
Timed Epistemic Knowledge Bases for Social Networks

Raúl Pardo1, César Sánchez2, and Gerardo Schneider1

1 Department of Computer Science and Engineering,
Chalmers | University of Gothenburg, Sweden.
2 IMDEA Software Institute, Madrid, Spain.

Abstract. We present an epistemic logic equipped with time-stamps in atoms
and epistemic operators, which enables reasoning about the moments at which
events happen and knowledge is acquired or deduced. Our logic includes both
an epistemic operator K and a belief operator B, to capture the disclosure of
inaccurate information. Our main motivation is to describe rich privacy policies
in online social networks (OSNs). Most of today’s privacy policy mechanisms in
existing OSNs allow only static policies. In our logic it is possible to express rich
dynamic policies in terms of the knowledge available to the different users and
the precise time of actions and deductions. Our framework can be instantiated for
different OSNs by specifying the effect of the actions in the evolution of the social
network and in the knowledge disclosed to each user. We present an algorithm
for deducing knowledge and propagating beliefs, which can also be instantiated
with different variants of how the epistemic information is preserved through time.
Policies are modelled as formulae in the logic, which are interpreted over timed
traces. Finally, we show that the model checking problem for this logic, and in
consequence policy conformance, is decidable.

1 Introduction

Online Social Networks (OSNs) like Facebook [1], Twitter [2] and Snapchat [3] have
exploded in popularity in recent years. According to a recent survey [4] nearly 70% of
the Internet users are active on social networks. Some concerns, including privacy, have
arisen alongside this staggering increase in usage. Even though several studies [5–8]
report that privacy breaches are growing in number, the most popular OSNs do not
provide users with mechanisms to guarantee their desired privacy effectively. Moreover,
virtually all privacy policies are static and cannot express timing preferences, such as
referring to points in time or how policies evolve.

In [9] we presented a privacy policy framework which was able to express a limited
version of dynamic privacy policies. The framework in [9] is based on an epistemic
logic to characterise what users know, and a privacy policy language, based on the logic.
Formulae are interpreted over social network models which faithfully represent the social
graph of OSNs. The policy language allows to describe, for example, the following policy
“During the weekend only my friends can see my pictures”. However, the previous policy
simply activates the static policy “only my friends can see my pictures” during weekends.
A major restriction of the logic in [9] is its lack of explicit time. Another restriction
is that the logic only includes a knowledge modality thus implicitly assuming that the

2 R. Pardo and C. Sánchez and G. Schneider

information that users are told is true. This assumption is not realistic in social networks
as users may also receive and disclose information that is false or inaccurate, which has
raised a growing interest in the detection of fake news [10–12]. To address these issues
we introduce here a logic that: (1) is tailored for social networks and allows to express
properties based on the social connections between users; (2) combines knowledge
and belief to differentiate true knowledge and information that may be false; (3) has
time-stamps in modalities and atoms, enabling the possibility of referring to the timing
of events and when information is learnt.

Some existing logics include these elements separately. For example, the logic in [13]
includes time-stamps in atoms and in a belief modality, but it lacks of a knowledge
modality, and it is not suitable for OSNs (their aim was to reason about AGM belief
revision). A logic proposed in [14] allows to reason about how beliefs spread out in
Twitter, but it does not include time-stamps and cannot be used to reason about time.
Finally, [15] proposes an axiomatisation of epistemic logic which combines knowledge
and belief, but without time-stamps in modalities or atoms. Section 4 includes a more
detailed comparison of related work.

Contributions: In this paper we introduce a novel logic that combines knowledge, belief
and time (Section 2), tailored to define dynamic privacy policies (Section 3). More
concretely: (i) We extend [9] by equipping atoms and epistemic operators with time
instants. The expressive power of the new logic allows to derive the learning operator
as well as a new forget operator that captures when an agent stops knowing something.
(ii) We equip the logic with belief operators, with the restriction that agents cannot
believe in something that they know is false. To this end, we define a belief propagation
algorithm which guarantees that agents’ beliefs are always consistent. This allows the
representation of OSNs that allow gossiping in which potentially false information can
be spread. Analogously, we derive the accept and reject operators which capture the
moment in which an agent starts or stops believing in something. (iii) We introduce the
notion of extended knowledge bases (EKBs) to answer queries of temporal epistemic
formulas against the knowledge acquired during a sequence of events. To answer these
queries, we define timed derivations within a time-window w, which allows to instantiate
our framework for different OSNs, for example those with eternal memory like Facebook
and for ephemeral ones like Snapchat. (iv) We prove that the model checking problem
in this logic is decidable by providing a model checking algorithm that is also used to
check policy conformance. As a result, policy conformance is also decidable.

2 A Timed Knowledge Based Logic

We introduce here KBLRT a knowledge-based first-order logic that includes time-
stamped knowledge and belief modalities, and quantification over time-stamps.

2.1 Syntax

Let T be a vocabulary consisting of a set of predicate and function symbols, with some
implicit arity, and constant symbols. We assume an infinite supply of variables x, y, . . .

Timed Epistemic Knowledge Bases for Social Networks 3

Terms can be built as s ::= c | x | f(#»s) where #»s is a tuple of terms respecting the
arity of f . Let T denote a set of time-stamps, which is required to be a non-Zeno totally
ordered set, i.e., there is a finite number of instants between any two given instants. We
use time-stamps to mark pieces of information or to query the knowledge of the agents at
specific instants. Consider also a set of agents Ag , a set of domainsD, and a set of events
EVT (e.g., share a post or upload a picture). Similarly, we use C and Σ to denote special
sets of predicate symbols that denote connections (between agents) and permissions.

Definition 1 (Syntax ofKBLRT). Given agents i, j ∈ Ag a time-stamp t ∈ T, an event
e ∈ EVT , a variable x, a domain D ∈ D, predicate symbols ct(i, j), at(i, j), pt(#»s)
where c ∈ C and a ∈ Σ, the syntax of the real-time knowledge-based logic KBLRT is
inductively defined as:

ϕ ::= ρ | ϕ ∧ ϕ | ¬ϕ | ∀t · ϕ | ∀x : D · ϕ | Kt
iϕ | Btiϕ

ρ ::= ct(i, j) | at(i, j) | pt(#»s) | occurred t(e)

The epistemic modalities stand for: Kt
iϕ, agent i knows ϕ at time t; Btiϕ, agent i

believes ϕ at time t. We use the following notation as syntactic sugar P ji a
t , at(i, j),

meaning that “agent i is permitted to execute action a to agent j at time t”. For example,
PAlice
Bob friendRequest5 means that Bob is allowed to send a friend request to Alice at

time 5. We use FKBLRT to denote the set of all well-formed KBLRT formulae. Our
logic introduces the following novel notions that have not been considered in other
formal privacy policies languages such as [16–18, 9].

– Time-stamped Predicates. Time-stamps are explicit in each predicate, including
connections and actions. For instance, if Alice and Bob were friends in a certain
time period, then the predicate friend t(Alice,Bob) is true for all t falling into the
period, and false for all t outside. This can be seen as the valid time in temporal
databases [19].

– Separating Knowledge and Belief. Not all the information that users see in a social
network is true. For instance, Alice may tell Bob that she will be working until late,
whereas she will actually go with her colleagues to have some beers. In this example,
Bob has the (false) belief that Alice is working. Traditionally, in epistemic logic,
the knowledge of agents consists on true facts, while beliefs represent plausible
information that may be false [20]. For KBLRT we combine both modalities in one
logic. In the following section we describe how to combine these two.

– Time-stamped Epistemic Modalities. Time-stamps are also part of the epistemic
modalities K and B . Using time-stamps we can refer to the knowledge and beliefs
of the agents at different points in time. For example, B20:00

Bob loc19:00(Alice,work)
means that Bob beliefs at 20: 00 that Alice’s location at 19: 00 is work.

– Occurrence of Events. Being able to determine when an event has occurred allows
users to define policies that are activated whenever someone performs an undesired
event. Examples of these policies are: “if Alice unfriends Bob, she is not allowed to
send Bob a friend request” or “if Alice denies an invitation to Bob’s party, then she
cannot see any of the pictures uploaded during the party.” We introduce occurred t(e)
to syntactically capture the moment when a specific event e occurred.

4 R. Pardo and C. Sánchez and G. Schneider

2.2 Semantics

Real-Time Social Network Models We introduce formal models to reason about the
states and evolution of social networks. These models leverage the information in the
social graph [21] —the core data model in most social networks [22–24]. We extend
social graphs, which include agents (or users) and the relationships between them,
by adding for each agent a knowledge base, and the set of privacy policies that the
agent has activated. We build upon a previous version of this framework [9], increasing
substantially the expressiveness of privacy policies (see Section 3).

Definition 2 (Social Network Models). Given a set of formulae F ⊆ FKBLRT , a set
of privacy policies Π, and a finite set of agents Ag ⊆ AU from a universe AU , a social
network model (SNM) is a tuple 〈Ag ,A,KB , π〉, where

– Ag is a nonempty finite set of nodes representing the agents in the social network;
– A is a first-order structure over the SNM, consisting of a set of domains, a set of re-

lations, a set of functions and a set of constants interpreted over their corresponding
domain.

– KB : Ag → 2F is a function retrieving a set of (time-stamped) facts of an agent,
which are stored in the knowledge base of the agent; we write KB i for KB(i);

– π : Ag → 2Π which returns the privacy policies of an agent; we write πi for π(i).

In Def. 2, the shape of the relational structure A depends on the social network. We rep-
resent the connections—edges of the social graph—and the permission actions between
social network agents as families of binary relations, respectively {Ci}i∈C ⊆ Ag ×Ag
and {Ai}i∈Σ ⊆ Ag × Ag over the domain of agents. We use D to denote the set of
domains. The set of agents Ag is always included in the set of domains. We use SNRT
to denote the universe of all possible social network models.

Evolution of Social Network Models The state of a social network changes by
means of the execution of events from the set EVT . For instance, in Facebook, users
can share posts, upload pictures, like comments, etc. We use traces to capture the
evolution of the social network. A trace is a finite sequence σ = 〈(SN 0, E0, t0),
(SN 1, E1, t1), . . . , (SN k, Ek, tk)〉 such that, for all 0 ≤ i ≤ k, SN i ∈ SNRT ,
Ei ⊆ EVT , and ti ∈ T. We use Tσ = {t | (SN , E, t) ∈ σ} for the set of time-
stamps of σ. We impose some conditions to traces so that they accurately model the
evolution of social networks. We say that a trace is well-formed if it satisfies the following
conditions:
1. Time-stamps are strictly ordered from smallest to largest, that is, for any i, j with

0 ≤ i < j ≤ k it follows that ti < tj .
2. Successor states are the result of events. We use−→ for the transition relation defined

as −→ ⊆ SNRT × 2EVT × T × SNRT (−→ can be specified using small step
operational semantics as we show in [18] for an untimed version of this framework).

We write SN 1
E,t−−→ SN 2 if SN 2 is the result of the set of events E ∈ EVT

happening in SN 1 at time t. We allow E to be empty, in which case SN 1 = SN 2.

3. For each
E,t−−→ the set of events E must only contain independent events. Two events

are independent if, when executed sequentially, their execution order does not change

Timed Epistemic Knowledge Bases for Social Networks 5

their resulting state. Formally, e and e′ are independent whenever for every state

SN 0 and time t, the state SN 2 and SN ′2 obtained as SN 0
{e},t−−−→ SN 1

{e′},t−−−→ SN 2

and SN 0
{e′},t−−−→ SN ′1

{e},t−−−→ SN ′2 satisfy that SN 2 = SN ′2. This definition can be
easily extended to sets of events in the expected way.
We useWFT to refer to the set of well-formed traces. We assume that there is a

function predecessor pred : T → T that takes a time-stamp and returns the previous
time-stamp in the trace. Analogously, next : T→ T returns the next time-stamp in the
trace. Since the set of time-stamps is non-Zeno it is always possible to compute these
functions.3

KBLRT formulae are very similar to Ln from epistemic logic [20]. There are
two standard ways to define semantics of epistemic logics. First, one can define for
every agent an undistinguishability relation between the worlds that the agent considers
possible [20]. When considering traces of events, the framework typically used is
interpreted systems. An alternative encoding, proposed by Fagin et al. [20][Section
7.3] consists in encoding the answer of epistemic queries from knowledge bases of
accumulated facts. We follow this way of modelling knowledge here by equipping each
agent with a knowledge base and defining the semantics of KBLRT formulae based on
answers by these knowledge bases.

Extended Knowledge Bases An Extended Knowledge Base consists of a collection
of KBLRT formulae, which represents the knowledge of the agent at a point in time.
Epistemic derivations allow to answer whether a formula follows from the information
stored in a knowledge base.

Derivations in EKBs. The EKB of an agent contains the explicit knowledge she ac-
quired in the previous step. Additional knowledge can be derived from the explicit
pieces of information stored in these EKBs. Derivations can use formulae at a given
point in time and at older times. We introduce the notion of time window (or sim-
ply, window) to determine how knowledge from the past can be used in a deriva-
tion. We write Γ ` (ϕ,w) to denote that ϕ can be derived from Γ given a window

Γ ` (ϕ,w′)

Γ ` (ψ,w)

w. We provide a set of deduction rules, DR, of the form given
on the right meaning that, given the set of premises Γ, ψ can be
derived with a window w from ϕ with a window w′.

Definition 3. A timed derivation of a formula ϕ with a window w, is a finite sequence
of pairs (ϕ1, w1), (ϕ2, w2), . . . , (ϕn, wn) = (ϕ,w) such that for every 1 ≤ i ≤ n, ϕi
follows by an application of a deduction rule of DR whose premises are ϕj with j < i ,
and wj ≤ wi.

We now present the concrete derivation rules that allow to derive knowledge from the
facts stored in EKBs. These rules extend axiomatizations of knowledge and belief with
rules to deal with knowledge propagation through time.

3 We can assume that the predecessor of the initial time-stamp is the intial state itself, and
similarly the next of the end of the trace returns the equal to itself.

6 R. Pardo and C. Sánchez and G. Schneider

Knowledge axioms Belief axioms Knowledge-Belief axioms
A1 All tautologies of first-order logic K (Btiϕ ∧Bti (ϕ =⇒ ψ)) L1 Kt

iϕ =⇒ Btiϕ
A2 (Kt

iϕ ∧Kt
i (ϕ =⇒ ψ)) =⇒ Btiψ L2 Btiϕ =⇒ Kt

iB
t
iϕ

=⇒ Kt
iψ D ¬Bti⊥

A3 Kt
iϕ =⇒ ϕ B4 Btiϕ =⇒ BtiB

t
iϕ

A4 Kt
iϕ =⇒ Kt

iK
t
iϕ B5 ¬Btiϕ =⇒ Bti¬Btiϕ

A5 ¬Kt
iϕ =⇒ Kt

i¬Kt
iϕ

Table 1: EKB axioms for a trace σ for each t ∈ Tσ .

Knowledge and Belief in EKBs. In our EKBs knowledge and belief coexist. The common
axiomatization of knowledge is S5. In [20], Fagin et al. provided an axiomatization for
belief known as KD45, which includes the same set of axioms as S5 —replacing Ki by
Bi—except for the axiom Kiϕ =⇒ ϕ (A3). The reason is that beliefs do not need to
be true—as required by A3 for knowledge. The requirement for beliefs is that an agent
must have consistent beliefs, which is captured by ¬Bi⊥ (axiom D). To derive new
knowledge, axioms from S5 can be applied to formulas of the form Kiϕ and axioms
from KD45 for formulas of the form Biϕ. Additionally, derivations can also relate
knowledge and beliefs, for which we use two axioms proposed by Halpern et al. in [15]:
(L1)Kiϕ =⇒ Biϕ and (L2)Biϕ =⇒ KiBiϕ. L1 states that when agents know a fact
they also believe it, which is sound with respect to the definition of both modalities, since
knowledge is required to be true (A3). Axiom L1 provides a way to convert knowledge
to belief. L2 encodes that when agents believe a fact ϕ they know that they believe ϕ.

The previous axiomatizations are restricted to reasoning about a concrete time (or to
timeless information), but we are interested in reasoning about the dynamic acquisition of
knowledge in the changing world of online social networks. Consequently, we decorate
all modalities with a time-stamp t, to explicitly capture the time at which an agent knows
something and the time of occurrence of events and relations. Table 1 shows the complete
list of axioms for a given t ∈ Tσ .

To use these axioms in timed derivations we express them as deduction rules in
Table 2. Note that all derivations that use these axioms use the same t and w. We add
an explicit Kt

i to every formula in a user’s EKB so that we can syntactically determine
when some knowledge enters an EKB. Formally, we say that users in a trace σ are
self-aware whenever for all t ∈ Tσ if ϕ ∈ EKB

σ[t]
i then ϕ = Kt

iϕ
′. In what follows,

we always assume that agents are self-aware.

Example 1. Consider the following EKB from a trace σ of an agent i at time t.

EKB
σ[t]
i

Kt
i (∀t′ · ∀j:Ag

t′ · event t′(j, pub) =⇒ loct
′
(j, pub))

Kt
i event

t(Alice, pub)

In this EKB i can derive, using the axioms in Table 1, that Alice’s location at time
t is in a pub, i.e., loct(Alice, pub). Here we show the steps to derive this piece of
information. We recall that quantifiers are unfolded when added to the knowledge base.
For example, given formula ϕ(x) : Kt

i∀j:Ag
x · eventx(j, pub) =⇒ locx(j, pub)

Timed Epistemic Knowledge Bases for Social Networks 7

Knowledge deduction rules axioms

ϕ is a first-order tautology

Γ ` (ϕ,w)
(A1)

Γ ` (Kt
iϕ,w) Γ ` (Kt

i (ϕ =⇒ ψ), w)

Γ ` (Kt
iψ,w)

(A2)

Γ ` (Kt
iϕ,w)

Γ ` (ϕ,w)
(A3)

Γ ` (Kt
iϕ,w)

Γ ` (Kt
iK

t
iϕ,w)

(A4)
Γ ` (¬Kt

iϕ,w)

Γ ` (Kt
i¬Kt

iϕ,w)
(A5)

Belief deduction rules

Γ ` (Btiϕ,w)

Γ ` (Bti (ϕ =⇒ ψ), w)

Γ ` (Btiψ,w)
(K)

Γ ` (¬Bti⊥, w)
(D)

Γ ` (Btiϕ,w)

Γ ` (BtiB
t
iϕ,w)

(B4)
Γ ` (¬Btiϕ,w)

Γ ` (Bti¬Btiϕ,w)
(B5)

Premise deduction rule Knowledge-Belief deduction rules

ϕ ∈ Γ

Γ ` (ϕ,w)
(PREMISE)

Γ ` (Kt
iϕ,w)

Γ ` (Btiϕ,w)
(L1)

Γ ` (Btiϕ,w)

Γ ` (Kt
iB

t
iϕ,w)

(L2)

Table 2: EKB deduction rules for a trace σ for each t ∈ Tσ .

and Tσ = {t0, t1, . . . , t}, the EKB contains ϕ(t0) ∧ ϕ(t1) ∧ . . . ∧ ϕ(t). The predicate
event t(j, pub) means that j attended an event at time t in a pub. The predicate loct(j)
means that j’s location is a pub. Thus, the implication above encodes that: if i knows
at t that an agent is attending an event in a pub at time t′, then her location will be
a pub. In this example, i knows at time t that Alice is attending an event at the pub,
event t(Alice, pub). Since knowledge is required to be true, event t(Alice, pub) must
be a true predicate. Hence, Kt

i event
t(Alice, pub) =⇒ loct(Alice, pub) must also be

present in EKB
σ[t]
i . Applying A2 toKt

i event
t(Alice, pub) and the previous implication

we can derive Kt
i loc

t(Alice, pub). ut

Handling time-stamps. Users can also use EKBs to reason about time. For instance,
if Alice learns Bob’s birthday she will remember this piece of information, possibly
forever. Some other times information is transient and changes over time. Consider Alice,
who shares with Bob a post including her location. Right after posting, Bob will know
Alice’s location—assuming she said the truth. However, after a few hours, Bob will not
be certain about whether Alice remains in the same location. We denote the period of
time in which some piece of information remains true as its duration.

Different pieces of information might have different durations. Duration also depends
on the OSN, which can be designed in such a way that effect of events disappears after
some time. For example, in Snapchat messages last 10 seconds; in Whatsapp status
messages last 24 hours; and in Facebook posts remain forever unless a user removes
them. We introduce the parameter w (see Section 1) to model the duration of the
information. Using w we define the following deduction rule, which encodes a notion of

8 R. Pardo and C. Sánchez and G. Schneider

duration-aware propagation of knowledge. Given t, t′ ∈ Tσ where t < t′:

Γ ` (Kt
iϕ,w − (t′ − t))

Γ ` (Kt′

i ϕ,w)
(KR1)

The intuition behind KR1 is that some time in w is consumed every time knowledge is
propagated. Consider that Alice knows at time 1 the formula ϕ, that is, K1

Aliceϕ. Using
KR1 in a derivation allows to derive that she knows ϕ at a later time, e.g., K5

Aliceϕ. Note
that this derivation requires w to be at least 4. The following example explains why.

Example 2. Consider the following sequence of EKBs of an agent i from a trace σ
where Tσ = {0, . . . , 4}.

K0
i ∀t′ · ∀j:Agt

′
· eventt

′
(j, pub) =⇒ loct

′
(j, pub)

EKB
σ[0]
i

∅

EKB
σ[1]
i

∅

EKB
σ[2]
i

K3
i event

3(Alice, pub)

EKB
σ[3]
i

∅

EKB
σ[4]
i

Note that deriving Alice’s location requires to combine knowledge from different knowl-
edge bases at different times. This derivations use the knowledge recall rule KR1 with
a large enough window. In the figure, the inner (red) rectangle marks the accessible
knowledge for w = 2 and the outer (blue) rectangle for w = 3. In order for i to derive
event3(Alice, pub) she needs to combine knowledge from EKB

σ[0]
i and EKB

σ[3]
i . Let

EKBσ
i =

⋃
t∈Tσ EKB

σ[t]
i . We first show how to construct a proof forwards, starting

from the premises and a window of 0, and move forward increasing w until the inference
can be performed. In particular, we show that EKBσ

i ` (K3
loc3(Alice,pub)

, w) for w ∈ N.
Applying the rule PREMISE with w = 0, we derive EKBσ

i ` (K0
i event

3(Alice, pub)
=⇒ loc3(Alice, pub), 0). Now we use KR1 to combine this knowledge with knowledge
at time 3:

(KR1)
EKBσ

i ` (K0
i event

3(Alice, pub) =⇒ loc3(Alice, pub), 0)

EKBσ
i ` (K3

i event
3(Alice, pub) =⇒ loc3(Alice, pub), 3)

This inference requires the window to be increased to 3. We apply PREMISE again
to obtain (EKBσ

i ` K3
i event

3(Alice, pub), 3), which allows A2 to derive (EKBσ
i `

K3
i loc

3(Alice, pub), 3). This proof shows that i knows Alice’s location provided that
agents remember information for at least 3 units of time.

A window smaller than 3 makes this derivation impossible. We now construct the
proof backwards, considering w = 2 to show that the derivation is impossible. We try to
show that EKBσ

i ` (K3
i loc

3(Alice, pub), 2), which requires:

(A2)

(EKBσ
i ` K3

i event
3(Alice, pub), 2)

EKBσ
i ` (K3

i event
3(Alice, pub) =⇒ loc3(Alice, pub), 2)

EKBσ
i ` (K3

i loc
3(Alice, pub), 2)

The first premise, (EKBσ
i ` K3

i event
3(Alice, pub), 2), trivally follows by PREMISE.

To prove the second premise we first try move one step back using KR1: EKBσ
i `

(K2
i event

3(Alice, pub) =⇒ loc3(Alice, pub), 1), but since there is no knowledge at

Timed Epistemic Knowledge Bases for Social Networks 9

time 2, the previous statement cannot be proven. We apply again KR1 obtaining EKBσ
i `

(K1
i event

3(Alice, pub) =⇒ loc3(Alice, pub), 0), which cannot be proven. Since the
remaining window is 0, we have already accessed all knowledge that i remembers, and
older EKBs cannot be accessed. This closes the proof. ut

Belief propagation. Beliefs cannot be propagated as easily as knowledge because
new beliefs may contradict current knowledge or beliefs of an agent. Instead of using
timed derivations, we model agents that try to propagate beliefs if these beliefs are
consistent, and discard them otherwise. We describe two kinds of agents: conservative
and susceptible, but other criteria for choosing between incompatible beliefs are possible.
We use the parameter β in the framework to denote the kind of agent. Conservative
agents reject any new belief that contradict their current set of beliefs, while susceptible
agents always accept new beliefs that replace old believes if necessary to guarantee a
consistent set of beliefs. Here we present a belief propagation algorithm which describes
how agents behave when faced with a new belief which is contradictory.

Consider a trace σ with Tσ = {t0, . . . , tn−1, tn}. We use the following notation
EKB

σ[tj ,tk]
i =

⋃
t∈{tj ,...,tk} EKB

σ[t]
i . Also, we introduce the event enter(Btiϕ) mean-

ing that belief ϕ enters i’s knowledge base at time t. The moment at which this event
occurs identifies the moment when a belief is inserted in an agent’s knowledge base,
which is crucial to propagate beliefs. Given a beliefBtni ϕ that is about to enter EKB

σ[tn]
i ,

i.e., SN tn−1

enter(Btni ϕ),tn−−−−−−−−−→ SN tn , Algorithm 1 propagates the accumulated set of be-
liefs as long as they are inside the window w, and resolves conflicts according to β.

Lines 2-3 of Algorithm 1 construct a set Ψ of candidate beliefs to be propagated—
according to w—together with the new belief that tries to enter i’s EKB. The if block
(lines 4-6) sorts Ψ according to β. In the foreach block (lines 7-11), we iterate over the
sorted list of beliefs and add them to EKB

σ[tn]
i if they are consistent with the rest of

knowledge and beliefs. It is easy to see that traversing beliefs from newest to oldest
gives preference to newer beliefs in entering EKB

σ[tn]
i . In particular, Btni ϕ—the newest

belief—will always enter the EKB
σ[tn]
i unless this belief contradicts actual knowledge,

which corresponds to susceptible agents. On the contrary, when sorting from oldest to
newest, the older beliefs will have preference to enter EKB

σ[tn]
i , thus, preventing new

inconsistent beliefs to enter EKB
σ[tn]
i , as required for conservative agents. In particular,

B
σ[tn]
i ϕwill not be added to EKB

σ[tn]
i unless it is consistent with all the previous beliefs

and knowledge. Finally, we always include the predicate occurred tn(enter(Btni ϕ)) (line
12) so that the agent remembers that she was told Btni ϕ —independently on whether
she started to believe it. Note that consistency of EKB

σ[tn]
i in both cases is directly

guaranteed by the inclusion condition in line 8.

Example 3. At 20: 00 Alice sends a message to Bob indicating that she is at work:

EKB
σ[20:00]
Bob = {K20:00

Bob B20:00
Bob loc20:00(Alice,work)} ∪

{occurred20:00(enter(B20:00
Bob loc20:00(Alice,work)))}.

At 22: 00 Bob checks his Facebook timeline, and he sees a post of Charlie—who is a
coworker of Alice—at 20: 00 saying that he is with all his coworkers in a pub having

10 R. Pardo and C. Sánchez and G. Schneider

Algorithm 1 Belief propagation

1: procedure BELIEF-PROPAGATION(EKB
σ[tn]
i , Btni ϕ, w, β)

2: Ψ← {Ktn
i Btni ψ|occurred

t(enter(Btiϕ)) ∈ EKB
σ[tn−w,tn]
i where t ∈ [tn − w, tn]}

3: Ψ← Ψ ∪ {Ktn
i Btni ϕ}

4: if β = susceptible then [b0, b1, . . . , bn]← sortNewestOldest(Ψ)
5: else if β = conservative then [b0, b1, . . . , bn]← sortOldestNewest(Ψ)
6: end if
7: foreach b in [b0, b1, . . . , bn] do
8: if EKB

σ[t0,tn]
i ∪ {b} �̀ Btni ⊥ then

9: EKB
σ[tn]
i ← EKB

σ[tn]
i ∪ {b}

10: end if
11: end foreach
12: EKB

σ[tn]
i ← EKB

σ[tn]
i ∪ {occurred tn(enter(Btni ϕ))}

13: return EKB
σ[tn]
i

14: end procedure

a beer. Assuming that at 22: 00 Bob still remembers his belief from 20: 00 this new
information creates a conflict with Bob’s beliefs. Note that information from Charlie’s
post is also taken as a belief since there is no way for Bob to validate it. If Bob is a
conservative agent, then

EKB
σ[22:00]
Bob = {K22:00

Bob B22:00
Bob loc20:00(Alice,work)} ∪

{occurred22:00(enter(B22:00
Bob loc20:00(Alice, pub)))}.

meaning that the new belief is rejected. If Bob is a susceptible agent, he will add this
new believe to his EKB:

EKB
σ[22:00]
Bob = {K22:00

Bob B22:00
Bob loc20:00(Alice, pub)} ∪

{occurred22:00(enter(B22:00
Bob loc20:00(Alice, pub)))}.

Bob believes that Alice’s location at time t (20: 00 ≤ t < 22: 00) is a pub—due to belief
propagation. After 22: 00, this belief does not propagate to avoid contradictions. ut

Semantics of KBLRT The semantics ofKBLRT formulae is given by the satisfaction
relation |=. Given a well-formed trace σ ∈ WFT , a window w ∈ N, a time-stamp
t ∈ Tσ, agents i, j ∈ Ag , a finite set of agents G ⊆ Ag , formulae ϕ,ψ ∈ FKBLRT ,
predicate symbols ct(i, j), at(i, j), pt(#»s) where c ∈ C and a ∈ Σ, a domain D ∈ D, an
event e ∈ EVT , and a variable x, the satisfaction relation |= ⊆ WFT × FKBLRT is
defined as follows:

Timed Epistemic Knowledge Bases for Social Networks 11

K0
Alipicture

0(Bob, pub)
K0

AliB
0
Ali loc

0(Bob, pub)
Ali

Bob

Cha

SN 0

K7
Ali friendRequest

7(Ali ,Cha)

Ali

Bob

K7
Cha friendRequest

7(Ali ,Cha)Cha

SN 7

K15
Alipicture

15(Bob,work)
K15

AliB
15
Ali loc

15(Bob,work)
Ali

K15
Bobpicture

15(Bob,work)
K15

Bob loc
15(Bob,work)

Bob

Cha

SN 15

Friends

friendRequest

Friends

friendRequest

Friends

Friends

{f
ri
en
dR

eq
u
es
t(
A
li

,C
ha

)}
, 7

{a
cc
ep
tF
ol
lo
w
R
eq

(A
li
,C

ha
)

sh
ar
e
(p
ic
tu
re
,B

ob
,w

or
k
)}
, 1

5

Fig. 1: Example of a Snapchat trace

σ |= occurred t(e) iff (SN , E, t) ∈ σ such that e ∈ E
σ |= ¬ϕ iff σ ��|= ϕ
σ |= ϕ ∧ ψ iff σ |= ϕ and σ |= ψ
σ |= ∀t · ϕ iff for all v ∈ Tσ, σ |= ϕ[v/t]
σ |= ∀x : Dt · ϕ iff for all v ∈ Dσ[t], σ |= ϕ[v/x]

σ |= ct(i, j) iff (i, j) ∈ Cσ[t]
c

σ |= at(i, j) iff (i, j) ∈ Aσ[t]
a

σ |= pt(#»s) iff pt(#»s) ∈ KBσ[t]
e

σ |= Kt
iϕ iff

⋃
{t′|t′<t,t′∈Tσ}KB

σ[t′]
i ` (ϕ,w)

σ |= Btiϕ iff
⋃
{t′|t′<t,t′∈Tσ}KB

σ[t′]
i ` (Btiϕ,w)

Predicates of type occurred t(e) are true if the event e is part of the events that occurred
at time t in the trace. ∀t quantifies over all the time-stamps in the trace Tσ, which is a
finite set. For the remaining domains, ∀x : Dt, the substitution is carried out over the
elements of the domain at a concrete time t. Remember that each individual domian Dt

always contains a finite set of elements. However, the same domain at different points in
time, e.g., Dt and Dt′ , for any t 6= t′ might contain different number of elements. When
checking connections ct(i, j) and actions at(i, j) at time t, we check whether the corre-
sponding relation— C

σ[t]
c andAσ[t]

a , correspondingly—of the SNM at time t contains the
pair of users in question. Checking whether a predicate of type pt(#»s) holds is equivalent
to looking into the knowledge base of the environment at time t. The environment’s
knowledge base contains all predicates that are true in the real world at a given moment
in time. For example, “it is raining in Gothenburg at 19:00” rain19:00(Gothenburg) or
“Alice’s location at 20:00 is Madrid” loc20:00(Alice,Madrid). Determining whether an
agent knows or believes a fact at a certain moment in time—i.e., Kt

iϕ or Btiϕ—boils
down to derivability from the union of all her EKBs. This way of defining belief is based
on the fact that agents are aware of their beliefs, recall axiom (L2) in Table 1.

12 R. Pardo and C. Sánchez and G. Schneider

Example 4 (Snapchat). In Snapchat users can perform two main events: (1) Connect
through a friend relation; (2) share timed messages, which last up to 10 seconds
with their friends. Fig. 1 shows an example trace for Snapchat with three agents
Ag = {Alice,Bob,Charlie}. Since Ag does not change we avoid using the superindex
indicating the time-stamp of the domain. The trace consists of three SNMs SN 0, SN 7

and SN 15, where the subindex indicates the time-stamp.
At time 0, Alice and Bob are friends, friends0(Alice,Bob), which is represented

by including the pair (Alice,Bob) in the relation Friendsσ[0] in SN 0. Alice and Bob’s
friendship does not change along σ. Also, Alice is permitted to send a friend request
to Charlie—depicted as an outgoing dashed arrow. Thus, σ |= PCharlie

Alice friendRequest0

holds. Finally, Alice knows that there is a picture of Bob at the pub, picture0(Bob, pub),
and she believes that Bob is at the pub, loc0(Bob, pub). This is a belief because she
cannot verify that the picture has not been modified or she cannot precisely identify
the location. However, the existence of picture0(Bob, pub) can be verified since it is a
picture that Alice can see in the OSN.

At time 7, Alice sends a friend request to Charlie. After the execution of the event both
agents know friendRequest7(Alice,Charlie). Note that this event produces knowledge,
because the agents can verify that the friend request has occurred.

Finally, at time 15, Charlie accepts Alice’s request and Bob shares a picture at
work. Note that these two events are independent. After Bob accepts Alice’s request
(Alice,Charlie) 6∈ FriendRequestσ[15], and (Alice,Charlie) ∈ Friendsσ[15]. That is,
Alice cannot send more friend requests to Charlie, and now they have become friends.
Furthermore, both, Alice and Bob know that Bob shared a picture at work. In this case,
Bob also knows that his location is work, but Alice believes it.4 The reason is that,
unlikely Bob, Alice cannot confirm that Bob’s location is work.

As on Snapchat messages last for up to 10 seconds, we can assume w.l.o.g. that
all messages last 10 seconds, i.e., w = 10. Consequently, in σ, Alice remembers Bob
picture from 0 to 10: σ |= ∀t · 0 ≤ t ≤ 10 =⇒ Kt

Alicepicture
0(Bob, pub). Similarly,

her belief about Bob location, picture0(Bob, pub), vanishes at time 10. Note also that,
when Charlie accepts Alice’s friend request, he still knows (or remembers) that Alice
sent it. In Snapchat friend requests are permanent, but in our framework we can choose
whether friend requests disappear after a few seconds. This can be done by requiring
that the agent knows that a friend request occurred in order to accept it. In such a case,
in σ, after time 18 Charlie would not be able to accept Alice’s request. ut

2.3 Model Checking KBLRT

In this section, we show that the model checking problem for KBLRT is decidable.

Theorem 1. The model checking problem for KBLRT is decidable.

Proof. Let σ be a trace, ϕ a formula and w a window. Since all domains are finite, we
unfold universal quantifiers ∀x:D ·ϕ′ and ∀t ·ϕ′ into a conjunction of formulas ϕ′[v/x]

4 For readability we omit occurred15(enter(B15
Alice loc

15(Bob,work))) in Fig. 1 which is in-
cluded in EKB

σ[15]
Alice .

Timed Epistemic Knowledge Bases for Social Networks 13

for each element v in the domain D or in Tσ . The resulting formula is quantifier free and
has size O(|ϕ|×dq) where d is a bound on the size of the domain and q is the maximum
nested stack of quantifiers. Let ϕ1, . . . , ϕm be the subformulas of the resulting formula,
ordered respecting the subformula relation. An easy induction on k < m shows that we
can label every agent and at every step of the trace with either ϕk or ¬ϕk. The labelling
proceeds from the earliest time-stamp on. We show only the epistemic operators here
(see Appendix A for the complete proof):

– Checking ψk = ¬ψj and ψk = ψj ∧ψi can be done in constant time for each instant
t and agent i, using the induction hypothesis.

– First, we construct a set ∆ where we instantiate all the axioms in Table 1 for each
t ∈ Tσ. The resulting set has size |∆|= |Tσ|×11 (number of axioms in Table 1).
Secondly, we instantiate KR1 (cf. Table 1), for w and for all t, t′ ∈ Tσ such that
t > t′ and t − t′ < w. The resulting set of axioms has size O(

∑|Tσ|−1
n=1 n × w).

That is, all legal combinations of timestamps (n) times the window size (w). These
axioms are also included in ∆, which, consequently, contains a finite set of axioms.
Finally, checking Kt

iψj and Btiψj require one query to the epistemic engine for
∆,

⋃
{t′|t′<t∈Tσ} EKB

σ[t]
i ` ψj . The previous query is equivalent to model checking

a Kripke structure where relations are labelled with triples (i, t, w). Solving this
problem is known to be decidable in PSPACE [20].

It is easy to see that the semantics of KBLRT is captured by this algorithm. ut

2.4 Properties of the framework

Here we present a set of novel derived operators not present in traditional epistemic
logics and we prove some properties of the framework (see Appendix A for the proofs).

To Learn or not to learn — To believe or not to believe. In [9] we introduced a primitive
modality Liϕ, which means that i learns ϕ at the first moment at which Kiϕ becomes
true. Here Ltiϕ becomes a derived operator defined formally as: Ltiϕ , ¬Kpred(t)

i ϕ ∧
Kt
iϕ. We can also model when users start to believe something, or accept a belief,

captured by Atiϕ , ¬Bpred(t)
i ϕ ∧Btiϕ. Analogously we can express when users forget

some knowledge or when they reject a belief. Intuitively, an agent forgets ϕ at time t if
she knew it in the previous timestamp and in t she does not know ϕ, and, analogously,
for reject. Formally, F ti ϕ , K

pred(t)
i ϕ ∧ ¬Kt

iϕ, and Rtiϕ , B
pred(t)
i ϕ ∧ ¬Btiϕ.

Temporal modalities The traditional temporal modalities 2 and 3 can easily be defined
using quantification over timestamps as follows: 2ϕ(t) , ∀t · ϕ(t), and 3ϕ(t) ,
∃t · ϕ(t), where ϕ(t) is a formula ϕ which depends on t.

How long do agents remember? Agents remember according to the length of the
parameter w, which can be seen as the size of their memory. Increasing agents memory
could only increase her knowledge as stated in the following lemma.

Lemma 1 (Increasing window and Knowledge). Given σ, t ∈ σ and w,w′ ∈ N
where w ≤ w′, we have that If EKB

σ[t]
i ` (Kt

iϕ,w), then EKB
σ[t]
i ` (Kt

iϕ,w
′). ut

14 R. Pardo and C. Sánchez and G. Schneider

We can characterise how long agents remember information depending on w and β.

Lemma 2 (w knowledge monotonicity). Given σ and t ∈ Tσ . IfKt
iϕ ∈ EKB

σ[t]
i then

for all t′ ∈ Tσ such that t ≤ t′ ≤ t+ w it holds σ |= Kt′

i ϕ. ut

Perfect recall is obtained by choosing w = ∞ so agents that never forget. Dualy,
w = 0 models agents who do not remember anything. The parameter β also influences
how beliefs are preserved in time. When β = conservative, memories about beliefs
behave in the same way as knowledge. Similarly monotonicity results can be proven
for beliefs as the lemmas above. For example, if β = conservative then beliefs are
preserved until either forgotten, due tow or to contradictory knowledge. Similarly, if β =
susceptible, susceptible agents can reject a belief when exposed to new contradictory
beliefs. Therefore, the duration of their beliefs can be limited by an event introducing
new beliefs in the EKBs. Other versions of β are possible, for example based on the
reputation of the agent that emits the information. It is also possible to consider different
w for different pieces of information. These extensions are out of the scope of this paper.

3 Writing Privacy Policies

We introduce here the language PPLRT for writing privacy polices: a restricted version
of KBLRT wrapped with J Ksi (i is the owner of the policy, and s its starting time).

Definition 4 (Syntax of PPLRT). Given agents i, j ∈ Ag , a nonempty set of agents
G ⊆ Ag , timestamps s, t ∈ T, a domain D ∈ D, a variable x, relation symbols
ct(i, j), at(i, j), pt(#»s) where c ∈ C and a ∈ Σ, and a formula ϕ ∈ FKBLRT , the syntax
of the real-time privacy policy language PPLRT is inductively defined as:

δ ::= δ ∧ δ | ∀x · δ | J¬αKsi | Jϕ =⇒ ¬αKsi γ′ ::= Kt
iγ | Btiγ

α ::= α ∧ α | ∀x : D · α | ∃x : D · α | ψ | γ′ ψ ::= ct(i, j) | at(i, j) | occurred t(e)
γ ::= γ ∧ γ | ¬γ | pt(#»s) | γ′ | ψ | ∀x · γ

We useFPPLRT to denote the set of all privacy policies according to δ, andFRPPLRT
the set positive formulae according to α, which we refer to as restrictions. As we show
below restrictions appear always preceded by ¬. To determine whether a policy is
violated in an evolving social network, we formalise the notion of conformance.

Definition 5 (Conformance Relation). Given a trace σ ∈ WFT , time-stamp s ∈ Tσ,
formulae δ ∈ FPPLRT and α ∈ FRPPLRT , agent i ∈ Ag , domain D ∈ D, and variable
x, the conformance relation |=C is defined as follows:

σ |=C ∀x · δ iff for all v ∈ D, σ |=C δ[v/x]
σ |=C J¬αKsi iff σ |= ¬α
σ |=C Jϕ =⇒ ¬αKsi iff σ |= ϕ =⇒ ¬α

The definition is quite simple, especially compared to that of conformance of PPLT
[9]. If the policy is quantified, we substitute in the usual way. The main body of the
policy in double brackets is dealt with by simply delegating to the satisfaction relation.

Timed Epistemic Knowledge Bases for Social Networks 15

Example 5. Alice decides to hide all her weekend locations from her supervisor Bob.
She has a number of options how to achieve this using PPLRT . If she wants to restrict
Bob learning her weekend location directly when she posts it, she can define a policy
stating that “if x is a time instant during a weekend, then Bob is not allowed to learn at x
Alice’s location from time x”: δ1 = ∀t·Jweekend(t) =⇒ ¬Kt

Bob loc
t(Alice)K2017-10-20

Alice ,
where weekend is true if t represents a time during a weekend. This, however, is a very
specialized scenario that captures only a small number of situations. Bob is, for example,
free to learn Alice’s location at any point not during the weekend, or at any point during
the weekend when Alice’s location is no longer up-to-date. We can consider a more
precise policy concerning the learning of one’s location: δ2 = ∀t · Jweekend(t) =⇒
¬∃t′ · (Kt′

Bob loc
t(Alice))K2017-10-20

Alice . Here, Bob is not allowed to learn Alice’s location
from a weekend, no matter when. ut

Since checking conformance of PPLRT privacy policies reduces to model checking
the given trace the following corollary follows directly from Theorem 1.

Corollary 1. Checking conformance of PPLRT policies is decidable.

4 Related work and Concluding Remarks

Related Work Combining epistemic and timed reasoning has been previously studied. For
example, [13] presents a logic for reasoning about actions and time. The logic includes a
belief modality, actions, and time-stamps for atoms, modalities and actions. In our work
we do not focus on reasoning about action and time but on defining dynamic privacy
policies for OSNs. Also, [13] cannot reason about knowledge. Moses et al. [20] extends
interpreted systems to reason about past and future knowledge. In [25] they extend
K with a time-stamp Ki,t allowing for reasoning about knowledge at different times,
also having a similar predicate to our occurred t(e). However, our logic (unlike [25])
includes beliefs and associates time-stamps with both modalities and predicates, whereas
Moses et al. only uses time-stamps for knowledge modality. Additionally, [25] aims at
modeling delays in protocols, whereas we want to express dynamic privacy policies for
OSNs. Recently, Xiong et al. [14] presented a logic to reason about belief propagation in
Twitter. The logic includes an (untimed) belief modality and actions, which are used in a
dynamic logic fashion. Their models are similar to our untimed SNMs [26, 18]. Even
though we do not include actions, we use time-stamps and knowledge modalities. Also,
one of the main contributions of our paper is solving inconsistent beliefs.

Concluding Remarks We have presented a novel privacy policy framework based on
a logic with explicitly support for time-stamps in events and epistemic operators. This
framework extends [18, 26], which did not offer any support for time, and [9] which
only had limited support due to the implicit treatment of time. Our framework is based
on Extended Knowledge Bases (EKB). A query to an EKB starts by instantiating a
number of epistemic axioms that handle knowledge, belief and time. Our proof system
gives an algorithm to deduce the knowledge of agents acquired at each instant, and a
model checking algorithm which can be used to check violations of privacy policies.
The explicit time-stamps allow to derive learning and forget operators for knowledge,

16 R. Pardo and C. Sánchez and G. Schneider

and accept and reject operators for beliefs. In our new framework we can define eternal
OSNs like Facebook and ephemeral OSNs like Snapchat.

Two important avenues for future research are the following. First, many instantia-
tions enable efficient implementations of checking privacy policy violations by exploiting
whether events can affect the knowledge of the agents involved. Once the effect of the
actions is fixed one can prove that a distributed algorithm guarantees the same outcome
as the centralized algorithm proposed here. For example, tweets can only affect the
knowledge of subscribers so all other users are unaffected. Second, once an effective
system to check policy violations is in place, there are different possibilities that the
OSN can offer. One is to enforce the policy by forbidding the action that the last agent
executed, which would lead to the violation. Another can be the analysis of the trace to
assign blame (and correspondingly, reputation) to the agents involved in the chain of
actions. For example, the creator of a gossip or fake news may be held more responsible
than users forwarding the gossip. Even a finer analysis of controllability can give more
powerful algorithms by detecting which agents could have prevented the information
flow that lead to the violation. Yet another possibility is to remove past events from the
history trace of the OSN creating a pruned trace with no violation.

Timed Epistemic Knowledge Bases for Social Networks 17

References

1. Facebook: https://www.facebook.com/ [Accessed: 2017-10-20].
2. Twitter Inc.: https://twitter.com/ [Accessed: 2017-10-20].
3. Snaptchat: https://www.snapchat.com/ [Accessed: 2017-10-20].
4. Lenhart, A., Purcell, K., Smith, A., Zickuhr, K.: Social media & mobile internet use among

teens and young adults. millennials. Pew Internet & American Life Project (2010)
5. Madejski, M., Johnson, M., Bellovin, S.: A study of privacy settings errors in an online social

network. In: PERCOM Workshops’12, IEEE (2012) 340–345
6. Johnson, M., Egelman, S., Bellovin, S.M.: Facebook and privacy: It’s complicated. In:

SOUPS’12, ACM (2012) 9:1–9:15
7. Liu, Y., Gummadi, K.P., Krishnamurthy, B., Mislove, A.: Analyzing facebook privacy settings:

User expectations vs. reality. In: IMC’11, ACM (2011) 61–70
8. Madejski, M., Johnson, M.L., Bellovin, S.M.: The failure of online social network privacy

settings. (2011)
9. Pardo, R., Kellyérová, I., Sánchez, C., Schneider, G.: Specification of evolving privacy

policies for online social networks. In: TIME’16, IEEE (2016) 70–79
10. The Guardian: As fake news takes over Facebook feeds, many are taking satire as

fact. https://www.theguardian.com/media/2016/nov/17/facebook-fake-news-satire [Accessed:
2017-10-20].

11. The Guardian: How to solve Facebook’s fake news problem: experts pitch their
ideas. https://www.theguardian.com/technology/2016/nov/29/facebook-fake-news-problem-
experts-pitch-ideas-algorithms [Accessed: 2017-10-20].

12. The Guardian: Obama is worried about fake news on social media–and we should be
too. https://www.theguardian.com/media/2016/nov/20/barack-obama-facebook-fake-news-
problem [Accessed: 2017-10-20].

13. van Zee, M., Doder, D., Dastani, M., van der Torre, L.W.N.: AGM revision of beliefs about
action and time. In: IJCAI’15, AAAI Press (2015) 3250–3256

14. Xiong, Z., Ågotnes, T., Seligman, J., Zhu, R.: Towards a logic of tweeting. In: LORI’17.
Volume 10455., LNCS (2017) 49–64

15. Halpern, J.Y., Samet, D., Segev, E.: Defining knowledge in terms of belief: The modal logic
perspective. The Review of Symbolic Logic 2 (2009) 469–487

16. Fong, P.W.: Relationship-based access control: Protection model and policy language. In:
CODASPY’11, ACM (2011) 191–202

17. Bruns, G., Fong, P.W., Siahaan, I., Huth, M.: Relationship-based access control: its expression
and enforcement through hybrid logic. In: CODASPY’12, ACM (2012) 117–124

18. Pardo, R., Balliu, M., Schneider, G.: Formalising privacy policies in social networks. Journal
of Logical and Algebraic Methods in Programming 90 (2017) 125–157

19. Snodgrass, R., Ahn, I.: Temporal databases. Computer 19(9) (1986) 35–42
20. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge. Volume 4. MIT

press Cambridge (2003)
21. Erciyes, K.: Complex Networks: An Algorithmic Perspective. 1st edn. CRC Press, Inc. (2014)
22. FlockDB: A distributed, f.t.g.d.: https://github.com/twitter/flockdb [Online; accessed: 2017-

10-20].
23. Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P., Ding, H., Ferris, J., Giardullo,

A., Kulkarni, S., Li, H., Marchukov, M., Petrov, D., Puzar, L., Song, Y.J., Venkataramani, V.:
Tao: Facebook’s distributed data store for the social graph. In: USENIX ATC’13, USENIX
(2013) 49–60

24. Neo4j decreases development time-to-market for LinkedIn’s Chitu App:
https://neo4j.com/case-studies/linkedin-china/ [Online; accessed: 2017-10-20].

18 R. Pardo and C. Sánchez and G. Schneider

25. Ben-Zvi, I., Moses, Y.: Agent-time epistemics and coordination. In: Logic and Its Applications.
Volume 7750 of LNCS. Springer (2013) 97–108

26. Pardo, R., Schneider, G.: A formal privacy policy framework for social networks. In:
SEFM’14. Volume 8702 of LNCS., Springer (2014) 378–392

Timed Epistemic Knowledge Bases for Social Networks 19

Appendix

A Missing Proofs

Theorem 2. The model checking problem for KBLRT is decidable.

Proof. Given a trace σ ∈ WFT , a formula ϕ ∈ FKBLRT and a window w. We show
that determining σ |= ϕ is decidable by providing a naive model checking algorithm
which implements the semantics of KBLRT , adapting the proof for the simpler logic
KBLT from [9].

We first expand the universal quantifiers in ϕ by inductively transforming each
subformula ∀x:D · ϕ′ and ∀t · ϕ′ into a conjunction with one conjunct ϕ′[v/x] for each
element v in the domain D or Tσ . All domains—including Tσ—are finite. The resulting
formula is quantifier free and has size O(|ϕ|×dq) where d is a bound on the size of
the domain and q is the maximum nested stack of quantifiers. Let ϕ1, . . . , ϕm be the
subformulas of the resulting formula, ordered respecting the subformula relation. An
easy induction on k < m shows that we can label every agent and at every step of the
trace with either ϕk or ¬ϕk. The labelling proceeds from the earliest time-stamp on. We
begin with the atomic part:

– Checking ct(e, f) and at(e, f) can be performed in constant time, simply by check-
ing the model at the given instant t, for every agent.

– Checking pt(#»s) at a given instant t requires one query to the epistemic reasoning
engine for EKBσ[t]

e (for the environment agent e and time stamp t).
– Checking occurred t(e) can be performed in constant time by checking the set of

events e ∈ E of σ at time t.
Then, for the epistemic part we first resolve all operators:

– Checking ψk = ¬ψj and ψk = ψj ∧ψi can be done in constant time for each instant
t and agent i, using the induction hypothesis.

– First, we construct a set ∆ where we instantiate all the axioms in Table 1 for each
t ∈ Tσ. The resulting set has size |∆|= |Tσ|×11 (number of axioms in Table 1).
Secondly, we instantiate KR1 (cf. Table 1), for w and for all t, t′ ∈ Tσ such that
t > t′ and t − t′ < w. The resulting set of axioms has size O(

∑|Tσ|−1
n=1 n × w).

That is, all legal combinations of timestamps (n) times the window size (w). These
axioms are also included in ∆, which, consequently, contains a finite set of axioms.
Finally, checking Kt

iψj and Btiψj require one query dkd to the epistemic engine for
∆,

⋃
{t′|t′<t∈Tσ} EKB

σ[t]
i ` ψj . The previous query is equivalent to model checking

a Kripke structure where relations are labelled with triples (i, t, w). Solving this
problem is known to be in PSPACE [20].

It is easy to see that the semantics of KBLRT is captured by this algorithm. ut

Lemma 1 (Increasing window and Knowledge). Given σ, t ∈ σ and w,w′ ∈ N
where w ≤ w′, we have that If EKB

σ[t]
i ` (Kt

iϕ,w), then EKB
σ[t]
i ` (Kt

iϕ,w
′). ut

Proof. Assume EKB
σ[t]
i ` (Kt

iϕ,w). By Definition 3, there exists a derivation (ϕ1, w1)
(ϕ2, w2) . . . (ϕn, wn) for n ∈ N such that (ϕn, wn) = (ϕ,w). Let α = w′ − w, since
w ≤ w′ it follows that α ≥ 0.

20 R. Pardo and C. Sánchez and G. Schneider

Consider now the following derivation where the same deduction rules as in the
previous derivation has been applied, and α is added to each wi, (ϕ1, w1 +α) (ϕ2, w2 +
α) . . . (ϕn, wn + α). We show now that, if (ϕ1, w1) (ϕ2, w2) using a deduction rule R
then (ϕ1, w1 + α) (ϕ2, w2 + α) can also be derived using R, for all R in Table 2. We
split the proof in derivation rules which, copy, reduce or introduce w.

– Rules that copyw. These are, A2, A3, A4, A5, K, B4, B5, L1 and L2. Ifw ∈ N given
that α ≥ 0 it trivially follows that w + α ∈ N which complies with the conditions
of any of these rules. In this case w = w′ therefore the same applies to w′.

– Rules that reduce w. This is, KR1. In this case w < w′. In order for the derivation to
be correct both w and w′ are in N. Since α ∈ N, it follows that w+α and w′+α are
in N. Moreover, since α is a constant it also follows thatw−w′ = (w+α)−(w′+α).
From the previous statement we conclude that the same window increase is required
and, therefore the same derivation is performed.

– Rules that introduce w. These are, A1, D and Premise. No conditions are imposed
in the value of w in order to apply these rules. Therefore, if they can be applied with
window w since α ≥ 0 they can also be applied with window w + α. ut

Lemma 2 (w knowledge monotonicity). Given σ and t ∈ Tσ . IfKt
iϕ ∈ EKB

σ[t]
i then

for all t′ ∈ Tσ such that t ≤ t′ ≤ t+ w it holds σ |= Kt′

i ϕ. ut

Proof. AssumeKt
iϕ ∈ EKB

σ[t]
i . By premise we can derive (Kt

iϕ, 0). Let t′ = t+w, by
applying KR1 we can derive (Kt′

i ϕ,w). By |= we conclude σ |= Kt′

i ϕ. Given the above
and by Lemma 1, for all t ≤ t′′ < t+ w it always possible to derive (Kt′′

i ϕ,w). ut

