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Abstract

In this paper we study the problem of realizability of reactive specifications

written in LTLT , which is the extension of LTL where atomic propositions can

be literals from a first-order theory, including arithmetic theories. We present a

solution based on transforming LTLT specifications into purely Boolean specifi-

cations by (1) substituting theory literals by Boolean variables, and (2) comput-

ing an additional Boolean formula that captures the dependencies between the

new variables imposed by the literals. We prove that the resulting specification

is realizable if and only if the original specification is realizable. Moreover, the

resulting specification can be passed to existing Boolean off-the-shelf synthesis

and realizability tools, which can handle only Boolean LTL specifications.

A second contribution is to prove that LTLT realizability of theories with

a decidable ∃∗∀∗ fragment is decidable for all combinations of LTL temporal

modalities. We present a simple version of our method, which relies on SMT

solving, and performs a brute-force search to construct the “extra requirement”.

A third contribution is an algorithm that checks whether a candidate is a correct

Booleanization. in non-Boolean LTL realizability.

Keywords: Boolean abstraction, LTL modulo theories, (Reactive)

synthesis, Reactive systems, Realizability, Formal methods,

Formal specification, SMT solving, First-order theories

1. Introduction

Reactive synthesis [1, 2] is the problem of automatically producing a system

that is guaranteed to model a given temporal specification, typically written



in Linear Temporal Logic (LTL) [3], where the atomic propositions are split

into those controlled by the environment and those controlled by the system.5

The system produced using reactive synthesis is guaranteed to respond to the

environment satisfying the specification. Realizability is the related decision

problem of deciding whether such a system exists. These problems have been

widely studied for LTL (e.g., [4, 5]). Realizability corresponds to infinite games

where players (the system and the environment) alternatively choose the valua-10

tions of the Boolean atomic propositions they control. The winning condition is

extracted from the specification and determines which player wins a given play.

A system is realizable if and only if the system player has a winning strategy,

that is, if there is a way to play such that the specification is satisfied in all traces

that result from plays where the system player plays according to the strategy.15

Note that the objective of the environment player is to violate the specification.

Also, note that both the winning conditions of the system and environment can

be represented using an arena that contains all posible transitions and positions

of the game, where the winning condition of the environment is a reachability

goal, i.e., it wants to reach violation positions of the arena, whereas the goal of20

the system is to avoid such positions inifnitely many often.

Many industrial specifications use complex data beyond Boolean atomic

propositions, which precludes the direct use of realizability and synthesis meth-

ods and tools that are typically restricted to Booleans. These specifications

cannot be modelled in (propositional) LTL, but require an extension of LTL25

where Boolean atomic propositions can be literals from a (multi-sorted) first-

order theory T , which means that all the atoms in such literals belong to T

(e.g., in (4.2 < 5.5) atoms belong to R). We call this extension LTLT . In this

case, the variables that appear in the specification are of sorts from the theory

T (for example, integers or reals) and are split into those controlled by the en-30

vironment and those controlled by the system. A trace of values is formed by

players choosing in turn values for the variables they control in the domain of

T . These values induce sequences of Boolean valuations of the literals (because

valuations in T make some literals hold and some others not), which yields a
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trace of values satisfying or violating the specification. Realizability for LTLT35

also corresponds to infinite games, but in this case players chose valuations from

the domains of T , which may be infinite for many theories. Therefore, arenas

for LTLT games have infinite positions and positions have infinitely many suc-

cessors (if the domains of the theory are infinite).

In this paper, we present a method to solve the problem of reactive realizabil-40

ity modulo theories, that is, realizability of LTLT specifications. Our method

transforms a specification that uses data from a theory T into an equi-realizable

Boolean specification, which means that the original T -specification is realizable

if and only if the obtained Boolean specification is realizable (in the same spirit

a formula ϕ is equi-satisfiable to another formula ϕ′ whenever ϕ is satisfiable if45

and only if ϕ′ is satisfiable).

The resulting specification can then be discharged (i.e., given as input to)

into an off-the-shelf realizability tool.

The main element of our solution is a Boolean abstraction method, which

allows to transform LTLT specifications into LTL specifications. The method50

first substitutes all T literals by fresh Boolean variables controlled by the sys-

tem, and then extends the specification with an additional sub-formula that

constrains the values of these variables. The main idea is that, after the envi-

ronment selects values for its (data) variables, the system responds with values

for the remaining variables (that the system controls). This creates a valuation55

for all variables and in turn a Boolean value for each literal. The additional

formula should capture the set of possible valuations of literals and the precise

options of each player to influence each valuation. In the rest of the paper, we

will refer to these options as power : e.g., the system has the power to satisfy a

given literal or the environment has the power to force the system to satisfy a60

given literal.

Example 1.1. Consider the following specification φ = □(R0 ∧ R1), where x

belongs to the environment player and y to the system player:

R0 : (x < 2)→ (y > 1) R1 : (x ≥ 2)→ (y < x),
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where □ and  are the classic “always” (means a property is an invariant and

must hold in all timesteps) and “next” (a property must hold in the upcoming65

timestep) operators in LTL, respectively. In the game corresponding to this

specification, each player has an infinite number of choices at each time step. For

example, in the case of TZ—the theory of integer arithmetic—, the environment

player chooses an integer for x and the system responds with an integer for y.

This induces a valuation of the literals in the formula, which in turn induces70

(also considering the valuations of the literals at other time instants) a valuation

of the full specification, according to the temporal operators.

However, in this paper we prove that, from the point of view of the valua-

tions of the literals, there are only finitely many cases and provide a systematic

manner to compute these cases. We do this by reducing the specifications to75

a purely Boolean specification that is equi-realizable. This specification shows

the (finite) set of decisions of the environment, and the (finite) set of reactions

of the system to each of those decisions. For instance, we later see that, if

we interpret this specification in TZ, the environment only has three decisions

that matter: playing any x such that (x < 2), playing x : 2 and playing any80

x such that (x > 2). Note that both the specific finite set of decisions and the

realizability depend on the theory in which we interpret the specification.

2

Example 1.1 suggests a naive algorithm to capture the power of the envi-

ronment and the system to determine a combination of the valuations of the85

literals, by enumerating all these combinations and checking the validity of each

potential reaction of the system. We will see that checking whether a given

combination is a possible reaction requires solving an ∃∗∀∗ query (which can

be delegated to an SMT solver for appropriate theories). We will see that, if

a specification contains literals from ∃∗∀∗-decidable theories (which means that90

validity of formulae with the ∃∗∀∗ prefix can be decided if interpreted in such

theories), then the specification is Booleanizable. We prove in this paper that
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our method leads to a correct Boolean abstraction for all LTLT specifications,

no matter the temporal fragment, but we use safety specifications in the pre-

sentation for simplicity.95

In summary, our contributions are:

• a proof that realizability is decidable for all LTLT specifications for those

theories T with a decidable ∃∗∀∗ fragment;

• a Boolean abstraction method that transforms LTLT specifications into

equi-realizable LTL specifications; and100

• an algorithm that checks whether a candidate for a Booleanized version of

a specification is correct.

To the best of our knowledge, this is the first method that succeeds in general

non-Boolean LTL realizability or synthesis.

The remainder of the paper is structured as follows. Section 2 contains the105

preliminaries. Section 3 introduces syntax and semantics of LTLT . Section 4

presents the Boolean abstraction algorithm that produces a Boolean specifica-

tion φB from a given reactive specification φT . Section 5 proves that φB and

φT are equi-realizable. The core of the transformation from φT into φB is the

search for a key extra requirement, which is a computationally slow process in110

the algorithm shown in Section 4. Thus, in Section 6, we show an algorithm that

checks whether a given φB candidate is a correct Booleanization. This opens

the door to faster algorithms to compute Booleanizations that are later check

for correctness. Section 7 contains related work and Section 8 concludes and

raises future lines of research.115

2. Preliminaries

We fix an alphabet Σ = 2AP, where AP is a set of atomic propositions and

we call each element a ∈ Σ a letter. A trace is an infinite sequence σ = a0a1...

of letters from Σ. We denote the set of all infinite traces by Σω. We use σ(i)

for ai and σi for the suffix aiai+1...120
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2.1. First-order theories

We use sorted first-order theories for extending the expressivity of the atomic

predicates. For our purposes, a (sorted) first-order theory T consists of (1) a

first-order vocabulary to form terms and predicates, (2) an interpretation of

the domains of the sorts, and (3) an automatic reasoning system to decide the125

validity of sentences in the theory. A first-order theory T (see e.g., [6]) is given

by its signature Γ, which is a set of constant, function, and predicate symbols.

A Γ-formula is constructed from constant, function, and predicate symbols of

Γ, together with logical connectives and quantifiers. The symbols Γ are symbols

without prior meaning that are later interpreted.130

A Γ-formula φ is valid in the theory T (i.e., φ is T -valid), if for every

interpretation I that satisfies the axioms of T , then I ⊨ φ. We write T ⊨ φ to

mean that φ is T -valid. Formally, the theory T consists of all closed formulae

that are T -valid, where closed means that all the variables are quantified in

the formula A Γ-formula φ is satisfiable in T (i.e., T -satisfiable), if there is a135

T -interpretation I that satisfies φ.

A fragment of a theory is a syntactically-restricted subset of formulae of the

theory. For example, the quantifier-free fragment of a theory T is the set of

formulae without quantifiers that are valid in T . A theory T is decidable if

T ⊨ φ is decidable for every Γ-formula φ. That is, there is an algorithm that140

always terminates with ⊤ if φ is T -valid or with ⊥ if φ is T -invalid. A fragment

of T is decidable if T ⊨ φ is decidable for every Γ-formula φ in the fragment.

In this paper, we consider theories T whose ∃∗∀∗ fragment is decidable.

A particular class of first-order theories is that of arithmetic theories, which

are well studied in mathematics and theoretical computer science, and are of145

particular relevance in formal methods. Most of these theories are decidable.

We describe below some of these theories:

• Linear Natural Arithmetic TN is the theory of natural numbers with ad-

dition but no arbitrary multiplication [7, 8, 9]. The signature is: ΓN =

{0, 1, . . . ,+,=, >}. One example of a literal is (2x > 4).150
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• Linear Integer Arithmetic TZ the theory of integer numbers with addition

but no arbitrary multiplication [10, 11, 6, 12]. The signature is ΓZ =

{. . . ,−1, 0, 1, . . . , ,+,−,=, >}. A literal is (2x > −4).

• Linear Rational/Real Arithmetic TQ: the theory of real/rational numbers

with addition but no arbitrary multiplication [13, 14, 6, 15]. The signature155

is ΓQ = {0, k,+,−,=, >}, where k ∈ Q. For instance, a literal is (2x >

− 1
3 ).

• Nonlinear Real Arithmetic TR is the theory of real numbers with both

addition and arbitrary multiplication [16, 17, 18, 19]. The signature is

ΓR = {0, k,+,−,=, >, ·}. An example of a literal is (2x2 > 1
3 ).160

• Nonlinear Complex Arithmetic TC is the theory of complex numbers with

both addition and arbitrary multiplication [20, 21, 22, 23]. The signature

is ΓC = {0, k,+,−,=, ·, i}. For instance, a literal is (2x2 = −3). Note

that C is not totally ordered and lacks inequality operator.

Each of these theories has a different decision procedure and decidability165

complexity, but they are usually handled by SMT solvers.

Even though our Boolean abstraction technique is applicable to any theory

with a decidable ∃∗∀∗ fragment, we show our technique with arithmetic speci-

fications. Concretely, we will consider TZ and TR, for illustrative purposes and

since they are the most common to appear in the literature. Note that the con-170

crete theory used influences the realizability of a given formula. For instance,

in Example 1.1, φ is not realizable for TZ, since, if at a given instant t, the

environment plays x : 0 (and hence x < 2 is true), then y must be greater than

1 at timestep t+ 1. Then, if at t+ 1 the environment plays x : 2, then (x ≥ 2)

is true but there is no y such that both (y > 1) and (y < 2) at time t+ 1. On175

the contrary, for TR, φ is realizable: consider the system strategy to always play

y : 1.5.

7



Example 2.1. The following is a slight modification of Example 1.1 that alters

its realizability (R′
1 now has y ≤ x instead of y < x):

R0 : (x < 2)→ (y > 1) R′
1 : (x ≥ 2)→ (y ≤ x)

Now, φ′ = (R0 ∧R′
1) is realizable also for TZ, as the strategy of the system to180

always pick y : 2 is winning. 2

2.2. Linear Temporal Logic (LTL)

Linear temporal logic is a modal temporal logic with modalities referring to

linear time. The syntax of LTL is the following:

φ ::= T
∣∣ a ∣∣ φ ∨ φ

∣∣ φ ∧ φ
∣∣¬φ ∣∣φ

∣∣ φ U φ
∣∣ φR φ

where a ∈ AP is an atomic proposition, ∨, ∧ and ¬ are the usual Boolean185

disjunction, conjunction and negation, and , U and R are the next, until and

release temporal operators. The semantics of LTL associate traces σ ∈ Σω with

formulae as follows:

σ |= T always

σ |= a iff a ∈ σ(0)

σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2

σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

σ |= ¬φ iff σ ̸|= φ

σ |= φ iff σ1 |= φ

σ |= φ1 U φ2 iff for some i ≥ 0 σi |= φ2, and

for all 0 ≤ j < i, σj |= φ1

σ |= φ1 R φ2 iff either for all i ≥ 0 σi |= φ2, or

for some i ≥ 0 σi |= φ1 and

for all 0 ≥ j ≥ i σj |= φ2

The set of temporal operators , U and R is not minimal but admits a

negation normal form. Common derived operators areφ
def
= T Uφ andφ def

=190

¬¬φ. For simplicity in the explanation, we restrict ourserlves to formulae that

only use  (and an outermost ), which are safety properties
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A Kripke structure [24, 25] is a 4-tuple K = ⟨S, I,R, L⟩, where S is a finite

set of states, I ⊆ S is the set of initial states, R ⊆ S ×S is a transition relation

and L : S � 2AP is a labeling function. The relation between a Kripke structure,195

LTL, and reactive systems lies in how the Kripke structure provides a formal

semantics for interpreting and evaluating LTL formulas over the states of a sys-

tem. It allows to reason about the temporal behavior and properties of reactive

systems and check whether they meet the desired specifications expressed in

LTL. By employing model checking techniques, it is possible to automatically200

verify the satisfaction of LTL properties in a given Kripke structure, providing

formal guarantees about the behavior of reactive systems.

2.3. Infinite games

A game is composed of an arena and a winning condition. An arena is a

triple A = ⟨V0, V1,→⟩, where V0 is a set of 0-positions, V1 is a set of 1-positions,205

disjoint from V0, and →⊆ (V0 × V1) ∪ (V1 × V0) is the set of edges. We use

V = V0 ∪ V1. The games we consider are played by two players: Player 0 and

Player 1. Note that there is no restriction on the number of the successors of a

position in an arena. Also, a play inA is an infinite path π = v0, v1, ... ∈ V ω with

vi, vi+1 ∈→ for all i, where Visit(π) = {v ∈ V | π(i) = v for some 0 ≤ i < ω} is210

the set of visited positions in a π that ranges from 0 to potentially ω.

Let A be an arena and Win ⊆ V , then the pair (A,Win) is called a game,

where A is the arena of the game and Win its winning set. The plays of that

game are the plays in A. Player 1 wins play π if and only if Player 0 cannot

move (i.e., vi is a dead end); or (2) π is an infinite play and Visit(π) ⊆ Win.215

Player 0 wins π if Player 1 does not win π.

A strategy for a Player i in an arena A is a function ρ : V ∗Vi → V such that

whenever ρ(wv) = v′, then (v, v′) ∈→. A play π on an arena A is consistent with

a strategy ρ whenever for all n ∈ N with πn ∈ Vi we have that ρ(π0 · · ·πn) =

πn+1. We denote the set of plays of A with Plays(A), and the set of plays of220

A from position v with Plays(A, v). Let G = (A,Win) be a game and ρ be

a strategy for Player i. Strategy ρ is a winning strategy from position v ∈ V
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for Player i if and only if every play π ∈ Plays(A, v) played according to ρ is

winning for Player i. Strategies that do not need memory are called memoryless

or positional. A strategy ρ for Player i in an arena A is positional if and only225

if ρ(wv) = ρ(v) for all w ∈ V ∗ and v ∈ Vi.

2.4. Synthesis and realizability

Reactive synthesis [26, 27, 28, 29, 30] is the problem of producing a system

from an LTL specification, where the atomic propositions are split into propo-

sitions that are controlled by the environment and those that are controlled230

by the system. In other words, synthesis is the problem of computing a con-

troller/system that chooses the value of the controllable variables in such a way

to satisfy the LTL specification, no matter the values of the uncontrollable vari-

ables. Realizability is the related decision problem of deciding whether such a

system exists.235

Realizability of LTL specifications corresponds to infinite games: the work

presented at [31] shows that we can construct a game GB from a specification

φB and that φB is realizable if and only if GB is winning for the system. The

positions in the arena of the game correspond to valuations of the atomic propo-

sitions. The arena of the game A = ⟨VE , VS ,→⟩ is such that VE = (E × S)∗240

whereas VS = (E × S)∗ ×E where E and S are the possible valuations of vari-

ables of the environment and the system. Thus, plays generated have the form:

ϵ, e0s0, e0s0e1s1, ..., where e0, e1, ... ∈ E and s0, s1, ... ∈ S. A play π is winning

for the system if π |= φB.

For convenience we use the following alternative definition of strategy as a245

Mealy machine: M = ⟨Q, q0,Σ = {E,S}, δ : Q×E � Q, o : Q×E � S⟩, where

Q is a set of positions, q0 is the initial position, Σ is the alphabet composed

of the possible valuations of the environment E and the possible valuations of

the system S, δ is the transition function of the strategy and o is the output

function:250

• Q is the set of positions of the environment, that is VE .
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• q0 is the empty history, as ϵ.

• Σ is the same in both definitions.

• δ : Q× E � Q is δ(v, e) = v · (e, ρ(ve)).

• o : Q× E � S is o(v, e) = ρ(ve).255

It is easy to see that the set of plays played according to ρ and to M are the

same set. Also, as for the alternative definition of strategy using ρ, memoryless

strategies allow to remember only a finite amount of information in Q, instead

of the full history.

3. LTLT260

We consider in this paper the realizability problem for a theory T . In this

case, the alphabet is the possible valuations of the variables (from the domains of

the theories) and the atomic propositions are instead literals in the correspond-

ing theories. The syntax of linear temporal logic modulo theories (LTLT ) is the

same as in LTL, except that atoms a are now literals l from theory T . We use265

Var(l) for the variables in literal l and Var(φ) for the union of variables occur-

ring in the literals of φ. The alphabet of a formula φ is now ΣT : Var(φ) � D,

where D is the domain of the variables, that is, a letter is a valuation of the

variables in the formlua. We use ⊨T as the usual satisfaction relation of literals

using using the usual interpretation of symbols in T . The semantics of LTLT270

associate traces σ ∈ Σω
T with formulae as follows:

σ |= T always

σ |= l iff σ(0) ⊨T l

σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2

σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

σ |= ¬φ iff σ ̸|= φ

σ |= φ iff σ1 |= φ

σ |= φ1 U φ2 iff for some i ≥ 0 σi |= φ2, and

for all 0 ≤ j < i, σj |= φ1
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Note that semantics of LTLT is the same as for LTL, except that σ ⊨ l if and

only if σ(0) ⊨T l and that we can have other derived operations like R.

In realizability for LTLT specifications, the variables that occur in the literals

in a specification φ are split into those variables controlled by the environment275

(x) and those controlled by the system (y). We use φ(x, y) to denote that x∪ y

are the variables occurring in φ (where x ∩ y = ∅) The alphabet ΣT is now a

valuation of the variables in x ∪ y. A trace is an infinite sequence of valuations

of these variables, which induces an infinite sequence of Boolean values of the

literals occurring in φ and ultimately a valuation of the formula.280

Realizability for LTLT now corresponds to a game with an infinite arena

and, like in LTL, given a formula φT in LTLT we construct a game GT (with an

arena being the secuence of valuations chosen and the φT as winning condition),

such that φT is realizable if and only if GT is winning for the system player.

Positions of GT may have infinitely many successors if the ranges of the variables285

controlled by the system and the environment are infinite. For instance, in

Example 1.1 with T = TZ, valuation ranges over infinite values, and literal

(x ≥ 2) can be satisfied with x = 2, x = 3, etc.

4. Boolean Abstraction

In this section, we solve the realizability problem modulo theories by trans-290

forming the specification into an equi-realizable LTL specification that only

contains purely Boolean literals. Given a specification φ with literals li, we pro-

duce a new specification φB = φ′′ ∧ □(AB � φextra), where si are fresh Boolean

variables, φextra is a Boolean formula without temporal operators described in

this section and AB is a conjunction of assumptions of the environment that295

we later study. The additional sub-formula φextra uses the freshly introduced

variables si controlled by the system, as well as additional Boolean variables

controlled by the environment ei, which captures the precise combined power

of the players to decide the valuations of the literals in the original formula.

We call our approach Booleanization or Boolean abstraction. The approach is300
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φT φB

GBGT

Booleanization

⊨
Thm. 1

⊨

Realizability
Tool

Figure 1: The tool chain with the correctness argument.

summarized in Fig. 1: given an LTLT specification φT , it is translated into a

Boolean φB which can be analyzed with off-the-shelf realizability checkers.

The formula φB obtained after Booleanization captures that after the envi-

ronment chooses a valuation of the variables it controls (including ei), the system

responds with valuations of its variables (including si) inducing a Boolean value305

for all literals. For each possible choice of the environment, the system has the

power to choose a concrete combination of Boolean values for the literals among

a collection of possibilities. Since the set of all possible responses is finite, so

are the different collections of outcomes to choose from after each environment

move. The extra requirement captures precisely the finite collection of choices310

of the environment and the resulting finite collection of responses for each case.

4.1. Preliminary definitions

In order to describe the construction of the extra requirement, we introduce

some preliminary definitions. We will use Example 1.1 as the running example.

Let Lit(φ) be the collection of literals that appear in φ (or Lit , if the formula315

is clear from the context). For simplicity, we assume that all literals belong to

the same theory, but each theory can be Booleanized in turn, as each literal

belongs to exactly one theory and we assume in this paper that literals from

different theories do not share variables. Note that we use x as the environment

controlled variables occurring in Lit(φ) and y for the variables controlled by the320

system.

Example 4.1. Recall Example 1.1, where we had formula φ = R0∧R1, where

R0 : (x > 2)∧(y > 1) and R1 : (x ≤ 2)∧ (y < x). Then, we first translate the
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literals in φ. Since (x < 2) is equivalent to ¬(x ≥ 2), we use a single Boolean

variable for both. The substitutions is:325

(x < 2)← s0 (y > 1)← s1 (y < x)← s2

(x ≥ 2)← ¬s0 (y ≤ 1)← ¬s1 (y ≥ x)← ¬s2

After the substitution we obtain φ′′ = (RB
0 ∧RB

1 ) where

RB
0 : s0 → s1 RB

1 : ¬s0 → s2

Note that φ′′ may not be equi-realizable to φ, as we may be giving too much power

to the system if s0, s1 and s2 can be chosen independently without restriction.

Of course, this is an over-approximation of the decision power of the system

that is later on corrected with the computation of an additional formula. In this330

case φ′′ is realizable, for example by always choosing s1 and s2 to be true, but

as we saw in Example 1.1, φ is not realizable for LTLTZ . 2

Definition 1 (Choice). A choice c ⊆ Lit(φ) is a subset of the literals of φ.

The intended meaning of a choice is to capture what literals are true (after a

combined move of the environment and the system), while the rest (i.e., Lit \ c)335

are false. Once the environment picks values for x, the system can exercise

some choice c by selecting y and making the literals in c true and the rest false.

However, for some values of x, some choices may not be possible for the system

for any y. Given a choice c, we use fc(x, y) to denote the formula:∧
l∈c

l ∧
∧
l/∈c

¬l

which is a formula in theory T over variables x and y that captures logically340

the set of values of x and y that realize precisely choice c. We use C for the set

of choices. Note that there are |C| = 2|Lit| different choices.

As we will see, a given choice c can act as potential (meaning that the

response is possible) or as antipotential (meaning that the response is not pos-

sible). Formally, a potential is a formula that depends only on x and captures345
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those values of x for which the system can respond and make precisely the lit-

erals in c true (and the rest of the literals false). The negation of the potential

captures precisely those values of x for which there are no values of y that lead

to c.

Definition 2 (Potential and Antipotential). Given a choice c, a potential350

is the following formula cp and a antipotential is the following formula ca:

cp(x) = ∃y.fc(x, y) ca(x) = ∀y.¬fc(x, y)

Example 4.2. We illustrate two choices for Example 1.1. Consider choices

c0 = {(x < 2), (y > 1), (y < x)} and c1 = {(x < 2), (y > 1)}. Choice c0

corresponds to fc0 = (x < 2)∧ (y > 1)∧ (y < x), that is literals (x < 2), (y > 1)

and (y < x) are true.355

Choice c1 corresponds to fc1 = (x < 2) ∧ (y > 1) ∧ (y ≥ x), that is literals

(x < 2), (y > 1) are true and (y < x) is false. The potential and antipotential

formulae of choices c0 and c1 from Example 1.1 are:

cp0 = ∃y.(x < 2) ∧ (y > 1) ∧ (y < x) ca0 = ∀y.¬
(
(x < 2) ∧ (y > 1) ∧ (y < x)

)
cp1 = ∃y.(x < 2) ∧ (y > 1) ∧ (y ≥ x) ca1 = ∀y.¬

(
(x < 2) ∧ (y > 1) ∧ (y ≥ x)

)
cp0 represents that there is a y such that fc0 , while ca0 states the contrary. Note

that potentials and antipotentials have x as the only free variables. Also, the360

rest of the choices are as follows:

cp2 = ∃y.(x < 2) ∧ (y ≤ 1) ∧ (y < x) ca2 = ∀y.¬
(
(x < 2) ∧ (y ≤ 1) ∧ (y < x)

)
cp3 = ∃y.(x < 2) ∧ (y ≤ 1) ∧ (y ≥ x) ca3 = ∀y.¬

(
(x < 2) ∧ (y ≤ 1) ∧ (y ≥ x)

)
cp4 = ∃y.(x ≥ 2) ∧ (y > 1) ∧ (y < x) ca4 = ∀y.¬

(
(x ≥ 2) ∧ (y > 1) ∧ (y < x)

)
cp5 = ∃y.(x ≥ 2) ∧ (y > 1) ∧ (y ≥ x) ca5 = ∀y.¬

(
(x ≥ 2) ∧ (y > 1) ∧ (y ≥ x)

)
cp6 = ∃y.(x ≥ 2) ∧ (y ≤ 1) ∧ (y < x) ca6 = ∀y.¬

(
(x ≥ 2) ∧ (y ≤ 1) ∧ (y < x)

)
cp7 = ∃y.(x ≥ 2) ∧ (y ≤ 1) ∧ (y ≥ x) ca7 = ∀y.¬

(
(x ≥ 2) ∧ (y ≤ 1) ∧ (y ≥ x)

)
2

Depending on the theory, the meaning and validity of potentials and antipoten-

tials may be different. For instance, consider cp0 and theories TZ and TR:
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• In TZ: ∃y.(x < 2) ∧ (y > 1) ∧ (y < x) is equivalent to false.365

• In TR: ∃y.(x < 2) ∧ (y > 1) ∧ (y < x) is equivalent to (x < 2).

These equivalences can be obtained by Cooper’s algorithm [10] for TZ and

Tarski’s method [16] for TR.

We introduce now a reaction as a description of the specific choices that the

system has the power to select.370

Definition 3 (Reaction). Let P and A be a partition of the set of choices C

(that is, P ⊆ C, A ⊆ C, P ∩ A = ∅ and P ∪ A = C). This partition (P,A) is

called a reaction r. The formula associated to reaction r is Fr:

Fr(x)
def
=

∧
c∈P

cp ∧
∧
c∈A

ca =
∧
c∈P

∃y.fc(x, y) ∧
∧
c∈A

∀y.¬fc(x, y)

There are 22
|Lit|

different reactions.

A reaction r is called valid whenever there is a move of the environment375

for which r captures precisely the remaining power of the system. Formally,

a reaction is valid if and only if ∃x. Fr(x) is a valid formula. We use R =

{(P,A)|P,A ⊆ C and P ∩ A = ∅ and P ∪ A = C} for the set of reactions and

VR = {r ∈ R|∃x.Fr(x) is valid} for the set of valid reactions. It is easy to see

that, for any possible valuation of x the environment can pick, the system has a380

specific power to respond (among the finitely many cases), i.e., a set of potential

choices. This is formalized and proven in Theorem 2.

Example 4.3. In Example 1.1, for theory TZ, we find there are two valid reac-

tions:

r1 : ∃x.ca0 ∧ cp1 ∧ cp2 ∧ cp3 ∧ ca4 ∧ ca5 ∧ ca6 ∧ ca7

r2 : ∃x.ca0 ∧ ca1 ∧ ca2 ∧ ca3 ∧ ca4 ∧ cp5 ∧ cp6 ∧ ca7 ,

where reaction r1 models the possible responses of the system after the environ-385

ment picks a value for x such that (x < 2), and r2 models the responses to

(x ≥ 2). On the other hand, for TR, there are three valid reactions:

r1 : ∃x.ca0 ∧ cp1 ∧ cp2 ∧ cp3 ∧ ca4 ∧ ca5 ∧ ca6 ∧ ca7

r2 : ∃x.cp0 ∧ cp1 ∧ cp2 ∧ ca3 ∧ ca4 ∧ ca5 ∧ ca6 ∧ ca7

r3 : ∃x.ca0 ∧ ca1 ∧ ca2 ∧ ca3 ∧ cp4 ∧ cp5 ∧ cp6 ∧ ca7
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Note that there is one additional valid reaction, since in TR there is one more

case: x ∈ (1, 2]. Also, note that c4 cannot be a potential in TZ (not even with a

collaboration between environment and system), whereas it can in TR. 2390

4.2. The Boolean Abstraction Algorithm

Boolean abstraction is a method to compute φB from φT . In this section

we describe the method and in Section 5 we prove correct a basic exhaustive

algorithm of this method. This algorithm first computes the extra requirement,

by visiting exhaustively the set of reactions and computing a subset of the valid395

reactions that guarantees to preserve realizability. Finally, after the loop, the

algorithm produces a φextra formula as a conjunction of cases, one per valid

reaction r : (P,A) in VR. For creating this formula, we introduce a fresh

variable er, controlled by the environment for each valid reaction r, to capture

that the environment plays values for x that correspond to the case where the400

system is left precisely with the power to choose captured by r. Therefore, there

is one additional environment Boolean variable per valid reaction (in practice we

can enumerate the number of valid reactions and introduce only a logarithmic

number of environment variables). Each er represents a specific power of the

environment to let the system select a choice from reaction r.405

Finally, the extra requirement takes the potentials P for each valid reaction

r : (P,A) to encode the potential moves of the system as a disjunction of the

literals described by each choice in P . Each of these disjunction contains pre-

cisely the combinations of literals that are possible for the concrete case that

(P,A) captures.410

An algorithm that implements the Boolean abstraction method by exhaus-

tively searching all reactions is shown in Algorithm 1. The building blocks of

this algorithm are:

(1) It stops when the remaining set of reactions is empty (line 6).

(2) It traverses the set R according to some predetermined order (line 7). Note415

17



Algorithm 1: Boolean abstraction

1 Input: φT

2 φ′ ← φT [li ← si]

3 VR ← {}

4 C ← choices(Lit(φT ))

5 R ← 2C

6 while R ≠ ∅ do

7 r ← pickelem(R)

8 if ∃x.Fr(x) is valid then

9 VR← VR ∪ {r}

10 R ← R \ {r}

11 φextra ← getExtra(VR)

12 AB ← getAssum(VR)

13 return φB = φ′′ ∧ □(AB � φextra)

that, even though the order may affect performance, it does not affect sound-

ness since all relevant reactions will be inevitably explored.

(3) To modify the set of valid reactions, if r : (P,A) is valid it adds r to the set

VR (line 9). To modify the set of remaining reactions, it removes r from

the search (line 10).420

Finally, the extra sub-formula φextra is generated by getExtra (line 11) defined

as follows:

getExtra(VR) =
∧

(P,A)∈VR

(e(P,A) →
∨
c∈P

(
∧
li∈c

si ∧
∧
li /∈c

¬si)),

Note that there is an ∃∗∀∗ validity query in the body of the loop (line 6) to

check whether the candidate reaction is valid. This is why decidability of the

∃∗∀∗ fragment is crucial because it captures the finite partitioning of the envi-425

ronment moves (which is existentially quantified) for which the system can react

in certain ways (i.e., potentials, which are existentially quantified) by picking
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appropriate valuations but not in others (i.e., antipotentials, which are univer-

sally quantified) This exhaustive algorithm iterates over all the reactions, one

at a time, checking whether each reaction is valid or not. In case the reaction430

(characterized by the set of potential choices) is valid, it is added to VR.

The set D = {er|r ∈ VR} contains the Boolean variables for the environ-

ment, one for each reaction. We will use the function dec : VR � D, which

receives a reaction r and returns its decision variable, and its inverse function

dec−1 : D � VR, which takes a decision variable er and returns its reaction r.435

Also, function pots : VR � 2C , given r : (P,A) returns its set of potentials P .

The general form of the Boolean abstraction encoding (line 12) is as follows:

φB = φ′′ ∧ □(AB � φextra)

where

AB = (
∧

er,es∈D
er ↔ ¬es) ∧ (

∨
er∈D

er)

and

φextra =
∧

er∈D
er �

∨
r

pots(r) where r = dec−1(er)

Formula AB simply forces the environment to pick exactly one decision er at each440

point in time, so we can interpret AB as the assumptions that the environment

player has to hold. Note that we calculate formula AB with getAssum(VR) in

Algorithm 1, where getAssum(VR) uses dec(VR) to get each ek ∈ D.

Example 4.4. Consider again the specification in Example 1.1, with TZ as the-

ory. Note that the valid reactions are r1 and r2, as shown in Example 4.3, where445

the potentials of r1 are {c1, c2, c3} and the potentials of r2 are {c5, c6}. Now,

the creation of φextra requires two fresh variables e0 and e1 for the environment

(they correspond to environment decisions x such that (x < 2) and (x ≥ 2),
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respectively), resulting into:

φextra
TZ

:


e0 →

(
(s0 ∧ s1 ∧ ¬s2) ∨ (s0 ∧ ¬s1 ∧ s2) ∨ (s0 ∧ ¬s1 ∧ ¬s2)

)
∧

e1 →
(
(¬s0 ∧ s1 ∧ ¬s2) ∨ (¬s0 ∧ ¬s1 ∧ s2)

)


For example c2 = {s0} is a choice that appears as potential in valid reaction450

r1, so it appears as a disjunct of e0 as (s0 ∧ ¬s1 ∧ ¬s2). 2

Note that AB is not used with enumerated decisions (i.e., of an enumerated

type), so the general form with enumerations is φB = φ′′ ∧ □φextra, which is

not the encoding we used for Algorithm 1. Indeed we usually consider the er to

be of enumerated type, so that the number of bits needed to express decisions is455

logarithmic in the cardinality of the enum type. Thus, the complete Booleanized

specification of Example 1.1 using enumerations is φB
TZ

= φ′′∧φextra
TZ

. Note that

it is straigthforward to obtain Boolean counterparts from enum types.

Moreover, we find some simplifications of φB
TZ

in detail in Example 4.5.

Example 4.5. We revisit Example 4.4. Since there are only two decisions of460

the environment (namely, e0 and e1), we can represent them with a single bit

e (i.e., e ≡ e0 and ¬e ≡ e1), and eliminate the mutual exclusion e0 ↔ ¬e1.

Also, since e ≡ e0 implies s0 and ¬e ≡ e1 implies ¬s0, we can get rid of s0.

We can continue performing other propositional logic simplifications to get an

even smaller specification: e.g., ((s1 ∧ ¬s2) ∨ (¬s1 ∧ s2) ∨ (¬s1 ∧ ¬s2)) is465

equivalent to (¬s1 ∨ ¬s2) . The resulting φB
TZ

is:



e → s1

∧

¬e → s2

∧

e →
(
¬s1 ∨ ¬s2

)
∧

¬e →
(
(s1 ∧ ¬s2) ∨ (¬s1 ∧ ¬s2)

)


,

20



where the first two implications correspond to φ′′ and the last two to φextra
TZ

. 2

We will show later that the resulting φB is a Boolean equi-realizable version

of φT . The complexity of the exhaustive Booleanization algorithm is doubly

exponential in the number of literals, with one ∃∗∀∗ query in the body of the470

loop to check whether the candidate reaction is valid.

The extra requirement encodes precisely all reactions; that is, collections of

choices, for which there is a move of the environment that leaves the system with

precisely that power to respond. Therefore, at each position in the realizability

game, the system can respond to moves of the system leaving to the corre-475

sponding positions in the Boolean game. In turn, this leads to equi-realizability

because each move can be simulated in the corresponding game. This argument

is formally developed in Section 5. We first prove some intermediate properties.

4.3. Properties of VR and φextra

A Booleanization φB from φT contains a φextra that has a set of environment480

decisions ei ∈ D and a set of choices c ∈ C for each ei. Note, again, that R is

the set of reactions, whereas VR is the set of valid reactions and VR ⊆ R. Let

x and y be variables from theory T and v and w values from T . We now state

some important properties of R and VR.

Lemma 1. For every valuation v of the variables x, there is at least one reaction485

r such that Fr[x � v] is valid. Therefore, the formula φR = ∀x.
∨

ri∈R Fri is

valid.

Proof:. Let v be an arbitrary valuation of the variables x and let C = {c ∈

C|I[x � v] ⊨ ∃y.c(x, y))} where I is an arbitrary interpretation. It follows that

I[x � v] ⊨ Fr, since for every c ∈ C then I[x � v] ⊨ fc and for any c /∈ C then490

I[x � v] ⊭ fc. Therefore, Fr[x � v] is valid. □

Lemma 2 states that there is always a valid move of the system (the extra

requirement is never blocking). For every move of the environment, the system

can move according to at least with one of the valid reactions.

Lemma 2. φVR = ∀x.
∨

ri∈VR Fri is a valid formula.495
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Proof:. Take an arbitrary interpretation I and valuation v of the x variables.

By Lemma 1, φR is valid so I[x � v] ⊨ Fri holds and hence there is a reaction

ri such that I[x � v] ⊨ Fri . Thus ∃x. Fri(x) is valid, which means ri ∈ VR.

Consequently, I[x � v] ⊨
∨

r∈VR Fri . Since I and v are arbitrary, ∀x.
∨

ri∈VR Fri

is valid, as desired. □500

We now show that, in the extra requirement, the set of potentials in valid

reactions cannot be empty (see Lemma 3). In other words, for every move of

the environment the system can always respond with a valid reaction, which

contains at least one potential choice. This is stated in Lemma 3.

Lemma 3. Let P ∈ C be such that r : (P, C \ P ) ∈ VR. Then P ̸= ∅.505

Proof:. Let v be such that Fr[x � v] is valid. Let w be an arbitrary valuation

of y and let c be a choice and l a literal. Therefore, the following holds:∧
l[x�v,y�w] is true

l ∧
∧

l[x�v,y�w] is false

¬l

It follows that I[x← v] |= ∃y.P , so P ∈ C. □

Lemma 3 is crucial because it ensures that once Algorithm 1 is executed, for

each fresh er variable in the extra requirement that corresponds to a decision510

of the environment, at least one reaction with one or more potentials can be

responded by the system.

Also, it is easy to see that Lemma 4 holds.

Lemma 4. Let r1, r2 ∈ VR such that r1 ̸= r2. Then ∀x. [Fr1(x) � ¬Fr2(x)]

5. Correctness515

The main element of the proof of correctness is that the system player wins

the game GT for φT if and only if the system player wins the game GB for

φB. This is proven by creating a binary relation ∼ between the positions of

the games showing (1) that the valuations of atomic propositions correspond

to equivalent valuations of literals, and (2) that moves in one game can be520
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simulated to corresponding moves in the other game (and vice-versa) leading

to states related by ∼. This, in turn, induces a bijective map between winning

strategies in one game and in the other, concluding that the system player wins

the game for φT if and only if the system player wins the game for φB.

Definition 4 (Simulation ∼). Let VB be the set of positions of GB and VT525

the set of positions of GT . Then, we define a simulation VT ∼ VB, that relates

positions vt of VT and vb of VB as follows:

(1) each literal li and the corresponding variable si have the same truth value

in vt and vb.

(2) the extra requirement is satisfied in vb.530

The following lemma holds from the definition.

Lemma 5. Let π be a play in GB and π′ a trace in GT such that for all i,

π(i) ∼ π′(i). Then, π is winning for the system if and only if π′ is winning for

the system.

Proof:. Since π(i) ⊨ li if and only if π′(i) ⊨ si, this means that valuations of535

atomic propositions and literals are the same at corresponding positions. It

follows that every temporal formula has the same valuation in π than in π′. □

We now show that a system move from related positions can be mimicked in

the other game by the system player leading to related positions, which is the

main result of this paper.540

Theorem 1. The system player wins GT if and only if the system player wins

GB. Therefore, φT is realizable if and only if φB is realizable.

Proof:. During the proof we will use the following functions:

• getV : VR � ET which receives a reaction r and returns a valuation of

the environment variables v that satisfies Fr. This is guaranteed to exist545

becuse r is a valid reaction.
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• getVR : ET � VR, which receives a valuation of the environtment vari-

ables v and returns the only reaction r for which Fr(v) holds.

• getC : ET × ST � C (it stands from get choice), which receives v and

system valuation u and returns the resulting choice c.550

We now prove the two directions separately.

• “⇒”. We assume that the system player wins GT and show that the

system player wins GB. LetMT = ⟨QT , qT0 ,ΣT = {ET , ST }, δT , oT ⟩ be a

winning strategy for the system in GT . We construct a winning strategy

for the system in GB as follows MB = ⟨QB, qB0 ,ΣB = {EB, SB}, δB, oB⟩555

where

– QB = QT

– qB0 = qT0

– δB(q, di) = δT (q, v) where v = getV(dec−1(di)))

– oB(q, di) = {si|li ∈ getC(v, u)}, where v is as before and u = oT (q, getV(dec
−1(di))).560

We show now that MB is winning. Consider an arbitrary play π played

according to MB. Let π′ be the play in GT , played according to MT

where, at position i, the environment plays getV(dec−1(d)) if the environ-

ment plays d at position i in π. It is easy to see by induction on i, that

forall i, π(i) ∼ π′(i). By Lemma 5, π is winning for the system player565

because π′ is wining for the system player (MT is a winning strategy).

Therefore,MB is a winning strategy.

• “⇐” Analogously, we show that if GB is winning, then GT is winning. As-

sume GB is winning, then it has a winning strategyMB = ⟨QB, qB0 ,ΣB =

{EB, SB}, δB : QB×EB � QB, oB : QB×EB � SB⟩ using which we can con-570

struct a winning strategy of the system in GT , i.e.,MT = ⟨QT , qT0 ,ΣT =

{ET , ST }, δT : QT × ET � QT , oT : QT × ET � ST ⟩ as follows:

– QT = QB, qT0 = qB0 .
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– δT (q, v) = δB(q, dec(r)), where r = getVR(v) and where r ∈ VR is

the only r such that Fr(v) (this is guaranteed by Lemma 4).575

– oT (q, v) = u, where fc(v) with [y ← u] holds in at least one c ∈ P ,

where (P,A) : r in a r ∈ VR, where r = getVR(v).

We show now thatMT is winning. Consider an arbitrary play π′ played

according toMT . Let π be the play in GB, played according toMB where,

at position i, the environment plays di = dec(getVR(v)) if the environment580

plays v at position i in π′. It is easy to see by induction on i, that forall

i, π(i) ∼ π′(i). By Lemma 5, π is winning for the system player because

π′ is wining for the system player (MB is a winning strategy). Therefore,

MT is a winning strategy.

This finished the proof. □585

Note that the following theorem follows immediately from of Thm. 1.

Theorem 2. Let T be a theory with a decidable ∃∗∀∗-fragment. Then, LTLT

realizability is decidable.

6. Automatically Checking Feasible Valid Reactions

6.1. Minimal and feasible reactions590

We define in this section two sets of reactions that are smaller than VR

but still guarantee that the corresponding Boolean formula obtained from the

original formula by Boolean abstraction is equi-realizable.

Consider the following two reactions of Example 4.3:

r = {ca0 , c
p
1, c

p
2, c

p
3, c

a
4 , c

a
5 , c

a
6 , c

a
7} and r′ = {ca0 , c

p
1, c

p
2, c

a
3 , c

a
4 , c

a
5 , c

a
6 , c

a
7}

It is easy to see that r gives strictly more power to the system than r′, since r595

differs in that r contains c3 as potential but r
′ contains c3 as anti-potential. That

is, r captures those values of x for which the system can respond (with different

values of y) making the literals according to c1 true or the literals according to

c2 true, but the system cannot choose values of y for the rest of the choices. The
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reaction r corresponds to values of x for which the system has the additional600

power to choose values of y to make c3 true. We denote this by r′ ⊑ r. Formally,

(P,A) ⊑ (P ′, A′) whenever P ⊆ P ′. Also, in some cases two reactions ri and rj

are not comparable, since neither contains the same or a strictly larger set of

potentials than the other. For example, let r = {cp0, ca1 , ca2 , ca3 , ca4 , ca5 , ca6 , ca7} and

r′ = {ca0 , ca1 , ca2 , ca3 , ca4 , ca5 , ca6 , c
p
7} are incomparable because ri ̸⊑ rj and rj ̸⊑ ri.605

In terms of the game strategy, the environment will never play valid reactions

that are not lowest (e.g., if r′ ⊑ r, then it will always choose r′), since this move

will give more power to the system in the form of more potential choices. In

other words, if a strategy is winning for the environment and it chooses r at some

position, then the modified strategy that chooses r′ is also winning, because610

it allows strictly less moves to the system. Thus, for the φextra produced in

Algorithm 1 it is not necessary to consider the whole set VR because any subset

that preserves the minimal reactions, according to ⊑, preserves realizability. We

call MVR the set with minimal valid reactions, defined as follows:

MVR = {r ∈ VR | there is no r′ ∈ VR such that r′ ⊑ r}

Given a set of reactions R we say that R is a feasible valid reaction (FVR)615

whenever MVR ⊆ R ⊆ VR. That is, a set of reactions R is feasible if all the

reactions in R are valid and it contains at least all minimal reactions.

We can easily check whether a set of reactions R is indeed VR. This test can

be used to check the correctness of the φextra of a φB Booleanized from a φT .

The check has two parts: checking that R is legitimate and (strict) covering,620

defined as follows.

Definition 5 (Legitimacy). A set of reactions R is legitimate if and only if

for all of r ∈ R, ∃x. Fr(x) is valid.

If R is legitimate, then R ⊆ VR.

Definition 6 (Strict covering). A set of reactions R is a strict covering if625

and only if the formula ∀x.
∨

r∈R Fr(x) is valid.
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The set VR itself generated by Algorithm 1 satisfies both legitimacy and

strict covering. Covering refers to the fact that VR is a finite covering (hence the

disjunction) of the possible plays of the environment; whereas strict cover implies

that all possible finite plays of the environment are being covered, regardless630

of whether there are moves that a clever environment will never play because

these moves leave more power to the system than better alternative moves.

Checking legitimacy and covering require a number of queries that is linear

in the number of reactions in R. Thus, checking whether a set of reactions is

VR is much more efficient than producing VR using Algorithm 1.635

6.2. Checking Feasability

We can also easily check whether a set of reactions R is a feasible set. For

example, this can be used in practice to check the correctness of a φextra pro-

duced by an algorithm that, unlike Algorithm 1 does not traverse the whole R.

Like for VR, R must be legitimate to be a feasible reaction set. However, strict640

covering is not required for R to be feasible since there are valid reactions that

are not minimal.

The notion of non-strict covering considers not all the possible moves in

the game, but only those that are optimal for the environment. For instance, if

r′ ⊑ r, a feasible reaction set may or may not contain r. Non-strict covering can645

be evaluated by checking that for R, for all x, the disjunction of the potentials

of its reactions holds.

Definition 7. The potential formula FP
r of a reaction r : (P,A) is:

FP
r (x)

def
=

∨
c∈P

cp(x),

Definition 8 (covering). A set of reactions R is covering if and only if φcov(R) =

∀x.
∨

r∈R FP
r (x) is valid.650

If φcov(R) is valid, then R contains a subset of valid reactions that makes R a

covering in the game theoretic sense that it considers all the clever strategies

for the environment. If the environment has a winning strategy in GT where it
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chooses values for y that correspond to moves that are not the minimal, then

the strategy that chooses a strictly smaller move is also winning. The following655

Theorem 3 states this formally.

Theorem 3. Let φT be an LTLT specification, R be a feasible reaction set and

φB = φ′′ ∧ □(AB � getExtra(R)) (as in Algorithm 1). Then φT and φB are

equi-realizable.

Proof:. Consider φB created from VR and let R ⊂ VR be a feasible reaction.660

This means that there is r ∈ VR \ R such that there is an r′ ∈ R with r′ ⊑ r.

Consider a play of GB where the environment plays the move corresponding r

at some point. If the move is replaced by r′, then if the play with r was winning

for the environment then the play with r′ is also winning for the environment.

Therefore, if GB is winning for the environment, there is a strategy for the665

environment where r is never played. It follows that the φ′
B that results from

R is equi-realizable to the φB that results from VR. As a corollary, if we have

MVR ⊂ VR, the environment will always play r ∈ MVR. □

In [32] Alg.2 and Alg.3 guarantee non-strict covering (i.e., they provide a

FVR), whereas Alg.1 guarantees strict-covering (i.e. it provides VR). Also, no670

algorithm in [32] guarantees the computation of a MVR.

Moreover, since the equi-realizability between φT and φB is guaranteed by

the sub-formula φextra of φB (which is characterized by its set of MVR), then

Definition. 5 and Definition. 8 yield the basis for the verification algorithm

suggested at the beginning of 6.2. Concretely, the fact that we can efficiently675

check covering and legitimacy of reactions allows designing algorithms with

candidate sets of reactions. For instance, consider we have some oracle that

returns a set of reactions R (this is a guess phase). Then, we can check

whether R ∈ FVR and stop or find additional valid reactions to complement R.

For example, if a specification is refined by adding additional requirements or by680

changing requirements, a previously computed R for the previous specification

is a reasonable candidate for FVR of the modified specification.

To better illustrate this, we describe the following guess-and-check algo-
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Algorithm 2: Guess-and-check method

1 U ← R

2 R← ∅

3 repeat

4 Guess Rnew ⊆ U with Rnew ̸= ∅

5 R← R ∪ (Rnew ∩VR)

6 U ← U \Rnew

7 until (R is FVR);

8 return R

rithm for searching R. In Algorithm 2 we potentially traverse the whole set of

subsets of R. In each iteration, we guess an unexplored reaction sub-set Rnew685

and add (Rnew ∩VR) to the candidate set R. If R is a feasible set of reactions,

then R is returned. Otherwise, Rnew is removed from the search space U . Since

in each iteration Rnew ̸= ∅ and U is finite, then Algorithm 2 is guaranteed to

terminate. Note that this algorithm only provides an upper bound that is still

double exponential in the number of literals, however studying the tight lower690

bound of the running time and the practical comparison of the algorithms is

out of the scope of this paper.

7. Related work

Real world specifications often use more sophisticated data than Booleans,

like integers, reals, or structured data. For finite domains, it is possible to695

use bit-blasting to obtain an equivalent Boolean specification. For non-finite

domains, in recent years multiple approaches have been proposed to perform

reactive synthesis with non Boolean inputs and outputs. For example, there

have been decidability results for synthesis using register automata [33, 34, 35].
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7.1. Richer Temporal Logics700

There are many alternatives to LTL for specifying properties of reactive

systems, including STL [36] and GTL [37]. We address here LTL with richer

theories in the data, including a large class of first-order theories, which have

long been used in verification [38].

Constraint LTL (CLTL) [39] extends LTL with the possibility of expressing705

constraints between variables at bounded distance (of time). A constraint sys-

tem D consists of a concrete domain and an interpretation of relations on the

domain. In CLTL over D (i.e., CLTL(D)), one can relate variables with rela-

tions defined in D. CLTL can specify assignment-like statements by utilizing

the equality relation. Like for all constraints allowing for a counting mechanism,710

CLTL with Presburger constraints, i.e., CLTL(Z,=,+), is undecidable; overall,

the theories considered are a restricted form of TZ with only comparisons and

the problem requires additional restrictions to overcome undecidability. In com-

parison, we do not allow predicates to compare variables at different timesteps,

but we prove decidability for all theories with an ∃∗∀∗ decidable fragment. Re-715

cently, LTL modulo theories is studied in [40] for finite traces and they allow

temporal operators within predicates, again leading to undecidability.

7.2. TSL

Temporal Stream Logic (TSL) [41], was introduced as a new temporal logic

for reactive synthesis that separates control from data. In the original TSL se-720

mantics, all functions and predicates are uninterpreted, but in [42] they describe

an extension to TSL modulo theories. However, they consider only satisfiabil-

ity and not synthesis; thus, in [43] they propose a synthesis algorithm for TSL

modulo theories that can be applied to arbitrary decidable theories in which

quantifier elimination is possible. Overall, TSL extends LTL with complex data725

that can be related accross time, making use of a new update operator; e.g.,

Jy ← [ fxK indicates that the result of applying function f to variable x is as-

signed to y. In all these works, realizability is undecidable. Also, in [44] reactive
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synthesis and SyGuS [45] collaborate in the synthesis process, and generate ex-

ecutable code that implements both reactive and data-level properties, thus it730

suffers from two sources of undecidability: the undecidability of TSL synthe-

sis [41] and the undecidability of syntax-guided synthesis [46]. In this paper,

we cannot relate theory values accross time but we prove that realizability is

decidable for all LTL.

When comparing TSL with LTLT , note that LTLT includes all LTL, whereas735

TSL is undecidable already for the theory of equality and Presburger arithmetic.

Indeed, TSL is undecidable for theory of uninterpreted functions, except for

three fragments (see Thm. 7 in [42]): it is (1) semi-decidable for the reacha-

bility fragment of TSL (i.e., the fragment of TSL that only permits the next

operator and the eventually operator as temporal operators), it is (2) decidable740

for formulae consisting of only logical operators, predicates, updates, next oper-

ators, and at most one top-level eventually operator, and it is (3) semi-decidable

for formulae with one cell (i.e., controllable outputs).

Thus, note that Example 1.1 is decidable in TSL; however, a very few changes

on it make it belong to a non-decidable TSL fragment: we can (1) add a U745

operator; or we can (2) add another □ operator into any literal (note that □

and eventually are dual); or (3) introduce a new controllable variable y′. This

way, the modified running examples are not within the considered decidable

nor semi-decidable fragments of TSL, whereas it is decidable in LTLT . Also,

note that TSL allows (finite) uninterpreted predicates, whereas we need to have750

predicates well defined within the semantics of theories of specifications for

which we perform Boolean abstraction.

7.3. Infinite (state) games

As for infinite-state games, a witness of recent researches on them is [47]

where a causality-based algorithm for solving two-player reachability games rep-755

resented by logical constraints is presented, based on the notion of subgoals.

Other approaches for solving infinite-state games include symbolic BDD-

based state-space exploration [48], computing winning regions of both players
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using proof rules [49] and predicate abstraction [50]. There is also synthesis of

infinite-state reactive implementations with random behavior [51].760

7.4. Similar expressivity

Variable automata with arithmetic enable the specification of reactive sys-

tems with variables over an infinite domain of numeric values and whose op-

eration involves arithmetic manipulation [52] of these values. [53] studies the

synthesis problem for such specifications.765

As for works closest to ours, [54] proposes numerical LTL synthesis for cyber-

physical systems using an interplay between an LTL synthesizer and a non-linear

real arithmetic checker. However, [54] (1) only considers specifications where

the arithmetic predicates belong to the environment, (2) overapproximates the

power of the system and (3) not precise realizability. Also, linear arithmetic770

games are studied in [55], which introduces algorithms for synthesizing winning

strategies for non-reactive specifications. Also, [56] considers infinite theories

(like us), but it does not guarantee success or termination, whereas our Boolean

abstraction is complete. They only consider safety, while our approach con-

siders all LTL. The follow-up [57] has still similar limitations. Similarly, [58]775

is incomplete, and requires a powerful solver for many quantifier alternations.

As for [50], it only considers safety/liveness GR(1) specifications, and is lim-

ited to the theory of fixed-size vectors. We only require ∃∗∀∗-satisfiability (for

Boolean abstraction) and we consider multiple infinite theories. The usual main

difference is that Boolean abstraction generates a (Boolean) LTL specification780

so that existing tools can be used with any of their internal techniques and al-

gorithms (bounded synthesis, for example) and will automatically benefit from

further optimizations. On the contrary, all approaches above adapt one specific

technique and implement it in a monolithic way.

8. Conclusions785

In this paper, we addressed decidability of reactive realizability of specifica-

tions in LTLT , which is the extension of LTL where atomic propositions can be
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literals from a first-order theory, including arithmetic theories. Our Boolean ab-

straction method (see Section 4) transforms specifications into purely Boolean

specifications by (1) substituting theory literals by Boolean variables, and (2)790

computing an additional Boolean requirement that captures the dependencies

between the new variables imposed by the literals. The resulting specification

can be passed to existing Boolean off-the-shelf synthesis and realizability tools,

and is realizable if and only if the original specification is realizable.

We present a proof that LTLT realizability is decidable not only for temporal795

fragments such as safety, but for all specifications in theories with a decidable

∃∗∀∗ fragment.

We showed an exhaustive Boolean abstraction method Algorithm 1, which

relies on SMT solving and that can naturally be extended to be faster.

To the best of our knowledge, this is the first method that succeeds in non-800

Boolean LTL realizability or synthesis.

8.1. Discussion and future work

In this paper, we showed that, if variables do not relate over time, then

LTLT realizabilty is decidable (for ∃∗∀∗-decidable theories); however, it is easy

to see that if one can relate variables arbitrarily, we can build two counter805

machines (or TSL), showing undecidability. Thus, we are studying controlled

(and useful) ways to pass information between temporal states; i.e., restricted

forms of predicates that relate variables accross time. This allows us to enrich

TSL so that benchmarks that previously were semi-decidable and hard to solve

(e.g., experiment 5 in [43]) become decidable and easily solvable expressed in810

LTLT and translated with Boolean abstraction.

As for other ongoing challenges, we focus on the followings:

• Enhancing the scalibility of the Boolean abstraction algorithm. Some of

these optimizations rely on theory-based reasoning, whereas others exploit

well-known decision procedures such as Cooper’s quantifier elimination815

method [10].
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• Expanding the expressive fragment of Boolean abstraction while maintain-

ing decidability. We are studiying its usage with non-arithmetic theories

such as the Theory of Arrays [59].

• Extending applicability of Boolean abstraction in different contexts. For820

instance, Boolean abstraction can be used to pre-check the realizability of

(rich) specifications to be used in monitors of runtime verification [60].

Also, we are researching how to move from realizability modulo theories to

reactive synthesis modulo theories, on realizable instances. The missing piece is

the function that provides the system’s values given environment’s values that825

make the corresponding (Boolean) literals true according to the choice. This

function is guaranteed to exist —e.g., if the literal is (y > x), then one such

function is f(x) = x + 1. An alternative is to use dynamical SMT queries to

obtain values of the system [61].
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