
Expressive Completeness of an Event-Pattern

Reactive Programming Language

César Sánchez, Matteo Slanina, Henny B. Sipma, and Zohar Manna

Computer Science Department
Stanford University

Stanford, CA 94305-9025
{cesar,matteo,sipma,zm}@CS.Stanford.EDU

Abstract. Event-pattern reactive programs serve reactive components
by pre-processing the input event stream and generating notifications
according to temporal patterns. Our general model of event-pattern re-
actions can express every “reasonable” model of message-passing reactive
system, including input-output machines.
The declarative language PAR allows the expression of complex event-
pattern reactions. PAR is a programming language and therefore is intrin-
sically deterministic. Despite its simplicity and deterministic nature, PAR

is expressively complete in the following sense: every event-pattern reac-
tive system that can be described and implemented—in any formalism—
using finite memory can also be described in PAR.

1 Introduction

With the popularization of publish-subscribe architectures, reactive systems are
often designed as components that communicate by sending and receiving events.
To achieve scalability, consumer components can subscribe to the middleware
using a subscription mechanism; the middleware then only notifies components
when their subscription requirements are met. The simplest subscription mecha-
nism is “event-filtering” where each individual event is rejected or notified based
on a simple attribute (e.g., channel). This service is provided in many popular
platforms, like Gryphon [1], Ace-Tao [23], Siena [5], and Elvin [24], or in
Typed-Event Publish/Subscribe [7]. More expressive subscription mechanisms
provide “content filtering,” which include predicates over the data in the event.
Typically, events are still accepted or rejected individually and independently of
the event history.

Event correlation is a more sophisticated subscription mechanism that allows
the description of temporal patterns that the input stream must satisfy to pro-
duce a notification. In this approach, not every event is necessarily discarded or
notified individually and immediately, but may be stored and aggregated when
the temporal pattern has been observed in the input stream. This approach
leads to event-pattern reactive programming. In practice, event correlation can
simplify the development of reactive components and increase their analyzabil-
ity, but bugs in the event-correlation subsystems or an informal description of

2

Navigation
Display

Navigation
Steering

Tactical
Steering

Middleware

GPS
Pilot

Control
Air Frame

(a) With no event correlation.

Navigation
Display

Navigation
Steering

Tactical
Steering

Middleware

GPS
Pilot

Control
Air Frame

EC

EC EC EC

(b) With event correlation.

Fig. 1: A simple avionics scenario.

their semantics can result in disastrous failures. Formal approaches to event-
correlation can therefore significantly improve the reliability of systems built
using these subscription mechanisms.

Example. Figure 1 shows an example of a small avionics scenario, inspired by
a real-life system. It consists of several components connected using real-time
middleware. The purpose of the system is to control the cockpit’s display to show
relevant information for the pilot, depending on the mode of operation. We con-
sider two such possible modes: (1) during tactical mode the tactical steering
component collects data from different sensors and produces meaningful tactical
information for the pilot; (2) during navigation mode the navigational steer-
ing component performs the computational task. The pilot can switch between
modes simply by pressing a button; this causes the PilotControl component to
publish an event, indicating the mode change, to the middleware.

In the scenario displayed in Figure 1(a), the components receive all events
sent by sensors and must decide whether to collect or discard them. In Fig-
ure 1(b), with event correlation, components are only activated (through an
event notification) when their temporal subscription expressions are matched.
For example, the navigational steering component is only activated whenever
“an event from GPS is received, after an event Mode=Navigation is received
with no event Mode=Tactical inbetween.” In this way, the development of the
component is simplified as part of its functionality is outsourced, as an event-
correlator, to the middleware. Also, the system is more analyzable since event
dependencies are explicit in the correlation expressions.

Background and Previous Research. In [21] we introduced ECL, an event
correlation language with prototype implementations integrated with ACE-TAO
[23] and FACET [10]. In a subsequent paper [22] we introduced PAR, a simplified
but equally expressive version of ECL, more suitable for formal analysis. The
formal semantics of PAR, summarized in Section 2, was defined in [22] in the
style of Plotkin’s Structural Operational Semantics (see [18]) using a coalgebraic
framework inspired by [19].

3

The main difference between PAR and other algebraic languages from con-
currency theory [16, 8, 2] is that we specifically designed PAR as a programming
language, and therefore it is deterministic, while every reasonable concurrency
model is intrinsically nondeterministic. This specificity creates challenging tech-
nical problems, some of which we solve in this paper. The language PAR also
resembles synchronous reactive languages, and in particular Esterel [4]. Imme-
diate reactivity and determinism are common fundamental features, but there
are also significant differences. For instance, every PAR program has a unique
well-defined semantics, while this may not be the case for some syntactically
correct Esterel programs ([3, 25]). Moreover, some correct Esterel programs
can become incorrect when put in an enclosing context, even if this context cor-
responds to correct programs on other instantiations, while in PAR every context
generates a uniquely defined behavior when instantiated.

This paper studies the expressive power of PAR. The main contribution is
the demonstration that every event-pattern reactive mechanism that can be
implemented in finite memory can be described by a PAR program, including
Moore and Mealy machines [17, 15]. This result parallels, in the domain of re-
active behaviors, the well-known equivalence between regular-expressions and
finite automata in the field of formal languages [11, 14, 9], and has equally im-
portant implications. Our result is technically more challenging, due to the more
complex semantic domain and the determinism of the language. The proof pro-
ceeds by constructing a set of formulas, one for each state of the event-pattern
machine, and then showing that each formula and its corresponding state are
bisimilar. Hence, by coinduction, we can conclude that the observable behaviors
are indistinguishable.

The paper is organized as follows. Section 2 presents PAR and its seman-
tics, and introduces the relevant notions of the coalgebraic framework. Section 3
contains the proof of expressive completeness. Finally, Section 4 presents the
conclusions. Some proofs are removed due to space considerations, and appear
in the appendix.

2 Event-Pattern Reactive Systems

Event-pattern reactive programs are components that recognize temporal pat-
terns of events and respond by generating output. The PAR expression language
enables a declarative specification of these patterns.

2.1 The Semantic Domain

In [22] we built a framework using coinductive techniques to define the semantics
of PAR and other formalisms for describing event-pattern behaviors. We briefly
summarize the relevant notions here.

We assume that the input event stream consists of input symbols taken from
a finite set Σ, and that the output notification domain O consists of subsets of

4

a finite set Γ of output symbols. Two output notifications can be combined by
set union, and we use ∅ to denote an empty notification.

An event-pattern reactive component processes input events and produces a
(possibly empty) output after each event is processed. Its semantics can be de-
fined by the behavior in response to all prefixes of an input stream, characterized
by two aspects: the output and the completion status. We distinguish three com-
pletion statuses. (1) success: the pattern has just been observed; (2) failure:
the pattern cannot be observed in any stream that extends the current prefix; (3)
incomplete: more input is needed or the input symbol is not relevant. We use
the symbols >, ⊥ and ι to represent success, failure and incomplete (resp.), and
we call C = {>, ι,⊥} the completion domain. All event-pattern behaviors have
the property that, once success or failure is declared, any subsequent output will
be empty and any completion status will be incomplete. The completion status
is introduced to permit a compositional definition of languages: expressions can
use the completion statuses of their subexpressions to preempt or restart them.

In [22] we defined event-pattern machines (EPMs), an abstract notion that
is general enough to model any reasonable formalism to describe event-pattern
reactive components (e.g., message-passing reactive systems, I/O automata [13],
etc.) By reasonable we mean that the formalism satisfies:

– Determinism: the system must behave deterministically.
– Causality : the current output must depend only on past input events.
– Immediate reaction: outputs are generated synchronously with inputs.

Determinism is common in programming languages for sequential or reactive
systems contrary to concurrency formalisms (that must model environmental
characteristics like communication or speed of parallel components) or modeling
languages (where non-determinism is used to express behaviors that will be
latter refined). In event-pattern reactive programming all the nondeterminism
comes from the environment, not from the component we describe. Immediate
reaction corresponds to the synchrony assumption: after each event is consumed,
the system reacts before processing more stimuli.

EPMs play the same role that the abstract notion of languages plays in the
theory of formal languages, but EPMs describe behaviors instead of acceptors.
Moreover, the notion of EPM is used to define the semantics of event-pattern
reactive programs and need not be the most efficient mechanism for their run-
time execution (see for example [21] where machines with parallelism are used).

Definition 1 (Event Pattern Machine). An event-pattern machine M :
〈M, o, α, ∂〉 consists of a set M of states and of functions o, α and ∂, each
acting on an input symbol and a state:
– o (output function): returns an output notification from O,
– α (completion function): returns a completion status from C, and
– ∂ (derivative function): returns a next state.

A machine must satisfy the silent property: for every state m and input a, if
αam 6= ι then ∂am is silent, where a set of states S is silent if, for every state
s in S and input a, αas = ι, oas = ∅ and ∂as ∈ S. A state is silent if it belongs
to some silent set.

5

s1
a

c/⊥

s2
a

c/⊥

s3

b[A]

c/⊥

s0

(a) Graphical representation.

Σ a a b a b b a b a c a a b b . . .

O ∅ ∅ A ∅ ∅ ∅ ∅ A ∅ ∅ ∅ ∅ ∅ ∅ . . .

C ι ι ι ι ι ι ι ι ι ⊥ ι ι ι ι . . .

M s2 s3 s1 s2 s2 s2 s3 s1 s2 s0 s0 s0 s0 s0 . . .

(b) Sample run from initial state s1.

Fig. 2: Example machine M with a sample evaluation for input “aababbabacaabb . . .”

The silent property simply establishes that a terminated program (or a pat-
tern observed) must exhibit no subsequent behavior. An event-pattern machine
in which M is finite is called a finite machine.

We extend the definitions of α, o and ∂ to strings of input symbols in the
standard way, as αwav = αa∂wv, owav = oa∂wv, and ∂wav = ∂a∂wv. It is
sometimes convenient to use a graphical representation of machines. States are
represented as nodes, with an edge connecting node n to m, labeled with input
symbol a, whenever ∂an = m. The completion status is shown on the edge if
αan 6= ι, and similarly for the output if oan 6= ∅. Self-loops with labels ι and ∅

are not shown.

Example 1. Figure 2(a) depicts a machine M. Node s0 is silent since all outgoing
edges are self-loops labeled ι and ∅. The only edge associated with nonempty
output connects s3 to s1, for which obs3 = A. Figure 2(b) shows a sample run of
machine M for input aababbabacaabb . . . ; below each input symbol appear the
output, the completion status, and the next state.

We use the notions of homomorphism and bisimulation to extract a unique
semantics for each state of every EPM. Homomorphisms are functions that pre-
serve observable behavior and bisimulations capture whether two behaviors are
indistinguishable.

Definition 2 (Homomorphism). A machine homomorphism from M to M′

is a function f : M → M ′ such a that, for all m ∈ M and a ∈ Σ:

oam = o′af(m),
αam = α′

af(m) and
f(∂am) = ∂′

af(m).

Definition 3 (Bisimulation). A bisimulation between machines M and M′

is a binary relation # such that for all m ∈ M , m′ ∈ M ′ and input symbol a:

if m#m′ then





oam = o′am′,

αam = α′
am′ and

∂am # ∂′
am′.

We say that two states m and m′ are bisimilar (and we write m ≈ m′) if there
is a bisimulation that relates them.

6

There is one machine B (called the machine of all behaviors) that is final
among all machines, i.e., there is exactly one homomorphism from any machine
M into B (this homomorphism is usually denoted J·KM or simply J·K).

The finality of B serves two purposes. First, to obtain the semantics of lan-
guages that describe event-pattern reactions, we equip the set of all language
expressions with appropriate functions α, o and ∂ satisfying the silent condition.
Through these, the set of all language expressions becomes a machine. Then, the
semantics of an expression ϕ is obtained as its (unique) homomorphical image
JϕK in B. We call this the principle of definition by corecursion. Second, it gives
the following principle of proof by coinduction:

Theorem 1 (Coinduction). Given states m and s from arbitrary machines, if
they are bisimilar (m ≈ s) then they define the same behavior (i.e., JmK = JsK).

In other words, bisimilarity captures whether two states react in the same
way when given the same stream of input symbols. We shall use Theorem 1
in Section 3 to show that the behavior of every state of a finite event-pattern
machine can be described with a PAR expression.

2.2 Syntax and Informal Semantics of PAR

A simple PAR expression is an equality test for an input symbol: for each a ∈ Σ

there is an expression a. If A ∈ O and x and y are PAR expressions, then so are:

x | y x repeatx silent
x ; y x[A] try x unless y

Informally, the PAR constructs behave as follows: The simple expression a
ignores every event that does not match a, and declares success when the first
a event is received. Negation x behaves as x except that it reverses success with
failure (and vice-versa). The selection expression x | y evaluates x and y in par-
allel, offering each the same events, and generating as output the combination
of the outputs of the subexpressions. Selection succeeds as soon as one of the
branches succeeds and fails when both branches fail. Sequential composition,
x; y, evaluates the first component, and upon successful completion starts the
evaluation of the second. If one of the subexpressions fail, sequential immedi-
ately fails. The repetition expression repeatx starts by evaluating x, called the
body ; if it completes with success, it continues with repeatx; if it fails, repe-
tition declares failure. The output expression x[A] evaluates x. Upon successful
completion, it outputs A—possibly combined with simultaneous outputs of the
subexpressions of x. The completion status of x[A] is the same as that of x. The
preemption operator try x unless y evaluates x and y in parallel: It succeeds
when x does; it fails if x fails or if y succeeds before x terminates. Finally, the
silent construct does not generate any output and always declares incomplete.

7

αEv1 : a
a
 > αEv2 : a

b
 ι (if b 6= a) αSil : silent

a
 ι

x
a
 c

αSeq
x ; y

a
 c ∧ ι

x
a
 c y

a
 d

αSel
x | y

a
 c ∨ d

x
a
 c

αRep
repeatx

a
 c ∧ ι

x
a
 c

αPush
x[A]

a
 c

x
a
 c

αNeg
x

a
 ĉ

x
a
 c

αTry1 c 6= ι
try x unless y

a
 c

x
a
 ι y

a
 d

αTry2

try x unless y
a
 d̂ ∧ ι

(a) Rules for the completion function αa.

Ev : a
b
→ a (b 6= a)

x
a
→ι x′

Neg
x

a
→ x′

x
a
→ι x′

Push
x[A]

a
→ x′[A]

x
a
→ι x′

Seq1

x ; y
a
→ x′ ; y

x
a
 >

Seq2

x ; y
a
→ y

x
a
→ι x′ y

a
→ι y′

Sel1
x | y

a
→ x′ | y′

x
a
 ⊥ y

a
→ι y′

Sel2
x | y

a
→ y′

x
a
→ι x′ y

a
 ⊥

Sel3
x | y

a
→ x′

x
a
→ι x′

Rep1

repeatx
a
→ x′ ; repeatx

x
a
 >

Rep2

repeatx
a
→ repeat x

x
a
→ι x′ y

a
→ι y′

Try1

try x unless y
a
→ try x′ unless y′

x
a
→ι x′ y

a
 ⊥

Try2

try x unless y
a
→ x′

x
a

6 ι
GlobalSil

x
a
→ silent

Sil : silent
a
→ silent

(b) Rules for the step function ∂a.

oEv : a
b
⇒ ∅

x
a
⇒ o

oNeg
x

a
⇒ o

x
a
⇒ o

oSeq
x ; y

a
⇒ o

x
a
⇒ o y

a
⇒ u

oSel
x | y

a
⇒ o ∪ u

x
a
⇒ o

oRep
repeat x

a
⇒ o

x
a
⇒ o y

a
⇒ u

oTry
try x unless y

a
⇒ o ∪ u

x
a
⇒ o x

a
 >

oPush1

x[A]
a
⇒ o ∪ A

x
a
⇒ o x

a

6 >
oPush2

x[A]
a
⇒ o

oSil : silent
a
⇒ ∅

(c) Rules for the output function oa.

Fig. 3: Definition of the functions α, o and ∂ for PAR. Here we use the following
conventions: considering that > > ι > ⊥, we use c ∧ d to represent the greatest-lower-
bound of c and d, and ĉ to reverse the completion status of c mapping > to ⊥, ⊥ to >
and ι to ι.

8

2.3 Formal Semantics of PAR

Using the finality of B we can define the formal semantics of PAR by defining the
functions αa, oa and ∂a that appear in Figures 3a, 3b and 3c. These functions
are presented as rules using the following notation: x

a
 c stands for αax = c;

x
a
→ y stands for ∂ax = y (with x

a
→ι y as an abbreviation for both x

a
 ι and

x
a
→ y); and x

a
⇒ o stands for oax = o. We illustrate these definitions describing

some of the rules:

Completion function: Rules (αEv1) and (αEv2) express that the simple
expression a declares success upon receiving an a event and is incomplete other-
wise. More interesting is rule (αSeq): the completion status of x ; y is that of x,
but no higher than ι (i.e., either ⊥ or ι). Rule (αTry1) says that if the try part
completes in > or ⊥, then so does the try-unless expression. Rule (αTry2) says
that if the try part is incomplete and the unless part succeeds then try-unless
fails, and that it remains incomplete otherwise.

Derivative function: Rule (Rep1) establishes that if, after an event is pro-
cessed, the body x is still incomplete, with x′ as derivative, then the successor
expression is x′ ;repeatx. If, on the other hand, x declares success, rule (Rep2)
states that the successor expression is repeatx. The third case (x declaring
failure) is handled by the global rule (GlobalSil), since in that case, because of
(αRep), the completion status of repeatx is ⊥.

Output function: The rules for output (oEv) and (oSil) state that simple
expressions generate no output. Rules (oNeg), (oRep), and (oSeq) establish
that the output is that of the evaluating subexpressions, while rules (oSel) and
(oTry) combine the output from the subexpressions evaluated in parallel. The
rules (oPush1) and (oPush2) govern how new output is created.

Example 2. The behavior of state s1 of machine M in Figure 2 is described by
the expression repeat (try a ; a ; b[A] unless c). Alternatively, the same behav-
ior is also described by try repeat (a ; a ; b[A]) unless c. These two expressions
can be easily proven equivalent by giving a bisimulation that relates them.

The following theorem (from [22]) justifies the study of expressivity up-to
bisimulation in the algebra of PAR expressions.

Theorem 2. (1) Bisimilarity is a PAR congruence. (2) Bisimilarity is the largest
PAR congruence that refines output equivalence.

2.4 Extending PAR

In this section we show some examples of additional constructs of PAR. Some
of these extensions were included in [21], demanded by developers, but due to
space limitations we only describe here some constructs that are later needed
for the presentation of this paper (see the appendix for more examples).

9

x
a
 c

αPer
persist x

a
 c ∨ ι

x
a
⇒ o

oPer
persist x

a
⇒ o

x
a
→ι x′

Per1
persist x

a
→ x′ ; persist x

x
a
 ⊥

Per2
persist x

a
→ persist x

Fig. 4: Rules for the persist operator.

We can define a new construct either by giving a set of rules for the ∂, α and
o functions or as equivalences in terms of primitive (or previously defined) PAR

constructs. Using equivalences is justified since from them we derive the values
of the functions ∂, α and o for the new construct.

For example, the following expressions immediately succeed (resp. fail) upon
the reception of any event:

ss
def
=

∣∣
a∈Σ

a, ff
def
= ss .

From these, we define the immediate occurrence of an input symbol a as:

a!
def
= try a unless ss

The expression a! immediately terminates upon the reception of an input event,
either succeeding if it is a or failing otherwise.

We define the positive and negative versions of an expression x as:

x+ def
= x | x x− def

= x+

An expression differs from its positive and negative versions only in the com-
pletion status (x+ cannot fail, x− cannot succeed), but not in the instant this
termination is produced or in the output generated meanwhile. Some equiv-
alences, like the idempotency of + and −, or their annihilation against each
other, hold:

(x+)+ ≈ x+ (x+)− ≈ x− x+ ≈ x−

(x−)− ≈ x− (x−)+ ≈ x+ x− ≈ x+

The constructs ff and ss let us define an infinite repetition loop as loop x
def
=

repeatx+. The expression silent, included in the definition of PAR, can be
defined in terms of the other primitive constructs, since silent ≈ loop ss . This
is the only redundant primitive operator in PAR, which we kept for the sake of
simplicity.

We can similarly define another repetition expression, which we call persist.
It first evaluates the body: if it finishes with success, then persist also finishes
with success; if the body fails then persist restarts the evaluation. The defining
rules for persist appear in Figure 4. The following equivalences hold:

10

persist x ≈ repeatx repeatx ≈ persist x

These duality laws could have been used as an alternative definition of persist
using repetition and negation.

Sometimes it is useful to delay the failing of one expression until some other
expression terminates. This can be accomplished as follows:

y W x
def
= y | x−

If expression y terminates with success, then y W x (read “y waiting for x”)
immediately succeeds. If, on the other hand, y fails, then y W x waits for x to
terminate and fails.

3 Expressive Completeness

Every PAR expression can be described with finite memory, an easy consequence
of the following proposition.

Proposition 1. For every PAR expression x, the set {∂wx | for some string w}
is finite.

The main contribution of this paper is that the converse also holds: every
state of a finite event-pattern machine can be described by a PAR expression.

Without loss of generality, since all silent states are bisimilar, we assume that
the finite machine has at most one silent state. The goal is to construct a set
of PAR formulas, each one capturing the behavior of a state in the machine.
The construction proceeds as follows. First, the non-silent states are arbitrarily
numbered from 1 to n. We will use vi to refer to the state indexed i. The
silent state, if it exists, receives index n + 1 and is denoted by vshh . Then, we
incrementally build a set of intermediate formulas whose behavior simulates more
and more accurately that of its corresponding state for certain input strings.
Finally, using the intermediate formulas we define a set of expressions Φi, each
one bisimilar to a state vi.

3.1 Intermediate Formulas

This stage of the construction runs for n rounds. At round k, we build a set of
formulas ϕk

ij , one for each pair of non-silent states vi and vj . The formula ϕk
ij

approximates the behavior of vi for direct paths to vj :

Definition 4 (direct path). A non-empty string w is a direct path from state
v1 to state v2 if ∂wv1 = v2 and, for all proper prefixes u of w, ∂uv1 6= v2.

Direct paths correspond to paths in the graph of the machine that visit the
destination node exactly once, at the end of the traverse. The expression ϕk

ij

captures the behavior of state vi for direct paths that lead to vj visiting only
states labeled k or less along the way. Upon reaching vj , ϕk

ij completes with suc-
cess, it fails if a state of index larger than k is reached, and it declares incomplete
otherwise.

In order to formalize this intuition we classify the input symbols for ϕk
ij :

11

Definition 5. Given an index k and nodes vi and vj , we partition Σ into:

– Successful symbols (Sk
ij): symbols a for which ∂avi = vj .

– Incomplete symbols (Ik
ij): symbols a for which ∂avi = vl, for l 6= j and l ≤ k.

– Failing symbols (F k
ij): symbols a for which ∂avi = vl, for l 6= j and l > k.

Incomplete symbols could, in principle, be extended to direct paths from vi to
vj (at least no violation of the restriction to visit states labeled k or less has
occurred so far). Failing symbols can never be extended to such a path, since a
state labeled greater than k is visited.

The correctness of the construction relies on all formulas ϕk
ij satisfying the

following property:

Property 1. Let a be an input symbol, and ∂avi = vm the corresponding deriva-
tive:

1.1 if a is an incomplete symbol: αaϕk
ij = ι oaϕk

ij = oavi ∂aϕk
ij ≈ ϕk

mj ,

1.2 if a is a successful symbol: αaϕk
ij = > oaϕk

ij = oavi ∂aϕk
ij = silent,

1.3 if a is a failing symbol: αaϕk
ij = ⊥ oaϕk

ij = ∅ ∂aϕk
ij = silent.

Properties 1.1 and 1.2 guarantee that ϕk
ij generates the same output as the state

vi for all words in any direct path to vj that only visit states labeled k or less.
Notice that ϕk

ij can disagree with state vi for failing symbols since, in this case,
the output of the formula is empty and the output of the state need not be.
These properties also establish that the completion status of the formula ϕk

ij

is success for successful symbols, fail for failing symbols and incomplete for all
others. Again, in the case of successful and failing symbols the completion be-
havior can differ from vi. Consider, for example, a successful symbol, for which
the completion of ϕk

ij is >. The corresponding derivative in the machine directly
connects vi to vj , and since vj is not the silent state, the completion status is
ι. These discrepancies are reduced during the construction as k grow. Eventu-
ally, when k = n, we have F n

ij = ∅ and the only discrepancies left are in the
completion status.
We now define the formulas ϕk

ij inductively:

Base case (k = 0): Let vi and vj be two states:

ϕ0
ij

def
=

∣∣
vi

a/ι[S]
−−−−→vj

a![S].

Given an input symbol a, ϕ0
ij either immediately succeeds or immediately

fails; it succeeds if ∂avi = vj , and fails otherwise. In particular, if there is no
input symbol connecting vi to vj , then ϕ0

ij is equivalent to ff , which immediately
fails for every input symbol.

Example 3. For machine M in Figure 2(a), where we number states s1 as 1, s2

as 2 and s3 as 3, we obtain:

ϕ0
12 = a!, ϕ0

31 = b![A], ϕ0
13 = ff and ϕ0

22 = b!

12

vi

ϕk−1
ik

ϕk−1
ij

vk

ϕ
k−1
kj

ϕk−1
kk

vj

Fig. 5: Direct paths from vi to vj , using only nodes indexed k or less classified according
to whether vk is visited. Dotted arrows distinguish paths from edges.

Lemma 1. All formulas ϕ0
ij satisfy Property 1.

Inductive step (k > 0): We assume that we have defined all the formulas ϕk−1
ij

satisfying Property 1, and proceed to define ϕk
ij . First, the particular case where

indices j and k are equal is easy: ϕk
ik

def
= ϕk−1

ik .

For the following we assume k 6= j. There are two kinds of direct paths from
vi to vj : those that visit vk and those that do not. We first consider paths that
visit state vk. These paths may loop around vk (zero, one, or more times), and
either keep looping forever or eventually enter a path that visits vj .

To define a formula that captures this case we make use of ϕk−1
kj and ϕk−1

kk ,

previously defined. Note that the formula ϕk−1
kj must be restarted precisely after

ϕk−1
kk succeeds. This can be achieved with (ϕk−1

kk ∗ ϕk−1
kj) using the new binary

operator ∗ defined as follows:

x ∗ y
def
= try persist (y W x) unless repeatx.

The ∗ operator is designed to work for sub-formulas such that, for every input, y

completes no later than x. This is actually our case, since if ϕk−1
kk completes then

the reached state is indexed k or greater, and then, if ϕk−1
kj has not completed

yet, it has to do so at exactly that point.
Informally, ∗ works as follows. For every input, the output is the combination

of that of the subexpressions. For completion, consider all possible cases:

1. y succeeds: regardless of what x does, y W x immediately succeeds, and
consequently the persist and x ∗ y also succeed.

2. y fails: then, y W x waits for x to complete (which can happen at the same
time or later). Then, independently of the completion status of x, yWx fails,
and then the persist restarts. To see what happens with the unless branch
we consider the possible values of x upon completion:

– x succeeds: repeat is restarted, at the same time as the persist . In other
words, the whole formula is restarted. This behavior is used to model a
loop around state vk .

– x fails: then repeat fails, and then the unless branch succeeds, which
makes the whole expression fail.

13

y
a
 ⊥ x

a
→ι x′

Str1
x ∗ y

a
→ x′ ; x ∗ y

x
a
→ι x′ y

a
→ι y′

Str2
x ∗ y

a
→ y′ | (x′ ; x ∗ y)

y
a
 ⊥ x

a
 >

Str3
x ∗ y

a
→ x ∗ y

Fig. 6: Some derivative rules for the ∗ operator (these rules are valid under the as-
sumption that y terminates no later than x).

Some derivative laws that apply for ∗ appear in Figure 6.
Now, using ∗, we are ready to define the formula that captures the behavior

of node vi for direct paths to vj that visit vk:

Kleenek
ij

def
=





ϕk−1
ik ; (ϕk−1

kk ∗ ϕk−1
kj) if i 6= k

ϕk−1
kk ∗ ϕk−1

kj otherwise

Finally, to complete the definition of ϕk
ij we also have to consider the paths that

do not visit vk, captured directly by ϕk−1
ij , and compose these two cases:

ϕk
ij

def
= ϕk−1

ij | Kleenek
ij .

Lemma 2. For all nodes vi, vj and index k, ϕk
ij satisfies Property 1.

3.2 Final Formulas

Using the formulas ϕn
ij obtained in the last step of the previous stage, we now

define formulas Φi, one for each non-silent state vi. The behavior of the silent
state vshh , if present, is modeled by the formula silent.

We first need to define variations of the Kleene formula to cover the cases of
succeeding and failing transitions in the machine. For each state vi:

Kleene>
i

def
= ϕn

ii ∗
(∣∣

vi

a/>[S]
−−−−→vshh

a![S]
)

Kleene⊥
i

def
= ϕn

ii ∗
(∣∣

vi

a/⊥[S]
−−−−→vshh

a![S]
)

The formula Kleene>
i captures the behaviors of state vi for input strings that

either loop forever around vi, or eventually succeed directly from vi. The formula
Kleene⊥

i works similarly except that it captures behaviors that fail directly from
vi. Note that Kleene⊥

i succeeds (instead of failing).
Finally, the behavior of vi is defined by composing all possible paths:

Φi
def
=




try Kleene>
i |

∣∣
j
ϕn

ij ; Kleene>
j

unless Kleene⊥
i |

∣∣
j
ϕn

ij ; Kleene⊥
j




14

3.3 Proof of correctness

The correctness of the construction relies on the following lemma:

Lemma 3. For all states vi and input symbols a, (1) αaΦi = αavi and oaΦi =
oavi. (2) If αavi is incomplete and ∂avi = vl then ∂aΦi ≈ Φl.

Proof. (1) See appendix. (2) For all branches with j 6= l, ∂aϕn
ij ≈ ϕn

lj , and then

∂a(ϕn
ij ;Kleene>

j) ≈ (ϕn
lj ;Kleene>

j). On the other hand, for j = l, since αaϕn
il = >,

we have ∂a(ϕn
il ;Kleene>

j) = Kleene>
l . Finally, ∂aKleene>

i ≈ (ϕn
li ;Kleene>

i). This

holds since all | branches inside Kleene>
i fail. Hence,

∂aΦi ≈




try ϕn
li ; Kleene>

i | Kleene>
l |

∣∣
j 6=l

ϕn
lj ; Kleene>

j

unless ϕn
li ; Kleene⊥

i | Kleene>
l |

∣∣
j 6=l

ϕn
lj ; Kleene⊥

j




≈




try Kleene>
l |

∣∣
j
ϕn

lj ; Kleene>
j

unless Kleene⊥
l |

∣∣
j
ϕn

lj ; Kleene⊥
j


 = Φl.

The reordering of terms in the last step was possible by the commutativity and
associativity of the | operator. ut

Theorem 3. Every final Φi is bisimilar to its corresponding state vi.

This is a direct consequence of Lemma 3 and implies that the behavior of
state vi is captured precisely by formula Φi. Therefore, every finite graph can be
expressed by a PAR formula.

4 Conclusions

We have shown that every event-pattern reactor that can be described and im-
plemented with finite memory can be expressed in PAR. The method described
may not be the most efficient translation from finite behaviors to PAR expres-
sions, or EPMs may not be the formalism of choice to represent behaviors. The
importance of this result, however, is that a PAR expression is always guaranteed
to exist. In addition to its theoretical value, this result also has practical value,
for example, in the development of compilers and analysis tools. Compilers only
need to support the minimal set of constructs, while additional constructs can
be reduced to this set by a preprocessor. Similarly, analysis methods need to
cover only the basic constructs.

Future work includes: (1) Study whether, unlike regular-expressions (see [6,
20, 12]), there are equational axiomatizations of PAR. (2) Construct decision pro-
cedures for the problem of equational reasoning of parameterized PAR expres-
sions, and for the full first-order case. Efficient solutions will allow the synthesis
of PAR expressions and the implementation of behavior-preserving optimiza-
tions. (3) Go beyond the finite state case by equipping PAR with capabilities to
store and manipulate data, and study to what extent the expressive power is
still complete in some suitable sense, and the analysis problems are tractable.

15

References

1. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra.
Matching events in a content-based subscription system. In PoDC’99, 1999.

2. J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge U. Press, 1990.
3. G. Berry. The constructive semantics of Pure Esterel. Draft version 3. Draft book

available at http://www.esterel-technologies.com, 1999.
4. G. Berry. Proof, language, and interaction: essays in honour of Robin Milner,

chapter The foundations of Esterel, pages 425–454. MIT Press, 2000.
5. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-

area event notification service. ACM Trans. on Comp. Sys., 19(3):332–383, 2001.
6. J. H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.
7. P. Th. Eugster and R. Guerraoui. Distributed programming with typed events.

IEEE Software, 24(2):56–64, 2004.
8. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
9. J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages and

computation. Addison-Wesley, 1979.
10. F. Hunleth, R. Cytron, and C. Gill. Building customizable middleware using aspect

oriented programming. In Works. on Adv. Sep. of Concerns (OOPSLA’01), 2001.
11. S. C. Kleene. Representation of events in nerve nets and finite automata. In

Automata Studies, number 34, pages 3–41. 1956.
12. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular

events. Information and Computation, 110(2):366–390, 1994.
13. N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-

Quarterly, 2(3), 1989.
14. R. F. McNaughton and H. Yamada. Regular expressions and state graphs for

automata. IEEE Trans. on Electronic Computers, 9:39–47, 1960.
15. G. H. Mealy. A method for synthesizing sequential circuits. Bell Systems Tech. J.,

34(5):1045–1079, 1955.
16. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
17. E. F. Moore. Gedanken-Experiments on sequential machines. In Automata Studies,

pages 129–153, 1956.
18. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report

DAIMI FN-19, University of Aarhus, 1981.
19. J.J.M.M. Rutten. Automata and coinduction (an exercise in coalgebra). In CON-

CUR’98, 1998.
20. A. Salomaa. Two complete axiom systems for the algebra of regular events. Journal

of the ACM, 13(1):158–169, 1966.
21. C. Sánchez, S. Sankaranarayanan, H. B. Sipma, T. Zhang, D. Dill, and Z. Manna.

Event correlation: Language and semantics. In EMSOFT’03, pages 323–339, 2003.
22. C. Sánchez, H. Sipma, M. Slanina, and Z. Manna. Final semantics for Event-

Pattern Reactive Programs. To appear in CALCO’05, 2005. Available from http:

//theory.stanford.edu/~cesar/papers/final-semantics.html.
23. D. Schmidt, D. Levine, and T. Harrison. The design and performance of a real-time

CORBA object event service. In Proc. of OOPSLA’97, 1997.
24. B. Segall and S. Arnold. Elvin has left the building: A publish/subscribe notifica-

tion service with quenching. In Queensland AUUG Summer Tech. Conf., 1997.
25. O. Tardieu. A deterministic logical semantics for Esterel. In Workshop on Struc-

tural Operational Semantics, SOS ’04, 2004.

16

A Proofs

Proposition 1. For every expression x, the set {∂wx | for some string w} is
finite.

Proof. (sketch) The proof proceeds by structural induction on PAR expressions.
The derivative of every term is either silent, the term itself, a derivative of one
of its sub-terms (possibly followed sequentially by the term itself), or the combi-
nation (with the same root symbol) of derivatives of its sub-terms. This method
also gives an exponential upper-bound on the size of the set of derivatives, which
is tight. ut

Lemma 1. All formulas ϕ0
ij satisfy Property 1.

Proof. First, Property 1.1 holds vacuously since there are no incomplete symbols.
If a is a successful symbol, by definition of a!, ϕ0

ij succeeds, and its output
coincides with that of state vi. If, on the other hand, a is a failing symbol, then
every branch of the selection fails. Consequently, the completion status of ϕ0

ij is
⊥ and the output is empty. ut

Lemma 2. For all states vi, vj and index k, ϕk
ij satisfies Property 1.

Proof. We proceed by induction on k, with the base case already proved in
Lemma 1. For the inductive step we considered the cases for an input symbol a

separately:

1. Let a be a successful symbol (a ∈ Sk
ij). Then, ∂avi = vj , so a is also a

successful symbol for ϕk−1
ij . Hence, αaϕk−1

ij = > and therefore αaϕk
ij = >

and ∂aϕk
ij = silent. Moreover, by inductive hypothesis oaϕk−1

ij = oavi so

oaϕk
ij = oavi. Hence, Property 1.2 holds.

2. Let a be a failing symbol (a ∈ F k
ij). Similar.

3. Let a be an incomplete symbol (a ∈ Ik
ij). We consider two cases:

(a) vi
a
−→ vk. In this case a is in Sk−1

ik but in F k−1
ij . Consequently,

αaϕk
ij = αaKleenek

ij = ι, and oaϕk
ij = oaKleenek

ij = oavi,

by inductive hypothesis. Finally, ∂aϕk
ij = ∂aKleenek

ij . It follows from
properties of ∗:

∂aKleenek
ij = (ϕk−1

kk ∗ ϕk−1
kj) = Kleenek

kj = ϕk
kj .

Then Property 1.1 holds.
(b) vi

a
−→ vl with l < k. Then, a is also an incomplete symbol for ϕk−1

ij .

Consequently, by inductive hypothesis αaϕk−1
ij = ι and αaKleenek

ij = ι,

and we can conclude that αaϕk
ij = ι. Second, oaϕk

ij = oaϕk−1
ij = oavi.

Finally, if i 6= k, then

∂aϕk
ij = ∂aϕk−1

ij | ∂aKleenek
ij

= ϕk−1
lj | (ϕk−1

lk ; Kleenek
kj) ≈ ϕk

lj .

17

On the other hand, if i = k we make use of the following property of
Kleene :

Kleenek
kj ≈ ϕk−1

kj | (ϕk−1
kk ; Kleenek

kj),

to conclude that

∂aϕk
ij ≈ ϕk−1

lj | (ϕk−1
lk ; Kleenek

kj) ≈ ϕk
lj .

Then, Property 1.1 also holds. ut

To show part (2) in Lemma 3 we use some properties of ∗, that appear in
Figure 6.

Lemma 3. For all states vi and input symbols a, (1) αaΦi = αavi and oaΦi =
oavi. (2) If αavi is incomplete and ∂avi = vl then ∂aΦi ≈ Φl.

Proof. (1) We proceed by cases:

1. If vi
a/ι[S]
−−−−→ vl, then all the direct branches in Kleene>

i and Kleene⊥
i are not

satisfied. Therefore oaΦi = ∪joaϕn
ij = ∪oavi = oavi. Moreover, all select

branches of both the try and unless parts are incomplete, so αaΦi = ι =
αavi.

2. If vi
a/>[S]
−−−−→ vshh , then oaϕn

ij = ∅, and oaKleene>
i = oavi so oaΦi = oavi.

Also, αaKleene>
i = αaΦi = ⊥ = αavi.

3. The case vi
a/⊥/S
−−−−→ vshh is handled similarly, except that in this case the

Kleene⊥
i succeeds but, being in the scope of unless, αaΦi = ⊥ = αavi.

B More examples of extensions of PAR

Example 4. There is one very useful operator in practice: accumulation, which
runs a series of sub-expression in parallel, succeeding when all of them do, and
failing as soon as one fails.

We could enrich the definition of PAR by adding the rules in Figure 7 to
define the accumulation operator +:

The following congruences hold for accumulation:

x | y ≈ x + y, x + y ≈ x | y.

These duality laws could have been used to define accumulation from selection
and negation. Accumulation was one of the operators included in the language
ECL, introduced in [21], but as this paper shows, it is not necessary to achieve
the full power of pattern reactions. The same remarks hold for the following
operator.

Example 5. A parallel construct allows the specification of independent parallel
branches, that does not terminate despite the completion status of the branches:

x ‖ y
def
= x+ + y+ + silent

18

x
a
 c y

a
 d

αAcc
x + y

a
 c ∧ d

x
a
⇒ o y

a
⇒ u

oAcc
x + y

a
⇒ o ∪ u

x
a
→ι x′ y

a
→ι y′

Acc1

x + y
a
→ x′ + y′

x
a
 > y

a
→ι y′

Acc2

x + y
a
→ y′

x
a
→ι x′ y

a
 >

Acc3

x + y
a
→ x′

Fig. 7: Rules for the accumulation operator +.

