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Abstract. We study the problem of thread allocation in asynchronous
distributed real-time and embedded systems. Each distributed node han-
dles a limited set of resources, in particular a limited thread pool. Differ-
ent methods can be invoked concurrently in each node, either by external
agents or as a remote call during the execution of a method. In this pa-
per we study thread allocation under a WaitOnConnection strategy, in
which each nested upcall made while a thread is waiting must be made
in a different thread.
We study protocols that control the allocation of threads to guarantee the
absence of deadlocks. First, we introduce a computational model in which
we formally describe the different protocols and their desired properties.
Then, we study two scenarios: a single agent performing sequential calls,
and multiple agents with unrestricted concurrency. For each scenario we
present (1) algorithms to compute the minimum amount of resources to
avoid deadlocks, and (2) run-time protocols that control the allocation
of these resources.

1 Introduction

In this paper we present a computational model for thread allocation in dis-
tributed real-time and embedded (DRE) systems. The model is targeted at
component middleware architectures in which components make remote two-way
method calls to other components. In particular, we consider the case where a
remote method call f by component A to component B may result in one or
more method calls from B (or other components) to A before f returns. These
method calls are known as “nested upcalls”.

Nested upcalls can occur in the context of a variety of middleware con-
currency architectures, including the Leader/Followers [16] approach used in
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TAO [15, 10] and the Half-Sync/Half-Async [16] approach used in the variant of
nORB [4] used to integrate actual and simulated system components [18]. These
kinds of middleware have been used in turn to build a wide range of DRE systems
for applications ranging from avionics mission computing information systems [6]
to active damage detection using MEMS vibration sensor/actuators [20].

Ensuring the safety and liveness of concurrent nested upcalls in middleware
for DRE systems is thus an important and compelling problem. In current prac-
tice, middleware concurrency architectures are realized in software frameworks
designed according to documented best practices, but it is still possible for un-
foreseen factors introduced during the design to result in safety and liveness
violations [17]. Hence, a more formal basis can have a significant impact on the
correctness of these systems, which motivates the work presented here.

There are two main strategies to deal with nested upcalls. The first is known
as WaitOnConnection, where component A holds on to the thread from which
method call f was invoked. With this strategy any nested calls to A will have to
acquire a new thread to run. The second approach relies on the use of a reactor,
a well-known technique for multiplexing asynchronously arriving events onto
one or more threads [16]. This approach is known as WaitOnReactor , in which
component A releases the thread after the method call is made. To preserve the
semantics of the two-way call, it maintains a stack to keep track of the order
in which methods were invoked, such that they can be exited in reverse order.
Both approaches have advantages and disadvantages. A disadvantage of the first
approach is that threads cannot be reused while the reactor is waiting for the
method to return, which can lead to deadlock. A disadvantage of the second
approach is that the stack must be unwound in last-in-first-out order, resulting
in blocking delays for the completion of methods initiated earlier, which can
lead to deadline violations. This may be especially problematic in systems with
multiple agents.

In other complementary research [19] we have examined safety and liveness
for the WaitOnReactor approach. In this paper we only consider the WaitOn-

Connection approach, and focus on deadlock avoidance in that context. We
assume we are given a set of reactors R, hosting components of the system, and
a set of call-graphs G, representing the possible call sequences that components
can invoke. We also assume that each call graph may be invoked multiple times
concurrently. The goals are: (1) to determine what minimum number of threads
is necessary in each reactor to avoid deadlock; and (2) to construct protocols
that are deadlock free and make efficient use of the threads available (that is,
they do not unnecessarily block invocations). We will consider two cases: (1) the
number of concurrent processes is fixed in advance (which is common in DRE
systems), and (2) the number of concurrent processes is not bounded (such as
in network services).

Related Work Deadlocks have been studied in many contexts. In computer
science, one of the first protocols for deadlock avoidance was Dijkstra’s Banker’s
algorithm [5], which initiated much follow-up research [7–9, 1], and which is
still the basis for most current deadlock avoidance algorithms. In the control



community, deadlock avoidance mechanisms have been studied in the context
of Flexible Manufacturing Systems (FMSs) [14, 3, 21, 13]. In contrast with the
Banker’s algorithm, in which only the maximum amount of resources is taken
into account, protocols for FMSs take into account more information about the
processes to maximize concurrency without sacrificing deadlock freedom.

In the distributed systems community (see, for example, [11]), general solu-
tions to distributed deadlock tend to be considered impractical. For example,
global consistency and atomicity would be a prerequisite for a “distributed ver-
sion” of the Banker’s algorithm. Most approaches so far have focused on deadlock
detection and roll-back (e.g. in distributed databases) and deadlock prevention
by programming discipline (e.g. by observing a partial order on locks acquired).

The protocols presented in this paper can be viewed as a practical solution to
the case where extra information is available in the form of call graphs, which is
common in DRE systems. We show that the incorporation of this information en-
ables efficient “local” protocols (that is, no communication between distributed
nodes is required at runtime) that guarantee absence of deadlock.

2 Computational Model

We define a system S as a tuple 〈R,G〉 consisting of a set of reactors R :
{r1, . . . , rk} and a set of distinct call graphs G : {G1, . . . , Gm}.

Definition 1 (Call-graph). Given a set of method names N , a call-graph is

a finite tree 〈V = (N × R), E〉 with nodes consisting of a method name and a

reactor. A node (f, r) denotes that method f runs in reactor r. An edge from

(f1, r1) to (f2, r2) denotes that method f1, in the course of its execution may

invoke method f2 in reactor r2.

For ease of exposition we assume that methods of child nodes are hosted in
a different reactor than their parent nodes. Local calls can always be run in the
same thread, implemented as conventional method calls, and are not considered
here. We use the notation f :r to represent that method f runs in reactor r.

Example 1. Figure 1 shows an example of a call-graph. The methods fi run in
reactor r, the method g runs in reactor s, and the methods hi run in reactor t.
Method f1 may invoke the remote methods g and h1.

We assume that each reactor r has a fixed number of pre-allocated threads.
Although in many modern operating systems threads can be spawned dynami-
cally, many DRE systems pre-allocate fixed sets of threads to avoid the relatively
large and variable cost of thread creation and initialization. We assume that each
reactor r has a set of local variables Vr that includes the constant Tr ≥ 1 de-
noting the number of threads present in r, and a variable tr representing the
number of available threads.

A protocol for controlling thread allocation is implemented by code executed
in a reactor before and after each method is dispatched. This code can be de-
pendent on the call graph node. The structure of a protocol is shown in Figure 2



h1 :t

f1 :r h2 :t

g :s

f2 :r

Fig. 1. A sample call graph G.
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Fig. 2. Protocol schema.

for a node n = f :r. The entry and exit sections implement the thread allocation
policy. Upon invocation, the entry section typically checks thread availability by
inspecting local variables Vr of reactor r and assigns a thread if one is available.
The method invocation section executes the code of f ; it terminates after all its
descendants in the call graph have terminated and returned. The exit section
releases the thread and may update some local variables in reactor r.

Multiple instances of these protocols may execute concurrently, one for each
invocation. Each instance is called a task . Thus the local variables of the reactor
are shared between tasks running in the same reactor, but are not visible to
tasks that reside in other reactors.

The global behavior of a system S is represented by sequences of (global)
states, where a state σ : 〈P , sR〉 contains a set of tasks together with their local
states, P , and a valuation sR of the local variables in all reactors. To describe a
task state we use the notion of labeled call graph:

Definition 2 (Labeled Call Graph). Let `0, `1, `2, and `3 be protocol location

labels representing the progress of a task, as illustrated in Figure 2. A labeled

call graph (G, γ) is an instance of a call graph G ∈ G and a labeling function

γ : NG 7→ {⊥, `0, `1, `2, `3} that maps each node in the call graph to a protocol

location, or to ⊥ for method calls that have not been performed yet.

Then, formally, the state of a task is modeled as a labeled call graph. A subtree
of a labeled call graph models the state of a sub-task . When the context of the
subtree is not relevant, we will write task to refer to the corresponding sub-task.
A task is active if its root is labeled `1 or `2, waiting if it is labeled `0, and
terminated if it is labeled `3. We use upper-case letters P,Q, P1, . . . to denote
tasks and lower case letters n, n1, . . . to denote call-graph nodes. To simplify the
presentation, given a task P = (G, γ) we use γ(P ) as an alias of γ(root(P )). We
also say that task P is in location ` if γ(P ) = `.

A system S : 〈R,G〉 gives rise to the state transition system (see [12])
Ψ : 〈V,Θ, T 〉 consisting of the following components:

– V : {I} ∪ VR: a set of variables, containing the variable I denoting a set
of labeled call graphs (tasks and their state), and the local variables VR =
⋃

r∈R
Vr of each reactor.



– Θ : I = ∅ ∧
∧

r∈R
Θr: the initial condition, specifying initial values for the

local reactor variables and initializing the set of tasks to the empty set.
– T : a set of state transitions consisting of the following global transitions:

1. Creation: A new task P , with γ(n) = ⊥ for all nodes n in its call graph,
is added to I :

τ1 : I ′ = I ∪ {P} ∧ pres(VR)

where pres(VR) states that all variables in VR are preserved.
2. Method invocation: Let P ∈ I and Q be a sub-task of P such that

either (a) Q = P or (b) γ(Q) = ⊥ and its parent node is in `1. A function
invocation changes the annotation of Q to `0:

τ2 : γ(Q) = ⊥ ∧ γ′(Q) = `0 ∧ pres(VR)

3. Method entry: Let Q be a waiting task whose enabling condition is
satisfied. The method entry transition marks Q as `1 and updates the
local variables in its reactor according to the protocol of the node n =
root(Q). Formally, let Enn(Vr) be the enabling condition of the entry of
the protocol of Q, and Actn(Vr , V

′
r ) represent the change in variables of

reactor r after the entry is executed; then:

τ3 : γ(Q) = `0 ∧Enn(Vr) ∧ γ
′(Q) = `1 ∧Actn(Vr, V

′
r ) ∧ pres(VR − Vr)

4. Method execution: Let Q be a task in `1 such that all its descendants
are labeled ⊥ or `3. This transition denotes the termination of Q. The
status of Q is updated to `2:

τ4 : γ(Q) = `1 ∧
∧

R∈descs(Q)

(γ(R) = ⊥ ∨ γ(R) = `3) ∧ γ′(Q) = `2 ∧ pres(VR)

5. Method exit: Let Q be a task in `2; the method-exit transition moves
Q to `3 and updates the variables in its reactor according to the exit of
the protocol for n = root(Q). Formally, let Outn(Vr , V

′
r ) represent the

transformation that the exit protocol for n performs on the variables of
reactor r; then

τ5 : γ(Q) = `2 ∧ γ′(Q) = `3 ∧ Outn(Vr , V
′
r ) ∧ pres(VR − Vr)

6. Deletion: A task P in `3 is removed from I :

τ6 : γ(P ) = `3 ∧ I ′ = I − {P}

7. Silent: All variables are preserved: τ7 : pres(V )

All transitions except Creation and Silent are called progressing transi-
tions, since they correspond to the progress of some existing task. The system as
defined is a nondeterministic system. It assumes an external environment that
determines creation of new tasks, and a scheduler that selects which task pro-
gresses. In particular, the scheduler decides which task in the entry transition



proceeds to the method section. If any progressing transition can occur, then
some progressing transition will be taken in preference to any non-progressing
transition. Therefore, unless the system is deadlocked, an infinite sequence of
silent transitions cannot occur because a progressing transition will occur even-
tually. If in state σ there are k active tasks corresponding to methods in reactor
r, then we say that there are k threads allocated in r.

Definition 3 (Run). A run of a system Ψ is a sequence of σ0, σ1, . . . of states

such that σ0 is an initial state, and for every i, there exists a transition τ ∈ T
such that σi+1 results from taking τ from σi.

3 Properties

In this section we formally define some properties to study the correctness of the
protocols. Most properties will be presented as invariants. Figure 3(a) illustrates
the simplest possible protocol, Empty-P, in which the entry and exit sections
do nothing with the reactor variables.

Definition 4 (Invariant). Given a system S, an expression ϕ over the system

variables of S is an invariant of S if it is true in every state of every run of S.

An expression can be proven invariant by showing that it is inductive or
implied by an inductive expression. An expression ϕ is inductive for a transition
system S : 〈V,Θ, T 〉 if it is implied by the initial condition, Θ → ϕ, and it is
preserved by all its transitions, ϕ ∧ τ → ϕ′, for all τ ∈ T .

Definition 5 (Adequate). A protocol is adequate if the number of threads al-

located in every reactor r never exceeds the total number of threads in r, Tr.

Adequacy is a fundamental property, required in every reasonable protocol, since
no more resources than available can possibly be granted. Adequate-P is a
simple adequate protocol, shown in Figure 3(b), in which the entry section (`0)
blocks further progress until the guard expression 1 ≤ tr evaluates to true. Its
adequacy is a consequence of the following invariants:

ψ1 : ∀r ∈ R . tr ≥ 0
ψ2 : ∀r ∈ R . Tr = tr + at `1,r + at `2,r

where, at `1,r and at `2,r denote the total number of active sub-tasks in reactor
r. It is easy to show that ψ1 and ψ2 are inductive.

Definition 6 (Deadlock). A state σ is a deadlock if some task is in `0, but

only non-progressing transitions are enabled.

If a deadlock is reached, the tasks involved cannot progress. Intuitively, each of
the tasks has locked some resources—threads in our case—that are necessary for
other tasks to complete, but none of them has enough resources to terminate.
The following example shows that Adequate-P does not guarantee absence of
deadlock.
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(a) The protocol Empty-P. (b) The protocol Adequate-P.

Fig. 3. Protocols Empty-P and Adequate-P for node n = (f :r).

Example 2. Consider the system S : 〈{r, s}, {G1, G2}〉 with two reactors r and
s, and two call graphs

G1 : n11 : 〈f :r〉 n12 : 〈g2 :s〉 and G2 : n21 : 〈g :s〉 n22 : 〈f2 :r〉 .

Both reactors have one thread (Tr = Ts = 1). Assume the protocol for all nodes
is Adequate-P. Let σ : 〈{P1, P2}, tr = 0, ts = 0〉 be a state with two tasks:
P1 an instance of G1 with γ(n11) = `1 and γ(n12) = `0, and P2 an instance of
G2 with γ(n21) = `1 and γ(n22) = `0. It is easy to see that σ is a deadlock:
no progressing transition is enabled. Furthermore, σ is reachable from an initial
state and hence appears in some run.

In a deadlock state, independent of the protocol used, any task that is active
must have a descendant task that is waiting for a thread, as expressed by the
following lemma.

Lemma 1. In a deadlock state, any active task has a waiting descendant.

Proof. Let σ be a deadlock state and P an active task. Then γ(P ) = `1, since
for γ(P ) = `2, transition τ5 is enabled, contradicting deadlock. We prove that P
has at least one waiting descendant by induction on the position of P in the call
graph. For the base case, let P correspond to a leaf node. But then transition τ4 is
enabled, contradicting deadlock. Thus a leaf node cannot be active in a deadlock
state. For the inductive case, let Q1, . . . , Qn be the descendants of P . If some Qi

is waiting we are done. If some Qi is active, by the inductive hypothesis, it has a
waiting descendant, and hence P has a waiting descendant. Otherwise for all Qi,
γ(Qi) = ⊥ or γ(Qi) = `3. But then τ4 is enabled, contradicting deadlock. ut

Another desirable property of thread allocation protocols is absence of star-
vation, that is, every task eventually progresses. A task P starves in a run of a
system if, after some prefix run, the labeling of P never changes thereafter. A
system prevents starvation if no task starves in any of its runs.

Deadlock implies starvation, but the converse does not hold. For example, if
other tasks are scheduled in preference to it throughout the run, but the task
could have made progress had it been scheduled, that constitutes starvation
but not deadlock. This raises the question of schedulers to enforce particular
(possibly application-specific [2]) policies for process scheduling, but a detailed
consideration of that issue is outside the scope of this paper.
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Fig. 4. Sample call graph (left) and its local-height (center) and height (right) anno-
tations.

4 Deadlock-avoidance Protocols

This section introduces several protocols and studies whether they prevent dead-
locks in different scenarios. The protocols have the structure shown in Figure 2,
where the entry and exit sections may be different for different nodes in the
call graph. More precisely, the protocols are parameterized by an annotation
of the call graphs, α : V 7→ N

+, that maps nodes of all call graphs to the
positive natural numbers. Intuitively, the annotation provides a measure of the
resources—threads in our case—needed to complete the task corresponding to
the node. We consider two annotations: height and local height. Height of a node
in a call graph is the usual height of a node in a tree. Local height only takes
into account nodes in the same reactor.

Definition 7 (Height). Given a call graph G, the height of a node n in G,

written h(n), is

h(n) =

{

1 if n is a leaf, and

1 +max{h(m) | n→ m} otherwise.

where n→ m denotes that m is a child node of n.

Definition 8 (Local Height). Given a call graph G, the local height of a node

n = f :r in G, written lh(f :r) is

lh(f :r) =

{

1 if f :r is a leaf, and

1 +max{lh(g :s) | f :r →+ g :s and r = s} otherwise.

where n→+ m denotes that m is a descendant of n.

Example 3. Figure 4 shows a call-graph (left) and its local height (center) and
height (right) annotations. Here, n = f1 : r has local height 2, since f1 may
indirectly call f2 in the same reactor through a nested call.

4.1 Single Agent

We first consider the scenario of a single agent sequentially activating tasks, also
studied in [17]. This scenario represents an environment that cannot make any
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when α(n) ≤ tr do

tr--

]

`1 : f()
`2 : tr++

`3 :













Fig. 5. The protocol Basic-P for call-graph node n = (f :r).

concurrent calls. In terms of our model, this corresponds to systems in which
the number of tasks in any state is at most 1, that is, systems for which |I | ≤ 1
is an invariant. In this scenario the following theorem establishes a necessary
and sufficient condition to guarantee absence of deadlocks.

Theorem 1 (from [17]). To perform a call with local-height n with absence of

deadlock, at least n available threads in the local reactor are needed.

Theorem 1 provides a simple, design-time method to compute the minimum
number of threads, Tr, needed in each reactor r to guarantee absence of dead-
lock: Tr must be at least the maximum local height for any node in any call
graph whose method call resides in r. The condition is necessary, because if it is
violated a deadlock will occur, independent of the protocol used. The condition
is sufficient, because if it is met, no deadlock will occur. Thus, in the single agent
case the trivial protocol Empty-P, shown in Figure 3(a), will guarantee absence
of deadlock, provided all reactors have the required number of threads.

4.2 Multiple Agents: Generic Protocols

In case of multiple agents performing multiple concurrent calls, the condition
expressed in Theorem 1 is necessary but not sufficient to guarantee the absence
of a deadlock (using Empty-P) as illustrated by the following example.

Example 4. Consider again the system of Example 2. This system satisfies the
condition of Theorem 1: the local heights of the nodes are lh(n11) = lh(n12) =
lh(n21) = lh(n22) = 1 and Tr = Ts = 1. A deadlock is produced however, if P1,
an instance of G1, takes the thread in r and P2, an instance of G2, takes the
thread in s.

Indeed, it can be shown that no number of pre-allocated threads in reactors
r and s in the above example can prevent deadlock in the presence of an un-
bounded number of multiple concurrent calls. Thus more sophisticated protocols
are needed to control access to the threads.

We propose two such protocols: Basic-P and Efficient-P, both parame-
terized by the annotation function α : V 7→ N

+. In this section we present some
properties for generic annotations α; in the next section we analyze deadlock
avoidance and resource utilization for some specific height annotations.

The first protocol, Basic-P, is shown in Figure 5. The reactor variable tr
is used to keep track of the threads currently available in the reactor. In the



entry section access is granted only if the number of resources indicated by the
annotation function at that node, α(n), is less than or equal to the number of
threads available. When access is granted, tr is decremented by one, reflecting
that one thread has been allocated. Note that not all resources requested are
reserved.

The second protocol, Efficient-P, shown in Figure 6, exploits the obser-
vation that every task that needs just one resource can always, independently
of other tasks, terminate once it gets the resource. The protocol has two reac-
tor variables, tr and pr, where tr, as in Basic-P, keeps track of the number of
threads currently available, and pr tracks the threads that are potentially avail-
able. The difference with Basic-P is that the number of potentially available
threads is not reduced when a thread is granted to a task that needs only one
thread. With Efficient-P fewer tasks are blocked, thus increasing potential
concurrency and improving resource utilization.

Example 5. Consider the system S : 〈{r, s}, {G1, G2}〉 with Tr = Ts = 2 and

G1 : n11 : 〈f1 :r〉 and G2 : n21 : 〈f2 :r〉 n22 : 〈g :s〉 .

with annotations α(n11) = α(n22) = 1 and α(n21) = 2. Assume the following
arrival of tasks: P1: an instance of G1 and P2 an instance of G2. With Basic-

P, P2 is blocked until P1 is finished and has released the thread, while with
Efficient-P, P2 can run concurrently with P1.

To study the properties of different annotations, we first establish some prop-
erties that hold for Efficient-P 3 for any annotation α. We first introduce some
notation and abbreviations. Let at `i j ,r denote the number of tasks in a reactor
r that are at location `i j . Then the number of active tasks P with annotation

α(P ) = 1 in r is equal to act1 ,r
def
= at `1 1 ,r + at `2 1 ,r , and the number of

tasks in r with α(P ) > 1 is act>1 ,r
def
= at `1 2 ,r + at `2 2 ,r . Let act>k ,r denote

the number of tasks in r with annotation greater than k. With initial condition
Θr : tr = pr ∧ Tr = tr, it is easy to verify that the following are inductive
invariants for all reactors.

ϕ1 : tr ≥ 0
ϕ2 : pr ≥ 1
ϕ3 : pr = tr + act1 ,r

ϕ4 : Tr = pr + act>1 ,r

The following lemmas apply to all reactors.

Lemma 2. If tr = 0 then there exists at least one active task with annotation

1 in r, that is, ϕ5 : tr = 0 → act1 ,r ≥ 1 is an invariant.

Proof. Follows directly from ϕ2 and ϕ3. ut

3 The same properties hold for Basic-P, but we will not prove them here.
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when α(n) ≤ pr ∧ 1 ≤ tr do
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]

`1 2 : f()
`2 2 : 〈tr++, pr++〉
`3 2 :













If α(n) = 1 If α(n) > 1

Fig. 6. The protocol Efficient-P for node n = (f :r).

Lemma 3. The number of active tasks P with annotation α(P ) > k, for 0 ≤
k ≤ Tr, is less than or equal to Tr − k, that is, ϕ6 : act>k ,r ≤ Tr − k is an

invariant.

Proof. To show that ϕ6 is an invariant, it suffices to show that in a state where
act>k ,r = Tr − k, a waiting task Q with α(Q) > k cannot proceed. For k = 0 we
have act>0 ,r = Tr. By ϕ3 and ϕ4, Tr = tr + act>1 ,r + act1 ,r = tr + act>0 ,r , and
thus tr = 0. Consequently, the transitions for both `0 1 and `0 2 are disabled for
Q. For k > 0, note that act>k ,r ≤ act>1 ,r , and thus in a state where act>k ,r =
Tr − k, we have Tr − k ≤ act>1 ,r . By ϕ4, pr = Tr − act>1 ,r , and thus pr ≤ k.
Consequently, transition `0 2 is disabled for k, as by assumption α(Q) > k. ut

Lemma 4. If a task P is in location `0 2 in r and the transition for `0 2 is not

enabled for P , then there is an active task Q in r with annotation α(Q) ≤ α(P ).

Proof. Note that α(P ) > 1. Transition `0 2 is disabled for P if tr = 0 or if α(P ) >
pr. If tr = 0, then by Lemma 2 there exists an active task Q with annotation
1, and hence α(Q) < α(P ). If α(P ) > pr then by ϕ4, act>1 ,r > Tr − α(P ).
However, by Lemma 3, act>α(P),r ≤ Tr −α(P ). Thus there must at least be one
active task Q in r such that α(Q) ≤ α(P ). ut

4.3 Protocols Based on Height and Local Height

In Section 4.2 we introduced the protocol Efficient-P for a generic call graph
annotation α that provides a measure of the number of resources required to
complete the task. In this section we analyze two such measures: local height
(Def. 8) and height (Def. 7). Local height requires the least resources. Unfortu-
nately it does not guarantee freedom of deadlock. We prove that using height
does guarantee absence of deadlock. However, for many designs it is too conser-
vative in its requirements for resources. Therefore in Section 4.4 we propose a
less conservative annotation, based on the combination of all graphs rather than
on individual call graphs, that still guarantees deadlock freedom.

Local Height Using local height, as defined in Def. 8 for α in the protocols
Basic-P and Efficient-P does not guarantee absence of deadlock. A simple
counterexample is provided by Example 4 for both protocols.



Height We will now prove that using height, as defined in Def. 7 for α guarantees
absence of deadlock. We assume that for every reactor the number of threads Tr

is greater than or equal to the highest annotation of any node that runs in r in
any call graph in the system. We first prove one more auxiliary lemma.

Lemma 5. With the use of Efficient-P with the height annotation, every task

P with h(P ) = 1 can complete.

Proof. Note that P can always progress when it is active, since it is a leaf node.
Thus it is sufficient to show that it can eventually progress when it is waiting
at `0 1. If tr ≥ 1 it can obviously progress. If tr = 0, then by Lemma 2, there
exists an active task Q in r with h(Q) = 1. This task can terminate, thereby
incrementing tr, and thus unblocking P . ut

Theorem 2. Efficient-P with height annotation guarantees absence of dead-

lock.

Proof. By contradiction, suppose that σ is a reachable deadlock state. Let P ∈ I

be a task in σ such that h(P ) is minimal in I . Consider two cases: (1) h(P ) = 1.
By Lemma 5, P can eventually progress, contradicting deadlock. (2) h(P ) > 1. If
P is active, then by Lemma 1 it must have a waiting descendant, contradicting
that P has minimal height. If P is waiting, then by Lemma 4 there exists an
active task Q with h(Q) ≤ h(P ). Again h(Q) < h(P ) contradicts the minimality
of P . If h(Q) = h(P ), then Q, being active, must have a waiting descendant by
Lemma 1, contradicting the minimality of P . ut

Thus, if every call graph is annotated with height and every reactor r is pro-
vided with at least as many threads as the maximum height of a node that runs
in r, then Efficient-P guarantees deadlock-free operation. The disadvantage
of using height as an annotation is that the number of threads to be provided
to each reactor can be much larger than is strictly necessary. This not only
wastes resources, it may also make some systems impractical, as illustrated by
the following example.

Example 6. Consider a system S : 〈R, {G1, . . . , Gm}〉. A simple way to force
invocations of G1, . . . , Gm to be performed sequentially is to introduce a new
reactor r— called the serializer—and to merge G1, . . . , Gm into a single call
graph by adding a root node n, and making G1, . . . , Gm its subtrees. When using
Efficient-P with the height annotation, the new node node n is annotated
with h(n) = max(h(G1), . . . , h(Gm)) + 1, which may be large. Now r needs to
be provided with this many threads, while one would have sufficed.

Clearly, using height may be wasteful of resources. In the next section we
propose a more efficient annotation that addresses this problem.

4.4 A More Efficient Annotation

Deadlock is caused by cyclic dependencies. Using Efficient-P with an annota-
tion without cyclic dependencies prevents deadlock. Example 4 showed that the
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(a) Annotated call graphs G1 and G2.
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(b) Resulting global call graph.

Fig. 7. Global call graph for two call graphs G1 and G2.

deadlock produced with local height as annotation was caused by the interaction
of multiple call graphs. Thus, a check for cyclic dependencies must consider the
union of all call graphs.

Definition 9 (Global Call Graph). Given a system S : 〈R, {G1, . . . , Gm}〉
with Gi : 〈Vi, Ei〉, where Vi, Vj are assumed to be disjoint for i 6= j, and an-

notation function α :
⋃

i Vi 7→ N, the global call graph for S and α, GS,α :
〈VS , ED, EA〉 consists of

– VS :
⋃

i Vi;

– ED:
⋃

i →
+
i , the union of the descendant relations of all call graphs, where

→+ is the transitive closure of Ei;

– EA: {(v1 : 〈f : r〉, v2 : 〈g : s〉) | α(v1) ≥ α(v2) and r = s} where v1 and v2
may belong to different call graphs Gi.

Example 7. Figure 7(b) shows the global call graph for two annotated call graphs
G1 and G2, where the solid lines indicate edges in ED (no composed edges are
shown) and the dotted lines indicate edges in EA.

Definition 10 (Dependency Relation). Given global call graph GS,α : 〈VS ,
ED , EA〉, v1 ∈ VS is dependent on v2 ∈ VS , written v1 � v2, if there exists a

path from v1 to v2 consisting of edges in EA ∪ED with at least one edge in ED.

A global call graph has a cyclic dependency if for some node v, v � v.

Theorem 3 (Annotation). Given a system S and annotation α, if the global

call graph GS,α does not contain any cyclic dependencies, then Efficient-P

used with α guarantees absence of deadlock for S.

Proof. We first observe that, in the absence of cyclic dependencies, the depen-
dency relation � is a partial order on the nodes in all call graphs, the proof
closely follows that of Theorem 2.

By contradiction, suppose that σ is a reachable deadlock state. Let P ∈ I be
a task in the set of tasks in σ such that P resides in reactor r and is minimal with
respect to �. Consider three cases: (1) P is active. Then, by Lemma 1, P must
have a waiting descendant Q, but then P � Q, contradicting the minimality
of P . (2) P is waiting and α(P ) = 1. Then tr = 0 (otherwise P could proceed,
contradicting deadlock), and by Lemma 2, there exists an active task Q in r with



annotation 1, and thus there exists an edge in EA from P to Q. But by Lemma 1,
Q has a waiting descendant R, and thus P � R, contradicting minimality of P .
(3) P is waiting and α(P ) > 1. By Lemma 4, there exists an active task Q

with α(Q) ≤ α(P ), and, as for case (2) there exists a task R such that P � R,
contradicting minimality of P . ut

It is easy to see that the conditions posed by Theorem 3 require the annotation
to subsume local height. On the other hand, height clearly satisfies the con-
ditions. For many systems, however, the annotation can be significantly lower
than height. For example, in Example 6, the serializer node can safely be given
annotation 1, instead of the maximum height of all call graphs.

5 Conclusions and Future work

We have formalized thread allocation in DRE systems and proposed several
“local” protocols that guarantee absence of deadlock with respect to availability
of threads. We have assumed static call graphs, which are the norm in many
DRE systems.

These protocols are of practical as well as theoretical interest: they can be
implemented (1) transparently, e.g., by using the protocols to filter which en-
abled handles in a reactor’s handle set will be dispatched in each iteration of a
reactor’s event loop [16]; (2) efficiently, e.g., by storing pre-computed call graph
annotation constants and references to protocol variables for each method in a
hash map, to allow constant time lookup at run-time; and (3) effectively, e.g.,
by checking for cyclic dependencies in annotations, as we have done previously
for scheduling dependencies between avionics mission computing operations [6].

As future work we will examine optimizations where the protocol can reduce
pessimism dynamically at run-time, e.g., upon taking particular branches that
require fewer threads than other alternatives. This will involve (1) maintaining a
representation of the call graph and its annotations, as objects register and de-
register with each reactor at run-time; (2) distributed consistent communication
of relevant changes to the graph, annotations, and task progress variables; and
(3) re-evaluation of safety and liveness properties at each relevant change.
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