
Adaptive Reactive Synthesis for LTL and LTLf Modulo Theories

Andoni Rodrı́guez1,2 and César Sánchez1
1IMDEA Software Institute, Madrid, Spain
2Universidad Politécnica de Madrid, Spain

Abstract

Reactive synthesis is the process of generate correct
controllers from temporal logic specifications. Typi-
cally, synthesis is restricted to Boolean specifications
in LTL. Recently, a Boolean abstraction technique al-
lows to translate LTLT specifications that contain liter-
als in theories into equi-realizable LTL specifications,
but no full synthesis procedure exists yet. In synthesis
modulo theories, the system receives valuations of en-
vironment variables (from a first-order theory T) and
outputs valuations of system variables from T . In this
paper, we address how to syntheize a full controller us-
ing a combination of the static Boolean controller ob-
tained from the Booleanized LTL specification together
with on-the-fly queries to a solver that produces mod-
els of satisfiable existential T formulae. This is the first
synthesis method for LTL modulo theories. Addition-
ally, our method can produce adaptive responses which
increases explainability and can improve runtime prop-
erties like performance. Our approach is applicable to
both LTL modulo theories and LTLf modulo theories.

Introduction
Reactive synthesis is the problem of automatically produc-
ing a system that models a given temporal specification,
where the Boolean variables (i.e., atomic propositions) are
split into those controlled by the environment and those
controlled by the system. Realizability is the related de-
cision problem of deciding whether such a system exists.
These problems have been widely studied (Pnueli and Ros-
ner 1989), specially in the domain of Linear Temporal Logic
(LTL) (Pnueli 1977). Realizability corresponds to an infi-
nite game where players alternatively choose the valuations
of the Boolean variables they control. A specification is re-
alizable if and only if the system has a strategy such that
the specification is satisfied in all plays played according to
the strategy. The system is extracted from a winning sys-
tem strategy. Both reactive synthesis and realizability are
decidable for LTL (Pnueli and Rosner 1989). LTL modulo
theories (LTLT) is the extension of LTL where Boolean
atomic propositions can be literals from a (multi-sorted)
first-order theory T . Realizability of LTLT specifications is

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

decidable under certain conditions over T (Rodriguez and
Sánchez 2023), using a Boolean abstraction or Booleaniza-
tion method that translates a specification φT in LTLT into
an equi-realizable LTL φB formulae: i.e. φT is realizable if
and only if φB is realizable.

However, to perform LTLT reactive synthesis it is not
enough to synthesize a controller for the Booleanized spec-
ifications because the system will receive and will have to
produce values from theory variables. Some previous syn-
thesis methods try to create statically a controller that always
produces the same outputs for the same inputs (e.g. (Katis et
al. 2016)) but are incomplete for many T , since they need
to compute Skolem functions. In this paper, we propose a
general method that uses on-the-fly procedures to dynami-
cally produce outputs as the results of computing models of
existential T formulae. Concretely, the method we propose
statically receives an LTLT specification φ, Booleanizes φ
using (Rodriguez and Sánchez 2023) and synthesizes a con-
troller S using standard methods. Then, dynamically S is
combined with a tool that can produce models of satisfiable
T formulae (e.g., an SMT solver) which collaborate in tan-
dem at each step of the execution. To guarantee that the re-
action is produced at every step, we require that T has an ef-
ficient procedure to provide models of existential fragments
of T . Our approach does not guarantee termination using
semi-decidable T , but still yields a partial solution for such
cases. We also use an additional component, called parti-
tioner, which discretizes the environment T -input providing
a suitable input for the Boolean controller (but this is an easy
by-product of the Booleanization procedure and can be com-
puted statically). As far as we know, this is the first success-
ful reactive synthesis procedure for LTLT specifications.

Preliminaries
LTL, LTLf and reactive synthesis. We use synthesis of
LTL (Pnueli 1977) specifications. The syntax of LTL is:

φ ::= T
∣∣ a ∣∣ φ ∨ φ ∣∣¬φ ∣∣φ ∣∣ φ U φ

where a ranges from an atomic set of proposition AP, ∨,
∧ and ¬ are the usual Boolean disjunction, conjunction and
negation, and and U are the next and until temporal op-
erators (other derived operators include R, and). The
semantics of LTL associate traces σ ∈ Σω with formulae.
Our technique also applies to LTLf specifications (Manna

and Pnueli 1995; Giacomo and Vardi 2013), that borrow the
syntax from LTL, but whose semantics is given in terms of
finite traces represented as finite words over the alphabet.

Reactive synthesis (Thomas 2008; Finkbeiner 2016) is the
problem of producing a system from an LTL specification,
where the atomic propositions in the formula are split into
propositions controlled by the environment and those con-
trolled by the system. Synthesis corresponds to a turn-based
game where, in each turn, the environment produces values
of its variables (inputs) and the system responds with values
of its variables (outputs). A play is an infinite sequence of
turns. The system player wins a play if the trace of the play
satisfies the specification φ. A strategy of a player is a map
from positions into a move for the player. A play is played
according to a strategy if all the moves of the corresponding
player are played according to the strategy. A strategy is win-
ning for a player if all the possible plays played according
to the strategy are winning for the player. Note that, depend-
ing on the fragment of LTL used, the synthesis problem has
different complexities (with general 2EXPTIME complete).

LTLT and Boolean abstraction. We use LTLT as the ex-
tension of LTL where propositions are replaced by literals
from a first-order theory T (for example Presburger arith-
metic or linear real arithmetic). In realizability and synthe-
sis for LTLT , the (theory) variables that occur in the literals
of a specification φ are split into those variables controlled
by the environment (denoted by x) and those controlled by
the system (y), where x ∩ y = ∅. We use φ(x, y) to remark
that x∪ y are the variables occurring in φ. The alphabet ΣT
is now a valuation of the variables in x ∪ y, which can be
infinite in many theories. A trace is an infinite sequence of
valuations, which induces an infinite sequence of Boolean
valuation of the literals occurring in φ and, in turn, an eval-
uation of the temporal formula. Deciding LTLT realizability
corresponds to an infinite game with an infinite arena where
positions may have infinitely many successors if the ranges
of the variables controlled by the system and the environ-
ment are infinite. For instance, literal (x ≥ 2) interpreted in
integers can be satisfied with x = 2, x = 3, x = 4, etc.

In this paper we introduce a synthesis algorithm for LTLT
based on the Boolean abstraction method (Rodriguez and
Sánchez 2023), which transforms an LTLT specification into
an equi-realizable LTL Boolean specification. The Boolean
abstraction method requires that the ∃∗∀∗ fragment of the
theory is decidable. The method used in this paper produces
a formula in the same temporal fragment as the original for-
mula (e.g., starting from a safety formula another safety for-
mula is generated). The generated LTL formula can be dis-
charged into a synthesis engine that can generate a controller
for the system player if the specification is realizable. For
simplicity in the presentation, we illustrate our method with
safety formulae and arithmetic specifications. Concretely,
we will consider TZ (i.e., linear integer arithmetic) and TR
(i.e., non-linear real arithmetic), which are decidable.

The Boolean abstraction procedure takes an input for-
mula φT with literals li and produces a new specification
φB = φ[li ← si] ∧ □φextra, where si are fresh Boolean
variables and φextra ∈ B. The core of the algorithm is the

additional subformula φextra which uses the freshly intro-
duced variables si—controlled by the system—as well as
additional Boolean variables ek controlled by the environ-
ment and captures that, for each possible ek, the system has
the power to choose a response among a specific si. The
extra requirement captures precisely the finite collection of
input decisions of the environment (partitions of the environ-
ment space of valuations) and the resulting (finite) choices
of the system to respond (partitions of the system choices
that results in the same Boolean valuations of the literals).

Motivating running example. As for an example of re-
active specifications in LTLT , let □ be the usual globally
operator in LTL and the next operator. Consider φT =
□(R0 ∧R1) as the running example for the paper, where

R0 : (x < 2) � (y > 1) R1 : (x ≥ 2) � (y < x)

In φT , x ∈ T belongs to the environment and y ∈ T
belongs to the system. Note that φT is not realizable for
T = TZ, since, if at a given time instant t, the environ-
ment plays x = 0, and hence (x < 2) holds, then y must
be greater than 1 at time t + 1. Then, if at t + 1 the envi-
ronment plays x = 2, then (x ≥ 2) holds but there is no y
such that both (y > 1) and (y < 2). However, for T = TR,
φ is realizable (consider the system strategy to always play
y = 1.5). The Boolean abstraction method transforms φT
into a purely Boolean specification φB that allows to per-
form automatic LTL realizability checking. For instance, for
T = TZ, the Booleanized version of φT is the following:

φB = φ′′ ∧(φlegal → φextra),

where φlegal encodes that e0, e1 and e2 characterize a parti-
tion of the input decisions of the environment (e0∨e1∨e2)∧
(e0 → ¬(e1∧e2))∧(e1 → ¬(e0∧e2))∧(e2 → ¬(e0∧e1)).
Also φ′′ = (s0 � s1) ∧ (¬s0 � s2) is a direct translation
of φT , where s0 abstracts the literal (x < 2), s1 abstracts
(y > 1) and s2 abstracts (y < x). Solely replacing literals
with fresh system variables over-approximates the power of
the system, therefore we need an additional formula φextra

that encodes the original power of each player in φT :

φextra :

(
e0 � s012 ∨ s012 ∨ s012

)
∧

(
e1 � s012 ∨ s012

)
∧

(
e2 � s012 ∨ s012 ∨ s012

)
 ,

where e0, e1, e2 ∈ B belong to the environment and where
s012 = (s0∧s1∧¬s2), s012 = (s0∧¬s1∧s2), s012 = (s0∧
¬s1∧¬s2), s012 = (¬s0∧s1∧s2), s012 = (¬s0∧s1∧¬s2)
and s012 = (¬s0 ∧ ¬s1 ∧ s2), where s0, s1, s2 ∈ B belong
to the system. Sub-formulae s012, s012, s012, s012, s012 and
s012 represent the choices of the system, that is, given a de-
cision ek of the environment, the system can react with one
of the choices ci in the disjunction implied by ek. Note that
φlegal encodes that e0, e1, e2 is a (finite) partition in the do-
main of the (infinite) valuations of the environment, where
e0 abstracts its decision x such that (x < 2), e1 represents x
such that (x = 2) and e2 represents (x > 2). Note that if the
considered T is different, φB may also differ.

v : T w : T
ek ci

φBφT

∃y.ci(y)[x← v]

Controller

P
a
rt
it
io
n
er

P
ro
v
id
er

Figure 1: The on-the-fly synthesis architecture.

Description of the Approach
On-the-fly Architecture
Overall Architecture. For synthesis modulo theories it is
not enough to synthesize a controller for the Booleanized
LTLT specifications, because the actual controller will re-
ceive inputs in T from the environment and produce out-
puts from complex values in T . For instance, consider the
environment controls an integer variable x and the system
controls an integer variable y in the specification φT =
(y > x), then the system can satisfy φT by always re-
turning any y such that (y > x). In this paper we propose
a general approach to do so, shown in Fig. 1, which we call
on-the-fly LTLT synthesis. This method consists on comput-
ing statically a Boolean controller for φB (which has been
Booleanized from φT), and dynamically combine it with a
method to provide models from formulae in T . At runtime,
at each instant of time, (1) given the valuations [x ← v] of
the environment (where v are actual input values for each
environment variable x ∈ T), then (2) the partitioner dis-
cretizes this valuation generating a Boolean input for the
Boolean controller; (3) the controller responds with a choice
ci ∈ B (which corresponds to a verdict on the Boolean valu-
ations of literals in the formula). Our controller still needs to
produce actual values of the output variables that make the
verdict of the literals be as in ci, for which a formula of the
form ∃y. cTi (y) is generated (where cTi (y) is the T formula
that contains one conjunction per literal, and the input vari-
ables replaced by their values). This formula represents all
the values that the system controls, that result in the choice ci
that the Boolean controller has output. By the correctness of
the Booleanization process this formula must be satisfiable.
Stage (4), called provider, uses an SMT solver to produce a
model w of ∃y. cTi (y) so [y ← w] will guarantee the orig-
inal specification φT . Note that we replace x by the input
valuation v in cTi (y), so cTi (y) only has y as variables. We
now describe in detail the three parts of the architecture.

Partitioner. At each timestep, the partitioner receives a
valuation v ∈ ET of the environment variables x. The goal
of the partitioner is to find the discrete partition of the input
universe of values where x belongs in order to provide an in-
put Boolean variable ek to the Boolean controller. The parti-
tioner is realized by a function getE : ET � D that finds the
discretization ek ∈ D that corresponds to v (see (Rodriguez
and Sánchez 2023) for details). We now describe designs of
getE(), but first we need some clarification. The set VR is the
set of valid reactions, where each reaction is associated with

a partition identified by ek. A choice, as described above is a
concrete valuation of the literals to true or false. A reaction r
is a conjunction of subformulae, one for each choice, stating
that either the choice is possible (there are valutaions of the
variables of the system that makes the choice hold) or impos-
sible (all valuations of the variables of the system inevitably
make the choice false). A reaction is valid (see (Rodriguez
and Sánchez 2023)) whenever for some value of the environ-
ment variables, the system is left with the exact combination
of possible and impossible choices described by r. That is, a
valid reaction captures values of the environment for which a
system can choose a specific subset of valuations of the liter-
als in the formula. The Booleanization algorithm essentially
computes the set VR of valid reactions, which characterizes
(in a discrete manner) every decision ek that the environment
can take and every choice ci with which the system can re-
spond to each ek. Thus, partitioning x is always possible in
any T supported by the abstraction method.

A brute force design of getE() finds the valid reaction r
that corresponds to v, by substituting x in the first order
formula that characterizes r and checks the validity. Note
that a faster method can use quantifier elimination (QE) to
compute the checker of r by evaluating r(v), if T accepts
QE, which happens in arithmetic theories (which have great
applicability in the area). More technically, using QE the
partitioning is pre-computed: since reactions are formulae
∃x.φ where φ is a conjunction of formulae ∀y.φi(x, y) and
∃y.φj(x, y). Eliminating y results in a formula ∃x.φ′ with x
as only variable in φ′. Therefore, after QE, deciding validity
for a given input v for x boils down to substitution and sim-
ple evaluation. Also, when QE is not available (e.g., EUF)
one has to use a (slower) validity check, to decide that ∃x.φ
is valid (again φ contains ∀y and ∃y). This method is ef-
fective but slower (need on-the-fly solving a validity query).
Alg. 1 shows the brute force method. It receives the valua-
tion v, the set of valid reactions VR (line 1) and a list dec ls
of decisions ek, associated to each r ∈ VR in the same po-
sition. Then, it creates a set S = VR (line 2) that will be
decremented in line 8 until it is empty (line 3). Line 4 picks
a reaction r ∈ S and line 5 replaces the environment vari-
ables by v. If ψ holds (line 6) then v is captured by r (and
cannot be captured by any other r), so we return the asso-
ciated Boolean decision of the environment (line 7). The
fact that VR is the set of valid reactions guarantees that ex-
actly one r captures v, so line 9 is never reached in a correct
design. Note that lines 3-7 describe an in-between function
getVR : ET � VR that gets r from v. Then, the partitioner
will use getE() at each state of the execution.

Controller. Constructing the Boolean controller is
straightforward: once we have the Booleanized speci-
fication, we can synthesize a Boolean controller using
off-the-self synthesis tools (Jacobs et al. 2017) which exist
for LTL and LTLf whenever the instance is realizable.

Boolean controllers can be stimulated with environment
inputs and will produce system outputs, generating plays
of the form ϵ, et0k c

t0
i , e

t0
k c

t0
i e

t1
k c

t1
i , ... where the environment

has selected inputs et0k , e
t1
k , ... and then the system reacts to

them with ct0i , c
t1
i , ... taking into account the current ek and

Alg. 1: Exhaustive getE().
1 Input: v,VR, dec ls
2 S ← VR
3 while S ≠ ∅ do
4 r ← S, pos← getPos(r,VR)
5 ψ ← subst(r, v)
6 if ψ is satisfied then
7 return e← dec ls(pos)

8 S ← S \ {r}
9 return Error

This is getVR().

the memory encoded in the states of the controller.

Provider. The discrete behaviour of the Boolean con-
troller requires an additional component, that we call
provider to construct a valuation [y ← w] of the system vari-
ables that guarantee the satisfaction of the original specifica-
tion. The provider receives a choice ci by means of its com-
bination of fresh Boolean variables of the system s0, s1, ...
that abstract the literals. Then, it translates the meaning of
each sj of ci to T using the literal, creating the formula cTi ,
where it substitutes the values of environment variables x
for the corresponding input valuations v. The resulting for-
mula ∃y ∈ T .cTi is guaranteed to be satisfiable and it is
discharged into a solver to produce a concrete model. For
model provision, we can use constructive methods like the
ones underlying SMT solvers, like DPLL(T) and CDCL(T).

Adaptivity in On-the-fly Synthesis
Max SMT. A key strength of the the on-the-fly approach is
that it allows using additional soft constraints in the architec-
ture. The queries solved by the provider can often produce
different results (as long as all literals have the same val-
uation). Therefore, the provider can—even dynamically—
produce different results. Given the first order formula cTi ,
the provider may seek different models of cTi depending on
additional constraints provided. For example, given cTi ≡
(y > x), then, adding soft constraint ∀y′.(y′ < y)→ (y′ <
x) to cTi returns the smallest model (value of y). This means
that we can add (and remove) soft constraints φadd

T on-the-fly
without the need of re-synthesizing a different controller.

An important observation is that this dynamic controller
will always stay within the winning region of φT because
the play of the Booleanized version φB remains identical
(all literals have the same valuation at every step indepen-
dently of the soft constraint). For instance, a provider that is
required to stay within limits [−0.2,+0.2] may choose a se-
quence of values that follow some smoothness criteria: i.e.,
try to avoid abrupt changes in the values of y through time.

More use cases. The adaptivity described above is more
useful whenever the architecture is running in an environ-
ment where resources are limited and it is provided with
some oracle (e.g., a machine-learning model) that chooses
soft constraints dynamically, depending on the optimization
criteria that is decided to be followed in each timestep. These

oracles can also be deterministic, like in modes of an execu-
tion. For example, consider the case in which the engineer
has designed different modes to optimize energy or times,
like a robot with an econ and fast speed mode or a thermo-
stat with higher and more moderate heating modes etc.

As a more concrete use case, consider the following syn-
thetic specification of a fast-cars road φcar = (RA ∧RB):

RA : (x < 120) �[0,10][□(y < x) U (x ≥ 120)]

RB : (x ≥ 120) �[0,10][□(y ≥ x) U (x < 120)],

where x and y are positive numeric variables that belong
to the environment and the system respectively. Note that
the specification φcar is considerably under-specified and
a controller with an unrestricted on-the-fly provider could
provide y valuations that are not interesting. However, we
can refine the behaviour by adding extra constraints, with-
out needing to re-synthesize the underlying Boolean con-
troller. For instance, consider we want to drive efficiently
in case (x ≥ 120) requiring the minimum y such that
y ≤ x would be the desired behaviour. Alternatively, con-
sider some timesteps it is unsafe for the road to drive k units
below x whenever (x < 120) so the soft constraint would
be (y > x− k), where k is provided by some oracle.

Empirical Evaluation
Demonstration. We first illustrate using the running ex-
ample φT how the on-the-fly approach behaves in practise.
Specification φT is unrealizable for TZ, but a slight mod-
ification makes it realizable. If we replace (y < x) with
(y ≤ x) we obtain φ′

T = □(R0 ∧R′
1), where:

R0 : (x < 2) � (y > 1) R′
1 : (x ≥ 2) � (y ≤ x)

Specification φ′
T is realizable in TZ (consider the strategy of

the system to always play y = 2). The Booleanized version
of φ′

T is φ′
B = φ′′ ∧([(e0 ∨ e1)∧ (e0 ↔ ¬e1)]→ φextra′),

where φ′′ = (s0 � s1) ∧ (¬s0 � s2) and φextra′ is:[
e0 →

(
s012 ∨ s012

)]
∧
[
e1 →

(
s012 ∨ s012 ∨ s012

)]
where e0, e1 ∈ B belong to the environment and represent
(x < 2) and (x ≥ 2), respectively. Note that in φ′

B there
are no separated ek for (x = 2) and (x > 2). Also, note
that a complete abstraction would also produce a decision
e1.5 with choices {s012, s012, s012} that represents (x < 1),
but an intelligent environment will never play e1.5, since it

Step x e c y

1 ..., 3, 4 , 5, ... e0, e1 s012 , s012, s012 3, 2 , ...

2 ..., 3, 4 , 5, ... e0, e1 s012 , s012, s012 3, 2 , ...

3 .., 0, 1 , 2, ... e0 , e1 s012, s012 1 , 0, ...

4 ..,−1, 0 , 1, ... e0 , e1 s012 , s012 2 , 3, ..

5 .. 2 , 3, 4, . . . e0, e1 s012 , s012, s012 2

Table 1: Modified running example φ′
T executed for 5 steps.

Gray colour indicates the selected values among the in-
finitely many x and y or the finitely many ek and ci options.

Bn. Cls. BA 1K sims. 10K sims. 10K sims. (sft.)
(nm.) (vr, lt) Tme. Quer. Dc. B. Pa. Cn. Pr. Pa. Cn. Pr. m/m. pc. sm.

Li.

(1, 7) 28.66 1008 1

3.71

0.01

2.17 240

0.01

2.14 2.32 216 204 202(2, 4) 0.72 44 16 0.01 0.01
(1, 3) 0.51 30 4 0.01 0.01
(1, 2) 0.13 7 3 0.01 0.01

Tr.

(1, 3) 0.87 45 5

5.01

0.01

3.41 272

0.01

3.39 262 294 270 306

(2, 1) 0.04 2 2 0.01 0.01
(1, 3) 0.19 12 9 0.01 0.01
(1, 1) 0.10 5 4 0.01 0.01
(3, 6) 104.5 5367 15 0.02 0.01
(4, 5) 3871 52666 24 0.02 0.02
(3, 5) 328.4 18390 9 0.02 0.02

(4, 12) 4909 37083 104 0.03 0.02
Con. (2, 2) 0.09 4 4 4.34 0.01 1.17 104 0.01 1.17 104 107 129 102
Coo. (3, 5) 2.60 161 1 3.56 0.01 1.21 171 0.01 1.20 168 168 168 173

Usb (2, 3) 0.16 8 8 3.93 0.01 1.80 302 0.01 1.76 304 329 313 358(3, 5) 342.2 5638 32 0.01 0.01

St. (8, 8) 17.9 256 256 2.86 0.02 2.86 295 0.02 2.86 291 299 298 260(3, 6) 164.2 6138 45 0.02 0.02

Syn.

(2, 2) 0.18 7 2 3.82 0.01 1.01 106 0.01 1.03 119 124 129 128
(2, 3) 1.15 53 3 3.89 0.01 1.95 112 0.01 1.90 118 118 110 103
(2, 4) 14.51 625 3 3.72 0.01 1.98 113 0.01 1.98 113 112 115 127
(2, 5) 59.6 2707 11 3.95 0.01 2.07 170 0.01 2.06 167 144 142 152
(2, 6) 377.7 9042 24 3.91 0.02 2.14 194 0.01 2.09 183 184 191 191
(2, 7) 3008 12290 45 4.29 0.02 2.40 209 0.02 2.21 207 247 222 436

Table 2: Empirical evaluation of controller construction (BA) and execution performance (1K,10K...) of different benchmarks
(last group refers to adaptive synthesis). All times are measured in seconds, except for Cn. and Pr., which are microseconds.

offers strictly more power to the system (more choices), so
e0 already characterizes those plays. All choices from s012
to s012 have the same meaning as in φT . We show a con-
crete execution in Tab. 1, where we see how the T -controller
responds to a few T -inputs. For instance, in the first step,
the input x = 4 is discretized into the Boolean decision e1
which is passed to the Boolean controller. The controller re-
sponds s012 = ¬s0 ∧ s1 ∧ s2 to this input, which is trans-
lated into sT

012
= ¬(x < 2) ∧ (y > 1) ∧ (y ≤ x). Then, the

provider substitutes valuation [x ← 5] in sT
012

, and solves
∃y.sT

012
(y)[x ← 5], i.e., ∃y.¬(5 < 2) ∧ (y > 1) ∧ (y ≤ 5)

which is guaranteed to succeed. A possible model is y = 2.

To show adaptivity, we could have enriched the query by
adding e.g., soft φadd = ∄z.(x > 2) ∧ (z > 1) ∧ (z <
x)∧(z < y) that states that, there is no z that holds the same
safety constraints than y and is smaller than y. In other words
sT
012
∧soft φ

add implies that y is the smallest possible value
that satisfies sT

012
. This way, the controller will always out-

put y = 2, except when s012 is chosen. We can also design
adaptivity criteria that changes over time. For instance, con-
sider a point p which is the sum of y in previous timesteps
and we want to always provide y as closest as possible to
p. This way, the results in the same execution of Tab. 1 are
y = 2, y = 4, y = 1, y = 6 and y = 8 instead of (hardly)
always y = 2. We cannot encode such adaptivities within

LTL itself (since allowing arbitrary valuation transmission
across-time would make the realizability problem undecid-
able), but we can leverage the usage of monitors for such
calculations or use linear regression if the theory is some
linear arithmetic. Also, note that, since these constraints are
soft, safety is not compromised. In the example, since the
theory is linear arithmetic obtaining for example minimal or
maximals values of bounded domains is always possible.

Moreover, we tested the performance of the real-
izable φ′

T above with the increasing p value and
the same cyclic 100000 stimuli of the environment:
4, 4, 1, 0, 2, 4, 4, 1, 0, 2, The total running time of the ex-
periment was 17079s and more detailed results were the fol-
lowing: the average time for the partitioner was 30 ms, the
average time for the Boolean controller execution was 2.17
µs, and the average time for the provider was: 170 µs. Note
that all the y outputs were y = 2, y = 4 or an increasing y,
where the last value produced was y = 499998.

Experimental setting. We perform an empirical evalua-
tion on six specifications based on real industrial specifi-
cations: Cooker (Coo.) and Usb (Usb.) are original bench-
marks from (Rodriguez and Sánchez 2023), whereas Lift
(Li.), Train (Tr.), Connect (Con.) and Stage (St.) are modi-
fications of original specifications that were unrealizable to
make them realizable. The meanings of the specifications are
as follows: Li. describes the functioning of a freight elevator

system, Tr. describes the functioning of an autonomous train
driving system, Con. describes the functioning of an electric
vehicle charging and discharging system, Coo. describes the
operation of a food processor with various functions, Usb.
describes the operation of a system that prevents the loss of
information during the interaction between a USB and a ma-
chine and St. describes the operation of a system that com-
bines the use of different sensors for use in aviation. Syn. is a
synthetic example (also from the same source) with versions
from 2 to 7 literals whose aim is to test scalability.

Tab. 2 shows the main group of experiments. It is easy to
see that “clusters” of literals that do not share variables can
be Booleanized independently and they can be composed
thereafter, so we split into clusters each of the examples,
where we show number of variables (vr.) and literals (lt.)
per cluster. Boolean controller synthesis time (BA) reports
the time needed for the Boolean abstraction (Tme.) for each
cluster, together with the number of input decisions available
for the environment (Dc.) and the shared Boolean controller
synthesis time (B). This is performed at compile time.

The time needed for computing the components that are
executed at runtime (e.g., the partitioner must be constructed
from a regular expression based on the controller) is negli-
gible. The following two groups show results of the execu-
tion of 1000 (1K sims.) and 10.000 (10K sims.) timesteps of
input-output simulations. We measure, for each group: (1)
the average time of the partitioner (Pa.) to respond with a
discrete ek from x, (2) the average time of the Boolean con-
troller (Cn.) to respond with a Boolean ci and (3) the aver-
age time of the provider (Pr.) to respond with a T -valuation
associated to ci. The first column corresponds to the name
of the benchmarks (nm.). We used used Python 3.8.8 with
Z3 4.12.2 for the implementation. We used Strix by (Meyer,
Sickert, and Luttenberger 2018) as the synthesis engine and
aigsim.c to simulate the controller with stimulous. We
ran the experiments on a MacBook Air 12.4 with the M1
processor and 16 GB of memory. All experiments can be
replicated for the corresponding LTLf benchmarks, except
that we would need to use another more appropriate synthe-
sis engine for such fragment (e.g. Nike by (Favorito 2023)).

Results. Our results suggest that there is not much volatil-
ity between different simulations. This is due to the heuris-
tics both in the Boolean controllers and the SMT solvers
(which make them regularly choose the same solution
paths), also the partitioner does not show volatility, as pre-
dicted. Less than 1% of the times the input-output results
were different. As for hardest benchmarks, St. is the case
study that takes the most average time for Pa., since it con-
tains more ek (see Dc.) and Tr. is the benchmark that takes
the most average time for the controller, since this controller
has many more states. Tr. is also the benchmark that takes
the most average time for the provider, since it contains more
constraints to solve. Finally, differences are seem negligible
when different theories T are used (we tested TR and TZ).

In order to guarantee response time is bounded and fast
enough for the targeted applications (specially in case the
on-the-fly approach is to be used in safety critical contexts),
we kept track of possible time outliers; i.e., cases in which

the SMT of the provider took too much time to solve a T -
output in a given timestep. As expected, this did not happen,
because current SMT solvers are able to solve instances that
are much larger than the ones we used here. For example,
if the Boolean abstraction receives 10 literals in a cluster,
then the SMT solver will have to solve a constraint of 10
literals, which is extremely fast. It is not probable that the
provider will get stuck in its task, because the current state of
the art has its bottlenecks in other components (say, Boolean
abstraction and classic controller synthesis), but these prob-
lems are detected before the production phase of the Boolean
controller, at compile time. Note that in Tab. 2 the whole
input-output process never took more than 1ms to respond
in any given timestep. An unexpected result is that the more
simulations we perform, the time for the Boolean controller
is usually slightly smaller, so handling memory does not
look like a problem for the controller’s latches and it seems
it somehow handles input repetition in an optimal way.

In addition, we used adaptivity to make systems more ef-
ficient with respect to three different criteria: (1) returning
minimum and maximum valuation possible (m/m) knowing
there was at least one of such bounds to stop the search,
(2) returning valuation closest to a p point (pc.) that is ran-
domly generated and (3) the smoothness valuation; i.e., pro-
viding with values as close as possible to the previous ones
(sm.), for which we used an external method in Python to
calculate values runtime. We made tests with 10000 stim-
uli and input-output response times remained in the order of
ms. Note that the times for the partitioner and controller do
not change, thus we only show the times of the providers
(see the three rows in 10K sims (sft.)). There are also some
unexpected cases in which looking for adaptive responses
makes the provider perform faster. One possibility is that
Z3’s optimize() function for soft constraints is more regular
in some cases compared to the usual solve() function. There
is not a clear response on when one adaptive response will
be faster than another. In our empirical evaluation, it strongly
depended on the literals (e.g., how large the bounds are).

Reqs. (Wu et al.) Ours
B T B T T sm T pc

Pw. 26, 27 0.3 631 0.21 171 194 198
Pw. 32, 33 0.41 590 0.24 190 188 211

Pw. All 0.8 520 0.25 214 205 215
Driv. 1 0.45 340 0.22 106 106 105
Driv. 2 0.5 640 0.22 118 114 123

Driv. 1, , 2 0.8 520 0.23 124 123 130
Cr. 1, 2, 3 0.37 370 0.18 141 145 168
Cr. 2, 3, 4 0.49 710 0.22 163 180 174

Cr. All 0.45 580 0.22 133 138 101
Quad. All 0.18 610 0.15 170 188 188
Ctr. All 0.5 690 0.26 173 185 186
Glc. All 0.31 530 0.21 177 173 169
Wtr. All 0.57 510 0.30 156 162 191

Table 3: Comparison of (Wu et al. 2019) and our approach
measured in (µs), where we also test two adaptivity criteria.

We also tested that, when providing y generated by ex-
ternal tools it is easy to check if a given y satisfies all lit-
erals in the choice ci provided by the controller. This cor-
responds to using our technique for LTLT shielding. Since
there are no previous results in synthesis modulo theories,
we adapted our experiments to make them comparable to
the experiments in (Wu et al. 2019). We acknowledge that
both solutions are not the same: we synthetise a controller
whereas (Wu et al. 2019) synthetizes a winning region with
a correction step. However, in Tab. 3 we compare the ap-
proaches in the two tasks they share: computing the Boolean
output (B) and producing the final value (T). For the first
task, our approach requires around 0.2µs and their approach
needed 0.5µs, which means that using a Boolean controller
is a good choice. For the second task, we required approx.
0.17ms to provide a y whereas they needed about 0.5ms.
We conjecture that we could produce outputs faster us-
ing static techniques to synthesize a provider, in a similar
way (Wu et al. 2019) uses regression. Also, we used Python
for our prototype except aigsim.c, whereas they use all
components in C. Note that (Wu et al. 2019) does not pro-
vide adaptivity results, while we do for the smoothness crite-
ria (T sm) and moving p criteria (T pc). Also, note that (Wu et
al. 2019) can only be used with specifications containing lin-
ear real arithmetic, whereas our method allows all ∃∗∀∗ de-
cidable fragments of theories (a requirement for the Boolean
abstraction), which includes TR. Hence, if we modified the
T used in the table for TZ, (Wu et al. 2019) could not provide
responses. Also, due to its shield nature, (Wu et al. 2019) is
restricted to safety, while our method produces a controller
for all LTL, preserving the fragment of the original φT .

Related Work and Conclusions
Related Work. Recently, (Rodriguez and Sánchez 2023)
introduced LTLT , and showed that the realizability problem
for LTLT is decidable via a Boolean abstraction technique.
We extended this approach here to reactive synthesis mod-
ulo theories. LTLMT

f is introduced in (Geatti, Gianola, and
Gigante 2022) as an alternative to LTL modulo theories but
for finite traces and allowing temporal operators within pred-
icates (lookbacks), and only study satisfiability (which is al-
ready undecidable). We study synthesis for LTLT , which is
based on realizability (Rodriguez and Sánchez 2023). Our
results apply both to enriched LTL and LTLf for the re-
stricted fragment with no lookbacks, which are decidable.
Studying decidable extensions between LTLT and LTLMT

(reconciling the two logics) is future work.
Some works (Katis et al. 2016; 2018; Gacek et al. 2015)

consider synthesis for first-order theories, but without termi-
nation guarantees and only considering some temporal frag-
ments. We guarantee termination of the controller synthesis
if the theory is decidable in the ∃∗∀∗ fragment and SMT
solver supports the theory. Moreover, all approaches above
adapt one specific technique and implement it in a mono-
lithic way, whereas Boolean abstraction allows to use of our
on-the-fly architecture, since it generates an equi-realizable
(Boolean) LTL specification. This will benefit from all fu-
ture improvements of synthesis from Boolean abstractions

and is fully automatic (unlike (Walker and Ryzhyk 2014)).
In no previous work, adaptivity has been considered, except
in (Wu et al. 2019) as compared above.

Temporal Stream Logic (TSL) (Finkbeiner et al. 2019)
extends LTL with complex data that can be related accross
time and (Finkbeiner, Heim, and Passing 2022; Maderbacher
and Bloem 2022; Choi et al. 2022) use extensions of TSL
to theories, but realizability (and thus synthesis) is undecid-
able in all these works. In comparison, our method cannot
relate values accross time but provides a decidable synthe-
sis procedure; e.g., all the specifications of the empirical
evaluation in Tab. 2 are not within the decidable nor semi-
decidable fragments of TSL. Similar undecidability is re-
ported in (Faran and Kupferman 2018). Other approaches
(e.g., (Demri and D’Souza 2007; Cheng and Lee 2013;
Farzan and Kincaid 2018)) restrict expressivity whether
temporal-wise, theory-wise or both. For further information
on difference between LTL extensions and their expressivity
compared to LTLT , we refer the reader to (Rodriguez and
Sánchez 2023). Note that, (Xiao et al. 2021) uses terminol-
ogy on the fly synthesis, but it addresses a different problem:
how to construct a controller on-the-fly for Boolean LTLf .

Conclusion. We have studied the problem of LTLT syn-
thesis which is more challenging than LTLT realizability
modulo theories, since synthesis implies computing a sys-
tem that receives valuations in T and provides valuations in
T . We propose an on-the-fly approach that first discretizes
the input from the environment, then uses a Boolean con-
troller synthesized from the Booleanized specification of
LTLT , and finally produces a reaction using a procedure that
provides models of existential formulae of T . We performed
an empirical evaluation that proves the idea useful in prac-
tise. We also showed how adaptivity within this framework
fits naturally and offers more interesting reactions. This is
the first solution to reactive synthesis modulo theories.

Exploiting capabilities of the on-the-fly approach for
adaptivity and semi-decidable theories is an immediate fol-
low up. As for further future work, it still remains un-
clear how a static provider based in Skolem functions
(Fedyukovich, Gurfinkel, and Gupta 2019) can be syn-
thetised, and whether it will share some parts used in the
on-the-fly approach: for instance, in φT = (y > x), a
Skolem function f(x) = x + 1 serves as a witness for y in
∀x.∃y. (y > x) and can be used infinitely many often to pro-
vide integer values for y ∈ T . However, there may be some
∃∗∀∗-decidable theories for which the realizability problem
is decidable, but no static provider can be constructed. We
plan to compare both approaches. We also envision some
applications of LTLT to (runtime) verification and shielding.

Acknowledgement
This work was funded in part by PRODIGY Project
(TED2021-132464B-I00)—funded by MCIN/AEI/10.130
39/501100011033/ and the European Union NextGenera-
tionEU/ PRTR—by DECO Project (PID2022-138072OB-
I00)—funded by MCIN/AEI/10.13039/ 501100011033 and
by the ESF+—and by a research grant from Nomadic Labs
and the Tezos Foundation.

References
Cheng, C., and Lee, E. A. 2013. Numerical LTL synthesis
for cyber-physical systems. CoRR abs/1307.3722.
Choi, W.; Finkbeiner, B.; Piskac, R.; and Santolucito, M.
2022. Can reactive synthesis and syntax-guided synthe-
sis be friends? In Proc. of the 43rd ACM SIGPLAN Int’l
Conf. on Programming Language Design and Implementa-
tion (PLDI’22), 229–243. ACM.
Demri, S., and D’Souza, D. 2007. An automata-theoretic
approach to constraint LTL. Inf. Comput. 205(3):380–415.
Faran, R., and Kupferman, O. 2018. LTL with arithmetic
and its applications in reasoning about hierarchical systems.
In Proc. of the 22nd Int’l Conf. on Logic for Programming,
Artificial Intelligence and Reasoning, (LPAR-22), volume 57
of EPiC Series in Computing, 343–362. EasyChair.
Farzan, A., and Kincaid, Z. 2018. Strategy synthesis
for linear arithmetic games. Proc. ACM Program. Lang.
2(POPL):61:1–61:30.
Favorito, M. 2023. Forward ltlf synthesis: DPLL at work.
CoRR abs/2302.13825.
Fedyukovich, G.; Gurfinkel, A.; and Gupta, A. 2019. Lazy
but effective functional synthesis. In Proc. of the 20th Int’l
Conf. in Verification, Model Checking, and Abstract Inter-
pretation, (VMCAI’19), volume 11388 of LNCS, 92–113.
Springer.
Finkbeiner, B.; Klein, F.; Piskac, R.; and Santolucito, M.
2019. Temporal stream logic: Synthesis beyond the Bools.
In Proc. of the 31st Int’l Conf. on Computer Aided Verifi-
cation (CAV’19), Part I, volume 11561 of LNCS, 609–629.
Springer.
Finkbeiner, B.; Heim, P.; and Passing, N. 2022. Tempo-
ral stream logic modulo theories. In Proc. of the 25th Int’l
Conf. on Foundations of Software Science and Computation
Structures (FOSSACS’22), volume 13242 of LNCS, 325–
346. Springer.
Finkbeiner, B. 2016. Synthesis of reactive systems. In
Dependable Software Systems Engineering, volume 45 of
NATO Science for Peace and Security Series - D: Informa-
tion and Communication Security. IOS Press. 72–98.
Gacek, A.; Katis, A.; Whalen, M. W.; Backes, J.; and Cofer,
D. D. 2015. Towards realizability checking of contracts
using theories. In Proc. of the 7th International Symposium
NASA Formal Methods (NFM’15), volume 9058 of LNCS,
173–187. Springer.
Geatti, L.; Gianola, A.; and Gigante, N. 2022. Linear tem-
poral logic modulo theories over finite traces. In Proc. of the
31st Int’l Joint Conf. on Artificial Intelligence, (IJCAI’22),
2641–2647. ijcai.org.
Giacomo, G. D., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In Proc. of
the 23rd Int’l Joint Conference on Artificial Intelligence (IJ-
CAI’13), 854–860. IJCAI/AAAI.
Jacobs, S.; Basset, N.; Bloem, R.; Brenguier, R.; Colange,
M.; Faymonville, P.; Finkbeiner, B.; Khalimov, A.; Klein,
F.; Michaud, T.; Pérez, G. A.; Raskin, J.; Sankur, O.; and
Tentrup, L. 2017. The 4th reactive synthesis competition

(SYNTCOMP 2017): Benchmarks, participants & results.
In Proc. of the 6th Workshop on Synthesis (SYNT@CAV
2017), volume 260 of EPTCS, 116–143.
Katis, A.; Fedyukovich, G.; Gacek, A.; Backes, J. D.;
Gurfinkel, A.; and Whalen, M. W. 2016. Synthesis from
assume-guarantee contracts using skolemized proofs of re-
alizability. CoRR abs/1610.05867.
Katis, A.; Fedyukovich, G.; Guo, H.; Gacek, A.; Backes,
J.; Gurfinkel, A.; and Whalen, M. W. 2018. Validity-
guided synthesis of reactive systems from assume-guarantee
contracts. In Proc. of the 24th Int’l Conf. on Tools and
Algorithms for the Construction and Analysis of Systems,
(TACAS’18), Part II, volume 10806 of LNCS, 176–193.
Springer.
Maderbacher, B., and Bloem, R. 2022. Reactive synthe-
sis modulo theories using abstraction refinement. In 22nd
Formal Methods in Computer-Aided Design, (FMCAD’22),
315–324. IEEE.
Manna, Z., and Pnueli, A. 1995. Temporal verification of
reactive systems - safety. Springer.
Meyer, P. J.; Sickert, S.; and Luttenberger, M. 2018. Strix:
Explicit reactive synthesis strikes back! In Proc. of the 30th
Int’l Conf on Computer Aided Verification (CAV’18) Part I,
volume 10981 of LNCS, 578–586. Springer.
Pnueli, A., and Rosner, R. 1989. On the synthesis of
an asynchronous reactive module. In Proc. of the 16th
Int’l Colloqium on Automata, Languages and Programming
(ICALP’89), volume 372 of LNCS, 652–671. Springer.
Pnueli, A. 1977. The temporal logic of programs. In Proc. of
the 18th IEEE Symp. on Foundations of Computer Science
(FOCS’77), 46–67. IEEE CS Press.
Rodriguez, A., and Sánchez, C. 2023. Boolean abstrac-
tions for realizabilty modulo theories. In Proc. of the 35th
International Conference on Computer Aided Verification
(CAV’23), volume 13966 of LNCS. Springer, Cham.
Thomas, W. 2008. Church’s problem and a tour through
automata theory. In In Pillars of Computer Science, Es-
says Dedicated to Boris (Boaz) Trakhtenbrot on the Occa-
sion of His 85th Birthday, volume 4800 of LNCS, 635–655.
Springer.
Walker, A., and Ryzhyk, L. 2014. Predicate abstraction for
reactive synthesis. In Proc. of the 14th Formal Methods in
Computer-Aided Design, (FMCAD’14)), 219–226. IEEE.
Wu, M.; Wang, J.; Deshmukh, J.; and Wang, C. 2019. Shield
synthesis for real: Enforcing safety in cyber-physical sys-
tems. In Proc. of 19th Formal Methods in Computer Aided
Design, (FMCAD’19), 129–137. IEEE.
Xiao, S.; Li, J.; Zhu, S.; Shi, Y.; Pu, G.; and Vardi, M. Y.
2021. On-the-fly synthesis for LTL over finite traces. In
Proc. of the 35th AAAI Conference on Artificial Intelligence,
(AAAI’21), 6530–6537. AAAI Press.

