
Final Semantics for Event-Pattern Reactive

Programs

César Sánchez, Henny B. Sipma, Matteo Slanina, and Zohar Manna

Computer Science Department
Stanford University

{cesar,sipma,matteo,zm}@CS.Stanford.EDU

Abstract. Event-pattern reactive programs are front-end programs for
distributed reactive components that preprocess an incoming stream of
event stimuli. Their purpose is to recognize temporal patterns of events
that are relevant to the serviced program and ignore all other events,
outsourcing some of the component’s complexity and shielding it from
event overload. Correctness of event-pattern reactive programs is essen-
tial, because bugs may result in loss of relevant events and hence failure
to react appropriately.
We introduce PAR, a specification language for event-pattern reactive
programs. We propose a new approach for defining such languages in
terms of observations and actions. This approach applies standard tech-
niques from coalgebra to obtain instances of the corecursion and coin-
duction principles. Corecursion is used to formally define the operational
semantics of PAR, and coinduction allows to prove general equivalences
between (ground and parameterized) PAR programs.
This is the first of a series of papers in which we study questions of
expressive completeness, complexity, and formal verification techniques
for specification languages of event-pattern reactive programs.

1 Introduction

Reactive programs are software components that maintain an ongoing interac-
tion with their environment. With the introduction of middleware technologies
and the emphasis on component-based systems, this interaction is increasingly
performed through events. Reactive components, which can range from simple
sensors to sophisticated monitors or controllers, operate relatively autonomously
and communicate using events. This gives rise to publish-subscribe architectures,
in which producer components publish events to the middleware and consumer
components subscribe with it to receive relevant events.

Different subscription policies are possible. The simplest uses a list of event
types and/or senders that can be syntactically matched by an attribute in the
event. This is known as event filtering and is available in most popular platforms,
including Gryphon [1], Ace-Tao [18], Siena [3], and Elvin [19]. A more so-
phisticated policy is content filtering, in which the subscription contains a list of
predicates on the data of the event. This approach is especially popular in active

databases and stock market applications. With these policies every single event
is either discarded or dispatched, independently of the event history. Another
extension of event filtering, orthogonal to content filtering, is event correlation,
the approach studied in this paper. Here, subscriptions may contain temporal
patterns of either attributes or content predicates on events.

Event correlation is attractive for several reasons: it may substantially re-
duce unnecessary component activations, thereby improving the performance; it
separates event pattern recognition from event processing, thus increasing ana-
lyzability of component interactions; it allows automatic synthesis of the pattern
recognition code, thus reducing ad-hoc implementations and improving reusabil-
ity. At present, some middleware platforms provide limited forms of event corre-
lation services. Unfortunately, formal semantics are not given, making their use
risky: unclear semantics or incorrect implementations may result in the loss of
important events, potentially causing failure to respond to critical situations.

In a previous paper [16] we introduced ECL, a language to specify event cor-
relation patterns, developed under the DARPA PCES program for the Boeing
Boldstroke [20] platform to support mission-critical avionics applications. We
gave a formal semantics in terms of correlation machines, an extension of finite-
state transducers that enabled direct translation into event-processing code. Pro-
totype implementations were integrated in ACE-TAO [18] and FACET [9].

In this paper we shift focus from implementation to analysis, in particular
program equivalences. Practical applications need to determine whether a given
pattern expression can be replaced by a simpler one, or merged with that of an-
other component, without affecting its behavior. Correlation machines, however,
are not well suited to answer these questions, since they explicitly model opera-
tional details, such as parallelism, into the semantics. Instead, we are interested
in behavioral equivalences, in which two programs are considered equivalent if
they exhibit the same notification behavior.

We intend to study languages for event-pattern reactive programming alge-
braically, influenced by the pioneering work on languages for the study of con-
currency, mostly process algebras [13, 8, 2] and Hennessy-Milner logic [7]. The
main difference is that we specifically design our languages to be deterministic,
because we want to synthesize executable behaviors from the expressions, while
every reasonable concurrency model is intrinsically nondeterministic.

Coalgebra is a convenient framework to study dynamic systems, and, in gen-
eral, systems with hidden state spaces, where only the observable behavior is of
interest [10]. For example, in [15] Rutten shows how equivalence of regular ex-
pressions can be analyzed in this framework. He constructs an automaton, whose
states correspond to languages, that is final with respect to all other automata;
then he shows that language equivalence can be reduced to proving bisimilarity
of their corresponding states in this final automaton. In this paper we develop a
similar theory for the behaviors of event-pattern machines, and proof techniques
to decide equivalence of classes of event pattern expressions.

We develop a framework for specification formalisms for event-pattern reac-
tive programs, based on standard coalgebraic techniques. We chose to develop

our techniques directly from the basic definitions, rather than treat them as spe-
cial cases of general results about the existence of final semantics and coinduction
principles (for example, from Hidden Algebras [5, 14, 4]). Since our expressions
do not describe experiments and observations, developing all the necessary ma-
chinery to use one such general result would not significantly simplify the pre-
sentation. Our resulting framework is simple and elegant.

We introduce PAR—a subset of ECL—a declarative language for the speci-
fication of event-pattern reactive programs. We illustrate the application of our
coalgebraic framework by defining the formal semantics of PAR and studying
some of its properties.

The paper is organized as follows. Section 2 presents PAR and informally de-
scribes the intended semantics. Section 3 presents the notions of event-pattern
machines and behaviors, and proves that the so-called “machine of all behaviors”
is final among all machines, from which we obtain the principles of coinduction
and corecursion for machines. The use of corecursion is illustrated in Section 4 to
obtain the formal (behavioral operational) semantics of PAR; the use of coinduc-
tion is shown in Sections 5 and 6, where we discuss some equivalences between
PAR programs. Section 7 contains a final discussion and sketches some future
work.

2 The Language PAR

Event-pattern reactive programs are components that recognize temporal pat-
terns of events. In this section we introduce the PAR

1 expression language which
enables a declarative specification of these patterns. PAR is a subset of ECL,
which we proposed in [16], but is equally expressive. In fact, every finitely ex-
pressible event pattern can be described in PAR [17].

Syntax. We assume that the input event stream consists of input symbols taken
from a finite set Σ, and that the output domain O consists of subsets of a finite
set Γ of output symbols. The absence of output is denoted by ∅; two output
notifications can be combined, which in this simple model is implemented as set
union.

A simple PAR expression is an equality test for an input symbol, that is, for
each a ∈ Σ there is an expression a. If A ∈ O and x and y are PAR expressions,
then so are

x | y x repeatx silent
x ; y x[A] try x unless y

Informal Semantics. A PAR program processes input events, one at a time,
and produces a (possibly empty) output after each event is processed. The se-
mantics of PAR expressions can be defined by their behavior in response to all
prefixes of input streams. This behavior is characterized by two aspects: the
output and the completion status. The output is the information transmitted

1 Event-PAttern Reactions.

to the served reactive component, where a nonempty output usually causes a
component activation. The completion status is introduced to assist in the com-
positional definition of the semantics. We distinguish three completion statuses:
success, to represent that the pattern has just been observed; failure, to indi-
cate that the pattern cannot be observed in any stream that extends the current
prefix; incomplete, which represents that more input is needed or the input
symbol is not relevant. We use the symbols > to represent success, ι for incom-
plete, and ⊥ to represent failure. All PAR behaviors have the property that, once
success or failure is declared, the output will be empty and the completion status
will be incomplete for all subsequent inputs.

Informally, the PAR constructs behave as follows:

Simple: The expression a ignores every event that does not match a, and declares
success as soon as the first a event is received.

Negation: x behaves as x except it reverses success with failure (and vice-versa).

Selection: The expression x | y evaluates x and y in parallel, offering each the
same events, and generating as output the combination of the subexpressions’
outputs. Selection succeeds as soon as one of the branches succeeds and only
fails when both branches have failed.

Sequential: Sequential composition, x; y, evaluates the first subexpression, and
upon successful completion starts the evaluation of the second. If one of them
fails, sequential immediately fails.

Repetition: The expression repeatx starts by evaluating x, called the body. If the
evaluation of the body completes with success, it continues evaluating repeatx

again, called the continuation. If the body fails, repetition declares failure.

Output: x[A] evaluates x. Upon successful completion, the output A is generated
and combined with simultaneous outputs of x’s subexpressions. The completion
status of x[A] is the same as that of x.

Preemption: try x unless y evaluates x and y in parallel. It succeeds when x

does. It fails if x fails or if y succeeds before x does.

Silent: It does not generate any output and always declares incomplete.

Example 1. The expression (try a unless (b|c))[A] waits to receive an a without
receiving a b or a c. If the evaluation succeeds, then it notifies the component
with an A and terminates.

Example 2. The expression repeat (a ; try b[A] unless (c ; c)) represents the
behavior that notifies the component as soon as b occurs after the first a (sub-
sequent occurrences of a are ignored) without two c events in between (in which
case the pattern-reactive program stops). If the pattern is successfully observed,
then the component is notified with an A and the expression restarts.

3 Event-Pattern Machines and Coinduction

In this section we develop the abstract theory of event-pattern machines, follow-
ing the approach of [15]. We first define the notion of machines and behaviors and
then we construct the final machine, whose states correspond to the behaviors
they represent.

A machine is a black-box device whose behavior can be studied by means
of observations and experiments. In our context, an observation consists of the
output and completion status generated in response to an input symbol. An
experiment is a sequence of observations.

To model completion statuses we define the following three element lattice
C = {>, ι,⊥}, where ⊥ (failure) < ι (incomplete) < > (success). Apart from the
usual lattice operations (∧, ∨), C is equipped with a unary “opposite” operation

·̂, defined as: ⊥̂ = > ι̂ = ι >̂ = ⊥.

Definition 1 (Machine). An event-pattern machine M : 〈M,o, α, ∂〉 consists
of the following components:

– M : a (possibly infinite) set of states;
– o: M → OΣ, an output function, mapping states to functions from input

symbols to output values;
– α: M → CΣ, a completion function, mapping states to functions from input

symbols to completion statuses.
– ∂: M → MΣ, a transition function, mapping states to functions from input

symbols to states;

and satisfies the following “adequacy” condition

for every m ∈ M,a ∈ Σ, if α(m)(a) 6= i then ∂(m)(a) is silent, (S1)

where a set of states S ⊆ M is defined to be silent if, for every s ∈ S and a ∈ Σ,
α(s)(a) = i, o(s)(a) = ∅, and ∂(s)(a) ∈ S. A silent state is any state that
belongs to some silent set.

The adequacy condition reflects the property about behaviors, stated earlier,
that success or failure is always followed by silence, that is, empty output and
incomplete status. We refer to event-pattern machines simply as machines.

We use the same symbol for the name of the machine and its state space
because usually the state space is equipped with the appropriate functions to
become a machine.

Example 3. Figure 1(a) shows an example of a machine with three states, where
s is a silent state. In order to simplify this graphical representation, incom-
plete completion statuses and empty outputs are omitted. Transitions outgoing
from the silent state are also omitted. Figure 1(b) shows a sample run for in-
put “cacccabbcbcacb”, starting from initial state q0. The rows labeled O, C and
M contain the output generated, the completion status declared and the state
reached (resp.) after processing the corresponding input symbol.

q0

b

c
a

q1
b,⊥

a[A]

c

s

(a) Machine M .

Σ c a c c c a b b c b c a c b . . .

O ∅ ∅ ∅ ∅ ∅ A ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ . . .

C ι ι ι ι ι ι ι ι ι ι ι ι ι ⊥ . . .

M q0 q1 q1 q1 q1 q0 q0 q0 q0 q0 q0 q1 q1 s . . .

(b) Sample run from initial node q0.

Fig. 1: Example machine with a behavior evaluation.

The notation for o, α and ∂ emphasizes the coalgebraic nature of the def-
inition of machine, since we can easily compose these functions into a functor
Γ1(X) = (Σ −→ (O×C×X)). Machines are “adequate” coalgebras of the functor
Γ1. It is often more convenient, however, to represent these functions as maps
from input symbols into functions from states to output, completion, and next
state (resp.) Abusing notation, we write αa(m) instead of α(m)(a); the distinc-
tion should be clear from the context2. Using this notation we can extend these
operators from single input symbols a to strings va as follows:

αva(m)
def
= αa∂v(m) ova(m)

def
= oa∂v(m) ∂va(m)

def
= ∂a∂v(m),

with also ∂ε(m)
def
= m.

Behaviors play the same rôle in the theory of event-pattern machines and
expressions, that languages (subsets of Σ∗) play in the theory of automata and
regular expressions.

Definition 2 (Behaviors). Let B be a map from stream prefixes Σ+ into O×C.
We say that B is a behavior if

for every w, v ∈ Σ+, if π2B(w) 6= ι then B(wv) is silent, (S2)

where a behavior is silent if it returns 〈∅, ι〉 for every input prefix. The set of all
behaviors is denoted by B.

Here, π1 represents the projection function from the pair O × C into the first
component O. Similarly π2 projects into C. Abusing notation again3, we also use
π1B to represent the map from input prefixes w into the corresponding output
value π1(Bw).

Condition (S2), similar to the adequacy condition (S1) for machines, estab-
lishes that once a behavior declares a pattern successfully found (or impossible to
find) it should subsequently exhibit no other action. It is easy to see that there is
a unique silent behavior, namely the function that for every input returns 〈∅, ι〉

Every state of a machine can be naturally associated with a behavior:

Definition 3 (Associated behavior). Given a state m ∈ M , the function
JmK describes its associated behavior:

JmK : Σ+ → O × C
wa 7→ 〈 oa(∂wm), αa(∂wm) 〉.

2 Technically, the overloaded notation αa(m) is defined as λa:Σ.m:M.α(m)(a).
3 This overloaded use of the projection function π1B is defined as λs:Σ+.π1(Bs).

It is easy to see that the adequacy condition (S2) holds for JmK. Consider
a word wa such that π2(JmKwa) 6= ι. Since π2(JmKwa) = αa(∂wm), the state
∂wam is silent by condition (S1); consequently—by definition of silent state—
every subsequent output is ∅ and every subsequent status is ι.

Example 4. Figure 2 depicts the behaviors associated to the states q0, q1 and s

in Figure 1. These behaviors are described by infinite trees but, to simplify the
graphical representation, subtrees labeled with a behavior already represented
are not further expanded. To see in this representation the value of a behavior
for an input prefix, simply traverse the tree following the appropriate edges. The
value returned corresponds to the label of the last edge traversed. In Figure 2(c)
the behavior JsK corresponds to the unique silent behavior.

Jq0K

a
b

c

Jq1K

a[A]
b,⊥

c

Jq0K Jq0K

Jq0K JsK Jq1K

Jq1K

a[A]
b,⊥

c

Jq0K

a
b

c

JsK Jq1K

Jq1K Jq0K Jq1K

JsK

a
b

c

JsK JsK JsK

(a) Behavior Jq0K. (b) Behavior Jq1K. (c) Behavior JsK.

Fig. 2: Behaviors associated to states q0, q1 and s of Figure 1.

Our next goal is to construct a machine from the set of all behaviors. The
transition function for this machine uses behavior derivatives:

Definition 4 (Behavior derivative). Given an input string w, the w-derivative
of a behavior B is the behavior Bw which, given an input v, returns Bw(v) =
B(wv).

To see that Bw is indeed a behavior, assume that its completion status is not
ι for some input v; the completion status of B is also not incomplete for input
wv. Consequently, every extension of B(wv) is the silent behavior, so Bw is also
the silent behavior.

Example 5. We can use Figure 2 to illustrate some behavior derivatives: to cal-
culate the w-derivative of a behavior simply traverse the edges corresponding to
w. For example: Jq0Kaaa = Jq1K and JsKaaa = JsK.

The machine of all behaviors can now be defined as B : 〈B, o, α, ∂〉 with the
set of all behaviors B as set of states, and for each input a and behavior B:

oaB = π1(Ba) αaB = π2(Ba) ∂aB = Ba.

Since the adequacy condition holds, B is indeed a machine: observe that if αaB 6=
ι then, by Condition (S2), Ba is the silent behavior. Moreover, since Bab = Ba

is also the silent behavior, Ba is a silent state in the machine B.
We will show, in Theorem 2, that B is final among all machines, that is, for

all machines M there exists a unique homomorphism from M into B.

Definition 5 (Homomorphism). A machine homomorphism from M to M ′

is a function f : M → M ′ such a that, for all m ∈ M and a ∈ Σ:

o(m) = o′(f(m)),
α(m) = α′(f(m)) and

f(∂am) = ∂′

a
f(m).

Homomorphisms are functions preserving observations and experiments. The
notion of bisimulation relation captures whether two states are indistinguishable
by experiments:

Definition 6 (Bisimulation). A bisimulation between machines M and M ′ is
a binary relation # such that for all m ∈ M , m′ ∈ M ′ and input symbol a:

if m#m′ then

o(m) = o′(m′),

α(m) = α′(m′) and

∂am # ∂′

a
m′.

Two states m and m′ are called bisimilar, written m ∼ m′, if there exists a
bisimulation that relates them. The relation ∼ is the largest bisimulation relation
between two machines, and is called bisimilarity.

Theorem 1 (Coinduction). For all behaviors A and B, if A ∼ B then A = B.

Proof. We proceed by showing a stronger result, by induction on the length of
input prefixes: for all w ∈ Σ+ and for all behaviors A and B, if A ∼ B then
A(w) = B(w) and ∂wA ∼ ∂wB:

– Base (w = a): First, π1A(a)=oaA=oaB=π1B(a), by A ∼ B, and

π2A(a)=αaA=αaB=π2B(a), by A ∼ B.

Also, ∂aA ∼ ∂aB holds immediately from the definition of bisimulation.

– Inductive step (w = va). Here,

π1A(va) = oa(∂vA) = oa(∂vB) = π1B(va), by A ∼ B and IH,

π2A(va) = αa(∂vA) = αa(∂vB) = π2B(va), by A ∼ B and IH, and

∂wA = ∂a∂vA ∼ ∂a∂vB = ∂wB, by A ∼ B and IH. ut

Coinduction justifies the following proof principle: to show the equality be-
tween behaviors A and B it is sufficient to establish the existence of a bisimula-
tion relation on B that contains 〈A,B〉. We can use coinduction to show that B
is final among all machines:

Theorem 2 (Finality of B). For every machine M , there is a unique homo-
morphism from M to B.

Proof. Existence is guaranteed since the behavior function J·K : M → B that
maps every m to JmK (see Definition 3) is a homomorphism. For uniqueness,
suppose that f and g are two homomorphisms. It is enough to show that the
relation # = {〈f(m), g(m)〉 | m ∈ M} is a bisimulation, since in that case—by
coinduction—f(m) = g(m) for all m, and consequently f = g. Let m be an
arbitrary state; since f and g are homomorphisms:

oaf(m) = oam = oag(m),
αaf(m) = αam = αag(m), and
∂af(m) = f(∂am) # g(∂am) = ∂ag(m).

Therefore, # is a bisimulation. ut

The unique homomorphism J·K identifies the behaviors of two states precisely
when they are bisimilar. Moreover, homomorphisms preserve bisimulation:

Theorem 3. Let R be a bisimulation, and f and g homomorphisms. Then,
{〈f(m), g(n)〉 | 〈m,n〉 ∈ R} is also a bisimulation.

(The proof appears in the appendix.) The previous theorem, together with coin-
duction, allows to prove whether two states of arbitrary machines define the
same behavior, simply by showing the existence of a bisimulation that relates
them.

Corecursion. The finality of B justifies the following principle of definition by
corecursion: To associate behaviors to the elements of a set M , turn M into
a machine by defining an output function o, a completion function α and a
transition function ∂, such that the adequacy condition for machines (S1) is
satisfied. The desired semantics is then obtained as the unique homomorphism
J·K from M to B, which assigns to each element m the behavior it describes.

4 Formal Semantics of PAR

In this section we illustrate the use of corecursion by defining the operational
semantics of PAR. We build a machine whose states are all PAR expressions and
whose functions α, o and ∂ are described by rules. By showing (see Theorem 5
in the appendix) that this is indeed a machine, we guarantee that each PAR

expression defines a unique behavior.

The rules describing the functions, shown in Figures 3, 4, and 5 use the
following notation: x

a
 c stands for αax = c, x

a
→ y stands for ∂ax = y (with

x
a
→ι y as an abbreviation for both x

a
 i and x

a
→ y), and x

a
⇒ u stands for

oax = u. Below we briefly explain some of the rules.

αEv1 : a
a
 > αEv2 : a

b
 ι (if b 6= a)

x
a
 c

αSeq
x ; y

a
 c ∧ ι

x
a
 c y

a
 d

αSel
x | y

a
 c ∨ d

x
a
 c

αRep
repeatx

a
 c ∧ ι

x
a
 c

αPush
x[A]

a
 c

x
a
 c

αNeg
x

a
 ĉ

x
a
 c

αTry1 c 6= ι
try x unless y

a
 c

x
a
 ι y

a
 d

αTry2

try x unless y
a
 d̂ ∧ ι

Fig. 3: Rules for the completion function α of the machine of PAR expressions.

Ev : a
b
→ a (b 6= a)

x
a
→ι x′

Neg
x

a
→ x′

x
a
→ι x′

Push
x[A]

a
→ x′[A]

x
a
→ι x′

Seq1

x ; y
a
→ x′ ; y

x
a
 >

Seq2

x ; y
a
→ y

x
a
→ι x′ y

a
→ι y′

Sel1
x | y

a
→ x′ | y′

x
a
 ⊥ y

a
→ι y′

Sel2
x | y

a
→ y′

x
a
→ι x′ y

a
 ⊥

Sel3
x | y

a
→ x′

x
a
→ι x′

Rep1

repeatx
a
→ x′ ; repeatx

x
a
 >

Rep2

repeatx
a
→ repeatx

x
a
→ι x′ y

a
→ι y′

Try1

try x unless y
a
→ try x′ unless y′

x
a
→ι x′ y

a
 ⊥

Try2

try x unless y
a
→ x′

Fig. 4: Rules for the step function ∂ of the machine of PAR expressions.

Completion function (Fig. 3). Rule (αEv1) says that the simple expression
a declares success upon receiving an a event, while rule (αEv2) states that a is
incomplete otherwise. More interesting is rule (αSeq): the completion status of
x ; y is that of x, but no higher than ι (i.e., either ⊥ or ι). Rule (αTry1) says
that if the try part completes in > or ⊥, then so does the try-unless expression.
Rule (αTry2) says that if the try part is incomplete and the unless part succeeds
then try-unless fails, and that it remains incomplete otherwise.

Transition function (Fig. 4). Rule (Rep1) says that if, after an event is
processed, the body x is still incomplete, with x′ as derivative, then the successor
expression is x′ ;repeatx. If, on the other hand, x declares success, rule (Rep2)
states that the successor expression is the continuation repeatx. The last case,
when x declares failure, the successor expression of repeatx is silent. This is

oEv : a
b
⇒ ∅

x
a
⇒ o

oNeg
x

a
⇒ o

x
a
⇒ o

oSeq
x ; y

a
⇒ o

x
a
⇒ o y

a
⇒ u

oSel
x | y

a
⇒ o ∪ u

x
a
⇒ o

oRep
repeatx

a
⇒ o

x
a
⇒ o y

a
⇒ u

oTry
try x unless y

a
⇒ o ∪ u

x
a
⇒ o x

a
 >

oPush1

x[A]
a
⇒ o ∪ A

x
a
⇒ o x

a

6 >
oPush1

x[A]
a
⇒ o

Fig. 5: Rules for the output function o of the machine of PAR expressions.

handled by a global rule (Silent), which complements all rules in Fig. 4:

x
a

6 ι
Silent

x
a
→ silent

.

This rule establishes that every expression becomes silent after declaring
success or failure. This ensures the adequacy condition (S1). The special expres-
sion silent is defined by the following three rules:

αSilent : silent
a
 ι ∂Silent : silent

a
→ silent oSilent : silent

a
⇒ ∅

Output function (Fig. 5). The rules for output (oEv) and (oSilent) state
that simple expressions generate no output. Rules (oNeg), (oRep) and (oSeq)
state that the output is that of the evaluating subexpressions, while rules (oSel)
and (oTry) combine the output from the subexpressions evaluated in parallel.
The rules (oPush1) and (oPush2) govern how new output is added.

Example 6. The expression repeat (a ; try a[A] unless b), describes the behav-
ior Jq0K shown in Figure 2(a) (i.e., the behavior of state q0 in machine M in
Figure 1.)

5 PAR Congruences and Output Equivalences

In this section we show that bisimilarity is the largest PAR congruence that
refines output equivalence.

A PAR context (or simply a context) is a PAR expression with one special
variable �. The instantiation of context C〈〉 with an expression x, denoted by
C〈x〉, corresponds to the resulting expression of substituting every occurrence
of � by x in C〈〉.

We say that a binary relation # between PAR expressions is a PAR congru-
ence (or simply a congruence) if for every x, y, and every context C〈〉, if x#y

then C〈x〉#C〈y〉. Examples of congruences include the empty relation, syntac-
tic identity ≡, and the universal relation PAR×PAR

4. We say that a relation R

refines a relation S if aRb implies aSb.
We first establish that if two states of arbitrary machines exhibit the same

behavior then they are bisimilar.

Lemma 1. If JmK = Jm′K then m ∼ m′.

Proof. Consider the binary relations R = {〈m, JmK〉} and S = {〈m′, Jm′K〉}. A
routine proof by coinduction shows that R and S are bisimulations, and therefore
R ◦ S−1 is a bisimulation, which contains 〈m,m′〉 if JmK = Jm′K. ut

Definition 7 (Output equivalence). Two states m and m′ are output equiv-
alent, written m ' m′, if π1JmK = π1Jm

′K.

The relation ' captures whether two states generate the same output when
offered the same input. In practice, two states corresponding to output equivalent
event-pattern reactive programs can be replaced by each other without modifying
the observable behavior to the served component.

Unfortunately, replacing two output equivalent PAR expressions in arbitrary
PAR contexts does not preserve output equivalence: consider the expressions
silent and a (which are output equivalent since both generate the empty output)
and the context �[A]. Clearly, silent[A] 6' a[A], as witnessed by the stream
prefix a. Congruences that refine observational equivalence are important in
practice too, since they allow to exchange expressions as part of enclosing PAR

programs while maintaining the behavior. Syntactic equivalence ≡ is trivially
a congruence that refines observational equivalence, but it is too fine for our
purposes.

Theorem 4. (1) Bisimilarity ∼ is a PAR congruence. (2) Bisimilarity is the
largest PAR congruence that refines output equivalence.

Proof. (1) See Appendix. (2) Consider the relation # defined as: x#y precisely
when, for every context C〈〉, C〈x〉 ' C〈y〉; # clearly refines output equivalence
and is itself a congruence, since the composition of contexts is a context. More-
over, every congruence S that refines output equivalence also refines # because if
xSy then C〈x〉SC〈y〉, and then C〈x〉 ' C〈y〉 and x#y. Hence, it is sufficient to
show that # refines ∼. We show that x#y implies JxK = JyK. First, x#y implies
π1JxK = π1JyK by considering the empty context. Moreover, x#y also implies
π2JxK = π2JyK. By contradiction, assume π2JxK 6= π2JyK, and consider the con-
texts C1 = �; a[A] and C2 = �; a[A]. Either C1〈x〉 6' C1〈y〉 or C2〈x〉 6' C2〈y〉,
which contradicts x#y. By Lemma 1 we can conclude that x ∼ y. ut

Indirectly, the previous proof provides an alternative definition of PAR bisim-
ilarity, since # and ∼ are shown to be the same relation.

4 In the Hidden Algebra line of research (see [5]) observations and experiments corre-
spond to contexts of the language of the hidden specification (in our case this would
be the language formed by o, α and ∂ in Definition 1). Note that in this section we
are reasoning about congruences in the language PAR.

6 Proofs by Coinduction

The definitions and results from the previous two sections allow us to perform
equational reasoning at the level of PAR expressions. Two PAR expressions x and
y that exhibit the same behavior cannot be distinguished by any experiment, and
by Theorem 4, x and y are then also indistinguishable in any PAR context C〈〉.
This justifies the use of equations to represent that all their ground instances
are bisimilar PAR expressions. Some examples of such equations are

x | y = y | x x ; (y ; z) = (x ; y) ; z
x | (y | z) = (x | y) | z x ; y = x | x ; y

x | x = x x ; try y unless z = try x ; y unless x ; z

x = x repeatx = x ; repeatx

Example 7. To illustrate the use of coinduction to show the validity of these
equations we show the commutativity of the operator |, that is, for all PAR

expressions x and y, x|y ∼ y|x. It is sufficient to show that there is a bisimulation
containing all pairs 〈x | y, y | x〉; we prove that R = {〈x | y, y | x〉}∪ ≡ is a
bisimulation. Take arbitrary expressions x and y. First,

oa(x | y) = oax ∪ oay = oa(y | x), and
αa(x | y) = αax ∨ αay = αa(y | x).

Second, let x′ = ∂ax and y′ = ∂ay. We split cases according to αax and αay:

1. αax 6= ι or αay 6= ι: in all these cases ∂a(x | y) ≡ ∂a(y | x).

2. αax = ι = αay. Here, ∂a(x | y) = x′ | y′ and ∂a(y | x) = y′ | x′. By definition
of R, (x′ | y′)R(y′ | x′).

Example 8. Let us also prove that for all expressions x and y,

x ; y = x | (x ; y).

We show that R = {〈x ; y, x | (x ; y)〉}∪ ≡ is a bisimulation. First,

oa(x ; y) = oa(x ; y) = oax, and
oa(x | (x ; y)) = oa(x) ∪ oa(x ; y) = oax ∪ oax = oax.

Now, let us consider all the cases for αax:

1. αax = ⊥. Then, both αa(x ; y) and αa(x|(x;y)) become >, and consequently
both derivatives are silent.

2. αax = ι. Let x′ = ∂ax. First, both αa(x ; y) and αa(x | (x ; y)) become ι.
Also,

∂a(x ; y) = x′ ; y, and
∂a(x | (x ; y)) = x′ | (x′ ; y)),

and then 〈∂a(x ; y), ∂a(x | (x ; y))〉 is in R.
3. αax = >. Then, again, αa(x ; y) and αa(x | (x ; y)) become ι. Finally,

∂a(x ; y) = y, and
∂a(x | (x ; y)) = y,

which are related by ≡, and hence by R.

7 Conclusions

Using coalgebraic techniques, we have built a framework for the study of lan-
guages to describe event-pattern reactive programs. This has provided a very el-
egant domain for the definition of the behavioral operational semantics of event-
pattern reactive programs. Using this framework we have defined the formal
semantics of PAR.

The semantics of event-pattern languages are most naturally defined compo-
sitionally. To enable such compositional semantics, we introduced a completion
status, giving rise to the functor Γ1(X) = (Σ −→ (O × C × X)), rather than
the simpler Γ2(X) = (Σ −→ (O × X))—which may have been expected to study
synchronous maps from inputs to outputs.

Our results can be directly compared to other formalisms based on Γ2 (like
Moore and Mealy machines and interactive computation [6]), by simply hiding
the completion component. (In fact, bisimulation in Γ2 becomes output equality
in Γ1, ' as defined in Section 5.)

Some ongoing and future research includes:

Expressiveness. It is easy to show that every PAR expression only has a finite
number of derivatives (for all possible input prefixes from Σ∗). Thus, all PAR

behaviors can be expressed with finite memory. The converse is also true: every
behavior that can be described with finite memory can also be described by a
PAR expression. This result [17] parallels the correspondence between regular
expressions and finite automata [11, 12].

The syntax of PAR presented here is minimal in the sense that, by removing
any one operator, expressive completeness is lost. In practice, though, it is useful
to have more operators available. In [16] we introduced ECL, with a larger set
of operators than PAR. We are studying the conciseness of specification and the
complexity of analysis of these extensions.

Equational reasoning. Section 6 presented some equalities that hold between
the corresponding instances of both sides. We illustrated one such a proof using
coinduction. Two important open problems are: (1) whether this proof tech-
nique can be automated—in other words— whether coinduction together with
some other rules provides a complete proof system for PAR equivalences; (2) the
existence of a finite list of PAR equations that form an axiomatization of bisimu-
lation for PAR, which could lead to alternative decision procedures for checking
(parametrized) equivalences.

References

1. Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and
Tushar Deepak Chandra. Matching events in a content-based subscription system.
In Symposium on Principles of Distributed Computing, pages 53–61, 1999.

2. Jos C. M. Baeten and W. Peter Weijland. Process Algebra. Cambridge University
Press, 1990.

3. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and eval-
uation of a wide-area event notification service. ACM Transactions on Computer
Systems, 19(3):332–383, August 2001.

4. Corina Ĉırstea. Semantic constructions from the specification of objects. Theoret-
ical Computer Science, 260, 2001.

5. Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer
Science, 245(1), 2000.

6. Dina Q. Goldin. Persistent Turing Machines as a model of interactive computa-
tion. In Foundations of Information and Knowledge Systems, pages 116–135, Burg,
Germany, February 2000.

7. Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and
concurrency. Journal of the Association for Computer Machinery, 32(1):137–161,
January 1985.

8. C. Antony R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

9. Frank Hunleth, Ron Cytron, and Christopher Gill. Building customizable middle-
ware using aspect oriented programming. In Workshop on Advanced Separation of
Concerns (OOPSLA’01), 2001.

10. Bart Jacobs and Jan J. M. M. Rutten. A tutorial on (co)algebras and (co)induction.
Bulletin of the European Association for Theoretical Computer Science, 62:222–
259, 1997.

11. Stephen C. Kleene. Representation of events in nerve nets and finite automata. In
Claude E. Shannon and John McCarthy, editors, Automata Studies, number 34,
pages 3–41. Princeton University Press, Princeton, New Jersey, 1956.

12. Robert F. McNaughton and H. Yamada. Regular expressions and state graphs for
automata. IEEE Transactions on Electronic Computers, 9:39–47, 1960.

13. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

14. Grigore Roşu. Hidden Logic. PhD thesis, University of California at San Diego,
2000.

15. Jan J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra). In
CONCUR, 1998.

16. César Sánchez, Sriram Sankaranarayanan, Henny B. Sipma, Ting Zhang, David
Dill, and Zohar Manna. Event correlation: Language and semantics. In Rajeev
Alur and Insup Lee, editors, EMSOFT 2003, pages 323–339. Spring-Verlag, 2003.

17. César Sánchez, Matteo Slanina, Henny B. Sipma, and Zohar Manna. Expressive
completeness of event-pattern reactive programs. In preparation.

18. Douglas C. Schmidt, David L. Levine, and Timothy H. Harrison. The design and
performance of a real-time CORBA object event service. In Proc. of OOPSLA’97,
1997.

19. Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe no-
tification service with quenching. In Queensland AUUG Summer Technical Con-
ference, Brisbane, Australia, 1997.

20. David Sharp. Reducing avionics software cost through component based product
line development. In Proc. of the Software Technology Conference, 1998.

A Proofs

This appendix contains the proofs of three theorems: Theorem 3, which shows
that bisimulations are preserved by homomorphisms; Theorem 5 that establishes
that PAR together with the functions α, o and ∂ (as described in Figures 3, 4,
and 5) is a machine; and Theorem 4(1) that shows that ∼ is a PAR congruence.

Theorem 3. Let R be a bisimulation, and f and g homomorphisms. Then,
R′ = {〈f(m), g(n)〉 | 〈m,n〉 ∈ R} is also a bisimulation.

Proof. Let m ∈ M and n ∈ N be two arbitratry states with m R n.

– First, oaf(m) = oam and oag(n) = oan, since f and g are homomorphisms.
Now, m R n and then oam = oan. Consequently, oaf(m) = oag(n), as
desired.

– Similarly, αaf(m) = αag(n).

– Finally, ∂af(m) = f(∂am) and ∂ag(n) = g(∂an). Since ∂am R ∂an then, by
the definition of R′, f(∂am) R′ g(∂an), or in other words ∂af(m) R′ ∂ag(n).

Therefore, R′ is a bisimulation. ut

Theorem 5. 〈PAR, α, o, ∂〉 is a machine.

Proof. First, the expression silent is a silent state, directly by rules (αSilent),
(∂Silent), and (oSilent). Now, rule (Silent) states that for every expression x,
if αax 6= ι then ∂ax = silent. Finally, all the antecedents in rules in Figures 3,
4, and 5 are non-overlapping. ut

Theorem 4. (1) Bisimilarity ∼ is a PAR congruence.

Proof. First, it is easy to show that x ∼ y implies ∂ax ∼ ∂ay. To simplify the
exposition in the proof, once a is fixed, we use z′ as an abbreviation for ∂az.
We proceed by structural induction, showing that if x ∼ y then C〈x〉 ∼ C〈y〉.
We only detail the proof for the selection construct. For the rest, we just present
without proof a bisimulation relation:

– Selection: Assume x1 ∼ y1 and x2 ∼ y2 arbitrary; we prove that x = (x1|x2)
and y = (y1 |y2) are bisimilar by showing that the following is a bisimulation:

R = {〈x1 | x2, y1 | y2〉 | x1 ∼ y1, x2 ∼ y2}∪ ∼ .

First, αa(x1 | y1) = αax1 ∨ αay1 = αax2 ∨ αay2 = αa(x2 | y2), and

oa(x1 | y1) = oax1) ∪ oay1 = oax2) ∪ oay2 = oa(x2 | y2).

For ∂, we consider all cases for αax and αay.
1. αax 6= ι. Then, x′ = y′ = silent.

2. αax1 = > and αax2 = ι. Then, x′ = x′

2 ∼ y′

2 = y′.

3. αax1 = ι and αax2 = >. Analogous to the previous case.

4. αax = ι and αay = ι. Then, x′ = (x′

1 | x
′

2) and y′ = (y′

1 | y
′

2), so x′Ry′.

– Negation: R = {〈x, y〉|x ∼ y}∪ ∼ .

– Sequential: R = {〈x1 ; x2, y1 ; y2〉 | x1 ∼ y1, x2 ∼ y2}∪ ∼ .

– Output: R = {〈x[A], y[A]〉|x ∼ y}∪ ∼ .

– Preemption: R = {〈try x1 unless x2, try y1 unless y2〉 | x1 ∼ y1, x2 ∼
y2}∪ ∼ .

– Repetition: R = {〈repeatx, repeat y〉 | x ∼ y}∪ ∼ . ut

