfront whether some event will
be generated, due to the fact that FUSE allows modeling at a finer granularity. This
means that in some cases the set of executing transitions will be a subset of the one
an oracle may choose. FUSE does not include the notion of compound events; external
events are serialized per object at the caller site. When processing an event e we as-
sume that no other event is present. Negated events, in the sense of the absence of an
event f triggering a transition, can be modeled as the occurrence of another event e
taking place at the time when f is expected.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

XX:8 Marinescu et al.

1 OBJ-DECL ::= class-name obj-name
2 CLASS-DECL ::= class class-name [has chart-name (EXT-EVENTS)* (INT-EVENTS)*] CLASS-BODY
3 CHART-STATE ::= chart-st-name [has { chart-name(,chart-name)*}]
4 ST-CH-STATE ::= start: CHART-STATE
5 CHART-DECL ::= chart chart-name = {ST-CH-STATE (, CHART-STATE)*}
6 CH-ST-EXPR ::= [chart-st-name] (.chart-name .chart-st-name)*
7 BASIC-EXPR ::= CH-EXPR (== | !=) chart-st-name
8 CH-EXPR ::= (var-id | chart-name).(chart-st-name.chart-name)* | chart-st-name
9 METH-DECL ::= trans method-id [triggered by event-name TRANS-MB] [when PRED-EXPR TRANS-MB]

[remove (CH-EXPR.chart-st-name;)+] [add (CH-EXPR.chart-st-name;)+] TRANS-MB |
trans method-id (entry | exit) state CH-EXPR = chart-st-name TRANS-MB

10 PRED-EXPR ::= BEXPR | PRED-EXPR && PRED-EXPR
11 TRANS-MB ::= TRANS-MB ; TRANS-MB | RESTR-MB
12 RESTR-MB ::= JAVA-METH-BODY
15 EXT-EVENTS ::= external: {ext-event-name ((type var-id)*) (, ext-event-name ((type var-id)*))*}
16 INT-EVENTS ::= internal: {int-event-name ((type var-id)*) (, int-event-name ((type var-id)*))*}
20 BEXPR ::= BEXPR&&BEXPR | BEXPR||BEXPR | BEXPR->BEXPR | notBEXPR | BASIC-EXPR

Fig. 4: FUSE-specific syntax.

4.1. Charts and Chart-States
A chart has a name and a fixed set of chart-states, used to specify mutable information
(the state of the machine described by a Statechart). Instances of a class associated
with a chart can receive events and execute reactions that manipulate this mutable
information. For instance, the chart Control from the Statechart in Fig. 3 is specified
as a chart in FUSE. The possible states of this or-chart are {none, Drink, brewed, en-
joy}. Fig. 5 shows a snapshot containing parts of the FUSE code implementing the
Statechart in Fig. 3. Charts are defined outside the class hierarchy, can be associated
with and shared by multiple classes, but cannot exist independently. Charts and chart-
states are conceptually different from class fields and enum types. Charts externalize
and explicitly reify transient internal states of an object. Take the example of a person
who is single and gets married. Without charts, you may specify single and married
to be two distinct classes which inherit from a class Person. Bob, who is single, cannot
easily change his class during his lifetime. If he gets married a new Married class needs
to be instantiated and the old instance of Single destroyed. In FUSE, the social status
can be modeled as a chart SocialStatus with chart-states single and married. When
Bob gets married the object updates its chart state from single to married and the way
inheritance is often used, which breaks the Liskov Substitution Principle [Liskov and
Wing 1994] of subtyping, is avoided. This approach also reduces the number of classes.
Alternatively, one could use a tagged enum type with values Single and Married. How-
ever, union types do not provide the same advantages as the FUSE approach. Using
Statecharts allows the programmer to separately specify the coarse-grain control of
the application and enable the use of verification tools. These tools include static cal-
culation of event dependencies, reachability of states or synthesis of specialized event
loops by calculating upfront the set of running transitions.

4.2. Triggering Events
Each trans construct in Fig. 5 defines a method of type void which corresponds to
a Statechart transition. The event e that triggers a transition is declared with the
triggered by construct; if this construct is missing then the method models a com-
pletion transition. A METH-DECL in Fig. 4 defines a FUSE transition. A method
modeling a Statecharts transition is triggered by an event and may be predicated.
The body of the actions associated with Statecharts transitions cannot refer to Stat-
echart states. Instead, the remove and add constructs explicitely specify the effect of
the transition in terms of the old states which are left and the new states which are
entered.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

Fusing Statecharts and Java XX:9

chart Coin = {start: empty, notempty} chart Cup = {start: no, yes}
chart cafe = {start: no, yes} chart decaf = {start: no, yes}
chart choc = {start: no, yes}
chart Control = {start: none, drink has {cafe, decaf, choc}, brewed, enjoy}
chart PowerSwitch = { start: off, on has {Coin, Cup, Control}}

class CVM has PowerSwitch {
int money =0, rem =0;

use ctrl as PowerSwitch.on.Control; // ctrl is an alias for PowerSwitch.on.Control
use cup as PowerSwitch.on.Cup; use coin as PowerSwitch.on.Coin;
use drink as ctrl.drink; use ischoc as drink.choc;
use iscafe as drink.cafe; use isdecafe as drink.decafe;

external: powerOn(), powerOff(), selectcafe(), selectchoc(), selectdecafe(), nosel();
internal: returnCoin(int rem);

CVM() {} // constructor

trans off2on triggered by powerOn() when PowerSwitch == off
remove PowerSwitch.off; add PowerSwitch.on; {}

...
trans none2cafe triggered by selectcafe() when ctrl == none
remove ctrl.none; add ctrl.drink; iscafe.yes; ischoc.no; isdecafe.no; {}

trans none2cafe triggered by selectcafe() when iscafe == no && isdecafe == no
remove iscafe.no; add iscafe.yes; {}

...
trans cafe2brewed triggered by nosel() when iscafe == yes && money >= 75
remove iscafe.yes; add ctrl.brewed; {makecafe(); rem = money - 75;}

...
trans cafe_choc2brewed
when iscafe == yes && ischoc == yes && money >= 85
remove iscafe.yes; ischoc.yes; add ctrl.brewed; {makemocha(); rem = money - 85;}

trans brewed2enjoy() when ctrl == brewed && cup == yes
remove ctrl.brewed add ctrl.enjoy
{ dispenseBeverage(); internal_event_process(new returnCoin(rem));}

...
};

Fig. 5: Partial FUSE specification of CVM without state explosion

4.3. Enabling Conditions
FUSE borrows the concept of predicate methods from the predicate dispatch
paradigm [Chambers 1993] to express conditional execution in Statecharts. A pred-
icate method is a method which can be invoked only when its predicate expression—
also called the when-expression—evaluates to true. Specifically, FUSE models the tran-
sition condition c as part of the when-expression. Additionally, the when-expression
must test that the transition occurs only in the designated chart-state. For instance
the enabling condition of method cafe2brewed establishes that the current chart-state
is PowerSwitch.on.Control.drink.cafe == yes and money >= 75. It is possible that
the transition condition contains boolean tests involving the parameters of the trigger-
ing event. Currently, FUSE enforces that no primitive boolean test mixes data tests,
event tests and chart-state tests. This restriction allows checking the data condition
and the chart-state condition at the beginning of a reaction when no transition has

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

XX:10 Marinescu et al.

started running and no internal event is present yet. Consider the following piece of
code for the chart and class definitions in Fig. 5:

CoffeeMachine cm = new CVM() ;
cm.external_event_process(new powerOn());
cm.updateMoney(75) ;
cm.external_event_process(new selectcafe()) ;
cm.external_event_process(new nosel());

We use the external_event_process() method to trigger a reaction from the environ-
ment, passing an external event as argument. After processing selectcafe() CVM is in
chart-state cafe and the field variable money has value 75. In this state CVM receives
the external event nosel(). There is only one method triggered by this event and whose
predicate expression evaluates to true in the state cafe, namely cm.cafe2brewed().
The invocation dynamically changes the state of chart Control to brewed. If the call to
updateMoney() had as argument the value 30 instead of 75, the when-expressions of all
transitions triggered by nosel() with source state cafe would evaluate to false and the
event would be dropped.

In the simplified syntax in Fig. 4, predicate expressions include PRED-EXPR, which
are Boolean expressions over the set of chart states that ensure that transitions occur
only in the designated chart states. In this version of FUSE, the part of the predicate
expression that tests the object state is provided by the user as Java code—via the
method body following PRED-EXPR; the event parameters are tested in the body of
the triggered by construct.

4.4. Entry and Exit Methods
One of the application requirements is that the CVM has a light indicator which will
turn itself on and off to reflect the state the coffee machine is in at any time. This
behavior can be coded in methods as part of taking a transition. If entering or leaving
a chart-state always requires this behavior, the user must replicate it in each method
that enters or leaves the chart-state. An alternative is to borrow the concept of entry
and exit methods from Statecharts and associate such methods with chart-states. For
instance, the class CVM may define the entry method below when turning off:
trans in_off entry state PowerSwitch == off {system.lightOff();}

Whenever PowerSwitch enters the chart-state off the entry method is also invoked,
which in turn invokes system.lightOff(). A METH-DECL in Fig. 4 may also model
entry or exit methods associated with entering or exiting the specified chart-state.
The entry/ exit methods do not have either a trigger nor a predicate expression; their
bodies cannot refer to the Statechart states but can generate events.

4.5. Hierarchical Charts
Consider again Fig. 5. A chart consists of a set of chart-states which can be hierarchi-
cally defined. At the top level, the Statechart hast two or-states: On and Off. An or-
chart simply enumerates its chart-states. On consists of three and-states: Coin, Cup,
and Control. Each of the three concurrent states are made from a set of or-states. We
can model this hierarchical Statechart in FUSE as hierarchical chart-states using the
keyword has. The algorithm that controls the reaction to an external event guarantees
that if the chart is in a nested chart-state then the higher containing states are also
active.

4.6. Event Generation
External events are created and thrown by invoking the external_event_process()
method. Internal events created within the class are processed using an invocation

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

Fusing Statecharts and Java XX:11

to the method internal_event_process(). Both of these methods are synthesized by
FUSE (see Section 5). The body of brewed2enjoy illustrates how internal events are
generated. Note that the event returnCoin(rem) has an integer parameter. Although
the syntax in Fig. 4 does not allow using explicit event parameters when triggering
a transition, they must be of the correct type given the specified event signature,
which is imposed by the strong typing discipline of the programming language. To
ensure that the sets of internal and external events are disjoint we explicitly declare
these as part of the class definition and raise an error if there exists an event with
the same signature which is declared to be both internal and external. The body of
a method modeling a Statecharts transition is a Java method which may addition-
ally generate internal and external events via the internal_event_process() and
external_event_process() Java calls, where the events must comply with the event
signatures as specified by INT-EVENTS and EXT-EVENTS.

4.7. Start States
In order to preserve a consistent chart-state, when entering a hierarchical state it is
necessary to mark some sub-states as well. The default option is described by Start
states that are specified via the construct start: of FUSE. An or-chart must designate
a single sub-state as the Start state. A hierarchical and-state must designate a Start
state for every orthogonal and-chart that it contains. Syntactically, the first state in
the definition of an or-chart is the start state of the or-chart. The object constructor
initializes by default its chart to its designated Start states recursively. If this is an and-
chart then it will enter all start states of the composing and-charts. When a transition
into a hierarchical state runs, it implicitly initializes all of its immediately hierarchical
charts to the designated Start states.

5. FUSE SEMANTICS
The semantics of FUSE are based on the fix-point semantics for Statecharts. Under
this semantics, the execution of a chart consists of a continuous sequence of reactions,
each of which occurs in response to an external event. Each reaction transforms the in-
ternal state of the chart, and possibly emits external events to the chart’s environment.
Additionally, internal events can be generated during the execution of a reaction, but
these internal events are not visible by the environment of the chart. At the end of the
reaction all internal events generated are consumed and destroyed.

Each reaction in FUSE is composed from the effects of the execution of zero or more
transitions. According to the fix-point semantics, a maximal set of transitions is run
in each reaction. Some transitions are triggered directly by the external event that
sparks the reaction. Some others are triggered by internal events generated by other
transitions that are fired in the same reaction. Conceptually, all transitions observe
– as their initial state – the state of the chart at the beginning of the reaction. The
only chain of information to decide which transitions are part of a reaction happens
through internal events.

We describe in this section the semantics of FUSE by presenting a translation of
each of the language constructs into Java (the target language). Every class associated
with a chart is translated into a class in the target language that contains some extra
nested classes and methods.

5.1. Events, Event Handlers and Transitions
We show now how the description of events, event handlers, enabling conditions and
bodies of transitions get translated to the target language.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

XX:12 Marinescu et al.

Events. The communication and synchronization between the environment and the
chart is carried out using external events, that may contain data. More concretely,
in the target language a reaction is started by an external event being thrown to an
object that is an instance of the class associated with the chart. External events are
modeled as a class that inherits from an abstract event class. As in conventional OO
languages shared data is also available. For example, transitions can read and modify
data members of the object associated with the chart receiving the event, or access
and modify global data. In FUSE, external and internal events are explicitly declared
in the generated class associated with the chart. For example:

class A has mychart
external: insertCoin(int val),placeCup() /* external events */
internal: returnCoin(int val) /* internal events */

declares two types of external events (insertCoin and placeCup) and one internal
event (returnCoin). In the compiled code, the following class hierarchy, nested within
class A is created:

class A { ...
public abstract ExternalEvent extends AbstractEvent {} /* external events */
public InsertCoin extends ExternalEvent { int val; }
public PlaceCup extends ExternalEvent {}
private abstract InternalEvent extends AbstractEvent {} /* internal events */

private ReturnCoin extends InternalEvent {
int val;
void generate(void) { ... }

}
}

Note that external events are public, so the environment can generate and throw
external events. Internal events are private. The separation between external and in-
ternal events is a design principle of FUSE. Internal events are a tool for developers to
decompose the behavior of the chart into simpler activities that communicate. External
events are part of the external interface of the chart. In FUSE we use the encapsula-
tion provided by the visibility rules (private and public qualifiers) of Java methods to
enforce this separation. Non-abstract internal events contain the method generate,
which is synthesized by the FUSE compiler, that calculates which transitions become
enabled by the internal event:

void generate(void) {
/* for all transitions t1, t2, ... that may be triggered by this event */
check_and_activate(t1,this);
check_and_activate(t2,this);
...}

The auxiliary method check_and_activate first makes sure that the transition has
not been already considered candidate for running in the same reaction. Otherwise, it
uses the method is_triggered_by () to check whether the event is actually triggering,
in order to declare the transition a candidate to run.

Event Handlers. The reaction to an external event is handled by a method called
external_event_process(). This method implements the reaction loop, which incre-
mentally computes the maximal compatible set of transitions, and which is synthe-
sized in the resulting class. Some transitions generate internal events during their
execution, invoking method internal_event_process(). In turn, this method simply
invokes generate as described above.

/* the reaction loop */
public void external_event_process(ExternalEvent ev) { ... }

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

Fusing Statecharts and Java XX:13

/* internal event handler */
private void internal_event_process(InternalEvent ev) {
ev.generate(); }

The current version of FUSE is sequential as it uses a single thread of execution
for the whole reaction loop. As a result, internal_event_process() runs in the same
thread of control as external_event_process(), and no synchronization with the run-
ning set of transitions is needed.

Transitions. The declaration of transitions in FUSE from line 9 in Fig. 4 contains
enough information to generate the enabling condition and the action for every tran-
sition. The FUSE compiler first checks that the when clause, and the add and remove
sets define an admissible transition: for each consistent chart state for which the when
clause holds, if one applies the add and remove sets then the chart state obtained is also
consistent. Moreover, every transition must also be well-defined, in the sense that the
only two kind of states that can be hierarchically related are two add states. The reason
to allow adding sub-states is to activate a non-default state. A transition that is either
not admissible or not well-defined causes a compilation error. FUSE then generates,
for each admissible transition t the following:

Transition t = new Transition () {
boolean is_triggered_by(AbstractEvent ev) { ... }
boolean is_enabled() { ... }
void body() { ... }

}

Each transition extends the abstract class Transition:
abstract class Transition {

public boolean discarded = false;
public boolean ready = false;
public abstract boolean is_triggered_by(Event ev);
public abstract boolean is_enabled();
public abstract void body();

...}

The method void body() performs the computation of the action of the transition,
including effects like updating variables, etc. The enabling condition of a given tran-
sition t is split into three different activities. This separation is crucial for the correct
incremental computation of the maximal set of transitions:

(1) bool is_triggered_by(Event ev): returns whether a given event is triggering for
the transition. In other words, this method corresponds to the part of the enabling
condition related to events. For transitions triggered by internal events, this method
is invoked within the generate method of the event. For transitions triggered by
external events, this method is invoked directly by the reaction loop.

(2) bool is_enabled(): this method checks whether the values of the data members
handled by the object enable the execution of the transition. This feature is inspired
by predicate methods in the predicate dispatching paradigm, except that a transi-
tion is only triggered as a part of a reaction.

(3) the enabling condition of the transition also depends on the current active states of
the chart, as described by the when clause. This clause is evaluated by the reaction
loop, so no explicit method is generated for it.

5.2. Configuration, Scope, Admissibility and Compatibility
We introduce now the mathematical definitions to design and reason about the reac-
tion loop algorithm, which provides the operational semantics of FUSE.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

XX:14 Marinescu et al.

Configurations. A chart vocabulary is a labelled tree where the root is labelled with
the id of the chart. A non-hierarchical chart has, as its only children, one node for each
state. A hierarchical chart has one child per sub-chart. We represent these labelled
trees as prefix closed sets of strings over the alphabet of chart names. This way, for
every labelled tree t, ε ∈ t and if s.a ∈ t then s ∈ t. For conciseness, we represent these
prefix closed sets by the set of their leaves. For example, the chart PowS (power switch):

chart Coin = {start: empty, notempty}
chart Cup = {start: no, yes}
chart PowS = { start: off, on has {Coin, Cup}}

has the following chart vocabulary:

{ PowS.off, PowS.on.Coin.empty, PowS.on.Coin.nonempty, PowS.on.Cup.no, PowS.on.Cup.yes }

We use configuration to refer to a given set of active chart states.

Definition 5.1 (configuration). A configuration σ of a chart vocabulary c is a subtree
(prefix closed set of strings) of c that satisfies:
— if an and node is in σ then all its children are in σ;
— if an or node is in σ, exactly one of its children is in σ.

In the PowS example above, the following are two of the possible configurations:
{PowS.off} and {PowS.on.Cup.no, PowS.on.Coin.nonempty}. A chart state is a path in the chart
from the root, in other words, an element of the chart vocabulary c. A non-hierarchical
state is a path leading to a leaf node, while a hierarchical state is a path leading to a
non-leaf node. A state s is present in a configuration σ whenever s ∈ σ. Consider now
the BEXPR expressions used in FUSE to define the chart-state enabling condition
for a transition (lines 7 and 20 in Fig. 4). The semantics of BEXPR define whether a
predicate expression is satisfied in a given chart configuration σ. For basic expressions
BASIC-EXPR:

− σ |= a == b whenever a.b ∈ σ, and σ |= a != b whenever a.b 6∈ σ.

For Boolean combinations BEXPR we use the standard semantics:

− σ |= x && y whenever σ |= x and σ |= y,
− σ |= x||y whenever σ |= x or σ |= y,
− σ |= x -> y whenever either not σ |= x or σ |= y,
− σ |= not x whenever σ 6|= x.

Finally, the enabling condition for a transition t with a when clause w is σ |= w.

Effect and Scope. Effects describe changes in the chart state. Scopes capture
whether a set of transitions is compatible and therefore can run simultaneously. The
effect of a transition is characterized by a pair (A,R) where A is the add set and R
is the remove set. A well-defined effect is such that the only elements of A ∪ R that
can be hierarchically related are A states. The composed effect of two effects (A1, R1)
and (A2, R2) is the pair (A′, R′) = (A1, R1) t (A2, R2) where R′ contains all elements
in R1 ∪ R2 that are not under elements in A1 ∪ A2 ∪ R1 ∪ R2. Similarly, A′ contains
all elements from A1 ∪ A2 that are not under elements in R1 ∪ R2. This produces a
well-defined effect.

Example 5.2. Consider for example the following chart (left), and the effects
(A1, R1), (A2, R2) and (A3, R3) of transitions 1, 2 and 3 (right):

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

Fusing Statecharts and Java XX:15

a
1s

2
t

3b

c

R1 = s.a R2 = s.a R3 = s
A1 = s.b A2 = s.c A3 = t

The composed effect (A1, R1)t(A2, R2) is ({s.b, s.c}, s.a). The composition of the three
effects is (t, s).

Definition 5.3 (Cover). A cover c of a well-defined effect (A,R) is a set of states such
that:

— no two states s1 and s2 in c are a prefix of each other.
— every state s in c is the prefix of at least one state in A and one state in R.
— every state a in R ∪A has a prefix in c.

An order v can be defined between covers as follows: c v d whenever for every s ∈ c
there is an s′ ∈ d with s′ a prefix of s. A scope is a minimal cover. For example, in
Ex. 5.2, the scope of transition 1 is {s}, the scope of 2 is also {s}, and the scope of 3 is
the root state {ε}.

LEMMA 5.4 (SCOPE). The scope of a transition is uniquely defined.

PROOF. The existence of minimal covers follows directly from the finiteness of the
set of covers. Assume there are two different minimal covers c and d. It is easy to show
that the union of c and d, removing states that are strictly under other states, is also a
cover that is under both c and d, which either contradicts that c and d are minimal or
that c and d are different.

Transition Effects. Given a transition τ and a state s ∈ Aτ ∪Rτ we use scope(τ, s)
for the (unique) state in scope(τ) that is a prefix of s. The chart-effect of an effect (R,A)
from configuration σ is defined as

Act (A,R)(σ, σ
′)

def
= σ′ = (σ 	R)⊕A

The set operations 	 and ⊕ are the set difference and union operators, enriched to
— remove all children of a removed state r (for), and all ancestors up to scope(τ, r)
— add all necessary ancestors of an added state a, upto scope(τ, a) to preserve prefix

closed sets, and add all default sub-states of a that are not above a state in Aτ .
For a single transition τ , Actτ is defined as Act (Rτ ,Aτ). Similarly, the effect of si-
multaneously taking a set of transitions I = {τ1, . . . , τn} is ActI = Act (A,R) where
(A,R) =

(
(A1, R1) t (A2, R2)

)
t (A3, R3) . . . is the composed effect.

Admissibility. A transition (or set of transitions) is admissible if when running
from a legal configuration in which the transition is enabled, the resulting subtree is
a legal configuration.

Definition 5.5 (admissibility). Given a configuration σ, a transition t is admissible
whenever, if Ent(σ) then (1) R ⊆ σ and (2) every σ′, with Actt(σ, σ

′), is a configuration.

Admissibility is checked for each individual transition at compile time. The seman-
tics of FUSE dictate that maximal admissible sets of transitions must run, but un-
fortunately admissibility is not a monotone (incremental) property. Consider Ex. 5.2
above. Every transition is individually admissible. The set {1, 2} is not admissible be-
cause it would leave the chart in an illegal configuration with both s.b and s.c marked
in or-chart s. Finally, the set {1, 2, 3} is an admissible set.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

XX:16 Marinescu et al.

In principle, a maximal admissible set can only be computed by brute force search
in the space of sets of enabled transitions. Apart from inefficient, a brute force search
for admissible sets suffers from another problem. It is not known upfront which in-
ternal events will be generated and which plausible transitions will become enabled
by these internal events, without actually executing the transitions that may generate
the events. For this reason we introduce compatibility as an approximation of admis-
sibility.

Compatibility. Compatibility allows the incremental computation of sets of transi-
tions that are guaranteed to be admissible. Compatibility is a monotone property.

Definition 5.6. We say that two scopes are independent if no state in any of them
is a prefix of a state in the other. Two transitions are compatible if their scopes are
independent. A set of transitions is compatible if all its transitions are pair-wise com-
patible. A transition is compatible with a set of transitions if it is compatible with all
transitions in the set. We use s1#s2 to represent that scopes s1 and s2 are independent.

In Ex. 5.2 the only compatible sets are the singletons. One implication of compatibility
is that the union of effects (A,R)t (A′, R′) is equal to (A∪A′, R∪R′), because the sets
are not hierarchically related. Moreover, t becomes associative for compatible sets.

LEMMA 5.7. Let τ1 and τ2 be two compatible transitions, with (A1, R1) and (A2, R2)
their add and remove sets. Then scope(τ1) ∪ scope(τ2) = scope(A1 ∪A2, R1 ∪R2).

PROOF. First, note that both scope(τ1) ∪ scope(τ2) and scope(A1 ∪ A2, R1 ∪ R2) are
covers of (A1 ∪ A2, R1 ∪ R2). We only need to show that every s in scope(τ1) ∪ scope(τ2)
is also in scope(A1 ∪ A2, R1 ∪ R2). Consider an arbitrary a ∈ A1 state, and let s be
the state in scope(τ1) covering A1, and let r ∈ R1 an arbitrary state under s. The
existence of s and r are guaranteed by the definition of scope. Let e2 be an arbitrary
state of A2 or R2. This element e2 cannot be under s, because then (by s2 covering e2
in scope(τ2)), e2 would be hierarchically related with s. Hence, there can be no s′ in
scope(A1 ∪A2, R1 ∪R2) under s, because it must be covering some a from A1 ∪A2 and r
from R1 ∪R2, but no such element from A2 and R2 exists and then s′ would be a better
choice than s for scope(τ).

COROLLARY 5.8. Let I be a compatible set of transitions and let τ be a transition
compatible with I. Then, scope(τ) ∪ scope(I) = scope(Aτ ∪

⋃
i∈I Ai, Rτ ∪

⋃
i∈I Ri).

LEMMA 5.9. Let I be a compatible set and τ be a transition. Then τ is incompatible
with I if and only if there is a τ ′ in I such that scope(τ)#scope(τ ′) does not hold.

PROOF. Let I be incompatible with τ . Then, it is not the case that scope(τ)#scope(I),
so there must exist s ∈ scope(τ) and s′ ∈ scope(I) that are hierarchically related.
Since scope(I) is ∪τ ′∈Iscope(τ

′) there is a τ ′ ∈ I with s′ ∈ scope(τ ′). It follows that
scope(τ)#scope(τ ′) does not hold, because these scopes contain hierarchically related
states. For the other direction, assume there is a τ ′ ∈ I violating scope(τ)#scope(τ ′), so
there are s in scope(τ) and s′ in scope(τ ′) that are hierarchically related. Since I is a
compatible set, s′ ∈ I and hence τ is incompatible with I.

Finally, the following theorem relates compatibility and admissibility.

THEOREM 5.10. If a set I is a compatible set then I is admissible.

PROOF. Let σ be a configuration, and I a compatible set whose transitions are all
enabled in σ. Let σ′ be such that ActI(σ, σ′). By contradiction, let σ′ be an inconsistent
state (not a configuration). Then, there must be an or-state that has either none or
more than one child, or an and-state that does not have all children. First, assume that

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

Fusing Statecharts and Java XX:17

there is an or-state s with no child in σ. This implies that RI contains some descendant
r of s and hence there is a transition τ with scope(τ, r) = s. But then, by compatibility,
no other transition contains a scope that conflicts with s. It follows that all the changes
under s from σ to σ′ are due to Rτ and Aτ . It follows that τ is not admissible, because
from σ, τ produces a configuration with s but not child of s. The other cases follow
similarly.

Theorem 5.10 justifies the use of compatibility as an incremental approximation of
admissibility. Lemma 5.9 implies that compatibility is monotone (subsets of compatible
sets are compatible sets). This lemma also allows the offline calculation of incompatible
pairs of transitions. This calculation enables the use of bit vectors to encode the set of
transitions that are compatible with a given set R.

5.3. The Reaction Loop
The reaction loop computes a maximal set of transitions that run in reaction to an ex-
ternal event. This computation is performed incrementally because some transitions
are triggered by internal events generated by other transitions. This algorithm is syn-
thesized as the body of the method external_event_process(). The reaction loop as-
sumes that there is a given total order on transitions such that there exists always a
most prioritary transition to choose from a given set of enabled transitions. We leave
the construction of this total order outside the scope of this paper; this involves priority
conventions such as (1) manually declared priority; (2) transitions which modify chart
states that are higher in the hierarchy are more prioritary (like in STATEMATE [Es-
huis 2009]); (3) external events have precedence over internal and empty events.

The reaction loop must guarantee that the final running set of transitions leaves the
chart in a configuration. At all instants the reaction loop partitions the set of transi-
tions into four subsets:
— R: the set of transitions that run in the reaction.
— C: the set of candidate transitions, which have met all the enabling conditions, and

will run unless they conflict with some transition in R.
— D: the set of discarded transitions, that will not run.
— P : the set of plausible transitions, for which there is not enough information yet to

decide whether they are candidates (C) or discarded (D).
These sets are pairwise disjoint, and R ∪ C ∪ P ∪ D = T . Initially, all transitions
are declared plausible: P = T and R = C = D = ∅. These sets are not represented
explicitly except for the candidate set, which is maintained in a priority queue, ordered
by the order of transitions: PriorityQueue<Transition> the_candidates;

The algorithm proceeds in 3 phases:

Phase 1. Checking the Chart and Data Enabling Condition. This phase con-
sists in filtering out those transitions that are not ready to run, either because of the
chart state, or because of the object or global data values. The when clause of a transi-
tion expresses whether the transition is ready to be fired with respect to the current
state of the chart. Apart from modifying the chart state, transition bodies also inspect
and change internal data so either there is a mechanism to freeze the values of the
data before any transition runs, or the enabling conditions for all plausible transitions
must be checked before any transition starts running. We check the enabling condi-
tion for all transitions upfront. Hence, for each transition, the reaction loop checks
the when clause against the current chart state and invokes is_enabled(). If either of
these checks fail, the flag discarded is set to true. This corresponds to moving those
transitions that are not ready to the discarded set. The rest of the transitions are still
in P .

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

XX:18 Marinescu et al.

Phase 2. External Events. The reaction loop checks whether the received
event triggers those transitions that depend on external events, by invoking
is_triggered_by on each. Again, those transitions that return false are discarded by
setting discarded to false. However, those transitions for which is_triggered_by re-
turns true are inserted in the candidate queue with the following code:

if (check_transition_event(t1,e)) {
t1.ready = true;
the_candidates.add(t1); }

Inserting a transition in the queue
the_candidates corresponds to moving
the transition to the C set. After phase 2, all
transitions that depend on external events
are either discarded or candidates.

Phase 3. Running a Maximal Set. The next step of the reaction loop is to actually
execute a set of transitions. The reaction loop will incrementally compute a maximal
compatible set of transitions (see Section 5.2 above). The idea is to repeatedly choose
the maximum transition m in C according to the established total order. Transition m
is run if it is chart compatible with the previously run transitions. The bit vector that
encodes the compatibility of further transitions is updated by marking those transi-
tions which are incompatible with m. As a result of running m a set of internal events
may be generated which, in turn, may move some transitions from P to C. The set
of transitions is maximal when C is empty, at which point, the algorithm terminates.
Termination is guaranteed because each transition can be inserted in C at most once,
which is enforced using the flag ready. A ready transition is not re-inserted in the
priority queue that respresents C.

6. CONCLUSIONS AND FUTURE WORK
This paper has presented the FUSE language with formal semantics and a translation
into Java. A prototype implementation is under development and will be released as
future work. We identify several other directions for future work:

Additional Language Features. In self-loops in a chart, the introduction of a keep
construct would make the specifications cleaner, since removing and adding the same
state currently in FUSE resets substates to the default states. Moreover, sometimes
there are restrictions that must apply within a statechart, such as ordering transi-
tions which may otherwise execute concurrently. FUSE could be extended to specify
constraints, i.e. what relationships must hold or are forbidden between chart-states.
For example, in CVM we must enter money before we can make our drink selection:
constraint CoinCtrl(Coin c, Control ctrl) {not(ctrl == cafe && c == empty)}

Static Guarantees. Currently FUSE does not provide an explicit language to de-
scribe event parameters and constraints on events, but delegates event-based enabling
conditions to the Java programmer (as methods with Boolean return type). The alter-
native is to introduce an event language. The main advantage of a language approach
is that a simple, event-specific language with clean semantics would enable to deter-
mine statically which transitions will execute in a reaction loop. FUSE can be extended
with one such language to allow the expression of contracts.

Specifically, a contract associated with a method may define the following types of
information: (1) the precondition—via triggered by (that includes simple predicates
over events) and when, (2) the set of all internal events that the function must and may
generate—via a generates construct (that may include the relation between the values
in the event and values in the data at the beginning of the reaction or in the triggering
event), (3) the post-condition—via the add, remove, and a new ensures construct, (4) the
set of variables modified by the method, and (5) the set of variables that are accessed
by the transition. Contracts would enable the effective static checking of properties.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

Fusing Statecharts and Java XX:19

Compound Events and Concurrency. FUSE can be easily extended to sup-
port compound events using features of the target language Java. First, the
external_event_process() method should be extended to receive compound events
(for example event sets). The reaction loop only needs to be adapted in phase 2 to
invoke several times the is_triggered_by function, one per event in the compound
event. Alternatively is_triggered_by could be extended to receive event sets. To op-
timize the execution of the reaction loop we may allow transitions to execute concur-
rently. Apart from the need to synchronize the shared data, a transition at the head
of the priority queue cannot simply be run unless there exists the guarantee that the
currently running transitions will not generate an internal event enabling a higher
priority transition. This check can be performed using the generates construct in the
contract. At the language level, FUSE may be extended with asynchronous methods to
model asynchronous events in Statecharts.

ACKNOWLEDGMENTS

This work was partially funded by the MICINN project TIN2010-16497, Input/Output Scalable Techniques
for distributed and high-performance computing environments, by the EU project FET IST-231620 HATS,
MICINN project TIN-2008-05624 DOVES, CAM project S2009TIC-1465 PROMETIDOS, and by the COST
Action IC0901 Rich ModelToolkit-An Infrastructure for Reliable Computer Systems.

REFERENCES
ALI, J. AND TANAKA, J. 1999. Converting Statecharts into Java code. In Proc. Fourth World Conf. on Inte-

grated Design and Process Technology (IDPT’99).
BALARIN, F., CHIODO, M., GIUSTO, P., HSIEH, H., JURECSKA, A., LAVAGNO, L., SANGIOVANNI-

VINCENTELLI, A. L., SENTOVICH, E., AND SUZUKI, K. 1999. Synthesis of software programs for em-
bedded control applications. IEEE Trans. on CAD of Integrated Circuits and Systems 18, 6, 834–849.

BASU, A., BOZGA, M., AND SIFAKIS, J. 2006. Modeling heterogenous real-time components in BIP. In 4th
IEEE Int’l Conf. on Soft. Eng. and Formal Methods (SEFM’06). IEEE, 3–12.

BENEVISTE, A., CAILLAUD, B., AND GUERNIC, P. L. 1999. From synchrony to asynchrony. In Proc. of the
10th Int’l Conf. in Concurrency Theory (CONCUR’99). LNCS Series, vol. 1664. Springer, 162–177.

BERRY, G. 2000. The Foundations of Esterel. MIT Press.
BJÖRKLUND, D., LILIUS, J., AND PORRES, I. 2001. Towards efficient code synthesis from statecharts. In

Proc. of Practical UML-Based Rigorous Development Methods (pUML’01). Lecture Notes in Informatics
Series, vol. 7. German Informatics Society, 29–41.

BOUSSINOT, F. 1991. Reactive C: an extension of C to program reactive systems. Software Practice and
Experience 21, 4, 401–428.

BOUSSINOT, F. 2006. FairThreads: mixing cooperative and preemptive threads in C. Concurrency and Com-
putation: practice and experience 18, 5, 445–469.

BUCK, J., HA, S., LEE, E. A., AND MESSERSCHMITT, D. 1994. Ptolemy: A framework for simulating and
prototyping heterogeneous systems. Intl. Journal in Computer Simulation 4, 2, 155–182.

CHAMBERS, C. 1993. Predicate classes. In Proc. of the 7th European Conf. on Object-Oriented Programming
(ECOOP’03). LNCS Series, vol. 707. Springer, 268–296.

CHAMBERS, C. 1997. The Cecil language specification and rationale, Version 2.1. Tech. rep., CSE, University
of Washington. http://www.cs.washington.edu/research/projects/cecil/pubs/cecil-spec.html.

CHEONG, E., LIEBMAN, J., LIU, J., AND ZHAO, F. 2003. TinyGALS: a programming model for event-driven
embedded systems,. In Proc. of the 2003 ACM Symp. on Applied Computing (SAC’03). ACM, 698–704.

CHEONG, E. AND LIU, J. 2005. galsC: a language for event-driven embedded systems. In Design, Automation
and Test in Europe Conf. (DATE’05). IEEE Computer Society, 1050–1055.

CHOW, T. 1978. Testing software design modeled by finite-state machines. In Trans. on Soft. Eng. IEEE,
178–187.

EDWARDS, S. A. AND ZENG, J. 2007. Code generation in the Columbia Esterel compiler. In EURASIP Jour-
nal on Embedded Systems. Vol. 2007.

ERNST, M. D., KAPLAN, C. S., AND CHAMBERS, C. 1998. Predicate dispatching: a unified theory of dispatch.
In Proc. of the 12th European Conf. on Object-Oriented Programming (ECOOP’98). LNCS Series, vol.
1445. Springer, 186–211.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

XX:20 Marinescu et al.

ESHUIS, R. 2009. Reconciling Statechart semantics. Sci. of Computer Programming 74, 3, 65–99.
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns: elements of reusable object-

oriented software. Addison-Wesley.
GAY, D., LEVIS, P., VON BEHREN, J. R., WELSH, M., BREWER, E. A., AND CULLER, D. E. 2003. The nesC

language: a holistic approach to networked embedded systems. In Proc. of the ACM SIGPLAN 2003
Conf. on Programming Language Design and Implementation (PLDI’03). ACM, 1–11.

GERY, E., HAREL, D., AND PALACHI, E. 2002. Rhapsody: a complete life-cycle model-based development
system. In 3rd Int’l Conf. on Integr. Formal Meth. (IFM’02). LNCS Series, vol. 2335. Springer, 1–10.

GÖSSLER, G. AND SANGIOVANNI-VINCENTELLI, A. 2002. Compositional modeling in Metropolis. In Proc.
of the 2nd Int’l Conf. on Embedded Software (EMSOFT’02). LNCS Series, vol. 2491. Springer, 93–107.

GRUIAN, F., ROOP, P. S., SALCIC, Z. A., AND RADOJEVIC, I. 2006. The SystemJ approach to system-level
design. In 4th Intl. Conf. on Formal Methods & Models for Co-Design (MEMOCODE’06). IEEE, 149–158.

HAREL, D. 1987. Statecharts: a visual formalism for complex systems. Sci. of Comp. Progr. 8, 3, 231–274.
KNAPP, A. AND MERZ, S. 2002. Model checking and code generation for UML state machines and collabo-

rations. In Proc. of the 7th Intl. Symp. on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT’02). LNCS Series, vol. 2469. Springer, 395–416.

KÖHLER, H. J., NICKEL, U., NIERE, J., AND ZÜNDORF, A. 2000. Integrating UML diagrams for production
control systems. In Proc. of the 22nd Intl. Conf. on on Software Engineering (ICSE’00). ACM, 241–251.

LAVAGNO, L. AND SENTOVICH, E. 1999. ECL: A specification environment for system-level design. In Proc.
of the 36th Conf. on Design Automation (DAC’99). ACM, 511–516.

LEE, E. A. AND ZHENG, H. 2007. Leveraging synchronous language principles for heterogeneous modeling
and design of embedded systems. In Proc. of the 7th ACM & IEEE Intl. Conf. on Embedded Software
(EMSOFT’07). ACM, 114–123.

LISKOV, B. AND WING, J. M. 1994. A behavioral notion of subtyping. In ACM Trans. Program. Lang. and
Syst. Vol. 16. ACM, 1811–1841.

MIKK, E., LAKHNECH, Y., SIEGEL, M., AND HOLZMANN, G. J. 1998. Implementing statecharts in
Promela/Spin. In Workshop of Industrial-Strength Formal Spec. Techniques (WIFT’98). IEEE, 90–101.

MILLSTEIN, T. D. 2004. Practical predicate dispatch. In Proc. of the 19th Annual ACM SIGPLAN Conference.
on Object-Oriented Progr., Systems, Langs., and Applications (OOPSLA’04). ACM, 345–364.

NIAZ, I. A. AND TANAKA, J. 2004. Mapping UML Statecharts to Java code. In Proc. of the IASTED Intl.
Conf. on Software Engineering. IASTED Acta Press, 111–116.

PNUELI, A. AND SHALEV, M. 1991. What is in a step: on the semantics of Statechars. In Proc. of the Intl.
Conf on Theoretical Aspects of Computer Software (TACS ’91). LNCS Series, vol. 526. Springer, 244–264.

RAN, A. S. 1994. Modeling states as classes. In Proc. of the Technology of Object-Oriented Langs. and Systems
Conf. Prentice-Hall.

ROOP, P. S., ANDALAM, S., VON HANXLEDEN, R., YUAN, S., AND TRAULSEN, C. 2009. Tight WCRT analysis
of synchronous C programs. In Proc. of the 2009 Intl. Conf. on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES’09). ACM, 205–214.

SAMEK, M. 2002. Practical Statecharts in C/C++. CMP Books.
SANE, A. AND CAMPBELL, R. H. 1995. Object-oriented state machines: subclassing, composition, delegation,

and genericity. In Proc. of the Tenth Annual Conf. on Object-Oriented Programming Systems, Langs., and
Applications (OOPSLA’95). ACM.

SEKERINSKI, E. AND ZUROB, R. 2001. iState: a Statechart translator. In Proc. of the 4th Intl. Conf. on the
Unified Modeling Language (UML’01). LNCS Series, vol. 2185. Springer, 376–390.

SREEDHAR, V. C. AND MARINESCU, M.-C. 2005. From Statecharts to ESP: programming with events, states
and predicates for embedded systems. In 5th Int’l Conf. on Embedded Soft. (EMSOFT’05). ACM, 48–51.

TARDIEU, O. AND EDWARDS, S. A. 2006. Scheduling-independent threads and exceptions in SHIM. In Proc.
of the 6th ACM Intl. Conf. on Embedded Software (EMSOFT’06). ACM, 142–151.

TOMURA, T., KANAI, S., UEHIRO, K., AND YAMAMOTO, S. 2001. Object-oriented design pattern approach
for modelling and simulating open distributed control system. In Proc. of the 2001 IEEE Intl. Conf. on
Robotics and Automation (ICRA’01). IEEE, 211–216.

UML 2011. UML 2.0. http://www.uml.org.
VON DER BEECK, M. 1994. A comparison of Statechart variants. In 3rd Intl. Symp. on Formal Techniques

in Real-Time and Fault-Tolerant Systs. (FTRTFT’94). LNCS Series, vol. 863. Springer, 128–148.
VON HANXLEDEN, R. 2009. SyncCharts in C – a proposal for light-weight, deterministic concurrency. In

Proc. of the ACM Intl. Conf. on Embedded Software (EMSOFT’09). ACM, 225–234.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article XX, Publication date: March 2012.

