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Abstract

In recent years, Machine Learning (ML) models have
achieved remarkable success in various domains. However,
these models also tend to demonstrate unsafe behaviors, pre-
cluding their deployment in safety-critical systems. To cope
with this issue, ample research focuses on developing meth-
ods that guarantee the safe behaviour of a given ML model.
A prominent example is shielding which incorporates an ex-
ternal component (a “shield”) that blocks unwanted behavior.
Despite significant progress, shielding suffers from a main
setback: it is currently geared towards properties encoded
solely in propositional logics (e.g., LTL) and is unsuitable for
richer logics. This, in turn, limits the widespread applicabil-
ity of shielding in many real-world systems. In this work, we
address this gap, and extend shielding to LTL modulo the-
ories, by building upon recent advances in reactive synthesis
modulo theories. This allowed us to develop a novel approach
for generating shields conforming to complex safety specifi-
cations in these more expressive, logics. We evaluated our
shields and demonstrate their ability to handle rich data with
temporal dynamics. To the best of our knowledge, this is the
first approach for synthesizing shields for such expressivity.

Introduction
Recently, DNN-based agents trained using Deep Reinforce-
ment Learning (DRL) have been shown to successfully con-
trol reactive systems of high complexity (e.g., (Marchesini
and Farinelli 2020)) , such as robotic platforms. However,
despite their success, DRL controllers still suffer from var-
ious safety issues; e.g., small perturbations to their inputs,
resulting either from noise or from a malicious adversary,
can cause even state-of-the-art agents to react unexpectedly
(e.g., (Goodfellow, Shlens, and Szegedy 2014)) . This issue
raises severe concerns regarding the deployment of DRL-
based agents in safety-critical reactive systems.

In order to cope with these DNN reliability concerns,
the formal methods community has recently put forth var-
ious tools and techniques that rigorously ensure the safe
behaviour of DNNs (e.g., (Katz et al. 2017)) , and specif-
ically, of DRL-controlled reactive systems (e.g., (Bassan
et al. 2023)) . One of the main approaches that is gaining
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popularity, is shielding (Bloem et al. 2015; Alshiekh et al.
2018), i.e., the incorporation of an external component (a
“shield”) that forces an agent to behave safely according to a
given specification. This specification φ is usually expressed
as a propositional formula, in which the atomic propositions
represent the inputs (I) and outputs (O) of the system, con-
trolled by the DNN in question. Once φ is available, shield-
ing seeks to guarantee that all behaviors of the given system
D satisfy φ through the means of a shield S: whenever the
system encounters an input I that triggers an erroneous out-
put (i.e., O : D(I) for which φ(I,O) does not hold), S cor-
rects O and replaces it with another action O′, to ensure that
φ(I, O’) does hold. Thus, the combined system D · S never
violates φ. Shields are appealing for multiple reasons: they
do not require “white box” access toD, a single shield S can
be used for multiple variants ofD, it is usually computation-
ally cheaper than static methods like DNN verification etc.
Moreover, shields are intuitive for practitioners, since they
are synthesized based on the required φ. However, despite
significant progress, modern shielding methods still suffer
from a main setback: they are only applicable to specifica-
tions in which the inputs/outputs are over Boolean atomic
propositions. This allows users to encode only discrete spec-
ifications, typically in Linear Temporal Logic (LTL). Thus,
as most real-world systems rely on rich data specifications,
this precludes the use of shielding in various such domains,
such as continuous input spaces.

In this work, we address this gap and present a novel
approach for shield synthesis that makes use of LTL mod-
ulo theories (LTLT ), where Boolean propositions are ex-
tended to literals from a (multi-sorted) first-order theory T .
Concretely, we leverage Boolean abstraction methods (Ro-
driguez and Sánchez 2023), which transform LTLT spec-
ifications into equi-realizable pure (Boolean) LTL speci-
fications. We combine Boolean abstraction with reactive
LTLT synthesis (Rodriguez and Sánchez 2024), extending
the common LTL shielding theory into a LTLT shielding
theory. Using LTLT shielding, we are able to construct
shields for more expressive specifications. This, in turn, al-
lows us to override unwanted actions in a (possibly infinite)
domain of T , and guarantee the safety of DNN-controlled
systems in such complex scenarios. In summary, our contri-
butions are: (1) developing two methods for shield synthesis
over LTLT and presenting their proof of correctness; (2) an
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analysis of the impact of the Boolean abstractions in the pre-
cision of shields; (3) a formalization of how to construct op-
timal shields using objective functions; and (4) an empirical
evaluation that shows the applicability of our techniques.

Preliminaries
LTL and LTLT . We start from LTL (Pnueli 1977; Manna
and Pnueli 1995), which has the following syntax:

φ ::= ⊤
∣∣ a ∣∣ φ ∨ φ ∣∣ ¬φ ∣∣φ ∣∣ φ U φ,

where a ∈ AP is an atomic proposition, {∧,¬} are the com-
mon Boolean operators of conjunction and negation, respec-
tively, and {,U} are the next and until temporal operators,
respectively. Additional temporal operators include R (re-
lease), (finally), and  (always), which can be derived
from the syntax above. Given a set of atomic propositions
a we use val(a) for a set of possible valuations of variables
in a (i.e. val(a) = 2a), and we use va to range over val(a).
We use Σ = val(AP). The semantics of LTL formulas as-
sociates traces σ ∈ Σω with LTL fomulas (where σ |= ⊤
always holds, and ∨ and ¬ are standard):

σ |= a iff a ∈ σ(0)
σ |= φ iff σ1 |= φ
σ |= φ1 U φ2 iff for some i ≥ 0 σi |= φ2, and

for all for all 0 ≤ j < i, σj |= φ1

A safety formula φ is such that for every failing trace σ ̸|= φ
there is a finite prefix u of σ, such that all σ′ extending u also
falsify φ (i.e. σ′ ̸|= φ).

The syntax of LTL modulo theory (LTLT ) replaces atoms
a by literals l from some theory T . Even though we use
multi-sorted theories, for clarity of explanation we assume
that T has only one sort and use D for the domain, the set
that populates the sort of its variables. For example, the do-
main of linear integer arithmetic TZ is Z and we denote this
by D(TZ) = Z. Given an LTLT formula φ(z) with variables
z the semantics of LTLT now associate traces σ (where each
letter is a valuation of z, i.e., a mapping from z into D) with
LTLT formulae. The semantics of the Boolean and temporal
operators are as in LTL, and for literals:

σ |= l iff the valuation σ(0) of z makes l true according to T

The Synthesis Problem. Reactive LTL synthesis (Thomas
2008; Piterman, Pnueli, and Sa’ar 2006) is the task of pro-
ducing a system that satisfies a given LTL specification φ,
where atomic propositions in φ are split into variables con-
trolled by the environment (“input variables”) and by the
system (“output variables”), denoted by e and s, respec-
tively. Synthesis corresponds to a game where, in each turn,
the environment player produces values for the input propo-
sitions, and the system player responds with values of the
output propositions. A play is an infinite sequence of turns,
i.e., an infinite interaction of the system with the environ-
ment. A strategy for the system is a tuple CB : ⟨Q, q0, δ, o⟩
where Q is a finite set of states, q0 ∈ Q is the inital
state, δ : Q × val(e) → Q is the transition function and
o : Q × val(e) → val(s) is the output function. CB is said
to be winning for the system if all the possible plays played

according to the strategy satisfy the LTL formula φB. In this
paper we use “strategy” and “controller” interchangeably.

We also introduce the notion of winning region (WR),
which encompasses all possible winning moves for the sys-
tem in safety formulae. A winning region WR : ⟨Q, I, T ⟩ is
a tuple where Q is a finite set of states, I ⊆ Q is a set of ini-
tial states and T : Q× val(e)→ 2(Q×val(s)) is the transition
relation, which provides for a given state q and input ve, all
the possible pairs of legal successor and output (q′, vs). For
a safety specification, every winning strategy is “included”
into the WR (i.e., there is an embedding map). LTL realiz-
ability is the decision problem of whether there is a winning
strategy for the system (i.e., check if WR ̸= ∅), while LTL
synthesis is the computational problem of producing one.

However, in LTLT synthesis (Rodrı́guez and Sánchez
2024; Rodriguez and Sánchez 2024), the specification is ex-
pressed in a richer logic where propositions are replaced by
literals from some T . In LTLT the (first order) variables in
specification φT are still split into those controlled by the
environment (x), and those controlled by the system (y),
where x ∩ y = ∅. We use φT (x, y) to empasize that x ∪ y
are all the variables occurring in φT . The alphabet is now
ΣT = val(x ∪ y) (note that now valuations map a variable
x to D(T )). We denote by t[x ← vx], the substitution in t
of variables x by values vx (similarly for t[y ← vy]), and
also t[e ← ve] and t[s ← vs] for Boolean variables (propo-
sitions). A trace π is an infinite sequence of valuations in
D(T ), which induces an infinite sequence of Boolean val-
ues of the literals occurring in φT and, in turn, an evaluation
of φT using the semantics of the temporal operators. For ex-
ample, given ψ = (y < x) the trace π {(x : 2, y : 6), (x :
15, y : 27) . . .} induces {(false), (true) . . .}. We use πx to
denote the projection of π to the values of only x (resp. πy
for y). A strategy or controller for the system in T is now a
tuple CT : ⟨Q, q0, δ, o⟩ where Q and q0 ∈ Q are as before,
and δ : Q× val(x)→ Q and o : Q× val(x)→ val(y).

Boolean Abstraction. Boolean abstraction (Rodriguez
and Sánchez 2023) transforms an LTLT specification φT
into an LTL specification φB in the same temporal fragment
(e.g., safety to safety) that preserves realizability, i.e., φT
and φB are equi-realizable. Then, φB can be fed into an off-
the-shelf synthesis engine, which generates a controller or
a WR for realizable instances. Boolean abstraction trans-
forms φT , which contains literals li, into φB = φT [li ←
si]∧φextra, where s = {si|for each li} is a set of fresh atomic
propositions controlled by the system—such that si replaces
li—and where φextra is an additional sub-formula that cap-
tures the dependencies between the s variables. The formula
φextra also includes additional environment variables e that
encode that the environment can leave the system with the
power to choose certain valuations of the variables s.

We often represent a valuation vs of the Boolean vari-
ables s (which map each variable in s to true or false) as
a choice c (an element of 2s), where si ∈ c means that
vs(si) = true. The characteristic formula fc(x, y) of a
choice c is fc =

∧
si∈c li ∧

∧
si /∈c ¬li. We use C for the

set of choices, i.e., sets of sets of s. A reaction r ⊂ C
is a set of choices, which characterizes the possible re-



sponses of the system as the result to a move of the envi-
ronment. The characteristic formula fr(x) of a reaction r is:
(
∧

c∈r ∃y.fc) ∧ (
∧

c/∈r ∀y¬fc). We say that r is a valid reac-
tion whenever ∃x.fr(x) is valid. Intuitively, fr states that for
some vx by the environment, the system can respond with vy
making the literals in some choice c ∈ r but cannot respond
with vy making the literals in choices c /∈ r. The set VR of
valid reactions partitions precisely the moves of the environ-
ment in terms of the reaction power left to the system. For
each valid reaction r there is a fresh environment variable
e ∈ e used in φextra to capture the move of the environment
that chooses reaction r. The formula fr(x)[x ← vx] is true
if a given valuation vx of x is one move of the environment
characterized by r. The formula φextra restricts the environ-
ment such that exactly one of the variables in e is true, which
forces that the environment chooses precisely one valid re-
action r when the variable e that corresponds to r is true.

Example 1 (Running example and abstraction). In this pa-
per, we address shields for general safety LTLT , but for the
sake of simplicity in the presentation, we consider a simpler
example. Let φT = □(R0 ∧R1) where:

R0 : (x < 10) � (y > 9) R1 : (x ≥ 10) � (y ≤ x),

where x = {x} is controlled by the environment and y =
{y} by the system. In integer theory TZ this specification
is realizable (consider the strategy to always play y : 10)
and the Boolean abstraction first introduces s0 to abstract
(x < 10), s1 to abstract (y > 9) and s2 to abstract
(y ≤ x). Then φB = φ′′ ∧ (φlegal → φextra) where
φ′′ = (s0 � s1) ∧ (¬s0 � s2) is a direct abstraction
of φT . Finally, φextra captures the dependencies between the
abstracted variables:

φextra :


(
e0 →

(
fc1 ∨ fc2

)
∧

(
e0+ →

(
fc1 ∨ fc2 ∨ fc3

)
∧

(
e1 →

(
fc4 ∨ fc5 ∨ fc6

)
 ,

where fc1 = (s0 ∧ s1 ∧ ¬s2), fc2 = (s0 ∧ ¬s1 ∧ s2),
fc3 = (s0 ∧ ¬s1 ∧ ¬s2), fc4 = (¬s0 ∧ s1 ∧ s2), fc5 =
(s0 ∧ s1 ∧ ¬s2) and fc6 = (¬s0 ∧ ¬s1 ∧ s2) and where
c0 = {s0, s1, s2}, c1 = {s0, s1}, c2 = {s0, s2}, c3 = {s0},
c4 = {s1, s2}, c5 = {s1}, c6 = {s1} and c7 = ∅. Also,
e = {e0, e0+ , e1} belong to the environment and represent
(x < 10), (x < 9) and (x ≥ 10), respectively. φlegal : (e0 ∧
¬e1 ∧ ¬e2) ∨ (¬e0 ∧ e1 ∧ ¬e2) ∨ (¬e0 ∧ ¬e1 ∧ e2) en-
codes that e characterizes a partition of the (infinite) input
valuations of the environment and that only one of the e is
true in every move; e.g., the valuation ve : ⟨e0 : false, e+0 :
true, e1 : false⟩ of e corresponds to the choice of the environ-
ment where only e+0 is true (and we use ve : e+0 for a shorter
notation). Sub-formulae such as (¬s0 ∧ s1 ∧ s2) represent
the choices of the system (in this case, c = {s1, s2}), that
is, given a decision of the environment (a valuation of e that
makes exactly one variable e ∈ e true), the system can react
with one of the choices c in the disjunction implied by e. Note
that fc = ¬(x < 2) ∧ (y > 1) ∧ (y ≤ x). Also, note that c
can be represented as vs : ⟨s0 : false, s1 : true, s2 : true⟩.

LTLT Shield Computation
Problem overview. In shielding , at every step, the exter-
nal design D —e.g., a DRL sub-system— produces an out-
put vs from a given input ve provided by the environment.
The pair (ve, vs) is passed to the shield S which decides,
at every step, whether vs proposed by D is safe with re-
spect to some specification φ. The combined system D · S
is guaranteed to satisfy φ. Using LTLT we can define richer
properties than in propositional LTL (which has been pre-
viously used in shielding). For instance, consider a classic
D · S context in which the D is a robotic navigation plat-
form and φ : (LEFT � ¬LEFT). Then, if D chooses to
turn LEFT after a LEFT action, the shield will consider this
second action to be dangerous, and will override it with e.g.,
RIGHT. If LTLT is used instead of LTL, specifications can
be more sophisticated including, for example, numeric data.

Shielding modulo theories is the problem of building a
shield ST from a specification φT in which at least one
of the input variables x or one of the output variables y
are not Boolean.
A shield ST conforming to φT will evaluate if a pair

(x : vx, y : vy) violates φT and propose an overriding out-
put y : v′y if so. This way, D · ST never violates φT . Note
that it is possible that φT is unrealizable, which means that
some environment plays will inevitably lead to violations,
and hence ST cannot be constructed, because WR = ∅.
Example 2 (Running example as shield). Recall φT from
Ex. 1. Also, consider D receives an input trace πx =
⟨15, 15, 7, 5, 10⟩, and produces the output trace πy =
⟨6, 5, 13, 16, 11⟩. We can see D violates φT in the fifth step,
since (x < 10) holds in fourth step (so vy has to be such that
(y : vy > 9) in the fourth step and (vy :≤ 10) must hold in
the fifth step) but (y : 11 ≤ 10) is not true. Instead, a ST
conforming to φT would notice that (x : 10, y : 11) violates
φT in this fifth step and would override vy with v′y to pro-
duce (y′ : 10), which is the only possible valuation of y′ that
does not violate φT . Note that ST did not intervene in the
remaining steps. Thus, D · ST satisfies φT in the example.

We propose two different architectures for ST : one fol-
lowing a deterministic strategy and another one that is non-
deterministic. Both start from φT and use Boolean abstrac-
tion as the core for the temporal information, but they vary
on the way to detect erroneous outputs from D and how to
provide corrections.

Shields as Controllers. The first method leverages LTLT
controller synthesis (see Fig. 1(a)) together with a compo-
nent to detect errors in D. The process is as follows, starting
from a specification φT :
1. Boolean abstraction (Rodriguez and Sánchez 2023)

transforms φT into an equi-realizable LTL φB.
2. A Boolean controller CB is synthesized from φB (using

e.g., (Meyer, Sickert, and Luttenberger 2018)). CB re-
ceives Boolean inputs ve and provides Boolean outputs
vs.

3. We synthesize a richer controller CT that receives vx and
produces outputs v′y in D(T ). Note the apostrophe in v′y ,
since vy is the output of D.



4. ST receives the output vy provided by D and checks if
the pair (vx, vy) violates φT : if there is a violation, it
overrides vy with v′y; otherwise, it permits vy .

We now elaborate on the last steps. To construct CT from
CB we use (Rodrı́guez and Sánchez 2024) , where CT is
composed of three sub-components:

• A partitioner function, which computes Boolean inputs
ve from the richer inputs vx via partitioning, checking
whether fr(vx) is true. Recall that every vx is guaranteed
to belong to exactly one reaction r.

• A Boolean controller CB, which receives ve and pro-
vides Boolean outputs vs. Also recall that each Boolean
variable in vs corresponds exactly to a literal in φT and
that fc is the characteristic formula of c.

• A provider, which computes an output v′y from fc and
r such that v′y is a model of the formula ∃y′.

(
fr(x) →

fc(y
′, x)

)
[x← vx].

The composition of the partitioner, CB and the provider
implements CT (see (Rodrı́guez and Sánchez 2024; Ro-
driguez and Sánchez 2024)). For each of these components
g, let us denote with g(t0) = t1 the application of g with
input t0. Then, the following holds:

Lemma 1. Let φT be an LTLT specification, φB its equi-
realizable Boolean abstraction and CB a controller for φB.
Let q be a state of CB after processing inputs v0x . . . v

n
x ,

and let vx be the next input from the environment. Let
partitioner(vx) = ve be the partition corresponding to vx,
o(q, ve) = vs be the output of CB and c be the choice as-
sociated to vs. Then, if r is a valid reaction, the formula
∃y.fr(vx)→ fc(y, vx) is satisfiable in T , where c ∈ r.

In other words, CT never has to face with moves from CB
that cannot be mimicked by provider with appropriate val-
ues for vy . Thus, a shield ST based on CT (see Fig. 1(a))
first detects whether a valuation pair (x : vx, y : vy) sug-
gested by D violates φT . To do so, at each time-step, CT
obtains vs by CB, with associated c, and it checks whether
fr(vx) → fc(vx, vy) is valid, that is, whether the output
proposed is equivalent to the move of CB (in the sense
that every literal li from (vx, vy) has the same valuation
vs given by CB). If the formula is valid, then vy is main-
tained. Otherwise, the provider is invoked to compute a v′y
that matches the move of CB. In both cases, ST guarantees
that vs remains unaltered in CB and therefore φT is guaran-
teed. For instance, in the hypothetical simplistic case where
fr = true, and consider that CB outputs a vs with associated
c such that fc(x, y) = (y > 2) ∧ (x < y) in TZ. Then if
the input is x : 5, a candidate output y : 4 of D would result
in fr(5) → fc(5, 4) = (4 > 2) ∧ (5 < 4), which does not
hold. Thus, y : 4 must be overridden, so ST will return a
model of ∃y′.fr(x) → (y′ > 2) ∧ (x < y′)[x ← 5]. One
such possibility is y′ : 6.

Lemma 2. Let φB be an equi-realizable abstraction of φT ,
CB a controller for φB and CT a corresponding controller

See the extended version of this paper (Rodriguez et al. 2024)
for a for additional details.

for φT . Also, consider input vx and output vy by D and
v′y by provider of CT . If both fr(vx) → fc(vx, vy) and
fr(vx) → fc(vx, v

′
y) hold, then vy and v′y correspond to

the same move of CB.
In other words, if vy and v′y make the same literals true, a
shield ST based on CT will not override vy; whereas, other-
wise, it will output v′y .
Theorem 1 (Correctness of D ·ST based on CT ). Let D be
an external controller and ST be a shield constructed from
a synthetized CT from a specification φT . Then, D · ST is
also a controller for φT .

In other words, given φT , if T is decidable in the ∃∗∀∗-
fragment (a condition for the Boolean abstraction (Ro-
driguez and Sánchez 2023)), then, leveraging CT , a shield
ST conforming to φT can be computed for every external
D whose input-output domain is T .

More Flexible Shields from Winning Regions. ST based
on CT are sometimes too intrusive in the sense that they can
cause unnecessary corrections, because some (vx, vy) may
be labelled as a violation when they are not, only because it
satisfies a different collection of literals than the ones cho-
sen by the internal controller CB. Given input vx, the output
vs provided by CB and the output vy suggest by D, (vx, vy)
is considered to be a dangerous output (i.e., a potential vi-
olation of φT ) whenever a fr(vx) holds but the fc(vx, vy)
of the c associated to CB(partitioner(vx)) = vs does not
hold. Thus, we study now permissive shields ST with more
precise characterizations of unsafe actions.

The winning region (WR) is the most general character-
ization of the winning states and moves for a safety LTL
specification. This second construction can be applied to any
subset of WR as long as every state has at least one successor
for every input (for example, using the combination of a col-
lection of controllers). The process of computing ST based
on a given winning region W : ⟨Q, I, T ⟩ is as follows (see
Fig. 1(b)) and maintains at each instant a set of current states
Qnow ⊆ Q of W , starting from the initial set of states I .

1. Compute φB from φT using abstraction, as before.
2. We compute the winning region W from φB (e.g., using

(Brenguier et al. 2014)).
3. The partitioner computes ve from the input values vx;

and, given vy provided by D, we produce the unique vs
from (vx, vy) or equivalently c = {si|li(vx, vy) holds}.
This is computed by component getchoice in Fig. 1(b).

4. From some of the current states q ∈ Qnow maintained,
we decide whether δ(q, ve) has some successor (q′, vs) or
not. If it does, output vy . If it does not, choose a successor
output v′s such that there is (q′, v′s) ∈ δ(q, ve) for some
q ∈ Qnow, and use a provider to produce an output v′y
(this is implemented by find in Fig. 1(b)). In either case,
use appropriate valuation v of s (i.e., vs or v′s) to update
Qnow to {q′|(q′, v) ∈ δ(q, ve) for some q ∈ Qnow}.

Note that if the environment generates an input vx (with
corresponding ve) and D responds with an output vy such
that getchoice(vy) = vs, if W permits (ve, vs) then the
suggested vy remains. Otherwise, we use a component find
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Figure 1: Architectures for shields modulo theory.

which computes an alternative v′s such that (ve, v
′
s) is in

W and a proper value vy that corresponds to vs is output.
Also, note that find can always identify a value v′s from any
q ∈ Qnow such that there is a successor (q′, v′s) ∈ δ(q, ve)
by the definition of WR. Given two vs and v′s such that
(ve, vs) ∈ W and (ve, v

′
s) ∈ W , the criteria (e.g., choice-

logic (Bernreiter, Maly, and Woltran 2021)) to choose one is
not relevant for this paper and we leave it for future work.
Finally, given vx, the W cannot distinguish two values vy
and v′y if getchoice(vx, vy) = getchoice(vx, v′y).
Theorem 2 (Correctness of D · ST based on WR). Let φT
be a safety specification and φB an abstraction of φT . Let
ST be synthesized using the winning region W of φB. Then,
D · ST satisfies φT , for any external controller D.

Thm. 2 holds because the valuations of the literals of any
trace π of D · ST is guaranteed to be a path in W and there-
fore will satisfy φB. Hence, π |= φT . The main practical
difference between using a controller CB and a winning re-
gion W , is expressed by the following lemma:
Lemma 3. Let C1 be controller obtained using a controller
CB for φB and C2 obtained from the WR of φB. Let D be an
external controller. Let π be a trace obtained by D · C1 for
some input πx. Then, π is a trace of (D · C1) · C2 for πx.

Lemma 3 essentially states that a WR controller is less in-
trusive than one based on a specific Boolean controller CB.
However, in practice, a WR is harder to interpret and slower
to compute thanCB. Note that we presented ST based onCT
and ST based on WR, but for classic LTL shielding only the
latter case makes sense. This is because in classic LTL using
shield S based on CB is equivalent to forcing D to coincide
with S on all time-steps, so S could be directly used ignoring
D. However, in LTLT there are potentially many different vy
by D that correspond to a given Boolean v′s by CB, so even
when this architecture forces to mimick CB in the Boolean
domain, it is reasonable to use an external source D of rich
value output candidates. Thus, not only we present an ex-
tension of shielding to LTLT (with the WR approach), but
also this is the first work that is capable to synthetise shields
leveraging all the power of classic synthesis (with the CT
approach): e.g., we can use bounded synthesis (Schewe and
Finkbeiner 2007) instead of computing a WR.

Permissive and Intrusive Shields
Minimal and Feasible Reactions. Computing a Boolean
Abstraction boils down to calculating the set VR of valid
reactions. In order to speed up the calculation, optimiza-
tions are sometimes used (see (Rodriguez and Sánchez
2023)). For instance, Ex. 1 shows a formula φT that can
be Booleanized into a φB that contains three environment
variables (e0, e+0 and e1) that correspond to the three valid
reactions. A closer inspection reveals that the valid reac-
tion associated to e+0 (which represents (x < 1)) is “sub-
sumed” by the reaction associated to e0 (which represents
(x < 2)), which is witnessed by e0 leaving to the system a
strictly smaller set of choices than e+0 . In the game theoretic
sense, an environment that plays e+0 is leaving the system
strictly more options, so a resulting Booleanizaed formula
φ′
B that simply ignores e+0 only limits the environment from

playing sub-optimal moves, and φ′
B is also equi-realizable

to φT . From the equi-realizability point of view, one can ne-
glect valid reactions that provide strictly more choices than
other valid reactions. However, even though using φ′

B does
not compromise the correctness of the resulting ST (using
either method described before), the resulting ST will again
be more intrusive than if one uses φB, as some precision is
lost (in particular for inputs (x < 1), which are treated by
φ′
B as (x < 2)). We now rigorously formalize this intuition.
A reaction r is above another reaction r′ whenever r′ ⊆ r.

Note that two reactions r and r′ can be not comparable, since
neither contains the same or a strictly larger set of playable
choices than the other. We now define two sets of reactions
that are smaller than VR but still guarantee that aφB obtained
from φT by Boolean abstraction is equi-realizable. Recall
that the set of valid reactions is VR = {r|∃x.fr(x) is valid}.
Definition 1 (MVR and Feasible). The set of minimal
valid reactions is MVR = {r ∈ VR | there is no r′ ∈
VR such that r′ ⊆ r}. A set of reactions R is a feasible
whenever MVR ⊆ R ⊆ VR.

That is, a set of reactions R is feasible if all the reactions
in R are valid and it contains at least all minimal reactions.
In order to see whether a set of reactions R is below VR or
is indeed VR, we need to check two properties.



Definition 2 (Legitimacy and Strict Covering). Let R be a
set of reactions:
• R is legitimate iff for all r ∈ R, ∃x. fr(x) is valid.
• R is a strict covering iff ∀x.

∨
r∈R fr(x) is valid.

If R is legitimate, then R ⊆ VR. If additionally R is a strict
covering, then R = VR. Strict covering implies that all pos-
sible moves of the environment are covered, regardless of
whether there are moves that a clever environment will never
play because these moves leave more power to the system
than better, alternative moves. A non-strict covering does
not necessarily consider all the possible moves of the envi-
ronment in the game, but it still considers at least all optimal
environment moves. A non-strict covering can be evaluated
by checking that with regard to R, for all x, the disjunction
of the playable choices (see

∧
c∈r ∃y.fc of fr in Preliminar-

ies) of its reactions holds.
Definition 3 (Covering). The playable formula for a re-

action r is defined as fPr (x)
def
=

∧
c∈r ∃y.fc(x, y). A

set of reactions R is covering if and only if φcov(R) =
∀x.

∨
r∈R f

P
r (x) is valid.

Note that a playable formula removes from the character-
istic formula fr the sub-formula (

∧
c/∈r ∀y¬fc) that captures

that the choices not in r cannot be achieved by any vy . We
can easily check whether a set of reactions R is feasible, as
follows. First, R must be legitimate. Second, if φcov(R) is
valid, then R contains a subset of valid reactions that makes
R covering in the sense that it considers all the “clever”
moves for the environment (considering that a move that
leaves less playable choices to the system is more clever for
the environment).
Theorem 3. Let R be a feasible set of reactions and let
φB = φT [li ← si] ∧ φextra(R) be the Booleanization of
φT using R. Then, φT and φB are equi-realizable.

Impact of Boolean Abstractions on Permissivity. To ob-
tain an equi-realizable Boolean abstraction, it is not neces-
sary to consider VR, and instead a feasible set is sufficient.
The computation of a feasible set is faster, and generates
smaller φB formulae (Rodriguez and Sánchez 2023). How-
ever, there is a price to pay in terms of how permissive the
shield is. In practice, it regularly happens that the environ-
ment plays moves that are not optimal in the sense that other
moves would leave less choice to the system.
Example 3. Recall Ex. 1. Note that a CB from φB can re-
spond with fc of choices for e0, e+0 and e1. Now consider a
φ′
B that ignores e+0 and its eligible fc. Thus, a CB’ from φ′

B
can only respond with fc for e0 and e1. For the sake of the
argument, consider the input x : 0 forces to satisfy fc2 in
CB, or fc2 or fc3 in CB’. Thus, a candidate output y : 2 cor-
responds to holding ((x < 10) ∧ ¬(y > 9) ∧ ¬(y ≤ x))
which is exactly fc3 allowed by e+0 , but not by e0 (consid-
ered by φB but not by φ′

B). Therefore, the corresponding ST
using the winning region W for φ′

B would override the out-
put candidate y : 2 provided by D (generating an output v′y
such that v′y holds fc2 ; e.g., y′ : −1); i.e., it incorrectly in-
terprets that candidate vy is dangerous, whereas ST using
the winning region W for φB would not override vy .

The most permissive shield uses the WR of the complete
set of valid reactions VR, but note that computing WR and
VR is more expensive than CB and MVR. However, for ef-
ficiency reasons the most permissive shield is usually not
computed, either because (1) the abstraction algorithm for
computing valid reactions computes a non-strict covering or
because (2) the synthesis of WR does not terminate (spe-
cially in liveness specifications). Note that not only the cost
of constructing ST is relevant, but also other design deci-
sions: if we want the policy of D to dominate, then we need
ST to be as permissive as possible, whereas if we want φT
to dominate (e.g., in specially critical tasks), then we want
ST to be intrusive. Moreover, we can guarantee maximal
permissivity computing VR (and WR), whereas we can also
guarantee maximal intrusion computing MVR (and CB). In-
deed, it is always possible to compute such MVR.
Theorem 4. Maximally intrusive shield synthesis (i.e., MVR
and CB) is decidable.

In Ex. 3 the alternative φ′
B that ignores the (playable)

choice e+0 is exactly comparing re0 = {c1, c2} and re+0 =

{c1, c2, c3} and constructing a feasible R′, where re+0 /∈ R′,
since re0 ⊂ re+0 . In this case, R′ is an MVR.

Optimizations in LTLT Shields
Shields Optimized in T . We know that, given vx, the
provider component computes an output v′y from c and r
such that v′y is a model of the formula ψ = ∃y′.

(
fr(x) →

fc(y
′, x)

)
[x ← vx]. Moreover, not only is ψ guaranteed

to be satisfiable (by Lemma. 1), but usually has several
models. This implies that the engineer can select some v′y
that are preferable over others, depending on different crite-
ria represented by objective functions, such as ψf+ , where
f+ = min(|y − y′|), i.e., the objective function that min-
imizes the distance between vy by D and v′y by S′

T . This
is because these are not linear properties. However, this op-
timization would be very relevant in the context of shield-
ing, because, without loss of generality, it expresses that v′y
is the safe correction by ST closest to the unsafe vy by
D. To solve this, we used maximum satisfiability, which
adds soft constraints M = {ϕ1, ϕ2, ...} to ψ, such that
ψ(M) = ∃y′.(fc(x, y′)+

∧|M|
i=0 ϕi)[x ← vx], where +

∧
denotes a soft conjunction, meaning that the right-hand side
is satisfied only if possible. To better illustrate this, we use a
single variable y, although this concept can also be extended
to other notions of distance with multiple variables y (e.g.,
Euclidean distance) .
Example 4. Consider again Ex. 3 and let M = {(y′ >
5)}. Then ψ(M) = ∃y′.(fc(x, y′)+ ∧ (y′ > 5))[x ← 0]
does not return y′ : 2, but some y′ ∈ [6, 9]. In addition,
we use maximum satisfiability to express that v′y is the safe
correction that is the closest to an unsafe vy , for which we
add ϕ(x, y, y′) = ∀z.(fc(x, z) → (|y′ − y| < |z − y|))
to M in ψ(M), so that ψ(M) = (fc(x, y) ∧ (y′ > 5) ∧
ϕ(x, y, y′))[x ← vx, y ← vy]. Thus, given a y : 4 labelled

In our extended paper (Rodriguez et al. 2024) we include a
formal discussion on how to use optimizations depending on T .



as unsafe, ψ(M) will not return an arbitrary model y′ ∈
[6, 9], but the concrete y′ : 6. This converges in TZ.

Note that to enforce v′y closest to vy , we need to addi-
tionally extended the provider component with input vy .
Also, note that two soft constraints can be contrary to each
other, in which case the engineer has to establish priorities
using weights. It is also important to note that using soft
constraints does not compromise correctness, as any solu-
tion found by the solver that supports soft constraints will
satisfy the hard constraints as well. Hence, the correctness
of Thm. 1 and Thm. 2 remains in-place. Note that not only
ST can minimize the distance to D in arithmetic T , but in
any T for which engineers define a metric space.

Permissive Optimization. We showed that a ST can pro-
vide an output v′y that is the safe correction by closest to
the unsafe vy by D. Moreover, previously we showed that
we can generate multiple strategies using WR. Therefore, we
can optimize v′y using combinations in the WR; for instance,
return v′y such that distance to vy is minimal and v′y has been
chosen among the strategies represented by automata with
less than n states (i.e., using bounded synthesis with bound
n). We illustrate this in (Rodriguez et al. 2024).

Theorem 5. Let T = TZ and let a candidate output vy con-
sidered unsafe. Let a WR in an arbitrary state qk and an in-
put vx, which yields a set C = {ck, cj , ci, ...} of choices that
are safe for the system. We denote with F = {fck , fcj , fci}
the set of characteristic choice functions. There is always a
value v′y of y′ satisfying fr(vx)→ fc(y

′, vx), where fc ∈ F ,
such that for v′′y of y′′ satisfying fr(vx)→ f ′c(y

′′, vx), where
f ′c ∈ F and fc ̸= f ′c, then the distance from v′y to vy is
smaller or equal than the distance from v′′y to vy .

Note that Thm. 5 holds for other decidable T . This advan-
tage is unique to ST and it offers yet another permissivity
layer to measure distance with respect to the policy of D.

Related Work and Conclusion
Related Work. Classic shielding approaches (Bloem et al.
2015; Könighofer et al. 2017; Alshiekh et al. 2018; Avni
et al. 2019) focus on properties expressed in Boolean LTL,
and are incompatible for systems with richer-data domains:
i.e., they need explicit manual discretization of the re-
quirements. In the other hand, we have a sound procedure
that directly takes LTLT specifications (via (Rodriguez and
Sánchez 2024)) which we adapted to shielding. This is fun-
damentally new, and also that we can also optimize outputs
with respect to erroneous candidates.

Competing methods The approach by (Wu et al. 2019) is,
to the best of our knowledge, the only previous successful at-
tempt to compute rich-data shields. We compared our work
with theirs: for the 13 different specifications from (Wu et al.
2019), we generated our shield and measured time for com-
puting: (i) the Boolean step (clm. B), and (ii) producing the
final output (clm. T ). We compared our results at Tab. 1. For
the first task, our approach, on average, requires less than
0.21µs, while they take more than twice as long on average
(with over 0.47µs). Our approach was also more efficient in

Req. (Wu et al.) Ours
B T B B′ T TZ TA TB

φ0 30 631 19 17 171 173 183 184
φ1 41 590 22 21 190 192 199 212
φ2 80 520 24 20 214 194 214 199
φ3 45 340 22 18 106 105 120 105
φ4 50 640 21 17 118 122 120 117
φ5 80 520 21 16 124 124 127 156
φ6 37 370 16 14 141 156 148 151
φ7 49 710 20 20 163 159 165 173
φ8 45 580 21 15 133 134 143 189
φ9 18 610 14 11 170 179 172 203
φ10 50 690 25 19 173 168 182 177
φ11 31 530 21 17 177 178 191 177
φ12 57 510 29 22 156 155 179 182

Table 1: Comparison of our approach with (Wu et al. 2019),
measured in 0.1µs for B and in µs for T , TZ, TA and TB .

the second task, taking on average about 0.157ms, whereas
they take required 0.557ms on average. Moreover, note that
our (B) contains both detection and correction of candidate
outputs, whereas their (B) is only detection. It is important
to note another key advantage of our approach: (Wu et al.
2019) necessarily generates a WR, whereas we can also con-
struct CT (clm. B′), performs considerably faster (and can
operate leveraging highly matured techniques, e.g., bounded
synthesis). In addition to this, we (Wu et al. 2019) presents
a monolithic method that to be used with specifications con-
taining only linear real arithmetic TZ. Hence, if we slightly
modify T to TZ, then the method in (Wu et al. 2019) cannot
provide an appropriate shield, whereas we do (clm. TZ). In-
deed, our method encodes any arbitrary ∃∗∀∗ decidable frag-
ment of T (e.g., non-linear arithmetic or the array property
fragment (Bradley, Manna, and Sipma 2006)). Additionally,
we can optimize the outputs of ST with respect to differ-
ent criteria, such as returning the smallest/greatest safe out-
put (clm. TA) and the output closest to the candidate (clm.
TB). For this, we used Z3 with optimization (Bjørner, Phan,
and Fleckenstein 2015). Tab. 1 shows that our approach can
manage both rich data and temporal dynamics.

Conclusion. In this work, we present the first general
methods for shielding properties encoded in LTLT . These
allows engineers to guarantee the safe behavior of DRL
agents in complex, reactive environments. Specifically, we
demonstrate how shields can be computed from a controller
and from a winning region. This is not simply a direct ap-
plication of synthesis, instead, we can guarantee maximally
and minimally permissive shields, as well as shields opti-
mized with respect to objective functions in arbitrary decid-
able T . We also empirically demonstrate its applicability,
(see (Corsi et al. 2024) for an actual application).

A next step is to adapt shields modulo theories to prob-
abilistic settings (Pranger et al. 2021; Carr et al. 2023)
and planning (Camacho, Bienvenu, and McIlraith 2019).
We also want to leverage recent results on finite-trace
LTLT (Geatti et al. 2023), to model more expressive shields.
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