
Reliable Smart Contracts

Gordon J. Pace1, César Sánchez2, and Gerardo Schneider3

1 University of Malta, Malta
gordon.pace@um.edu.mt

2 IMDEA Software Institute, Madrid, Spain
cesar.sanchez@imdea.org

3 University of Gothenburg, Sweden
gerardo@cse.gu.se

Abstract. The rise of smart contracts executed on blockchain and other
distributed ledger technologies enabled trustless yet decentralised com-
putation. Various applications take advantage of this computational model,
including enforced financial contracts, self-sovereign identity and voting.
But smart contracts are nothing but software running on a blockchain,
with risks of malfunction due to bugs in the code. Compared to tradi-
tional systems, there is an additional risk in that erroneous computation
or transactions triggered by a smart contract cannot be easily rolled back
due to the immutability of the underlying execution model. This ISoLA
track brings together a number of experts in the field of smart contract
reliability and verification to discuss the state-of-the-art in smart con-
tract dependability and discuss research challenges and future directions.

1 Blockchains and Smart-Contracts

Blockchains and Distributed Ledger Technologies (DLTs) are essentially a dis-
tributed ledger or database, running on multiple devices. The key elements which
have generated the hype of this technology are (1) that the consistency of the
data stored and the guarantees on updates are performed in a fully decentralised
manner, and (2) to ensure immutability of information written. This provided a
way of implementing the secure management of digital asset storage in a decen-
tralised manner, enabling the implementation of trustless cryptocurrencies. In
the paper which set all this in motion [4], Satoshi Nakamoto outlined how block-
chain can be implemented and used to record ownership of cryptocurrency, and
acted also as the launch of the Bitcoin blockchain which keeps track of ownership
of Bitcoins.4

It was soon realised that such a ledger could easily be used to keep track
of ownership of any digital asset, recorded on a particular blockchain or as a
representation (or evidence) of ownership of any object, physical or otherwise,
stored off the blockchain (e.g. music, art, intellectual property, votes). Also, such
a trustless network can be used to script performance of agreements between
parties on the blockchain. The immutable nature of the blockchain ensures that

4 Confusingly, the term is used both for the network and the cryptocurrency.

such agreements are themselves permanent and immutable, thus safeguarding
the rights of the parties involved. In this manner, blockchain has the potential
to change in a fundamental way financial services and more generally other
applications, improving transparency and regulation.

The Ethereum [1] blockchain was the first widespread blockchain system to
implement such smart contracts, allowing not only for transactions consisting
of transfer of Ether (the native cryptocurrency) between parties, but also for
transactions to deploy and interact with smart contracts. The underlying im-
plementation ensured that the smart contracts are irrevocably written on the
blockchain, and their invocations are executed autonomously and securely on
the blockchain. On such a public blockchain, smart contracts are openly stored
on the blockchain (i.e. they can be read and used by anyone).

Since smart contracts would thus have to be executed and verified automat-
ically by the nodes of the underlying blockchain network, they have to be ex-
pressed in a formalism which has a deterministic operationalisation. Many DLTs
enabling smart contract execution, including Ethereum, opted for supporting a
full Turing-complete instruction set. The execution of smart contract invocations
is performed, and the results recorded, on the blockchain network by nodes on
the network acting as “miners”, who are rewarded (in cryptocurrency) in re-
turn. The corresponding instructions in the smart contract may perform normal
computation logic but also manipulate the local book-keeping of data (including
cryptocurrency). In addition, smart contracts may act as other parties in that
they can own and can transfer cryptovalues.

A smart contract can be seen as an embodiment of an agreement between
different parties in order to automate the regulated exchange of value and infor-
mation over the internet. Their promise is that of reducing costs of contracting,
and of enforcing contractual agreements (“robust [. . .] against sophisticated, in-
centive compatible breach” [6]), and making payments, while at the same time
ensuring trust and compliance, all in the absence of a central authority.

The challenge, however, lies in the fact that smart contracts, just like any
other program, can have bugs and vulnerabilities. The agreement enforced can
thus inadvertently not match the intended one, and may result in losses for the
parties involved. In the literature, one can find reports on various bugs which
resulted in the equivalent of millions of euros [2, 3, 5]. Reliability and correct-
ness of smart contracts is, effectively, a question of reliability and correctness of
programs, one of the Holy Grails of computer science. However, one may argue
that the need for reliability is even more acute in smart contracts, where code is
immutable5 and critical in that it typically manipulates cryptocurrency. Writing
a smart contract carries risk akin to a payment service provider implementing
their software in hardware circuits which cannot (or are too expensive to) be
updated. On the other hand, since in this setting the computation is performed
in small, bite-sized chunks of code, smart contracts are more amenable to ver-

5 It shares, in a sense, the permanent nature of algorithms implemented as hardware
circuits. Hardware led the efforts for automated verification in the 90s due to the
high cost of potential bugs.

2

ification than traditional systems which may run into millions of lines of code.
This calls for better programming languages for smart contracts with stronger
security and privacy guarantees, achieved either through improved underlying
DLT platforms, the design of programming languages better suited for smart
contract programming or through verification techniques for smart contracts.

In the track we have collected new results and discussions related to:

– Research on different languages for smart contracts including their expres-
sivity and reasoning methods.

– Research on the use of formal methods for specifying, validating and verifying
smart contracts.

– Surveys and state-of-knowledge about security and privacy issues related to
smart contract technologies.

– New applications based on smart contracts.
– Description of challenges and research directions to future development for

better smart contracts.

2 Summary of Selected Articles

In this section we briefly summarise the articles invited to the ISoLA’206 track
on “Reliable Smart Contracts: State-of-the-art, Applications, Challenges and
Future Directions”7, appearing in this volume.

– Functional Verification of Smart Contracts via Strong Data In-
tegrity, by Wolfgang Ahrendt and Richard Bubel, presents an invariant-
based static analysis approach and tool implementation for Solidity smart
contracts. The approach is based on theorem proving and symbolic execu-
tion and was built upon the tool KeY. Unlike much of the other work being
carried out in static analysis for smart contracts, the approach presented by
the authors focuses on the business logic, the expected functionality of the
smart contract in question, although it also addresses standard problems, in
particular reentrancy.

– Bitcoin Covenants Unchained, by Massimo Bartoletti, Stefano Lande
and Roberto Zunino, proposes an extension of the Bitcoin script language
with “covenants”, a set of script operators used to constrain how funds can be
used by the redeeming transactions. Covenants can be recursive, extending
the expressiveness of Bitcoin contracts. A formal model for covenants is given
to show the expressiveness of the extension. Finally, the paper discuss how
covenants could be integrated in a high-level language, in particular it is
hinted how this could be done in the BitML language.

– Specifying Framing Conditions for Smart Contracts, by Bernhard
Beckert and Jonas Schiffl, proposes a formalism to enrich smart contract
specifications with frame conditions in order to specify what a smart contract

6 http://isola-conference.org/isola2020
7 http://www.cs.um.edu.mt/gordon.pace/Workshops/RSC2020

3

function cannot (and will not) do. The approach is based on the concept of
dynamic frames. It proposes languages for specifying frame conditions for
both Ethereum and Hyperledger Fabric.

– Making Tezos Smart Contracts More Reliable with Coq, by Bruno
Bernardo, Raphaël Cauderlier, Guillaume Claret, Arvid Jakobsson, Basile
Pesin and Julien Tesson, presents the Mi-Cho-Coq framework, a Coq li-
brary defining formal semantics of Michelson (the Tezos language to write
smart contracts) as well as an interpreter, a simple optimiser and a weakest-
precondition calculus to reason about Michelson smart contracts. The paper
also introduces Albert, an intermediate language with a compiler written in
Coq that targets Mi-Cho-Coq, illustrating how Mi-Cho-Coq can be used as
a compilation target to generate correct code.

– UTxO- vs Account-Based Smart Contract Blockchain program-
ming paradigms, by Lars Brünjes and Murdoch J. Gabbay, formalises and
proves desirable properties of Cardano, most importantly that the effects of
a transaction do not depend on the other transactions in the same block. A
formalisation of Ethereum is given and contrasted in terms of smart contract
language paradigm — Solidity and Plutus, vulnerability to DDoS attacks and
in terms of propensity to certain errors (e.g. due to the effect of Ethereum
transactions can change depending on the behaviour of other transactions
in the same block, but not in Cardano).

– Native Custom Tokens in the Extended UTXO Model, by Manuel
M.T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melko-
nian, Jann Müller, Michael Peyton Jones, Polina Vinogradova and Philip
Wadler, presents an extension of user-defined tokens UTXO (present in
blockchains like Bitcoin) and how this exstension can be used to define some
smart-contract behavior. Extended UTXO allow to encode, pass and validate
arbitrary data across multiple transactions which is sophisticated enough to
validate runs with so-called Constraint Emitting machines (Mealy machine
with data).

– UTXOma: UTXO with Multi-Asset Support, by Manuel M.T. Chakravarty,
James Chapman, Kenneth MacKenzie, Orestis Melkonian, Jann Müller, Michael
Peyton Jones, Polina Vinogradova, Philip Wadler and Joachim Zahnent-
ferner, explores a design for the creation of user-defined tokens based on
UTXO ledgers. Unlike platforms such as Ethereum, which allow for the im-
plementation of such tokens using general scripting capabilities which comes
with well-known risks, the authors propose an extension to the UTXO model
to manage an unbounded number of user-defined, native tokens using a sim-
ple domain-specific language with bounded computational expressiveness.
They formalise the model and its semantics using the Agda proof assistant.

– Towards Configurable and Efficient Runtime Verification of Block-
chain based Smart Contracts at the Virtual Machine Level, by
Joshua Ellul, studies the problem of alleviating the overhead imposed by
monitoring the execution of smart-contracts, using low-level (virtual ma-
chine) infrastructure. The paper presents modifications of the VM level that
permit enabling and disabling state variable monitoring and syscall mon-

4

itoring dynamically, and compares the different approaches empirically, in
terms of the reduction in the monitoring overhead obtained.

– Compiling Quantitative Type Theory to Michelson for Compile-
Time Verification & Run-time Efficiency in Juvix, by Christopher
Goes, uses quantitative type theory (QTT)—a typed lambda calculus equipped
with resources using dependent types—to construct a theoretical basis of the
core language within Juvix. The paper illustrate how this basis can be used
to efficiently compile Juvix into efficient Michelson code, the execution lan-
guage of the Tezos Blockchain ecosystem.

– Efficient Static Analysis of Marlowe Contracts, by Pablo Lamela Sei-
jas, David Smith and Simon Thompson, discusses the authors’ experience in
the implementation and optimisation of static analysis for the smart contract
language Marlowe which is designed specifically for self-enforcing financial
smart-contracts. In particular, the authors look at the use of SMT solvers
for the verification of properties written in this language.

– Accurate Smart Contract Verification through Direct Modelling,
by Matteo Marescotti, Rodrigo Otoni, Leonardo Alt, Patrick Eugster, Antti
E. J. Hyvärinen and Natasha Sharygina, presents a formal analysis engine
used in the Solidity compiler. The verification is performed using the logic
of constrained Horn clauses. The approach, evaluated on a set of smart
contracts deployed in the Ethereum platform, is able to prove correctness
and discover bugs in number of such contracts.

– Smart Derivatives: On-chain Forwards for Digital Assets by Alfonso
D.D.M. Rius and Eamonn Gashier, introduces a framework to facilitate the
development of on-chain forwards (and futures), based on smart contracts.
The paper builds upon, and extends, previous work by the authors on on-
chain options. The paper makes a connection between computer smart con-
tracts and “real world” (financial) contracts.

– The Good, the Bad and the Ugly: Pitfalls and Best Practices in
Automated Sound Static Analysis of Ethereum Smart Contracts,
by Clara Schneidewind, Markus Scherer and Matteo Maffei, focuses on static
analysis of smart contracts, particularly for Ethereum. It discusses the chal-
lenges of providing sound verification techniques, highlighting unsoundness
of existing tools through concrete examples. The paper then proceeds to give
details about eThor, a tool developed by the authors, and outline its use for
addressing the reentrancy problem.

References

1. Ethereum. https://www.ethereum.org.
2. A. Hern. $300m in cryptocurrency accidentally lost forever due to bug. Ap-

peared at The Guardian https://www.theguardian.com/technology/2017/nov/

08/cryptocurrency-300m-dollars-stolen-bug-ether, Nov 2017.
3. Mix. Ethereum bug causes integer overflow in numerous erc20 smart contracts

(update). Appeared at HardFork https://thenextweb.com/hardfork/2018/04/

25/ethereum-smart-contract-integer-overflow/, 2018.

5

4. Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. White Paper
https://bitcoin.org/bitcoin.pdf, 2009.

5. Haseeb Qureshi. A hacker stole $31M of Ethereum — how it happened, and
what it means for Ethereum. Appeared at FreeCodeCamp https://medium.

freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and

-what-it-means-for-ethereum-9e5dc29e33ce, 2017.
6. Nick Szabo. Smart contracts: Building blocks for digital markets. Extropy, (16),

1996.

6

