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Abstract. We study the problem of priority inversion in distributed
real-time and embedded systems and propose a solution based on a dis-
tributed version of the priority inheritance protocol (PIP). Previous ap-
proaches to priority inversions in distributed systems use variations of
the priority ceiling protocol (PCP), originally designed for centralized
systems as a modification of PIP that also prevents deadlock. PCP, how-
ever, requires maintaining a global view of the acquired resources, which
in distributed systems leads to high communication overhead.

This paper presents a distributed PIP built on top of a deadlock avoid-
ance schema that requires much less communication than PCP. Since the
system is already deadlock free and priority inversions can be detected
locally, we obtain an efficient dynamic resource allocation system that
prevents deadlocks and handles priority inversions.

Keywords: Priority Scheduling, Deadlock Avoidance, Distributed Re-
source Allocation, Distributed Real-Time and Embedded Systems.

1 Introduction and Related Work

Modern distributed real-time and embedded systems (DRE) are built using a
real-time middleware that extends conventional middleware services with real-
time QoS capabilities. It is common in real-time systems to assign priorities
to processes to achieve a higher confidence that the more critical tasks will be
accomplished in time. A priority inversion is produced when a high priority
process is blocked by a lower priority one. State-of-the-art middleware solutions,
based for example on CORBA ORBs, may suffer priority inversions [24].
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In centralized systems, priority inversions are usually handled using a proto-
col from the priority inheritance family [26, 15]. However, priority inheritance,
and synchronization in general, is significantly affected by concurrent execution.
Even though some variations of these centralized protocols have been proposed
for multiprocessors [15] and distributed systems [15, 13], there is not yet a widely
accepted general scheme. We propose here a mathematically sound method to
deal with priority inversions in DRE architectures.

In this paper we consider DRE systems that consist of a set of sites, each of
which is capable of executing a predefined set of computations or methods, con-
nected using an asynchronous network. Processes, consisting of local and remote
method calls, are created dynamically. The relevant resources are the threads (or
execution contexts) to run the methods. We assume a WaitOnConnection [25]
thread-allocation policy, that is, each method requires its own thread, including
nested up-calls, and methods hold on to their thread until they finish.

Since resources are finite and we impose no restriction on the number of
processes, deadlocks are reachable unless there is a mechanism in place to control
those allocations. It is important to distinguish between two different kinds of
deadlocks: intra-resource (caused by parallel access to a single resource) and
inter-resource deadlocks (caused by interference across different allocations).

Intra-resource deadlocks : Absence of intra-resource deadlock is one of the re-
quirements of a solution to mutual exclusion, together with exclusive access
and, sometimes, lack of starvation. Several algorithms have been proposed for
distributed mutual exclusion, which can be classified (see [28, 29, 17]) into:

– Permission based: A process can access a resource if there is unanimity [19]
between the participants about its safety. Unanimity can be relaxed to ma-
jority quorums [8, 31, 12], or even majorities in coteries [7, 1]. The message
complexities range from 2(N − 1) in the original Ricart-Agrawala algorithm
[19] to O(log N) in the best case (with no failures) in the modern coterie-
based approaches.

– Token-based: The system is equipped with a single token per resource, which
is held by the process that accesses it. A distributed data-type is maintained
to select the next recipient. For example, Suzuki-Kasami’s approach [30]
exhibits a complexity of O(N) messages per access, and Raymond’s [16]
and Naimi-Tehel’s [14] approaches, use spanning trees to obtain an average
case complexity of O(log N), still exhibiting a O(N) worst case.

However, the most efficient way (in terms of message complexity) to achieve
distributed mutual exclusion is to use a centralized algorithm, like a primary
site approach [2]. For every resource, a distinguished site arbitrates the accesses,
reducing the problem of distributed mutual exclusion to the centralized case.
Thus, allocations can be resolved with one message per request. This comes at
a price of lower resiliency because, if the site managing the resource fails, the
resource becomes inaccessible. However, in some cases, like DRE systems and
Flexible Manufacturing Systems [6, 18] resources are indeed tightly coupled to
the sites where they reside, and therefore it is natural to use this site as the



primary means to resolve each request contention. This is the basic approach
that we use for intra-resource arbitration.

Inter-resource deadlocks : A different kind of deadlock can be produced due to the
interleavings between accesses to different resources, when a set of processes is
waiting in a circular chain in which a process holds a resource needed by the next
process in the chain. The two mechanisms commonly used to ensure deadlock-
free assignment of resource allocation are deadlock prevention and deadlock
avoidance. A third mechanism, deadlock detection and resolution, is common
in databases, but not used in DRE systems, because it may lead to unbounded
worst-case execution times.

Deadlock prevention methods eliminate one of the necessary causes of the
circular contention at design time, at the price of decreasing the concurrency.
For example, “monotone locking”, widely used in practice [3], determines an
arbitrary total order on the set of resources that is followed at run-time to
acquire resources.

Deadlock avoidance methods check the current resource allocation at runtime
and grant a resource only if it is safe, that is, if there is a way for all processes
to eventually finish. This check is made possible by having processes that enter
the system announce their maximum resource usage, an approach first proposed
by Dijkstra in his Banker’s algorithm [5, 9, 10]. When resources are distributed
across multiple sites, however, deadlock avoidance is harder, because different
sites may have to consult each other to determine whether a particular allocation
is safe. Because of this need for distributed agreement, a general solution to
distributed deadlock avoidance is considered impractical [27]. Efficient solutions
do exist, however, for the type of systems considered here, namely DRE systems
with a WaitOnConnection thread-allocation policy. In [23, 22] we demonstrated
an efficient distributed deadlock avoidance method for systems for which all the
possible sequences of invocations are known and available to analysis a priori.
In this paper we build on this algorithm to construct an efficient distributed
priority inheritance protocol.

Priority Inheritance Protocols : It is common in real-time systems to assign pri-
orities to processes. A priority inversion is produced when a process with high
priority is unnecessarily blocked by a process with lower priority. To bound pri-
ority inversions, the Priority Inheritance Protocol (PIP) and the Priority Ceiling
Protocol (PCP) were introduced, primarily applicable to hard real-time systems
with shared resources and static priorities [26]. Later, these methods were ex-
tended to dynamic priority scheduling algorithms such as Earliest Deadline First
(EDF) [4]. PIP can bound blocking times if a bound on the running time of each
process and all its critical sections is known. PIP does not, however, prevent
deadlocks, and therefore PCP was introduced to prevent inter-resource dead-
locks, at the price of some concurrency.

A distributed version of PCP was proposed in [13] to deal with priority inver-
sion and inter-resource deadlock in distributed systems. This protocol, however,
suffers from a high communication overhead: before a request is granted, the
ceiling of each resource that is (globally) used must be queried. This requires



maintaining global views of the system. Having more information about the
system in the form of call graphs, however, we can use the simpler and more
efficient priority inheritance protocol (PIP) to deal with priority inversions and
use our deadlock avoidance algorithm to guarantee absence of inter-resource
deadlocks. Our priority inheritance protocol allows more concurrency and, more
importantly, it involves no communication overhead when priority inversions are
not present, which in our setting is locally testable (it requires no communica-
tion to detect a priority inversion). Moreover, when priority inversions do exist,
our protocol involves only one-way communication, without the need for return
messages. Once an inversion is detected and the priority inheritance protocol is
run—which may inject messages into the network—the local processes can pro-
ceed immediately without compromising deadlock freedom. This leads to a more
efficient solution, especially in scenarios where latencies are significant compared
to the running times of methods.

Our PIP protocol enables the computation of a bound on the number of
lower priority processes that can block a higher priority one. Consequently, the
blocking time of a process can also be bound if the maximum running time of
each method and the latency of each message is known. This solution enables
the following design methodology for DRE systems. A distributed system with
periodic and sporadic tasks with deadlines can be analyzed for schedulability:
(1) computing initial priorities of processes statically, and (2) showing a proof
that deadlines are met in all possible executions. In this paper we prove the
correctness of the distributed priority inheritance protocol, and leave distributed
schedulability analysis for future research.

The rest of this paper is structured as follows. Section 2 reviews our dis-
tributed deadlock avoidance algorithms. Section 3 includes the distributed pri-
ority inheritance protocol and proves its correctness, and Section 4 presents our
conclusions and describes future work.

2 Distributed Deadlock Avoidance

We model a distributed system S : 〈R,G〉 by a set of sites and a call graph
specification. The sites R : {r1, . . . , r|R|} model distributed devices that per-
form computations and handle a necessary and scarce local resource, such as a
finite pool of threads. A call graph specification G : 〈N,→, I〉 consists of a di-
rected acyclic graph 〈N,→〉, which captures all the possible sequences of remote
calls that processes can perform. The set of initial nodes I ⊆ N contains those
methods that can be invoked when a process is spawned.

A call graph node abstracts both the computation to be performed at a site
and the resource needed. Each node has a unique name (the method name) and
a site associated with it, the site where the method will be executed at run-time.
If node n describes resource (f : r) we say that n executes computation f and
resides in site r. We use the predicate n ≡R m to represent that nodes n and m

reside in the same site. To simplify notation, if the method name is unimportant
we use n : r instead of n = (f : r). We use r, s, r1, r2, . . . to refer to sites and
n, m, n1, m1, . . . to refer to call graph nodes.



An edge n → m in the call graph denotes a possible remote invocation; in
order to complete the computation modeled by n the result of a call to m may
be needed. If this call is performed, the resource associated with n will be locked
at least until the invocation of m returns. Note how this call semantics is not
equivalent to synchronous calls since we do not assume that the caller needs
a response to continue the computation but only needs a response to complete
its execution. For example, after initiating a remote method call, the caller can
immediately continue and perform more remote invocations before waiting for
the reply. All our results immediately cover synchronous semantics as a particular
case (in which callers do wait for a response before proceeding) and can be easily
adapted to totally asynchronous semantics (where processes are even allowed to
terminate without waiting for responses).

A run of a system consists of the execution of processes, created dynamically.
When a new process is spawned it announces an initial call graph node whose
outgoing paths capture the remote calls that the process may perform. Incoming
invocations require a new resource to run, while call returns release a resource.
We use the following terminology: every new method invocation is called a pro-
cess, and the context will disambiguate between subprocesses (created by remote
calls) and proper processes (corresponding to new instances entering the system).
Once a process has received a resource, it holds onto it until completion, that
is, there is no preemption once a resource is acquired. We also assume that all
computations terminate, if their demanded resources are granted.

Even though in principle our computational model can be regarded as non-
preemptive, methods that assume preemptive scheduling (the setting where clas-
sical priority inheritance with rate-monotonic scheduling was introduced [11]) are
also relevant. This is because in our model, all computations occur inside critical
sections (resources are nested).

Deadlocks can be reached if all resource requests are immediately granted,
since resources are finite and fixed a priori in each site and—in principle—we
impose no restriction on the topology of the call graph specification or the num-
ber of process instances. We use Tr for the total number of resources in site r,
and tr for a variable that keeps track of the number of resources available in r

at every instant. Initially, tr = Tr.

Example 1. Consider a system with sites R = {r, s}, nodes N = {n1, n2, m1, m2}
with n1 and m1 initial nodes, and call graph

n1 r n2 s

m1 s m2 r

This system has reachable deadlocks if no controller is used. Let sites s and r

handle exactly two threads each. If four processes are spawned, two instances of
n1 and two of m1, all resources in the system will be locked after each process
starts executing its initial node. Consequently, the allocation attempts for n2

and m2 will be blocked indefinitely, so no process will terminate or return a
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Fig. 1: The deadlock avoidance protocol Basic-P.

resource. A possible allocation sequence is shown below,

tr = 2
ts = 2

tr = 0
ts = 2

tr = 0
ts = 0

n1 r
••

n2 s

m1 s
••

m2 r

n1 r
••

n2 s

m1 s
••

m2 r

n1 r
••

n2 s

m1 s
••

m2 r

where a • represents an existing process that tries to acquire a resource at a node
(if • precedes the node) or has just been granted the resource (if • appears after
the node). It is easy to see that a deadlock can still occur even if the number of
threads in r and s is increased. We can simply spawn the corresponding number
of processes.

In our solution to deadlock avoidance, the assignment of resources is con-
trolled by two cooperating components: the allocation manager and the sched-
uler. The allocation manager decides which subset of pending requests is safe (in
the sense that no continuation of the execution will reach a deadlock if granted);
these requests are called enabled. The scheduler then chooses a process among
the enabled ones, which receives the resource. This interaction between the allo-
cation manager and the scheduler is repeated until the set of enabled processes
is empty. Processes whose request is disabled are called waiting, while processes
that hold a resource are called active.

A deadlock avoidance algorithm is an allocation manager that guarantees
that no deadlock can be reached, independently of the scheduler used. Our dead-
lock avoidance algorithms consist of two parts:

1. A computation of annotations of call graph nodes, carried out statically. We
consider maps from nodes to natural numbers α : N 7→ N as annotations.

2. A protocol : a piece of code that ensures, at runtime, that allocations and
deallocations are safe. It consists of two stages: one that runs when the
resource is requested, and another when the resource is released. We are
seeking protocols that only inspect and modify local variables of the site.

The deadlock avoidance protocol Basic-P [23] for node n = (f : r) is shown
in Fig. 1. The entry section that precedes the access to the method call f()
consists of a guard and an action that operate on local variables of site r. The
guard captures the enabling condition of the request for node n. We assume
that the entry section is executed atomically, as a test-and-set operation. A
requesting process executing node n : r is enabled if there are at least α(n)



resources available in r. Note, however, that only one resource is acquired. The
exit section is executed when the method terminates and consists of an action
that updates local variables, in this case increasing tr. The execution of the exit
section triggers the allocation manager to re-evaluate the entry condition of the
waiting processes. Those requests for resources found safe, if any, are handed
over to the scheduler, which chooses one to be granted.

The most important property that protocols must enforce is freedom from
deadlock. The following is a characterization of deadlock:

Definition 1 (Deadlock). A deadlock is a global state in which there is a non-
empty set of disabled processes that continue to be disabled even if all the other
processes in the system return their acquired resources.

Basic-P avoids deadlocks if the annotation is acyclic in the following sense.
Given a system 〈R,G〉 and an annotation α, the annotated call graph (N,→, 99K)
adds to G one edge n 99K m for every pair of nodes n and m that reside in the
same site and α(n) ≥ α(m). A node n depends on a node m, represented as
n � m, if there is a path in the annotated graph from n to m that follows at
least one → edge. The annotated graph is acyclic if no node depends on itself,
in which case we say that the annotation is acyclic.

Theorem 1 (Annotation Theorem for Basic-P [23]). Given a system and
an acyclic annotation, if Basic-P is used in every node to control resource al-
locations then all executions of the system are deadlock free.

Example 2. Reconsider the system from Example 1. The left diagram below
shows an annotated call graph with α(n1) = α(n2) = α(m2) = 1 and α(m1) = 2.
It is acyclic, and thus by Theorem 1, if Basic-P is used with these annotations,
the system is deadlock free.

n1 r
1

n2 s
1

m1 s
2

m2 r
1

n1 r
1

n2 s
1

m1 s
1

m2 r
1

Let us compare this with Example 1 where a resource is granted simply if it
is available. This corresponds to using Basic-P with the annotated call graph
above on the right, with α(n) = 1 for all nodes. In Example 1 we showed that a
deadlock is reachable, and indeed this annotated graph is not acyclic; it contains
dependency cycles, for example n1 → n2 99K m1 → m2 99K n1. Therefore
Theorem 1 does not apply. In the diagram on the left all dependency cycles are
broken by the annotation α(m1) = 2. Requiring the presence of at least two
resources for granting a resource at m1 ensures that the last resource available
in s can only be obtained at n2, which breaks all possible circular waits.

The priority inheritance protocol presented in the next section is based on
Basic-P. Its correctness relies on the following property.

Theorem 2 (Reachable state space [20]). The set of global states reachable
by Basic-P contains precisely those states in which, for all sites r and annota-
tions k

ϕ : Ar[k] ≤ Tr − (k − 1) ,



where Ar[k] denotes the number of active processes in site r executing call graph
nodes with annotation k or higher.

The global states that satisfy ϕ are called ϕ-states. Since Basic-P guarantees
deadlock free operation, Theorem 2 implies, for example, that if a system is
in a ϕ-state and Basic-P is used as an allocation manager in every site, then
there is some enabled process. In [21, 20] we introduced more efficient protocols
(Efficient-P, k-Efficient-P and Live-P) and proved annotation theorems
similar to Theorem 1, but Basic-P is simpler and it is enough to illustrate the
present discussion. In the remainder of the paper we will assume that Basic-P

is used to allocate the resources.

3 Priority Inheritance

In this section we develop a priority inheritance mechanism and show how it
helps to alleviate priority inversions. A priority specification extends a system
specification with a description of the possible priorities at which processes can
run. The fixed set P of priorities is a finite and totally ordered set. Without loss
of generality, we take P = {1, . . . , pm}, where lower value means higher priority:
1 represents the highest priority and pm the lowest.

Definition 2. Given a system 〈R,G〉 and set of priorities P, a priority assign-
ment is a map from initial nodes I to sets of priorities:

Π : I → 2P .

A priority specification 〈R,G, Π〉 equips the system with a priority assignment.

In the prioritized setting, when a process is created, it declares both the
initial node i—as in the unprioritized case before— and its initial priority from
Π(i), called the nominal priority of the process. Informally, a process L will run
at its nominal priority, and “accelerate” to a higher priority when some higher
priority process H is waiting for some resource that L holds. This will prevent
processes running at intermediate priorities from making L wait and blocking H

indirectly. We now define the distributed priority inheritance protocol:

(PI.1) A process maintains a running priority, which is initially its nominal
priority.

(PI.2) Let P be a process, running at priority p, that is denied access to a
resource in site r, and let Q be an active process in r running at a priority
lower than p. Q and all its subprocesses set their priority to p or their
current running priority, whatever is higher. We say that Q is accelerated
to p.

(PI.3) When a (sub)process is accelerated it does not decrease its running pri-
ority until completion.

(PI.2) may require sending acceleration messages for subprocesses running in
remote sites. (PI.2) does not require changing the priority of ancestor processes



since the acceleration of a caller cannot help the callee to finish earlier. (PI.3)
states that a (sub)process cannot decelerate. In general, decelerations compro-
mise deadlock freedom.

It is easy to see that a subprocess either runs at priority at least as high as
any of its ancestors, or there are undelivered acceleration messages.

We now calculate the sets of possible priorities at which a call graph node
can be executed. A node n:r can be executed at a priority p either if p ∈ Π(i) for
some initial ancestor of n, or if a process can execute n running at priority lower
than p and block another process running at p. This block can be produced either
if there is some node in r that can be executed at p, or if some ancestor of n can
block some process executing at p. Formally, the set of pairs (n, p) representing
priorities p at which a node n can run is the smallest set N pr ⊆ N×P containing:

1. (n, p) for every n that descends from i →∗ n, i ∈ I and p ∈ Π(i).
2. (n, p) for every (m, p) ∈ Npr with n ≡R m, and (n, q) ∈ Npr for some q ≥ p,

and
3. (n, p) for some ancestor m →+ n that can also run at p, (m, p) ∈ Npr .

Example 3. Consider the call graph

n r m u o1 r o2 u

and the priority assignment Π(n) = {1}, Π(m) = {2}, Π(o1) = {3}. The set of
potential priorities is:

n m o1 o2

{1} {1, 2} {1, 3} {1, 2, 3}

Node o1 can run at priority 1 because o1 resides in the same site as n and
n can run at 1. Since o2 is a descendant of o1, o2 can also run at 1, and
since m resides in the same site as o2, m can also run at 1. Moreover, m

can run at 2, higher than o2 running at 3, so o2 can also run at 2. Thus
Npr = {(n, 1), (m, 1), (m, 2), (o1, 1), (o1, 3), (o2, 1), (o2, 2), (o2, 3)}.

We extend the state transition system that models the global behavior of our
model of distributed systems [23] with a new transition called acceleration. When
an acceleration transition is taken, a process P running at priority p accelerates
to higher priority q (q < p). It is easy to see that, if the priority inheritance
protocol is used, and a process running in n can accelerate from priority p to q,
then both (n, p) and (n, q) are in Npr .

The notion of annotation can be adapted to prioritized specifications. A
prioritized annotation α is a map from Npr to the natural numbers. It respects
priorities if for every two pairs (n, p) and (m, q) in N pr , with n ≡R m, α(n, p) >

α(m, q) whenever p > q, that is, if higher priorities receive lower annotations.
As with unprioritized call graphs, we define an annotated call graph by adding

an edge relation
pr

99K connecting (n, p)
pr

99K (m, q) whenever n and m reside in
the same site and α(n, p) ≥ α(m, q). If there is a path from (n, p) to (m, q) that

contains at least a
pr

→ edge we say that (n, p) depends on (m, q), and we write
(n, p) � (m, q). An annotation is acyclic if no pair depends on itself.



Example 4. The following diagram represents the annotated call graph of Ex-
ample 3 with ⇒ arrows representing accelerations. This annotated call graph is
acyclic.

(n, 1) r
1

(m, 1) u
1

(o1, 1) r
1

(o2, 1) u
1

(m, 2) u
2

(o2, 2) u
2

(o1, 3) r
2

(o2, 3) u
3

Example 5. This example shows how priority inheritance bounds the blocking
time caused by priority inversions. Reconsider the annotated call graph of Ex-
ample 4. Let the total number of resources be Tr = 3 and Tu = 3. Let σ be
a state in which two active processes are running in n at priority 1, one active
process M is running in m at priority 2, and one active process O is running in
o1 at priority 3. Thus the available resources in σ are given by tr = 0, tu = 2. Let
N be a new process spawned to run in n with nominal priority 1. The resulting
state is shown below.

(n, 1) r
1•

N
••

(m, 1) u
1

(o1, 1) r
1

(o2, 1) u
1

(m, 2) u
2•

M
(o2, 2) u

2

(o1, 3) r
3•

O

(o2, 3) u
3

N is blocked trying to access (n, 1). There is a priority inversion since O holds an
r resource in o1, while running at lower priority 3. If no acceleration is performed,
then the remote call of O to o2 is blocked until M completes, so N will be blocked
indirectly by M (see Fig. 2 (a)). Even worse, if there are several processes waiting
in (m, 2), all these processes will block O and indirectly N , causing an unbounded
blocking delay (see Fig. 2 (b)). With priority inheritance in place, O inherits
the priority 1 from N , and the resulting state after the acceleration is:

(n, 1) r
1•

N
••

(m, 1) u
1

(o1, 1) r
1•

O

(o2, 1) u
1

(m, 2) u
2•

M
(o2, 2) u

2

(o1, 3) r
2

(o2, 3) u
3

In this state, O will be granted the resource in o2 in spite of M (and potentially
other priority 2 processes waiting at m) and O will terminate, freeing the resource
demanded by N . In this case the blocking time of N is bounded by the running
time of O at priority 1, as shown in Fig. 3.

The following results hold in spite of when and how accelerations are produced:

Lemma 1. If an annotation respects priorities, then accelerations preserve ϕ.

Proof. Let P be a process that accelerates from priority p to q. If P is waiting,
the result holds immediately since the global state does not change. If P is active
at a node n : r, its annotation α(n, p) > α(n, q) decreases. Therefore, all terms
Ar[k] are either maintained or decreased, and ϕ is preserved. ut



t0 t1 t2 t3 t4 t5 t6 t7

O r
∗ u

M u

N ∗ r

t0 t1 t2 t3 t4 t5 t6 t7

O r
∗ · · ·

M u u u · · ·
N ∗ · · ·

(a) Blocking due to Priority Inversions (b) Unbounded Blocking

Fig. 2: Time diagram (a) shows an execution of the scenario in Example 5 with blocking
priority inversions. Diagram (b) shows an execution with unbounded blocking time
due to priority inversions. In both diagrams, at instant t0, process O is created, and its
request for an r-resource is granted. At t1, process N is created, but due to the existence
of O and two active processes in n1, its request is denied, indicated by ∗. At t2, M is
spawned to run m and its request for a u-resource is granted. This causes the request
of O to execute o2 at t3 to be denied. O can only execute o2 when some resource in u is
freed. Therefore M is blocking N indirectly. In diagram (a) this blocking is restricted
to the interval (t3, t4), while in diagram (b) the blocking delay is unbounded.

t0 t1 t2 t3 t4 t5 t6 t7

O r
�

u

M u

N ∗ r

(a) No Blocking with Priority Inheritance

Fig. 3: At time t1, process O inherits priority 1 from process N , depicted by �. This
allows O to acquire the u-resource and execute o2 at t3, in spite of the existence of
M or other processes trying to execute m at priority 2. Consequently, N can start
executing n at t5, with no blocking delay.

Corollary 1. The set of reachable states of a prioritized system that uses Basic-

P as an allocation manager with an acyclic annotation that respects priorities is
a subset of the ϕ-states.

In the rest of this section we show that if Basic-P is used to control al-
locations, and accelerations are produced according to the priority inheritance
protocol, deadlocks are not reachable. When a process inherits a new priority,
all its existing subprocesses, including those in other sites produced as a result
of remote invocations, must accelerate as well. A message is sent to all sites
where a subprocess may be running. When the message is received, if the pro-
cess exists, then it is accelerated. If it does not, the acceleration is recorded as
a future promise. We first show deadlock-freedom if all acceleration requests are
delivered immediately with global atomicity. Then, we complete the proof for
asynchronous delivery in general.



3.1 Priority Inheritance with Global Atomic Accelerations

Given a prioritized system S we build an (unprioritized) system and show that
if S has reachable deadlocks so does the derived one.

Definition 3 (Flat call graph). Given a priority specification 〈R,G, Π〉, a

flat call graph is G[ : 〈Npr ,
pr

→, Ipr 〉, where Npr is the set of potential priorities,

there is an edge (n, p)
pr

→ (m, q) if p ≥ q and n → m occurs in the original call
graph, and (i, p) ∈ Ipr if i is initial in G.

We use S[ : 〈R,G[〉 for the (unprioritized) flat system that results from the flat
call graph. It is easy to see that the set of reachable states of a process (the
resources and running priorities of the process and each of its active subpro-
cesses) is the same in a system and in its flat version. Moreover, if an annotation
α of a prioritized specification is acyclic and respects priorities then α, when
interpreted in the flat call graph, is acyclic.

Example 6. The flat call graph for the annotated specification in Example 3 is

(n, 1) r
1

(m, 1) u
1

(o1, 1) r
1

(o2, 1) u
1

(m, 2) u
2

(o2, 2) u
2

(o1, 3) r
2

(o2, 3) u
3

Theorem 3. Given a prioritized system S and an acyclic annotation that re-
spects priorities, every global state reachable by S is also reachable by S [, if
Basic-P is used as an allocation manager.

Proof. Follows directly from Corollary 1 and Theorem 2. ut

It is important to note that Theorem 3 states that for every sequence of requests
and accelerations that leads to state σ in S, there is a—possibly different but also
legal— sequence that leads to σ in S[. Theorem 3 does not imply, though, that
every transition in S can be mimicked in S[, which is not the case in general for
accelerations. A consequence of Theorem 3 is that deadlocks are not reachable
in S, since the same deadlock would be reachable in S[, which is deadlock free
by the Annotation Theorem.

Corollary 2. If α is an acyclic annotation that respects priorities, and Basic-

P is used as a resource allocation manager in every node, then all runs of S
when accelerations are executed in global atomicity are deadlock free.

The following section shows that the requirement for global atomicity in the
previous corollary is actually not necessary.



3.2 Priority Inheritance with Asynchronous Communication

When an arbitrary asynchronous communication subsystem is assumed, with no
guarantees of globally atomic delivery of messages, the proof of deadlock freedom
is more challenging. In this case, the flat system does not directly capture the
reachable states of the system with priorities, since subprocesses may accelerate
later than their ancestors.

Theorem 4 (Annotation Theorem for Prioritized Specifications). If α

is an acyclic annotation that respects priorities, and Basic-P is used as a re-
source allocation manager for every call graph node, then all runs of S are dead-
lock free.

Proof (sketch). Assume, by contradiction, that deadlocks are reachable, and let
σ be a state in which a set {P} of processes forms a deadlock. Note that σ need
not be a reachable state of the flat system S[. Consider an arbitrary continuation
of the run, and let σ′ be the first state in which there is no undelivered message
containing an acceleration of a process in the set {P}. Such a state exists since the
set of possible accelerations is finite and all messages are eventually delivered. In
σ′ if all the processes not involved in the deadlock (i.e., not in {P}) return their
resources the resulting state becomes a ϕ-state, and therefore some process (in
{P}) can progress if Basic-P is used as an allocation manager. This contradicts
the assumption that σ is a deadlock state. ut

4 Conclusions and Further Work

We have presented a distributed priority inheritance protocol built using a dead-
lock avoidance mechanism, and proved its correctness. This protocol involves less
communication overhead than a distributed PCP, since inversions can be de-
tected locally, while PCP requires a global view of the resources allocated. Our
approach enables the calculation of bounds on the maximum blocking times,
which is necessary for schedulability analysis.

Message Complexity : The message complexity of a näıve implementation of the
priority inheritance protocol described here is given by the number of different
sites of the set of descendant nodes, which in the worst case is |R|. However,
this communication is one-way, in the sense that once the message is sent to
the network, the local process can immediately accelerate, increasing its running
priority. Moreover, broadcast can be used when available. Also, under certain
semantics for remote calls this worst case bound can be improved. For example,
with synchronous remote calls (the caller is blocked until the remote invocation
returns), one can build, using a pre-order traversal of the descendant sub-tree,
an order on the visited sites. Then, a binary search on this order can be used to
find the active subprocess where the nested remote call is executing. This gives
a worst case (log |R|) upper-bound on the number of messages needed for each
priority inheritance.



Dynamic Priorities : Most dynamic priority scheduling algorithms, like EDF, re-
quire querying for the current status of existing processes to define their relative
priorities. Our priority inheritance mechanism can be used with dynamic priori-
ties if there is some static discretization of the set of priorities that processes may
run at. To ensure the correctness of the priority inheritance protocol shown here,
subprocesses must only increase (never decrease) their priorities while running.
Note that in this kind of scheduling algorithm, accelerations would not only be
caused by a priority inversion but also by the decision of a process to increase
its priority to meet a deadline.
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