
Predictable and Performant Reactive Synthesis
Modulo Theories via Functional Synthesis⋆

Andoni Rodŕıguez1,2 , Felipe Gorostiaga1,3 and César Sánchez1

1 IMDEA Software Institute, Madrid. Spain
2 Universidad Politécnica de Madrid. Spain

3 CIFASIS. Argentina

Abstract. Reactive synthesis is the process of generating correct con-
trollers from temporal logic specifications. Classical LTL reactive syn-
thesis handles (propositional) LTL as a specification language. Boolean
abstractions allow reducing LTLT specifications (i.e., LTL with propo-
sitions replaced by literals from a theory T), into equi-realizable LTL
specifications. In this paper we extend these results into a full static syn-
thesis procedure. The synthesized system receives from the environment
valuations of variables from a rich theory T and outputs valuations of
system variables from T . We use the abstraction method to synthesize a
reactive Boolean controller from the LTL specification, and we combine
it with functional synthesis to obtain a static controller for the origi-
nal LTLT specification. We also show that our method allows adaptive
responses in the sense that the controller can optimize its outputs in
order to e.g., always provide the smallest safe values. This is the first
full static synthesis method for LTLT , which is a deterministic program
(hence predictable and efficient).

1 Introduction

Reactive synthesis for Linear Temporal Logic (LTL) specifications [31] has re-
ceived extensive research attention [33]. A specification φ has its propositions
split into those variables controlled by the system and the rest, controlled by
the environment. A specification is realizable if there is a strategy for the system
that produces valuations of the system variables such that all traces generated
by the controller satisfy the specification. Realizability is the decision problem of
whether such a strategy for the system exists. Synthesis is the process of gener-
ating one such winning strategy. Also, both problems are decidable for LTL [31].

A recent extension of LTL called LTLT (LTL modulo theories) allows re-
placing propositions with literals from a first-order theory T . Given an LTLT

specification φT an equi-realizable LTL φB formula can be generated, provided

⋆ This work was funded in part by PRODIGY Project (TED2021-132464B-I00) —
funded by MCIN/AEI/10.13039/501100011033/ and the European Union NextGen-
erationEU/PRTR — by the DECO Project (PID2022-138072OB-I00) — funded by
MCIN/AEI/10.13039/501100011033 and by the ESF, as well as by a research grant
from Nomadic Labs and the Tezos Foundation.

https://orcid.org/0009-0006-3464-8667
https://orcid.org/0000-0002-3478-3408
https://orcid.org/0000-0003-3927-4773

2

that the validity of T formulae of the form ∃∗∀∗ is decidable [35,37]. In LTLT

synthesis the theory variables (for example Natural o Real) in the specification
are split into environment-controlled and system-controlled variables, and both
kinds can appear in any given literal, whereas in LTL an atomic proposition
belongs exclusively to one player.

Note that a controller obtained from an off-the-shelf synthesis procedure for
the Booleanized LTL formula φB cannot be directly used as a controller for
φT , because it must handle rich input and output values. Previous similar ap-
proaches either (1) focus on the satisfiability problem and not in realizability
(e.g., [20,22]); or (2) cannot be adapted to arbitrary T [27] or (3) do not guar-
antee termination [28,39,24], which makes these solutions incomplete. Recently,
[36] presented a method for synthesis of a fragment of decidable LTLT speci-
fications, which relies on the use of SMT solvers on-the-fly at every reaction,
so it does not produce a standalone controller. This precludes the application
to real embedded systems where controllers frequently operate because (1) the
SMT solver is not guaranteed to terminate (particularly with limited resources),
(2) the solver may not return the same values provided the same formula (af-
fecting predictability) and (3) invoking solvers on the fly has an impact on the
performance and the reaction time.

In this paper we present a static synthesis procedure for LTLT specifications.
Our method proceeds as follows. We first obtain a Boolean controller C for
the equi-realizable Boolean specification φB. The controller for φT uses two
additional components: a partitioner, that transforms the environment input u
into the corresponding Boolean input to C and a provider that receives the
input u and the reaction from C, and produces the reaction v. Our provider,
instead of performing SMT calls, is implemented as a a collection of Skolem
functions f that generate, given u, an output v, such that the literals in φT

agree with the reaction chosen by C. Since each trace produced by our controller
satisfies φT , the composition of the partitioner, the Boolean controller C and
the provider is a controller for φT Therefore, the procedure described here is a
static synthesis procedure for specifications in LTLT . The resulting controller is
standalone deterministic program, which is predictable and highly performant.

Next, we exploit the fact that we can synthesize Skolem functions that addi-
tionally receive a set of constraints to not only generate outputs that satisfy the
desired literals, but that also optimize certain criteria from the set of possible
correct outputs (e.g., to provide the smallest value among possible values). We
call this technique adaptivity. All these results are applicable to LTLT on infinite
or on finite traces, using appropriate synthesis tools for the resulting φB.

In summary, the contributions of this paper are: (1) a formalization and
soundness proof of the controller architecture for synthesis for LTLT ; (2) a de-
rived correct method to synthetise static controllers from LTLT specifications
combining Boolean abstraction, reactive synthesis and functional synthesis; (3)
a formalization of the limits and capabilities of using Skolem functions, showing
their power to model adaptivity; (4) an extensive empirical evaluation that shows
our method predictable and fast. To the best of our knowledge, this is the first

3

full static reactive synthesis approach for LTLT specifications. Moreover, since
our approach leverages off-the-shelf components (reactive synthesis, functional
synthesis), it would immediately benefit from advances in those areas and also
from discoveries in decidable fragments of LTLT realizability. The remainder of
the paper is structured as follows. Sec. 2 contains preliminary definitions, in-
cluding the Boolean abstraction method from [35] and a running example that
is used in the rest of the paper. Sec. 3 formalizes the controller architecture and
proves its correctness. Sec. 4 introduces an adaptive extension of our approach.
Sec. 5 contains an empirical evaluation. Sec. 6 shows related work and concludes.

2 Preliminaries

First-order Theories. In this paper we use first-order theories. We describe
theories with single domain for simplicity, but this can be easily extended to
multiple sorts. A first-order theory T (see e.g., [7]) is described by a signature
Σ, which consists of a finite set of functions and constants, a set of variables
and a domain. The domain D of a theory T is the sort of its variables. For
example, the domain of non-linear real arithmetic TR is R and we denote this by
D(TR) = R or simply by D if it is clear from the context. A formula φ is valid
in T if, for every interpretation I of T , then I ⊨ φ. A fragment of a theory T
is a syntactically-restricted subset of formulae of T . Given a formula ψ, we use
ψ[x← u] for the substitution of variables x by terms u (typically constants).

Reactive Synthesis. We fix a finite set of atomic propositions AP . Then,
Σ = 2AP is the alphabet of valuations, and Σ∗ and Σω are the set of finite and
infinite traces respectively. Given a trace σ we use σ(i) for the letter at position
i and σi for the suffix trace that starts at position i. The syntax of propositional
LTL [31,29] is:

φ ::= ⊤
∣∣ a ∣∣ φ ∨ φ ∣∣ ¬φ ∣∣ φ ∣∣ φ U φ

where a ∈ AP ; ∨, ∧ and ¬ are the usual Boolean disjunction, conjunction and
negation; and and U are the next and until temporal operators. The semantics
of LTL associates traces σ ∈ Σω with LTL fomulae as follows:

σ |= ⊤ always holds
σ |= a iff a ∈ σ(0)
σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2

σ |= ¬φ iff σ ̸|= φ
σ |= φ iff σ1 |= φ
σ |= φ1 U φ2 iff for some i ≥ 0 σi |= φ2, and for all 0 ≤ j < i, σj |= φ1

We use common derived operators like ∨, R, and . Reactive synthesis
[33,32,5,17] is the problem of automatically constructing a system based on an
LTL specification φ, where the atomic propositions of φ (AP) are divided into

4

propositions e = VarsE(φ) controlled by the environment and s = VarsS(φ) con-
trolled by the system (with e ∪ s = AP and e ∩ s = ∅). A reactive specification
corresponds to a turn-based game where the environment and system players
alternate. In each turn, the environment produces values for e, and the system
responds with values for s. A valuation is a map from e into B (similarly for s).
We use val(e) and val(s) for valuations. A play is an infinite sequence of turns and
induces a trace σ by joining at each position the valuations that the environment
and system players choose. The system player wins a play if the trace satisfies
φ. A strategy for the system is a tuple ρ : ⟨Q, q0, δ, o⟩ where Q is a finite set of
states, q0 ∈ Q is the inital state, δ : Q × val(e) → Q is the transition function
and o : Q× val(e)→ val(s) is the output function. A play ((e0, s0), (e1, s1), . . .)
is played according to ρ if the sequence ((e0, s0, q0), (e1, s1, q1), . . .) satisfies that
qi+1 = δ(qi, ei) and si = o(qi, ei) for all i ≥ 0. A strategy ρ is wining for the
system if all plays played according to ρ satisfy φ. We will use strategy and
controller interchangeably.

Linear Temporal Logic Modulo Theories. The syntax of LTLT replaces
atoms a by literals l from theory T . We use Vars(l) for the variables in literal
l and Vars(φ) for the union of the variables that occur in the literals of φ. A
valuation for a set of vars z is a map from z into D. The alphabet of a formula
φ is ΣT : Vars(φ) → D. The semantics of LTLT associate traces σ ∈ Σω

T with
formulae, where for atomic propositions σ |= l holds iff σ(0) ⊨T l, that is, if the
valuation σ(0) makes the literal l true. The rest of the operators are as in LTL.

For realizability and synthesis from LTLT , the variables in Vars(φ) are split
into those variables controlled by the environment (x or VarsE(φ)) and those
controlled by the system (y or VarsE(φ)). We use φ(x, y) to denote that x ∪ y
are the variables occurring in φ (where x ∪ y = Vars(φ) and x ∩ y = ∅). A
trace is an infinite sequence of valuations of x and y, which induces an infinite
sequence of Boolean values for each of the literals at each position, and ultimately
a valuation of φ. For instance, given ψ = (y > x) the trace (⟨x : 4, y : 5⟩, ⟨x :
9, y : 7⟩, . . .) induces (⟨l : true⟩, ⟨l : false⟩, . . .) for the literal l = (y > x). An
LTLT specification corresponds to a game with an infinite arena, where positions
can have infinitely many successors. A strategy now for the system is a tuple
ρT : ⟨Q, q0, δ, o⟩ where Q and q0 are as before and δ : Q × val(x) → Q is the
transition function and o : Q× val(x)→ val(y) is the output function.

Boolean Abstraction. The Boolean abstraction method [35] transforms an
LTLT specification φT into an equi-realizable LTL specification φB. The re-
sulting LTL formula can be passed to an off-the-shelf synthesis engine, which
generates a controller for realizable specifications. The process of Boolean ab-
straction involves transforming an input formula φT , which contains literals li,
into a new specification φB = φT [li ← si]∧φextra, where s = {si|for each li} is a
set of fresh atomic propositions controlled by the system—such that si replaces
li—and where φextra is an additional sub-formula that captures the dependencies

5

between the s variables4. The formula φextra also includes additional environ-
ment variables e (controlled by the environment) that encode the power of the
environment to leave the system with the power to choose certain valuations of
the variables s. The formula φextra also constraints the environment in such a
way that exactly one of the variables in e is true.

A choice c is a valuation of s, c(si) = true means that si is in the choice. We
write si ∈ c as a synonym of c(si) = true. The characteristic formula fc(x, y) of
a choice c is fc =

∧
si∈c li ∧

∧
si /∈c ¬li. Note that we often represent choices as

valuation vs of the Boolean variables s (which map each variable in s to true or
false). We use C for the set of choices (that is, the set of sets of s). A reaction
r ⊂ C is a set of choices, which characterizes the possible responses of the system
as the result of a move by the environment. The characteristic formula fr(x) of
a reaction r is:

(
∧
c∈r

∃y.fc) ∧ (
∧
c/∈r

∀y¬fc)

A reaction r is valid whenever ∃x.fr(x) is valid.
Intuitively, fr states that for some valuations of the variables x controlled by

the environment, the system can respond with valuations of y making the literals
in some choice c ∈ r but cannot respond with valuations making the literals in
choices c /∈ r. The set of valid reactions partitions precisely the moves of the
environment in terms of the reaction power left to the system. For each valid
reaction r there is a fresh environment variable e ∈ e. Hence, the restriction
in φextra that forces the environment to make exactly one variable in e true
corresponds to the environment choosing a reaction r (when the corresponding
e is true).

Boolean abstraction [35] uses the set of valid reactions to produce an equi-
realizable φB from a formula φT , which are in the same temporal fragment.

Example 1 (Running example). Let φT (x, y) be the following specification (where
x = {x} is controlled by the environment and y = {y} by the system):

φT = □
[(
(x < 2)→ (y > 1)

)
∧
(
(x ≥ 2) � (y ≤ x)

)]
.

In theory TZ this specification is realizable (consider the strategy to always play
y = 2). In this theory, the Boolean abstraction first introduces s0 to abstract
(x < 2), s1 to abstract (y > 1) and s2 to abstract (y ≤ x). Then φB = φ′′ ∧
(φlegal → φextra) where φ′′ = (s0 � s1)∧ (¬s0 � s2) is a direct abstraction of
φT . Finally, φextra captures the depenencies between the abstracted variables:

φextra :

((
e0 →

(
[s0 ∧ s1 ∧ ¬s2] ∨ [s0 ∧ ¬s1 ∧ s2]

)
∧
(
e1 →

(
[¬s0 ∧ s1 ∧ s2] ∨ [¬s0 ∧ ¬s1 ∧ s2] ∨ [¬s0 ∧ s1 ∧ ¬s2]

))

and φlegal : (e0 ∨ e1)∧ (e0 ↔ ¬e1), where e = {e0, e1} belong to the environment
and represent (x < 2) and (x ≥ 2), respectively. Thus, φlegal encodes that e0 and

4 The Boolean abstraction process can substitute larger sub-formulae than literals (as
long as they do not contain temporal operators).

6

e1 characterize a partition of the (infinite) input valuations of the environment
(and that precisely one of e are true in every move). For example, the valuation
ve = ⟨e0 : false, e1 : true⟩ of e corresponds to the choice of the environment where
only e1 is true. Sub-formulae like (s0 ∧ s1 ∧ ¬s2) represent the choices of the
system (in this case, c = {s0, s1}), that is, given a decision of the environment (a
valuation of e that makes exactly one variable e true), the system can react with
one of the choices c in the disjunction implied by e. We denote c0 = {s0, s1, s2},
c1 = {s0, s1}, c2 = {s0, s2}, c3 = {s0}, c4 = {s1, s2}, c5 = {s1}, c6 = {s2} and
c7 = ∅. Note that e.g., c1 can be represented as vs = ⟨s0 : true, s1 : true, s2 :
false⟩.

3 Static Reactive Synthesis Modulo Theories

The Boolean abstraction method [35] reduces an LTLT formula φT into an equi-
realizable LTL specification φB, but it does not present a synthesis procedure
for φT . We solve this problem here by providing a full static synthesis method
for LTLT . Our procedure builds a controller for realizable φT specifications that
handles inputs and outputs from a rich domain D(T), using as a building block
the synthetized Boolean controller for φB and other two sub-components.

3.1 Formal Architecture

We call our approach static LTLT synthesis (see Fig. 1). Our method starts from
φT (x, y) and statically generates a Boolean controller ρB for φB and combines it
with a partitioner and a provider (generated from the abstraction process of φT

to φB) handle the inputs and outputs from D. At run-time, at each instant the
resulting controller follows these steps:

(1) a valuation vx ∈ val(x) is provided by the environment;
(2) the partitioner discretizes vx generating a Boolean valuation ve ∈ val(e) of

input variables for ρB.
(3) ρB responds with a valuation vs ∈ val(s) of the variables s that ρB controls.

vx ∈ val(x)

φB(e, s)

ControllerB

p
ar
ti
ti
o
n
er

pr
o
vi
d
erve ∈ val(e) vs ∈ val(s)

vy ∈ val(y)

Boolean synthesis
Boolean
abstraction

φT (x, y)

ControllerT

Fig. 1: A controller architecture for reactive synthesis of LTLT specifications.

7

(4) the provider produces a valuation vy ∈ val(y) of the output variables that
together with vx guarantee that the literals from φT will be evaluated as
indicated by the choice c that corresponds to vs indicated by ρB. This step
corresponds to finding a model of ∃y.fc([x← vx], y).

For step (4) one approach is to invoke an SMT solver on the fly to generate mod-
els (proper values of vy), which is guaranteed to be satisfiable (by the soundness
of the Boolean abstraction method). However, most uses of controllers cannot
use SMT solvers dynamically. Moreover, note that the formula to be solved has
quantifier alternations (within fc) which is currently challenging for state-of-the
art SMT solving technology for many theories. In this paper we present an alter-
native: a method that produces a totally static controller, using Skolem functions
associated to each (e, c) pair. These Skolem functions are models of the formula

∀x.∃y.fr(x)→ fc(x, y)

Recall that fr(x) is the formula that characterizes the environment valuations for
which r captures the possible responses after receiving x, according to reasoning
in the theory T .

Partitioner. At each timestep, the partitioner receives a valuation vx ∈ val(x)
of the environment variables and finds the input variable ek to be fed to the
Boolean controller. The partitioner must find the entry (e, r) in the table of valid
reactions for which fr(vx) is valid and return e. For instance, recall partitions e0
and e1 from Ex. 1, then an input trace (⟨x : 4⟩, ⟨x : 4⟩, ⟨x : 1⟩, ⟨x : 0⟩, ⟨x : 2⟩, . . .)
will be partitioned into (⟨e : e1⟩, ⟨e : e1⟩, ⟨e : e0⟩, ⟨e : e0⟩, ⟨e : e1⟩, . . .) (for
simplicity, here we show the only Boolean variable ei that is true). The following
defines a legal partitioner.

Definition 1. Let φT (x, y) be an LTLT specification and φB(e, s) its Boolean
abstraction. A partitioner is a function α : val(x)→ e such that if (e, r) is a valid
reaction and fr[x← vx] is valid, then α(vx) = e.

Note that, by the soundness of the Boolean abstraction method, there is one

Alg. 1:A brute force partitioner α.

Input: vx ∈ val(x)
forall (e, r) ∈ VR(φ) do

if fr[x← vx] is valid then
return e

and only one such candidate e for ev-
ery input vx. Note that α(vx) = e in-
duces a valuation ve of the variables e
by vx(e) = true and vx(e

′) = false for
all other e′ ̸= e. Alg. 1 shows a brute
force method to find variable e.

Controller. The Boolean controller receives the discrete environment input ve
and produces a discrete output vs that represents the selected choices according
to a winning strategy for φB. This controller ρB can obtained using off-the-shelf
reactive synthesis tools. This controller ρB produces a valuation vs ∈ val(s) at
every step, guaranteeing that the trace produced satisfies φB.

8

Consider an instant where only e is true in the input ve, and let r be the
valid reaction corresponding to e; then if vs is the output produced by ρB from
ve the choice c : {si|vs(si) = true} belongs to c ∈ r. This is forced by the φextra

constraint in the construction of φB from φT in the Boolean abstraction method.
To better illustrate this, recall Ex. 1 and among the possible winning strategies
that the system has, consider the following. If ve is ⟨e0 : true, e1 : false⟩, then the
output choice vs is ⟨s0 : true, s1 : true, s2 : false⟩ (i.e., c1). On the other hand,
if ve(e1) is ⟨e0 : false, e1 : true⟩ then output choice vs is ⟨s0 : false, s1 : true, s2 :
true⟩ (i.e., c4).

Provider. The discrete behavior of the Boolean controller requires an additional
component that produces a valuation vy ∈ val(y) of the system variables over y
satisfying φT . The provider receives the choice and the input vx ∈ val(x), and
substitutes vx for x in fc: fc([x ← vx], y). The goal of the provider is to find a
proper valuation for y.

Definition 2 (Provider). A provider is a function β : val(x)×val(s)→ val(y)
such that for every vx ∈ val(x) and choice c ∈ val(s) , the following holds

fc(x← vx, y ← β(vx, c)).

We will show below that if vx is an input to a partitioner, r is the valid corre-
sponding reaction, and c is one of the winning choices of the controller (that is,
c ∈ r), then the following formula is valid.

[∃y.fc(y, x← vx)]

This formula can be discharged into a solver with capabilities to produce a model
vy (e.g., an SMT solver like Z3 [13]), which is exactly the dynamic approach
presented at [36].

Example 2. Consider again Ex. 1 and input trace (⟨x : 4⟩, ⟨x : 4⟩, ⟨x : 1⟩, ⟨x :
0⟩, ⟨x : 2⟩, . . .). This trace is mapped into the following discrete input trace
(⟨c : c4⟩, ⟨c : c4⟩, ⟨c : c1⟩, ⟨c : c1⟩, ⟨c : c4⟩, . . .). Recall that s0 abstracts (x < 2),
s1 abstracts (y > 1) and s2 abstracts (y ≤ x). Then, the output trace must be
a sequence vy of values of y such that the following holds:

([¬(4 < 2) ∧ (y > 1) ∧ (y ≤ 4)],
[¬(4 < 2) ∧ (y > 1) ∧ (y ≤ 4)],
[(1 < 2) ∧ (y > 1) ∧ ¬(y ≤ 1)],
[(0 < 2) ∧ (y > 1) ∧ ¬(y ≤ 0)],
[¬(2 < 2) ∧ (y > 1) ∧ (y ≤ 2)], . . .)

One such possible sequence is (⟨y : 2⟩, ⟨y : 2⟩, ⟨y : 2⟩, ⟨y : 2⟩, ⟨y : 2⟩, . . .). Note
how x is replaced in each timestep by concrete input vx. However, many different
values vy exist that satisfy the output trace (e.g. (⟨y : 2⟩, ⟨y : 3⟩, ⟨y : 3⟩, ⟨y :
4⟩, ⟨y : 2⟩, . . .).)

9

Correctness. The Boolean system strategy ρB : ⟨Q, q0, δ, o⟩ for φB produces,
at every timestep, a valuation of s from a valuation of e. We now define a
strategy ρT of the system in φT and prove that all moves played according to
ρT are winning for the system; i.e., all produced traces satisfy φT . Intuitively,
ρT composes the partitioner, which translates inputs to the Boolean controller,
collects the move chosen by the Boolean controller and then uses the provider to
generate an output.

Definition 3 (Combined Strategy). Given a partitioner α, a controller ρB

for φB and a provider β, the strategy ρT : ⟨Q′, q′0, δ
′, o′⟩ for φT is:

– Q′ = Q and q′0 = q0,
– δ′(q, vx) = δ(q, ve) where ve = α(vx),
– o′(q, vx) = β(vx, c) where c = o(q, vx).

We use C(α, ρB, β) for the combined strategy of α, ρB and β. Now we are ready
to state the main theorem.

Theorem 1 (Correctness of Synthesis Modulo Theories). Let φT be a re-
alizable specification, φB its Boolean abstraction, α a partitioner and β a provider.
Let ρB be a winning strategy for φB, and let ρT = C(α, ρB, β) be the combined
strategy. Then ρT is winning for φT .

Proof. (Sketch). Let ρB : ⟨Q, q0, δ, o⟩ and ρT : ⟨Q, q0, δ′, o′⟩ be the strategies. Let
π = ((x0, y0, q0), (x1, y1, q1), . . .) be an infinite sequence played according to ρT ,
that is yi = o′(qi, xi) and qi+1 = δ′(qi, xi). Consider the sequence ((e0, s0, q0),
(e1, s1, q1), . . .) such that ei = α(xi), si = o(qi, ei) and qi+1 = δ(qi, ei). Note
that this a play of φB played according to ρB so it satisfies φB. In particular, it
satisfies φextra. Moreover, for every time instant i, yi = β(xi, si) by construction.
It follows that, for every i, every literal li in φ

T and the corresponding si in φ
B

have the same valuation. By structural induction, all corresponding sub-formulae
of φB and φT have the same valuation at every position. Therefore, π |= φT . ⊓⊔

3.2 Standalone Synthesis Modulo Theories

Static Provider. As stated above, a provider produces, at every step, a model of
a (satisfiable) formula (where some of the elements in the formula are the inputs
received at that specific step). This can be implemented using an SMT solver at
every step. In this paper we propose an alternative approach where we produce
at static time a provider via the functional synthesis of a Skolem function. The
controller then invokes the function produced instead of using dynamic queries
to an SMT solver. Given an arbitrary relation R(x, y) a Skolem function is
a function h that witnesses the validity of ∀x.∃y.R(x, y) by guaranteeing that
∀x..R(x, h(x)) is valid. Recall that a correct provider is a function β : val(x) ×
val(s)→ val(y) which is a witness of the validity of the following formula:

∀x.∃y.fr(x)→ fc(x, y)

10

for a given reaction r and choice c ∈ r. A Skolem function for c is a function
hc : val(x)→ val(y) such that the following is valid:

∀x.fr(x)→ fc(x, hc(x))

For instance, consider a specification where the environment controls an integer
variable x and the system controls an integer variable y in the specification
φT = (y > x). A Skolem function h(x) = x+ 1 serves as a witness (providing
values for y) of the validity of ∀x.∃y.(⊤ → (y > x)) and can be used to provide
correct integer values for y. For many theories, Skolem functions for β can be
statically computed, which means that we can generate statically a provider for
these theories, and in turn, a full static controller for φT . In this paper, we
used the AEval funtional synthesis tool [16], which generates witnessing Skolem
functions for (possibly many) existentially-quantified variables; i.e., AEval will
output a function for every existentially quantified variable: e.g., ∀x∃y, z.(y >
x) ∧ (z > y) results in h(x) = x+ 1 for y and h(x) = x+ 2 for z.

Example 3. Consider the strategy Ex. 2 where the input e1 : true is mapped to
c4 and e0 : true is mapped to c1. The first case requires to synthetize the Skolem
function for:

∀x.∃y.(x ≥ 2)→ [(x ≥ 2) ∧ (y > 1) ∧ (y ≤ x)])

whereas the second case requires to handle:

∀x.∃y.(x < 2)→ [(x < 2) ∧ (y > 1) ∧ (y > x)]),

The corresponding invocations to AEval produce the following:

h(e1,c4) =

{
2 if (x ≥ 2)

0 otherwise
and h(e0,c1) =

0 if (x ≥ 2)

x+ 1 elif (1 < x)

2 otherwise

where we can see that, when the function h(e1,c4) is called, (when e1 holds) only
the if branch will hold and will always return 2. Similarly, h(e0,c1) is called when
e0 holds, so only the else branch will hold since in D(TZ) it never happens that
(x > 1) and (x < 2) at the same time. Hence, invocation will always return 2.

Predictability. Ex. 2 shows that there may exist many different valuations
vy such that vy matches the Boolean output trace with values in T . The fact
that there are many possible outputs that satisfy the same literals for a given
input opens the opportunity to synthesize a controller for φT by adding addi-
tional constraints to optimize certain criteria; e.g., return the greatest value for
y possible (we latter study this adaptivity in Sec. 4).

However, since there are many possible outputs that satisfy the same literals
for a given input, using SMT solvers on-the-fly for providing such outputs does
not guarantee that for the same input to the solver, the same output will be

11

produced. In practise, different solvers (or even the same solver) can internally
perform different calculations and construct different models of the same for-
mula even for the same invocation. This means that the dynamic solver-based
approach of [36] does not guarantee a provider as a function (as we present here)
but instead it can be non-deterministic: different invocations with the same in-
put to satisfy the same literals can produce different outputs. In other words, the
program that implements β can be non-deterministic. Instead, in our approach
with Skolem functions, β is a mathematical function from B to D(T) and thus
guarantee predictability in the following sense.

Theorem 2 (Predictability). Let φT be a realizable specification, φB its Boolean
abstraction, α a partitioner and β a static provider. Let ρB be a winning strategy
for φB, and ρT = C(α, ρB, β) be the composed strategy Then, given two input
traces πx and π′

x such that πx = π′
x, ρ

T will produce two output traces πy and
π′
y such that πy = π′

y.

The theorem follows immediately by β being a mathematical function. In
the next section we extend β to provide different outputs for the same input
by explicitly adding arguments to this function, but first we show the complete
running example.

3.3 Complete running example

In φT of Ex. 1 a valid (positional) strategy of the system is to always play y : 2.
In this appendix we show that a controller synthetised using our technique will,
precisely, respond in this manner infinitely many often. To do so, we rely on the
trace of Ex. 2 and Skolem functions of Ex. 3.

First, we Booleanize φT using [35] and get φB (also, recall from Ex. 1 that we
use the notation ci to indicate choice i; e.g., c0 = {s0, s1, s2}, c1 = {s0, s1}, ...,
c6 = {s2}, c7 = ∅.). Then, we get a controller CB from φB. We note that many
strategies satisfy φB, but CB by Strix is as follows: CB(e1) = c4 and CB(e0) = c1.
Also, note that this particular strategy is memoryless, but there are diverse
strategies that use memory. We now show how the static T -controller computes
Skolem functions on demand.

Step 1: Environment forces instant response. Let x : 4, which holds
(x ≥ 2) and forces constraint (y ≤ x). We are in partition e1, which implies
choices {c4, c5, c6}. Now, CB(e1) = c4, so the T -controller looks whether the
pair (e1, c1) appeared before. Since it did not, it computes h(e1,c4) (see left-hand
function at Ex. 3). Thus, h(e1,c4)(2) = 2 is the output vy in the first timestep.
Note that a T -controller with a different underlying CB could also consider c6
in the current play.

Step 2: Environment repeats the strategy. Again, x : 4 and again we are
in partition e1. Now, CB(e1) = c4, so the T -controller looks whether the pair
(e1, c4) appeared before. Since it does, it just calls pre-computed h(e1,c4). Thus,
h(e1,c4)(2) = 2 is the output vy in the second timestep.

12

Step 3: Environment changes its mind. Let x : 1, which holds (x < 2)
and forces constraint (y > 1), whereas no constraint is further for the current
timestep. We are in partition e0, which implies choices {c1, c2}. Now, CB(e0) =
c1, so the T -controller looks whether the pair (e0, c1) appeared before. Since it
did not, it computes h(e0,c1) (see right-hand function at Ex. 3). Thus, h(e0,c1)(2) =
2 is the output vy in the third timestep. Note that a T -controller with a different
underlying CB could also consider c2 in the current play.

Step 4: Environment prepares its trap. Let x : 0, which holds (x < 2)
and forces constraint (y > 1), and take into account that the system has
constraint (y > 1) forced by the previous timestep. We are again in partition
e0, which implies, again, choices {c1, c2}. Now, CB(e0) = c1, so the T -controller
looks whether the pair (e0, c1) appeared before. Since it does, it just calls pre-
computed h(e0,c1). Thus, h(e0,c1)(2) = 2 is the output vy in the fourth timestep.
Note that this time there is no correct CB that could also consider c2 in the
current play.

Step 5: Environment strikes back! Let x : 2, which holds (x ≥ 2) and
forces constraint (y ≤ x). Also, note that the system has constraint (y > 1) from
previous timestep. We are in partition e1, which implies choices {c4, c5, c6}. Now,
the same as in step 2 happens: CB(e1) = c4, so the T -controller looks whether
the pair (e1, c4) appeared before. Since it does, it just calls pre-computed h(e1,c4).
Thus, h(e1,c4)(2) = 2 is the output vy in the fifth timestep.

Note that this is the dangerous situation, where the system can only output
y : 2; in other words, it happens again that there is no correct CB that could
also consider another choice (in this case, c4 and c5) in the current play. We
can derive all the possible behaviours from these steps. Also, note that another
possibility is to pre-compute all the Skolem functions, but it is less efficient.

4 Adaptive Synthesis Modulo Theories

4.1 Enhancing Controllers

The static partitioner presented in the previous section always generates the same
output, for a given choice (valuation of literals) and input. However, it is often
possible that many different values can be chosen to satisfy the same choice.
From the point of view of the Boolean controller, any value is indistinguishable,
but from the point of view of the real-world controller the difference may be
significant. For example, in the theory of linear natural arithmetic T = TN,
given x = 3 and the literal (y > x), a Skolem function h(x) = x + 1 would
generate y = 4, but y = 5 or y = 6 are also admissible. We call adaptivity
to the ability of a controller to produce different values depending on external
criteria, while still guaranteeing the correctness of the controller (in the sense
that values chosen guarantee the specification). We introduce in this section a

13

static adaptive provider that exploits this observation. Recall that the Skolem
functions in Sec. 3 are synthetised as follows.

Definition 4 (Basic Provider Formula). A basic provider formula is a for-
mula of the form ∀x.∃y.ψ(x, y), where ψ = frk(x) � fc(x, y) is the characteristic
formula for reaction rk and choice c.

We now introduce additional constraints to ψ that—in the case that the
resulting formulae are valid—allow generating functions that guarantee further
properties. Given a formula ψ(x, y) and a set of variables z (different than x and
y) adaptive formulae also enforce an additional constraint ψ+.

Definition 5 (Adaptive Provider Formula). Let ψ(x, y) be the character-
istic formula for a given reaction rk and choice c. An adaptive constraint is
a formula ψ+(x, z, y) whose only free variables are x, y and z. An adaptive
provider formula is of the form

∀x, z.∃y.[ψ(x, y) ∧ ψ+(x, z, y)],

where ψ+ is an adaptive constraint.

Note that, in particular, ψ+ can use quantification. For example, in an arithmetic
theory, the additional constraint ψ+ : ∀w.ψ(x,w)→ (|y−z| ≤ |w−z|) states that
all output alternatives w are farther to z than the y to be computed. This formula
is constraining the y that must be computed. The following result guarantees
the correctness of using adaptive provider formulae to craft a provider.

Lemma 1. Let ∀x, z.∃y.(ψ ∧ ψ+) be a (valid) adaptive provider formula and
let f be a Skolem function for it. Let vx ∈ val(x) and vz ∈ val(z) be arbitrary
values. Then ψ(x← vx, y ← f(vx, vz)) is true.

Lemma 1 shows that synthesizing a Skolem function for an adaptive formula
can be easily transformed into an Skolem function for the original characteristic
formula, so providers that use adaptive formulae are sound with the original
specification.

Example 4. Consider a basic provider formula ψ : ∀x.∃y.(y > x) in TN and the
Skolem function h(x) = x+ 1 generated by AEval. Consider now the constraint
ψ+ = (y ≥ z) ∧ (y ≥ 100). The adaptive formula ∀x.∀z.∃y.(y > x) ∧ (y ≥ z) ∧
(y ≥ 100) is valid and one possible Skolem function is h(x) = max(x+1, z, 100).
However, if one considers the constraint ψ+

2 = (y < 100), the resulting provider
formula is not valid and there is no Skolem function. Then, the engineer would
have to provide a different constraint or use the basic provider formula.

Note that considering different constraints will produce different Skolem func-
tions without the need of re-synthesizing a different controller, we only need to
switch externally between functions.

An adaptive provider description is a set Γ = {. . . ψ+
(rx,c)

. . .} of constraint

that contains one constraint per pair (rk, c)—for which rk is a valid reaction

14

vx ∈ val(x)

φB(e, s)

ControllerB

p
ar
ti
ti
o
n
er

ad
ap

ti
ve

pr
o
vi
d
erve ∈ val(e) vs ∈ val(s)

vy ∈ val(y)

Boolean synthesis
Boolean
abstraction

φT (x, y)

ControllerT

vz ∈ val(z)

Fig. 2: Adaptive architecture, which uses adaptive providers and vz.

and c a choice of rk—, such that for every (rk, c), the adaptive provider for-
mula ∀x, z.∃y.ψ ∧ ψ+

(rx,c)
is valid. For example, ψ+

(rk,c)
= true for every (rk, c)

corresponds to the basic provider.

Definition 6 (Adaptive Provider). Let Γ be an adaptive provider descrip-
tion. An adaptive provider is a function βΓ : val(x)× val(z)× (s)→ val(y) such
that for every vx ∈ val(x), vz ∈ val(z) and a choice c ∈ val(s) the following
holds:

f(rk,c)(x← vx, y ← β(vx, vz, c))

Note that given an adaptive provider description, an adaptive provider always
exists, and is given by any Skolem function for each pair (rk, c).

Definition 7 (Combined Adaptive Strategy). Let φT be an LTLT specifi-
cation and Γ be an adaptive provider description. Given a partitioner α for φT , a
controller ρB for φB and an adaptive provider βΓ , the strategy ρTΓ : ⟨Q′, q′0, δ

′, o′⟩
for φT is:
– Q′ = Q and q′0 = q0,
– δ′(q, (vx ∪ vz)) = δ(q, e) where e = α(vx),
– o′(q, (vx ∪ vz)) = βΓ (vx, vz, s) where s = o(q, e).

Note that in the semantics of φT now the environment chooses the values vz
of the variables z that appear in the constraints in Γ . Also, note that the overall
architecture of adaptive controllers (see Fig. 2) is similar to the one presented
in Sec. 3, but using adaptive providers and extra input vz.

The following holds analogously to Thm. 1 in Sec. 3.

Theorem 3 (Correctness of Adaptive Synthesis). Let φT be a realizable
specification, φB its Boolean abstraction, α a partitioner, Γ an adaptive provider
description and βΓ an adaptive provider. Let ρB be a winning strategy for φB,
and ρTΓ the strategy obtained as the composition of α, ρB and βΓ described in
Def. 7. Then ρTΓ is winning for φT .

Proof (Sketch). The proof proceeds by showing that any play played according
to ρTΓ satisfies, at all steps, the same literals as ρB, independently of the values

15

of z. It is crucial that, after each step, the controller state that ρTΓ and ρB leave
is the same, which holds because their δ′ is indistinguishable. ⊓⊔

Skolem functions are computed from basic provider formulae that have a
shape ∀∗∃∗.ψ. This shape is preserved in adaptive provider formulae in which
the constraint ψ+ is quantifier-free. However, as the last example illustrated,
the constraint ψ+ may include quantifiers, which does not preserve the shape
typically amenable for Skolemization.

For instance, to compute the smallest y ∈ D(TZ) in ∀x.∃y.(y > x), one can
use the adaptive provider formula ∀x.∃y.[(y > x) ∧ ∀z.(z > x) → (z ≥ y)]. We
overcome this issue by performing quantifier elimination (QE) for the innermost
quantifier and recover the ∀∗∃∗ shape. In consequence, our resulting method for
adaptive provider generation works on any theory T that:
(1) is decidable for the ∃∗∀∗ fragment (for the Boolean abstraction);
(2) permits a Skolem function synthesis procedure (for valid ∀∗∃∗ formulae), for

producing static providers; and
(3) accepts QE (which preserves formula equivalence) for the flexibility in defin-

ing quentified constraints ψ+.

Example 5. Consider again the strategy of Ex. 2 and the first Skolem function to
synthetise at Ex. 5: ∀x.∃y.(x ≥ 2)→ ψ, where ψ = [(x ≥ 2)∧ (y > 1)∧ (y ≤ x)].
Then, we add the adaptivity criteria that we want our strategy to return the
greatest value possible, so the function to synthetise is as follows:

∀x.∃y.(x ≥ 2)→ (ψ ∧ ∀z.[(x ≥ 2) ∧ (z > 1) ∧ (z ≤ x)→ (z ≤ y)])

We show below the results of AEval invocations with the original (left) and the
adaptive (right) versions:

h(e1,c4)(x) =

{
2 if (x ≥ 2)

0 otherwise
and h+(e1,c4)(x) =

{
x if (x ≥ 2)

0 otherwise

where we can see that, h(e1,c4) is a more static function in the sense that it will

always return 2, whereas h+(e1,c4) depends on the value of x in order to return

exactly x (which is the greatest value possible).

5 Empirical Evaluation

We now report on empirical evaluation to asses the performance of our approach.
We used Python 3.8.8 for the implementation of the architecture and Z3 4.12.2
for the SMT queries. We use Strix [30] as the synthesis engine and aigsim.c to
execute the synthetised controller. For functional synthesis we used the AEval

solver [16]5 that leverages Z3. Currently, AEval expects formulae in linear arith-
metic with the ∀∗∃∗.φ shape, which is suitable for the static provider we want to
synthesise. We translate the Skolem functions into C++ and used g++ 14.0.0 as a
compiler. We ran all experiments on a MacBook Air 12.4 with the M1 processor
and 16 GB. of memory.

5 Publicly available at: https://github.com/grigoryfedyukovich/aeval

https://github.com/grigoryfedyukovich/aeval

16

Wrap-up experiment. We first report our results on T -controller for Ex. 1.
Following the idea of Ex. 2, we execute the input trace π = (⟨x|x ≥ 2⟩, ⟨x|x ≥
2⟩, ⟨x|x < 2⟩, ⟨x|x < 2⟩, ⟨x|x ≥ 2⟩) 100000 times on (1) a dynamic provider
following [36] and (2) our static provider approach. Throughout both experi-
ments, the average time for the partitioner was 28 ms6 and the average time for
the Boolean controller execution was 2.47 µs. However, the average time for the
dynamic provider was 169 µs, whereas the static provider was about 50 times
faster: 2.9 µs. We show in Fig. 3 the time needed (in µs) of the dynamic provider
and the static provider in the first 50 events. We can see that (1) the times re-
quired in the dynamic approach are more unstable and that (2) the dynamic
approach is two orders of magnitude faster. Fig. 5 and Fig. 4 zoom over Fig. 3.

0 10 20 30 40 50
Stimuli

0

25

50

75

100

125

150

175

Ex
ec

ut
io

n
Ti

m
e

Provider times for Dynamic and Static

Dynamic
Static

Fig. 3: Comparison.

0 10 20 30 40 50
Stimuli

150

155

160

165

170

175

180

Ex
ec

ut
io

n
Ti

m
e

Provider times for Dynamic and Static
Dynamic

Fig. 4: Zoom in Dynamic.

0 10 20 30 40 50
Stimuli

2.6

2.8

3.0

3.2

3.4

Ex
ec

ut
io

n
Ti

m
e

Provider times for Dynamic and Static
Static

Fig. 5: Zoom in Static.

It is an important detail that, since π only provides ranges of inputs (e.g., a
general x|(x < 2) instead of a concrete x : 1), the input values may be different
in both experiments. Therefore, we executed again the experiments over a same
fixed input trace π′ = (⟨x : 4⟩, ⟨x : 4⟩, ⟨x : 1⟩, ⟨x : 0⟩, ⟨x : 2⟩, . . .) in order to do a
sanity check. Fig. 6 shows that the execution with π′ follows the same tendency
as with π. Even though the input numbers are repeated, we still encounter
differences in solving times both in Fig. 7 and Fig. 8, which suggests that, for
such an amount of constraints to solve, the time to solve is not dominated by
the input, but rather by implementation and memory details.

We also checked the predictability of both approaches using π′: i.e., how much
does the output differ given the same input and position in the game. Recall from
Ex. 2 and π′ that at timestep t : 0 the possible outcomes are vy ∈ {2, 3, 4}, at
t : 1 again vy ∈ {2, 3, 4}, at t : 2 vy ∈ {2, 3, 4, ...}, at t : 3 again vy ∈ {2, 3, 4, ...}
and at t : 4 vy ∈ {2}. Let us denote with k the repetition of this pattern. At time
t : 0+k and t : 1+k there are three valid outputs, at t : 2+k and t : 3+k there
are infinitely many valid outputs and at t : 4 + k there is a single valid output.
Also, note that vy should be a valid output for every input in π′ (as captured
by both Skolem functions in Ex. 3). In Fig. 9, we show results for 500 timesteps

6 Note that the time is dominated by the partitioner, shared in both cases, which
consists on searching among a finite collection of formulae (valid reactions) to find
the correct partition and can be easily optimized.

17

0 10 20 30 40 50
Stimuli

0

25

50

75

100

125

150

175

Ex
ec

ut
io

n
Ti

m
e

Provider times for Dynamic and Static

Dynamic
Static

Fig. 6: Comparison.

0 10 20 30 40 50
Stimuli

155

160

165

170

175

180

Ex
ec

ut
io

n
Ti

m
e

Provider times for Dynamic and Static
Dynamic

Fig. 7: Zoom in Dynamic.

0 10 20 30 40 50
Stimuli

2.6

2.8

3.0

3.2

3.4

Ex
ec

ut
io

n
Ti

m
e

Provider times for Dynamic and Static
Static

Fig. 8: Zoom in Static.

(100× |π′|). We can see that the dynamic provider is less predictable (outputs),
whereas the static provider always produces the value 2. Note that output values
in the dynamic provider are always different in every experiment, but the general
shape remains similar. Also, note that one might consider that predictability in
the dynamic approach is also remarkably stable, since only for 20 times out of
the total of 400 the provider produces a value different than 2 (17 times value 3,
twice the value 4 and once value 5).

However, this stability difference increases when adaptivity is considered.
Concretely, we will use return the greatest (illustrated in Ex. 5) for t : 0 + k,
t : 1 + k and t : 0 + 4, and return the smallest for t : 2 + k and t : 3 + k,
which means that the ideal output trace with respect to these criteria is the
pattern (⟨y : 4⟩, ⟨y : 4⟩, ⟨y : 2⟩, ⟨y : 2⟩, ⟨y : 2⟩). As expected, the static provider
always returns the ideal pattern, whereas the pattern in the dynamic case is more
unstable. For example, in Fig. 10, we show results for 50 stimuli in π′, where
three times the output was not within the ideal pattern. We acknowledge that, in
the dynamic approach, as the timeout restrictions for the underlying SMT solver
gets more strict (e.g., in fast embedded contexts), less adaptive constraints will
be solved and thus the output will tend to diverge more from the ideal pattern.

0 100 200 300 400 500
Timestep

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ou
pu

t v
al

ue
s

Predictability in Dynamic and Static
Dynamic
Static

Fig. 9: Comparison.

0 10 20 30 40 50
Timestep

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Ou
pu

t v
al

ue
s

Predictability in Adaptive Dynamic and Static

Dynamic

Fig. 10: Dyn. Adaptive.

0 10 20 30 40 50
Timestep

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Ou
pu

t v
al

ue
s

Predictability in Adaptive Dynamic and Static

Static

Fig. 11: Static Adaptive.

18

Benchmark results. In order to perform a wide empirical evaluation, we used
benchmarks from [36] to validate the hypothesis whether that our static approach
is faster and more predictable. Tab. 1 shows the main group of experiments. Sz.
refers to the size of the φT specification both in variables (vr.) and literals (lt.).
Prep. refers to the pre-processing time (i.e., the time needed to compute the
Boolean abstraction and synthetize a Boolean controller). This and the compu-
tation of the partitioner are performed at compile time, while in our experiments
provider is computed dynamically for each new (ve, vs) pair discovered. Note
that the time necessary to compute Skolem functions was negligible (around 2
seconds) as expected, since the number of constraints we used does not stress
AEval 7. The following two groups of columns show results of the execution
of 1000 (1K) and 10000 (10K) timesteps of input-output simulations. For each
group we do not show the average time that the partitioner takes to respond with
a discrete ve from vx and the average time that the Boolean controller takes to
respond with a Boolean ci, since it is the same for the dynamic and the static
approaches. Instead, we report the time that the provider takes to respond with
a valuation associated to ci in dynamic (Dyn.) and static (St.). Note that Tr.
is also the benchmark that takes the most time on average for Pr., since its
functions contain more operations, but it is still efficient enough for the targeted
applications. Overall, we can see that the static approach is 50 to 60 times faster.

In addition, we used adaptivity with different criteria. We selected Skolem
functions of each benchmark and created adaptive versions that return: (1) min-
imum and maximum valuation possible (m/m) knowing there was at least one
of such bounds to stop the search and (2) valuation closest to a p point (pc.)
that is randomly generated. Then, groups (10K (m/m)) and (10K (pc.)) measure
again average times of the dynamic provider and adaptive provider. Note that it
is not clear how adaptivity impacts provider time, since sometimes the amount of
adaptive constraints dominates this time, whereas in other cases the complexity
of the criteria (e.g., underlying quantified structure) seems to be more relevant.

Moreover, we show approximated predictability (Pre.) results of the dynamic
approach as a percentage that measures how many of the outputs diverged from
the ideal pattern (e.g., we previously mentioned that in Fig. 9 this number was
∼ 5%: 20 divergences out of 400 stimuli). In Tab. 1 we can see that predictability
is between 2 and 15 percent (average about 5%), whereas in the static varsion it
is 0% (not shown in the table). More importantly, it seems that adding adaptivity
tends to result in less predictable outputs in the dynamic provider. These results
support our hypothesis that our static controller is more efficient and predictable.

We also tested whether T affected the performance of the controller, via use
cases Syn. (2,3) to Syn. (2,6) of [35] interpreted over linear integer arithmetic
and linear real arithmetic (the theories accepted by AEval). We show the results
in Fig. 12, where we compare 1000 simulations in the basic case (bs.), and the
adaptive minimal/maximal (m/m.) and randomly generated point (pc.) cases.

7 Indeed, an eventual input with a larger amount of constraints (i.e., literals) may or
may not yield a bottleneck for the underlying Boolean abstraction procedure, but
not for the approach we present in this paper.

19

Bn. Sz. Prep. 1K 10K 10K (m/m.) 10K (pc.)
(nm.) (vr, lt) (s.) Dyn. St. Dyn. St. Pre. Dyn. St. Pre. Dyn. St. Pre.

Li. (5, 16) 33.73 240 5.74 232 4.54 ∼ 4 216 4.01 ∼ 4 204 3.52 ∼ 7

Tr. (19, 36) 9219.11 272 5.05 262 5.03 ∼ 9 294 5.08 ∼ 14 270 4.92 ∼ 15

Con. (2, 2) 0.09 104 2.08 104 1.89 ∼ 2 107 1.94 ∼ 2 129 2.18 ∼ 2

Coo. (3, 5) 2.60 171 2.94 168 2.84 ∼ 3 168 3.32 ∼ 4 173 2.81 ∼ 3

Usb (5, 8) 346.29 302 6.04 304 4.82 ∼ 5 329 5.46 ∼ 7 313 6.00 ∼ 6

Sta. (11, 14) 182.1 295 4.91 291 5.19 ∼ 6 299 5.24 ∼ 9 298 4.73 ∼ 11

Table 1: Results in [36] (see Dyn.) versus ours (see St.), where times are measured
in µ. Recall from [35] that if the literals in φ are split into clusters that do
not share variables, the Boolean abstraction process can handle each cluster
independently and composed afterwards.

Note that run-time difference is negligible and so was in the abstraction phase.
Also, note that Skolem function synthesis was slightly harder in integers.

6 Related Work and Conclusions

Related Work. LTL modulo theories has been previously studied (e.g., [23,14]),
but allowing temporal operators within predicates, again leading to undecidabil-
ity. Also, infinite-state synthesis has been recently studied at [8,15,19,39,3,24] but
with similar restrictions. At [26,27] authors perform reactive synthesis based on a
fixpoint of ∀∗∃∗ formulae (for which they use AEval), but expressivity is limited
to safety and does not guarantee termination. The work in [41] also relies on ab-
straction but needs guidance and again expressivity is limited. Reactive synthesis
of Temporal Stream Logic (TSL) modulo theories [18] is studied in [9,28], which
extends LTL with complex data that can be related accross time. Again, note
that general synthesis is undecidable by relating values across time. Moreover,
TSL is already undecidable for safety, the theory of equality and Presburger
arithmetic. Thus, all the specifications considered for empirical evaluation in
Sec. 5 are not within the considered decidable fragments.

All approaches above adapt one specific technique and implement it in a
monolithic way, whereas [35,37] generates LTL specification that existing tools

Lits
Linear I. Arithmetic Linear R. Arithmetic

1K (bs.) 1K (m/m) 1K (pc.) 1K (bs.) 1K (m/m) 1K (pc.)

3 3.41 2.32 2.00 3.45 2.14 2.02

4 3.50 2.05 2.07 198 3.60 2.09

5 3.63 2.64 2.63 3.83 2.65 2.67

6 3.78 3.30 3.38 3.85 3.39 3.45

Fig. 12: Comparison of TZ and TR for Syn (2,3) to Syn (2,6).

20

can process with any of their internal algorithms (bounded synthesis, for exam-
ple) so we will automatically benefit from further optimizations in these tech-
niques. Moreover, Boolean abstraction preserves the temporal fragments like
safety and GR(1) so specialized solvers can be used. Throughout the paper, we
have already extensively compared the work [36] with ours and we showed that
our approach uses Skolem functions instead of SMT queries on-the-fly, which
makes it faster, more predictable and a pure controller that can be used in
embedded contexts. It is worth noting that [36] and our approach can be under-
stood as computing minterms to produce Symbolic automata and transducers
[11,12] from reactive specifications (and using antichain-based optimization, as
suggested by [40]). Also, note that any advance in abstraction method (e.g., [4])
has an immediate positive impact in our work.

Last, [25] presents a similar idea to our Skolem function synthesis: instead of
solving a quantified formula every time one wants to compute an output, they
synthesize a term that computes the output from the input. However, the paper
is framed in the program synthesis problem and uses syntax-guided synthesis [2],
whereas previous reactive synthesis papers have suggested functional synthesis
as a recommended software engineering practise (e.g., [38]).

Conclusion. The main contribution of this paper is the synthesis procedure for
LTLT , using internally a Boolean controller and static Skolem function synthe-
sis, which is more performant and predictable than previous approaches. Our
method also allows producing adaptive responses that optimize the behaviour
of the controller with respect to different criteria. We showed empirically that
our approach is fast for many targeted applications and analyzed the cost and
predictability of our Skolem functions component compared to [36]. As far as we
know, this is the first decidable full reactive synthesis approach (with or with
adaptivity) for LTLT specifications.

Future work includes first to use winning regions instead of concrete con-
trollers to allow even more choices for the Skolem functions, and to develop a
further adaptivity theory. Another direction is studying adaptivity over the en-
vironment inputs and combining this approach with monitoring. Also, we plan
to study how to extend LTLT with transfer of data accross time preserving de-
cidability, since recent results [22] suggest that the expressivity can be extended
with limited transfers in semantic fragments of LTLT . Moreover, explaining our
synthesis approach within more general frameworks like (e.g., [21]) is immediate
work to do. Finally, we want to study how to use our approach to construct
more predictable and performant shields [1,6] (concretely, shields modulo theo-
ries [34,10]) to enforce safety in critical systems.

References

1. Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. Safe reinforcement learning via shielding. In Sheila A.
McIlraith and Kilian Q. Weinberger, editors, Proc. of the Thirty-Second AAAI

21

Conference on Artificial Intelligence, (AAAI-18), pages 2669–2678. AAAI Press,
2018.

2. Rajeev Alur, Rastislav Bod́ık, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. Syntax-guided synthesis. In Proc. of the 13th Int’l
Conf. on Formal Methods in Computer-Aided Design (FMCAD 2013), pages 1–8.
IEEE, 2013.

3. Shaun Azzopardi, Nir Piterman, Gerardo Schneider, and Luca di Stefano. Ltl
synthesis on infinite-state arenas defined by programs, 2023.

4. Shaun Azzopardi, Nir Piterman, Gerardo Schneider, and Luca Di Stefano. LTL
synthesis on infinite-state arenas defined by programs. CoRR, abs/2307.09776,
2023.

5. Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.
Synthesis of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

6. Roderick Bloem, Bettina Könighofer, Robert Könighofer, and Chao Wang. Shield
synthesis: - runtime enforcement for reactive systems. In Proc. of the 21st Inter-
national Conference in Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2015), volume 9035 of LNCS, pages 533–548. Springer, 2015.

7. Aaron R. Bradley and Zohar Manna. The Calculus of Computation. Springer-
Verlag, 2007.

8. Chih-Hong Cheng and Edward A. Lee. Numerical LTL synthesis for cyber-physical
systems. CoRR, abs/1307.3722, 2013.

9. Wonhyuk Choi, Bernd Finkbeiner, Ruzica Piskac, and Mark Santolucito. Can
reactive synthesis and syntax-guided synthesis be friends? In Ranjit Jhala and Isil
Dillig, editors, 43rd ACM SIGPLAN Int’l Conf. on Programming Language Design
and Implementation (PLDI 2022), pages 229–243. ACM, 2022.

10. Davide Corsi, Guy Amir, Andoni Rodriguez, Cesar Sanchez, Guy Katz, and
Roy Fox. Verification-guided shielding for deep reinforcement learning. CoRR,
abs/2406.06507, 2024.

11. Loris D’Antoni and Margus Veanes. Minimization of symbolic automata. In Proc.
of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’14), pages 541–554. ACM, 2014.

12. Loris D’Antoni and Margus Veanes. The power of symbolic automata and transduc-
ers. In Proc. of the 29th International Conference in Computer Aided Verification
(CAV 2017), Part I, volume 10426 of LNCS, pages 47–67. Springer, 2017.

13. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proc. of
the 14th Int’l Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’08), volume 4693 of LNCS, pages 337–340. Springer, 2008.

14. Rachel Faran and Orna Kupferman. LTL with arithmetic and its applications in
reasoning about hierarchical systems. In Proc. of the 22nd International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, (LPAR-22.),
volume 57 of EPiC Series in Computing, pages 343–362. EasyChair, 2018.

15. Azadeh Farzan and Zachary Kincaid. Strategy synthesis for linear arithmetic
games. Proc. ACM Program. Lang., 2(POPL):61:1–61:30, 2018.

16. Grigory Fedyukovich, Arie Gurfinkel, and Aarti Gupta. Lazy but effective func-
tional synthesis. In 20th International Conference in Verification, Model Checking,
and Abstract Interpretation, (VMCAI 2019), volume 11388 of LNCS, pages 92–113.
Springer, 2019.

17. Bernd Finkbeiner. Synthesis of reactive systems. In Javier Esparza, Orna Grum-
berg, and Salomon Sickert, editors, Dependable Software Systems Engineering, vol-

22

ume 45 of NATO Science for Peace and Security Series - D: Information and
Communication Security, pages 72–98. IOS Press, 2016.

18. Bernd Finkbeiner, Philippe Heim, and Noemi Passing. Temporal stream logic mod-
ulo theories. In 25th Int’l Conf. on Foundations of Software Science and Computa-
tion Structures (FOSSACS 2022), volume 13242 of LNCS, pages 325–346. Springer,
2022.

19. Andrew Gacek, Andreas Katis, Michael W. Whalen, John Backes, and Darren D.
Cofer. Towards realizability checking of contracts using theories. In Proc. of the
7th International Symposium NASA Formal Methods (NFM 2015), volume 9058
of LNCS, pages 173–187. Springer, 2015.

20. Luca Geatti, Alessandro Gianola, and Nicola Gigante. Linear temporal logic mod-
ulo theories over finite traces. In Proc. of the 31st International Joint Conference
on Artificial Intelligence, (IJCAI 2022), pages 2641–2647. ijcai.org, 2022.

21. Luca Geatti, Alessandro Gianola, and Nicola Gigante. A general automata model
for first-order temporal logics (extended version). CoRR, abs/2405.20057, 2024.

22. Luca Geatti, Alessandro Gianola, Nicola Gigante, and Sarah Winkler. Decidable
fragments of ltlf modulo theories (extended version). CoRR, abs/2307.16840, 2023.

23. Alessandro Gianola and Nicola Gigante. LTL modulo theories over finite traces:
modeling, verification, open questions. In Short Paper Proceedings of the 4th Work-
shop on Artificial Intelligence and Formal Verification, Logic, Automata, and Syn-
thesis hosted by the 21st International Conference of the Italian Association for
Artificial Intelligence (AIxIA 2022), volume 3311 of CEUR Workshop Proceedings,
pages 13–19. CEUR-WS.org, 2022.

24. Philippe Heim and Rayna Dimitrova. Solving infinite-state games via acceleration.
Proc. ACM Program. Lang., 8(POPL):1696–1726, 2024.

25. Qinheping Hu and Loris D’Antoni. Automatic program inversion using symbolic
transducers. In Proc. of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2017), pages 376–389. ACM, 2017.

26. Andreas Katis, Grigory Fedyukovich, Andrew Gacek, John D. Backes, Arie
Gurfinkel, and Michael W. Whalen. Synthesis from assume-guarantee contracts
using skolemized proofs of realizability. CoRR, abs/1610.05867, 2016.

27. Andreas Katis, Grigory Fedyukovich, Huajun Guo, Andrew Gacek, John Backes,
Arie Gurfinkel, and Michael W. Whalen. Validity-guided synthesis of reactive
systems from assume-guarantee contracts. In Proc. of the 24th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
(TACAS 2018), volume 10806 of LNCS, pages 176–193. Springer, 2018.

28. Benedikt Maderbacher and Roderick Bloem. Reactive synthesis modulo theories
using abstraction refinement. In 22nd Formal Methods in Computer-Aided Design,
(FMCAD 2022), pages 315–324. IEEE, 2022.

29. Zohar Manna and Amir Pnueli. Temporal verification of reactive systems - safety.
Springer, 1995.

30. Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. Strix: Explicit re-
active synthesis strikes back! In Hana Chockler and Georg Weissenbacher, editors,
Computer Aided Verification, pages 578–586, Cham, 2018. Springer International
Publishing.

31. Amir Pnueli. The temporal logic of programs. In Proc. of the 18th IEEE Symp. on
Foundations of Computer Science (FOCS’77), pages 46–67. IEEE CS Press, 1977.

32. Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proc. of
the 16th Annual ACM Symp. on Principles of Programming Languages (POPL’89),
pages 179–190. ACM Press, 1989.

23

33. Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive mod-
ule. In Proc. of the 16th Int’l Colloqium on Automata, Languages and Programming
(ICALP’89), volume 372 of LNCS, pages 652–671. Springer, 1989.

34. Andoni Rodriguez, Guy Amir, Davide Corsi, Cesar Sanchez, and Guy Katz. Shield
synthesis for LTL modulo theories. CoRR, abs/2406.04184, 2024.

35. Andoni Rodŕıguez and César Sánchez. Boolean Abstractions for Realizability Mod-
ulo Theories. In Proc. of the 35th Int’l Conf. on Computer Aided Verification (CAV
2023), volume 13966 of LNCS, pages 1–24. Springer, 2023.

36. Andoni Rodriguez and César Sánchez. Adaptive reactive synthesis for LTL and
LTLf modulo theories. In Proc. of the 38th AAAI Conf. on Artificial Intelligence
(AAAI 2024), pages 10679–10686. AAAI Press, 2024.

37. Andoni Rodriguez and César Sanchez. Realizability modulo theories. Journal of
Logical and Algebraic Methods in Programming, page 100971, 2024.

38. Stanly Samuel, Deepak D’Souza, and Raghavan Komondoor. Gensys: a scalable
fixed-point engine for maximal controller synthesis over infinite state spaces. In
Proc. of the 29th ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE’21), pages 1585–
1589. ACM, 2021.

39. Stanly Samuel, Deepak D’Souza, and Raghavan Komondoor. Symbolic fixpoint
algorithms for logical LTL games. In Proc. of the 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2023), pages 698–709. IEEE,
2023.

40. Margus Veanes, Thomas Ball, Gabriel Ebner, and Olli Saarikivi. Symbolic au-
tomata: ω-regularity modulo theories. CoRR, abs/2310.02393, 2023.

41. Adam Walker and Leonid Ryzhyk. Predicate abstraction for reactive synthesis.
In Proc. of the 14th Formal Methods in Computer-Aided Design, (FMCAD 2014),
pages 219–226. IEEE, 2014.

	Predictable and Performant Reactive Synthesis Modulo Theories via Functional Synthesis

