
Efficient Distributed Deadlock Avoidance
with Liveness Guarantees

César Sánchez Henny B. Sipma
Zohar Manna

Computer Science Department
∗

Stanford University
Stanford, CA 94305, USA

Christopher D. Gill

Computer Science and Eng. Dept.
Washington University

St. Louis, MO 63130, USA

ABSTRACT
We present a deadlock avoidance algorithm for distributed
systems that guarantees liveness. Deadlock avoidance in
distributed systems is a hard problem and general solutions
are considered impractical due to the high communication
overhead. In previous work, however, we showed that prac-
tical solutions exist when all possible sequences of resource
requests are known a priori in the form of call graphs; in
this case protocols can be constructed that perform safe re-
source allocation based on local data only, that is, no com-
munication between components is required. While avoiding
deadlock, those protocols, however, did not avoid starva-
tion: they guaranteed that some process could always make
progress, but did not guarantee that every individual pro-
cess would always eventually terminate.

In this paper we present a resource allocation mechanism
that avoids deadlock and guarantees absence of starvation,
without undue loss of concurrency. The only assumption we
make is that the local scheduler is fair. We prove the correct-
ness of the algorithm and show how it can be implemented
efficiently.

Categories and Subject Descriptors
D.4.1 [Software]: Operating Systems—Process management ;
D.1.3 [Software]: Programming Techniques—Concurrent
programming

General Terms
Theory, Reliability, Algorithms

∗This research was supported in part by NSF grants CCR-
01-21403, CCR-02-20134, CCR-02-09237, CNS-0411363,
and CCF-0430102, by ARO grant DAAD19-01-1-0723, and
by NAVY/ONR contract N00014-03-1-0939.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-542-8/06/0010 ...$5.00.

Keywords
Scheduling, Deadlock Avoidance, Distributed Algorithms

1. INTRODUCTION
Computations in distributed systems often involve a dis-

tribution of method calls over multiple sites. At each site
these computations need resources, in the form of threads,
to proceed. With multiple processes starting and running
at different sites, and a limited number of threads at each
site, deadlock may arise.

Traditionally three methods are used to deal with dead-
lock: deadlock prevention, deadlock avoidance, and dead-
lock detection. In deadlock prevention a deadlock state is
made unreachable by violating one of the necessary con-
ditions for deadlock. For example, imposing a fixed or-
der in which resources are acquired, such as in “monotone
locking” [1], violates the condition for a cyclic dependency
among resources. This strategy, however, imposes some bur-
den on the programmer, and—often a more important con-
cern in embedded systems—can substantially reduce perfor-
mance, by artificially limiting concurrency. With deadlock
detection methods deadlock states may occur, but are upon
detection resolved by, for example, roll-back of transactions.
This approach is common in databases. In embedded sys-
tems, however, this is usually not an option, especially in
systems interacting with physical devices.

Deadlock avoidance methods take a middle route. At run-
time a protocol is used to decide whether a request for re-
sources is granted based on current resource availability and
possible future requests of processes in the system. A re-
source is granted only if it is safe, that is, if all processes
still have a strategy to complete. To make this possible pro-
cesses that enter the system must inform the protocol about
their expected resource usage. The best known algorithm
following this strategy is Dijkstra’s Banker’s algorithm [4,
5, 6, 15, 13], where a process upon creation reports the
maximum number of resources of each type that it can re-
quest during its execution. This information is then taken
into account in the decision of whether to allow later pro-
cesses to enter the system. When resources are distributed
across multiple sites, however, deadlock avoidance is harder,
because the different sites may have to consult each other to
determine whether a particular allocation is safe. Because
of this need for distributed agreement, a general solution

to distributed deadlock avoidance is considered impracti-
cal [14]; the communication costs involved simply outweigh
the benefits gained from deadlock avoidance over deadlock
prevention.

In this paper we propose a distributed deadlock avoidance
algorithm that does not require any communication between
sites. The algorithm is applicable to distributed systems
in which processes perform method invocations at different
sites and lock local resources (threads) until all remote calls
have returned. In particular, if the chain of remote calls
arrives back to a site previously visited, then a new resource
is needed. This model arises, for example, in distributed
real-time and embedded (DRE) architectures that use the
WaitOnConnection policy for nested up-calls [12, 10, 16].

The algorithm’s ability to provide deadlock avoidance us-
ing only operations over local data is made possible by pro-
viding the protocol with additional information about re-
source usage in the form of call graphs that represent all
possible sequences of remote invocations. In DRE systems,
this information can usually be extracted from the compo-
nent specifications or from the source code directly by static
analysis. In [9, 8] we presented a first version of such a dead-
lock avoidance algorithm based on an annotated global call
graph and showed that the conditions imposed on these an-
notations were tight: a violation could lead to deadlock.
That algorithm, however, did not guarantee liveness: al-
though it guaranteed that some process could always pro-
ceed, individual processes could still starve and never ter-
minate, independently of the schedulers’ decisions. In this
paper we remedy this shortcoming and present a deadlock
avoidance algorithm that is still based on local data only
and guarantees liveness of all individual processes, assum-
ing a fair scheduler. Interestingly, this new algorithm is also
more efficient than the previous one in that it allows more
concurrency.

Liveness is guaranteed provided that the scheduler in the
local node is fair in the following sense. As observed in [3],
the resource assignment is implemented by a controller that
consists of two components: an allocation manager and a
scheduler. The allocation manager decides whether an in-
coming request is safe to be granted.

• If the allocation is safe, a unit of resource is assigned.
• It it is not, the process is inserted in a waiting queue.

Upon a resource release, the allocation manager computes
the subset of the processes in the waiting queue whose pend-
ing request is now safe. It is then the job of the scheduler
to pick one process among the set of safe processes. The
protocol presented here guarantees liveness globally (every
process in the system eventually terminates) assuming that
the local schedulers are strongly fair (no process can be in
the offered safe set infinitely often without being scheduled).

The rest of this paper is structured as follows. Section 2
introduces the computational model and recalls the basics
of our previous deadlock avoidance algorithms [9, 8], and
shows that these protocols do not guarantee liveness. Sec-
tion 3 presents a protocol schema that guarantees deadlock
avoidance and liveness. Section 4 shows how this schema
can be implemented efficiently. Section 5 concludes.

2. MODEL OF COMPUTATION
We model a distributed system S : 〈R, G〉 as a set of sites

and a call graph specification. Sites R : {r1, . . . , r|R|} model
distributed devices that perform computations and handle a
necessary and scarce local resource, for example a finite pool
of threads or execution contexts. A call graph specification
G : (V,→) is an acyclic1 graph that captures all the possible
flows of the computations. A call graph node n = (f : r)
models the method call f to be performed at site r (if the
method name is unimportant we simply write n : r). An
edge from n = (f :r) to m = (g :s) denotes a possible remote
invocation of method g at site s. If this call is performed the
resource (thread or execution context) associated with n is
locked at least until g returns. In the remainder of this paper
we will use r, s, r1, r2, . . . to refer to sites and n, m, n1, m1, . . .

to refer to call graph nodes. Each site r stores some local
data, including a constant Tr representing the total units of
resource in r, and a variable tr whose value represents the
available resources at each point in time. Initially, tr = Tr.

The execution of a system consists of processes, which
can be created dynamically, executing computations that
only perform remote calls according to the edges in the call
graph. When a new process is spawned it announces the
call graph node whose outgoing paths describe the remote
calls that the process will perform. All invocations of a call
graph node require a new resource in the corresponding site,
while call returns release the resource.

We impose no restriction on the topology of the call graph
or on the number of process instances, and thus deadlocks
can be reached if all requests for resources are immediately
granted.

Example 1. Consider a system with two sites R = {r, s},
a call graph with four nodes V = {n1, n2, m1, m2}, and
edges

n1 r n2 s

m1 s m2 r

If sites s and r each handle exactly two resources (Tr =
Ts = 2) and four processes are created, two running n1 and
two running m1, no more resources are available after each
process starts its execution. Hence, the resulting state is a
deadlock since none of the processes can proceed.

A deadlock avoidance algorithm implements the alloca-
tion manager ensuring that no deadlock can be reached. Our
deadlock avoidance algorithms consist of two parts:

1. The offline computation of call-graph annotations, α :
V 7→ N, a map from nodes to natural numbers;

2. A runtime protocol that controls resource allocations
and deallocations based on local data and call graph
annotations.

The protocol consists of two stages: one that runs when
the resource is requested, and another that executes upon

1The restriction to acyclic graphs is relaxed in [7] but this
extension is orthogonal to the discussion of this paper and
can be incorporated in the liveness protocol.

n ::

2

6

6

6

6

6

6

4

»

when α(n) < tr do

tr--

–

f()

tr++

3

7

7

7

7

7

7

5

Figure 1: Basic-P

release. A schematic view of a protocol is:

n ::

2

6

6

6

6

6

6

4

ff

entry

f ()

ff

invocation
ff

exit

3

7

7

7

7

7

7

5

A process that is granted access into the method section
is called active, while a process whose request is rejected
is called waiting. We assume that the actions of the entry
and exit sections of a protocol cancel each other, and that
the successful execution of an entry section cannot help a
waiting process in obtaining its desired resources.

Intuitively, the annotation α(n : r) provides a measure of
how many execution contexts site r should reserve for pro-
cesses executing at other sites that may perform remote calls
to r with lower annotations. Thus, the annotation provides
a static data structure that can be used by a protocol to
ensure at runtime that there will be no cyclic dependencies
between processes waiting for resources.

The simplest protocol based on this annotation is Basic-
P, shown in Figure 1. It grants a resource to a process exe-
cuting a call graph node n : r if α(n) is less than the number
of resources available, represented by the local variable tr.
In previous papers [9]2 we proved that this protocol avoids
deadlock if the annotation is acyclic in the following sense.
Given a system S : 〈R,G〉 and an annotation α, the anno-
tated call graph (V,→, 99K) adds to G one edge n 99K m for
every pair of nodes n and m that reside in the same site and
α(n) ≥ α(m). A node n depends on a node m, represented
as n � m, if there is a path in the annotated graph from n

to m that follows at least one → edge. The annotated graph
is acyclic if no node depends on itself, in which case we say
that the annotation is acyclic.

Theorem 1 (Annotation Theorem for Basic-P [9]).
Given a system S and an acyclic annotation, if Basic-P is
used to control resource allocations then all executions of S
are deadlock free.

Example 2. Reconsider the system described in Exam-
ple 1. By granting resources whenever they are available,

2In [9] the entry condition in Basic-P was α(n) ≤ tr, be-
cause we took 1 as the lowest annotation value. In this
paper we take 0 as the lowest annotation value, to simplify
the presentation of the liveness protocol given in the next
section. With some minor modifications of the proofs the
results from [9] all carry over to this modified annotation.

n ::

2

6

6

6

6

6

6

4

»

when 1 < tr do

tr--

–

f ()

tr++

3

7

7

7

7

7

7

5

If α(n) = 0.

n ::

2

6

6

6

6

6

6

4

»

when α(n) < pr ∧ 1 < tr do

〈pr--, tr--〉

–

f()

〈tr++, pr++〉

3

7

7

7

7

7

7

5

If α(n) > 0.

Figure 2: Efficient-P

it implicitly assumes the following annotation graph,

n1 r
0

n2 s
0

m1 s
0

m2 r
0

in which all nodes have annotation 0. Clearly, this graph
has a dependency cycle, and thus deadlock avoidance is not
guaranteed. If we set α(m1) = 1, this dependency cycle is
eliminated, resulting in the acyclic annotated call graph,

n1 r
0

n2 s
0

m1 s
1

m2 r
0

Deadlock is avoided by always reserving at least one resource
in site s for a remote call from a process P executing node
n1, so that P can complete.

The protocol Basic-P, however, unnecessarily restricts
concurrency. It can be refined into a more efficient protocol,
called Efficient-P, shown in Figure 2. Each site maintains
two local variables: tr, representing the number of currently
available resources, and pr, the number of “potentially avail-
able” resources. Initially both pr and tr are set to the total
number of resources Tr. A process requesting a resource to
execute a node with annotation 0 is granted the resource
whenever a resource is available, as in Basic-P. Since this
execution is guaranteed to terminate independently of other
competing processes, this resource is potentially recoverable,
and thus pr is not decremented in this case. When a pro-
cess requests a resource to execute a node with annotation
higher than 0, both tr and pr are decremented to ensure
that resources are reserved for remote invocations from pro-
cesses trying to execute nodes with lower annotations. In [9]
it was shown that, similar to Basic-P, Efficient-P guar-
antees deadlock avoidance if the annotation graph has no
dependency cycles.

The following example shows that Basic-P does not guar-
antee liveness.

Example 3. Consider the following system, with resources
Tr = Ts = 2:

n1 r
0

n2 s
0

m1 s
1

m2 r
0

tr = 2 ts = 2 tr = 0 ts = 2 tr = 0 ts = 0 tr = 1 ts = 1

n1 r
0••

n2 s
0

n1 r
0••

n2 s
0

n1 r
0

n2 s
0••

n1 r
0•

n2 s
0 •

m1 s
1

m2 r
0

m1 s
1

m2 r
0

m1 s
1•

m2 r
0

m1 s
1•

m2 r
0

Figure 3: A run of with starvation using Basic-P as allocation protocol.

Figure 3 shows an execution for this system that violates
liveness. It begins with two processes that start their exe-
cution in n1. After these processes perform the remote call
to n2 and become active, all the resources are in use. At
this point, a new process P is spawned to execute m1. As
ts = 0, it cannot start. Even if one of the processes exe-
cuting n2 finishes and releases its resources, P cannot start,
because it requires the availability of two resources in s. A
new process executing n1, however, can start, because it
only requires one resource in r and then one in s, which are
available. Repeating this pattern results in an execution in
which ts ≤ 1 for all future states, hence the entry condi-
tion for P is never enabled, and thus P will wait forever,
independent of any scheduler.

Notice that in the scenario in the above example star-
vation is avoided if we use Efficient-P, assuming a fair
scheduler. Unfortunately, in general, Efficient-P does not
guarantee liveness either. Indeed, with a call graph speci-
fication with annotations of 2 or higher, a similar scenario
as that in Example 3 can be constructed for Efficient-P,
in which a process will wait forever to execute a node with
α(n) = 2.

The idea behind Efficient-P, however, can be general-
ized to obtain a protocol that does guarantee liveness, as we
will demonstrate in the rest of the paper.

3. A LIVENESS PROTOCOL
An acyclic annotation of a call graph specification pro-

vides, for every node n, a measure of the number of (di-
rectly or indirectly) dependent nodes that execute at the
same site as n. As we will show, deadlock is avoided if, in
every site r and for every annotation value k, there are never
more than Tr − k active processes executing nodes with an-
notation value k or higher. It is the task of the protocol to
preserve this property by denying access to processes that
would violate this condition. We use φr to denote this prop-
erty for site r. We propose a protocol that preserves φr in
all sites by denying access to processes that would violate
this condition, ensuring it is a network invariant. Enforcing
φr to be a network invariant implies, for example:

• there can be at most one active process with annota-
tion Tr − 1, since Tr − (Tr − 1) = 1.

• there can be at most Tr active processes in total, since
all of them have annotation at least 0 and Tr −0 = Tr.
Every admissible protocol must satisfy this, since no
more resources than available can be granted.

• there can be a maximum of Tr − 1 active processes
with annotation 1 or higher. In other words, processes
with annotations higher than 0 cannot exhaust the re-
sources. There is always a resource “reserved” for pro-
cesses of annotation 0. In Efficient-P this was stated

as tr ≥ 0 ∧ pr ≥ 1.
It was shown in [9] that both Basic-P and Efficient-P
preserve φr as an essential step to show that these proto-
cols avoid deadlock. These protocols, however, do not keep
track of how many processes are currently active at each an-
notation level, and therefore, in deciding whether to grant
a resource or not, have to assume the worst case, namely
that all currently active processes have annotations equal or
higher than the requesting process. If in fact some currently
active processes have lower annotations, this decision un-
necessarily denies access, thereby limiting concurrency and
compromising liveness.

In Efficient-P this restriction is partially solved by adding
the extra variable pr, which is used to keep track of the num-
ber of active processes with annotation 1 or higher. For sys-
tems with maximum annotation 1, Efficient-P does not
limit concurrency and, in fact, guarantees liveness.

In the remainder of this section we propose a protocol
schema that is a generalization of Efficient-P in that it
keeps track of the the number of active processes at each
annotation level. This extra information allows it to grant
resources that Basic-P or Efficient-P would have to deny.
We prove that any protocol that implements this new pro-
tocol schema guarantees absence of deadlock and provides
liveness as well. In the next section we propose an efficient
implementation of the schema.

3.1 Protocol Schema
The property to be preserved by the protocol in site r is

that at each annotation level k there are never more than
Tr −k processes executing call graph nodes with annotation
value k or higher, where Tr is the total number of threads
in site r. To express this property more formally we first
introduce some notation. Throughout we assume a fixed
site r in which the protocol runs and drop the subscript r.

Let a[k] stand for the number of processes executing nodes
with annotation value k that are active in r and let A[k]
stand for

P

j≥k a[j]. Let φ[k] be the property that the
number of active processes executing nodes with annotation
value k or higher does not exceed T − k, that is,

φ[k]
def
= A[k] ≤ T − k .

The property the protocol must maintain is

φ
def
=

^

k

φ[k]

for k ranging over all annotation levels in the annotated call
graph.

Let A′
i[j] and a′

i[j] represent the values of a[j] and A[j]

n ::

2

6

6

6

6

6

6

4

»

when φ′
i do

a[i]++

–

f ()

a[i]--

3

7

7

7

7

7

7

5

for α(n) = i.

Figure 4: Live-P

after a[i] is incremented, that is:

a
′
i[j]

def
=

8

>

<

>

:

a[j] if j > i

a[j] + 1 if j = i

a[j] if j < i

A
′
i[j]

def
=

8

>

<

>

:

A[j] if j > i

A[j] + 1 if j = i

A[j] + 1 if j < i

Then the condition that φ is preserved if a resource were
granted to a process requesting access to a node with anno-
tation i is given by the property φ′

i defined by

φ′
i[k]

def
= A′

i[k] ≤ T − k

φ′
i

def
=

V

k
φ′

i[k]

The protocol schema Live-P can now be given as shown
in Figure 4. It is a schema, because the actual implementa-
tion of checking φ′

i and performing the operations a[i]++ and
a[i]-- is left unspecified. Several implementations are possi-
ble, ranging from a brute force implementation using tables
to store a[·] and repeated computations of A[·], to more ef-
ficient implementations presented in the next section. Any
correct implementation of Live-P, however, guarantees ab-
sence of deadlock and liveness, as we prove below.

3.2 Deadlock avoidance
To show that Live-P guarantees absence of deadlock we

first prove an auxiliary lemma.

Lemma 1. If φ holds and a clause φ′
i[j] does not hold,

then there is at least one active process with annotation j.

Proof. From the fact that φ holds it follows that

A[j] ≤ T − j

A[j + 1] ≤ T − (j + 1) < T − j

From the fact that φ′
i[j] does not hold, we know

A
′
i[j] = A[j] + 1 > T − j

which, with A[j] ≤ T − j, gives

A[j] = T − j

and thus, with A[j + 1] < T − j, we have

A[j + 1] < A[j]

Since A[j] = a[j] + A[j + 1] we have a[j] > 0 as desired.

Corollary 1. If, for some process with annotation i, φ′
i

is not satisfied then there is some process with annotation at
most i that is active (i.e.,

P

j≤i
a[j] ≥ 1).

Proof. Immediate consequence of Lemma 1, by observ-
ing that if φ holds, and φ′

i does not, there must be some
offending clause for some j ≤ i.

Theorem 2 (Annotation Theorem for Live-P). Given
a system S and an acyclic annotation, if every site uses
Live-P to decide allocations then all executions of S are
deadlock-free.

Proof. We first observe that, in the absence of cyclic
dependencies, the relation � is a partial order on call graph
nodes. By contradiction, suppose that there is a reachable
deadlock state. Let P be a process involved in the deadlock,
blocked in a node n that is minimal in �. Let r be the site of
n, and i its annotation. We consider the two possible cases:
(1) P is active. In this case a subsequent call to some node

m must be blocked, but then m is smaller than n in �
which contradicts the minimality of n.

(2) P is waiting and φ′
i is false. By Corollary 1 there must

be an active process executing the method section of
some node n1 with annotation j ≤ i. Since this process
is active, it must be blocked in some subsequent call
(to some node n2). Then n 99K n1 7→+ n2, so n � n2

contradicting again the minimality of n.
Therefore, no deadlock is reachable.

3.3 Liveness
Any implementation of Live-P prevents starvation, pro-

vided the local schedulers are fair in the sense that they will
always eventually select a process to run if its entry condi-
tion is true infinitely often. To prove absence of starvation
in the presence of a fair scheduler, it is sufficient to show
that every waiting process will eventually be enabled, that
is, the entry condition in Live-P will eventually be true.
This guarantees that every process progresses and, since the
invocations described in the call-graph can be performed at
most once, that each process terminates.

Lemma 2. If k ≥ i then φ′
k implies φ′

i.

Proof. First, φ′
k[j] ≡ φ′

i[j] for all j ≥ k and for all j < i

since the formulas are syntactically identical. Now, take an
arbitrary j within i ≤ j < k. In this case,

φ′
k[j] ≡

`

A[j] + 1 ≤ T − j
´

φ′
i[j] ≡

`

A[j] ≤ T − j
´

,

and if φ′
k[j] holds, so does φ′

i[j].

Corollary 2 (Maximal enabled annotation). At ev-
ery instant, there exists 0 ≤ i ≤ T such that all processes
with annotation lower than i are enabled, and all processes
with annotation at least i are disabled.

The protocols Basic-P and Efficient-P also provide a
notion of a maximal enabled annotation: tr and pr (or 0
if tr is 0) resp. In general, these are smaller than the one
provided by Live-P.

Theorem 3 (Liveness). Given a system S and an acyclic
annotation, if every site uses Live-P to decide allocations
then in every run all waiting processes are eventually en-
abled.

Proof. By contradiction, consider a run with some starv-
ing process and let P starve in some node n that is minimal
in � among all nodes with starving processes. Let r be the
site where n resides and i its annotation. After some prefix
of the run, P will be continuously disabled. We call every
such subsequent state an “offending state.”

In every offending state, the formula φ′
i is not satisfied in

site r, so there must be some j ≤ i for which φ′
i[j] does not

hold, i.e.,

A
′
i[j] 6≤ T − j.

Given an offending state, let j be the largest annotation
that causes a violation to φ′

i, which by Lemma 1 satisfies
a[j] ≥ 1. We call the pair (j, a[j]) the characteristic of P at
that state. Note that if (j, a[j]) is the characteristic of P ,
then all waiting processes of annotations k ≥ j must also be
disabled, by Lemma 2.

Let σ be an offending state with minimum characteristic,
when compared according the lexicographic order. Since the
set of characteristics is finite and totally ordered, there is one
such state. Now we consider the two possibilities:
(1) no process Q with annotation j that is active in σ termi-

nates. Since Q is active, it must be performing a remote
invocation that does not terminate. Therefore, some of
Q nested invocations must be starving in a node m with
n 99K 7→+ m, which contradicts the minimality of n in
�.

(2) some active process Q with annotation j terminates. In
this case, since P is continuously disabled by assump-
tion, all waiting processes with annotation j or higher
are also blocked, by Lemma 2. Then, when Q terminates
the value of the pair (j, a[j]) decreases. Either P is then
enabled, or its new characteristic has a smaller j or it
is (j, a[j] − 1). This holds since after Q has released its
resource, no process with annotation j or higher can be
granted a resource, unless P becomes enabled too. This
contradicts that σ is a state with minimal characteristic.

Consequently, P will be eventually enabled.

4. IMPLEMENTATION
In this section we study how to implement efficiently a

controller that guarantees liveness of every process. In Sec-
tion 4.1 and 4.2 we study how to implement Live-P. In
Section 4.3 we sketch an implementation of a strongly fair
scheduler. Finally, in Section 4.4 we describe how to in-
tegrate Live-P as an allocation manager, together with a
strongly fair scheduler to build a controller that guarantees
liveness.

4.1 A Tempting (but Incorrect) Implementation
One tempting implementation of Live-P would only check

the clause that corresponds to the annotation of the request-
ing process, called the Bad-P protocol (for a node n residing
in site r with annotation α(n) = i):

n ::

2

6

6

6

6

6

6

4

»

when 1 ≤ tr ∧ A[i] < (Tr − i) do

tr-- ; a[i]++

–

f()

tr++ ; a[i]--

3

7

7

7

7

7

7

5

Unfortunately, the protocol Bad-P is not correct in the
sense that it compromises deadlock freedom.

Example 4. Consider a scenario with Tr = 3 and the fol-

lowing call-graph:

n1 r
2

n1 r
1

n3 r
0

m1 r
1

m2 r
0

o r
0

Let a sequence of allocation requests in site r be 0, 1, 1, 0,
2 where 0 indicates a resource release. The following table
shows the values of a[·] after each allocation or deallocation
is performed

Active a[0] a[1] a[2] A[0] A[1] A[2]
{} 0 0 0 0 0 0
0 1 0 0 1 0 0

0, 1 1 1 0 2 1 0
0, 1, 1 1 2 0 3 2 0

1, 1 0 2 0 2 2 0
1, 1, 2 0 2 1 3 3 1

All requests satisfy the conditions of the entry section of
protocol Bad-P, so they are immediately granted. The last
row, though, corresponds to a state that does not satisfy the
invariant clause φ[1]:

A[1] = 3 6≤ T − 1 = 3 − 1 = 2.

This illegal state was reached after a process with annotation
2 requested a resource, but granting this request causes a
violation of φ[1] but not a violation for φ[2]. Even more, all
previous requests for annotation 1 were granted rightfully.
The illegal state is depicted:

n1 r
2 •

n1 r
1

n3 r
0

m1 r
1••

m2 r
0

o r
0

At this state all resources are used, tr = 0 continuously,
all processes incur in a deadlock, and none will ever termi-
nate.

4.2 An Efficient and Correct Implementation
We describe here an efficient implementation of Live-P.

The key idea is to use a data-structure, called active tree,
that stores the number of active processes for each annota-
tion (denoted as a[·] above) with efficient operations of:
(1) inserting a process,
(2) removing a process, and
(3) obtaining the highest annotation of a processes that can

become active without violating φ. By Corollary 2 this
value is unique.

We describe here how to implement this data-structure
using a binary search tree with annotation as key, and where
each node also stores (in a field named count) the number of
active processes with that annotation. This data-structure
can be maintained:

• in O(T) space and O(log T) time per insertion and
removal using a complete binary tree, or

• in O(d) space and O(log d) time per insertion and re-
moval using a balanced tree (for example a Red-Black
tree), where d is the number of different annotations
among all active processes (this parameter is called the
diversity load).

When a processes with annotation i is granted access, if a
node with key i exists in the tree, its count field is incre-
mented, otherwise a new node with key i is added to the
tree with count 1.

In order to obtain an efficient calculation of the maximum
legal annotation, the search tree is augmented with extra in-
formation in each node, based on the following observation.
If the active processes were linearly ordered according to
their annotation, a violation of φ would be witnessed by a
process with annotation i located further than T−i positions
to the end of the list. Similarly, the value of the minimum
illegal annotation corresponds to the process with smallest
i that is precisely T − i positions to the end of the list. We
maintain enough information in each node to retrieve the
smallest such offending annotation in time proportional in
the height of the tree. In the following description we use
tree(x) to denote the (sub)-tree rooted at node x, and left(x)
and right(x) for the left and right subtrees resp. If foo is a
field, the instance of foo at node x is represented by x.foo.
Each node in the tree stores:

1. key: the annotation of the processes that the node
describes.

2. count: the number of active processes with that anno-
tation.

3. size: the total number of processes in tree(x), includ-
ing all the x.count.

4. larger: the maximum number of processes with an-
notations larger than the largest key in tree(x), that
could be added (or that exist in the super-tree con-
taining tree(x)) without causing a φ violation in any
of the nodes in tree(x).

5. larger me: the maximum number of processes with an-
notations larger than the largest key in tree(x), that
could be added (or that exist in the super-tree contain-
ing tree(x)) without causing a φ violation in x itself.

6. larger left: the maximum number of processes with an-
notations larger than the largest key in tree(x), that
could be added (or that exist in the super-tree contain-
ing tree(x)) without causing a φ violation in left(x).
Note that x.count and all the processes described in
right(x) are already present and higher than any an-
notation in left(x).

7. larger right: the maximum number of processes with
annotation larger or equal than the largest key in tree(x),
that could be added (or that exist in the super-tree
containing tree(x)) without causing a φ violation in
right(x).

It is well-known (see, for example [2], Theorem 15.1) that
an augmented Red-Black tree can be maintained, with the
regular operations of insertion and removal still in O(log n),
if all fields can be computed from simpler fields of the node
and all the fields of the children nodes. This augmentation
result obviously holds for complete binary trees as well. Our
augmentations satisfy this property, since:

1. key and count are primitive fields, not depending on
other fields in any node in the tree.

2. size can be computed from the values of the keys of
the children nodes:

x.size = left(x).size + right(x).size + x.count.

3. larger is just the minimum of the other three augmen-
tation fields:

x.larger = min(x.larger me, x.larger left, x.larger right).

4. larger me can be computed using

x.larger me = T − x.key − (x.count + right(x).size).

This is because if there are x.larger me + right(x).size
active processes with annotation higher than x.key,
then the total number of processes with annotation
x.key or higher is

A[x.key] = x.count + x.larger me + right(x).size,

and then A[x.key] would be T − x.key. This is the
largest value allowed by φ.

5. larger right is directly the largest value of the right
sub-tree:

x.larger right = right(x).larger.

6. Finally, larger left can be computed by subtracting the
size of the right subtree and the root node from the
minimum of the values of the left child:

x.larger left = left(x).larger−(right(x).size+x.count).

In all the definitions above, if the left (resp. right) subtrees
are missing, then left(x).size is 0, and left(x).larger = ∞.
A tree stores a legal configuration of active processes if the
value of root.larger is non-negative. Finally, the following
program can be used to calculate the maximum value of a
legal insertion:

1: CalcMax(x, extra)
2: if (x.larger left − extra = 0) then

3: return CalcMax(left(x), extra+right(x).size+x.count)
4: else if (x.larger me − extra = 0) then

5: return x.key − 1
6: else if (x.larger right − extra = 0) then

7: return CalcMax(right(x), extra)
8: else

9: return T − 1
10: end if

The initial call is CalcMax(root, 0). The algorithm tra-
verses the tree seeking for the leftmost occurrence of a node
x satisfying the following condition:

(x.larger me − extra) = 0 (1)

Since the parameter extra passes the number of nodes actu-
ally larger than x in the whole tree, condition (1) captures
precisely whether a new insertion of a value larger or equal
x.key would cause a φ[x.key] violation. This search can be
clearly performed in a number of steps proportional to the
height of the tree, which gives a complexity of O(log d)
where d is the size of the tree (the diversity load) with the
use of balanced trees, and O(log T) with the complete tree.

Example 5. Consider a site with T = 10 resources, and
the following tree, which is a possible active tree representing
the set of active processes {1, 2, 3, 4, 4, 4, 5, 6, 9}:

444

2 6

1 3 5 9

The values of (larger left, larger me, larger right) are:

444(0,0,0)

2(6,6,6) 6(2,2,0)

1(−,8,−) 3(−,6,−) 5(−,4,−) 9(−,0,−)

CalcMax(root, 0) returns 0, after performing the sequence
of calls:

CalcMax(444(0,0,0)
, 0) 7→ CalcMax(2(6,6,6)

, 6)

7→ CalcMax(1(−,8,−)
, 8)

7→ 1 − 1 = 1

The maximum annotation of a process with an enabled entry
section is 0 since it can be legally inserted, and any insertion
of 1 or higher would cause a violation in the node 1(−,8,−).
Suppose that the process with annotation 3 releases its re-
source, and that the resulting tree is:

444(1,0,0)

2(7,7,−) 6(2,2,0)

1(−,8,−) 5(−,4,−) 9(−,0,−)

In this case the maximum legal annotation is 3 since:

CalcMax(444(1,0,0)
, 0) 7→ 4 − 1 = 3

Finally, if one of the processes with annotation 4 releases its
resource, the resulting tree is:

44(2,1,0)

2(7,7,−) 6(2,2,0)

1(−,8,−) 5(−,4,−) 9(−,0,−)

The maximum annotation is 8 as indicated by:

CalcMax(44(2,1,0)
, 0) 7→ CalcMax(6(2,2,0)

, 0)

7→ CalcMax(9(−,0,−)
, 0)

7→ 9 − 1 = 8

The asymptotic running time of the three methods pre-
sented to implement Live-P are summarized in the table:

data-structure time space
Array O(T) O(T)
CompleteBinaryTree O(log T) O(T)
Red-Black Tree O(log d) O(d)

Our experimental simulations reveal that the simplest ar-
ray implementation is the best choice only for small resource
sets. The Red-Black tree is only the preferred choice when
memory is heavily constrained, or when the resource set
managed is large but the load is not.

4.3 Implementation of a Fair Scheduler
We sketch how to implement a fair scheduler based on an

oldest process first policy. An earliest deadline first policy
could similarly be used. The implementation is based on a
data structure, called waiting tree, that can perform three
operations:
(1) insert a process,
(2) remove a process,
(3) obtain the oldest process with a certain annotation or

smaller.
Similarly to the discussion of the previous section, an effi-

cient waiting tree can be implemented using a binary search
tree, with annotation as key but this time including a pri-
ority queue to store the waiting processes with the node’s
annotation. Each node is also augmented with the oldest
process in the left and right subtrees. These augmentations
only depend on the values of the corresponding children
nodes, so its maintenance is efficient. Using a Red-Black
tree, this data-type can be maintained in O(log w + log m),
where w is the number of different annotations with some
waiting process, and m is the maximum size of any priority
queue (maximum number of waiting processes for the worst
annotation). If a complete tree is used then a running time
of O(log T + log m) is obtained.

4.4 Implementation of the Controller
Finally, the controller can be built by combining the wait-

ing tree that implements the scheduler, and the active tree
that implements deadlock avoidance algorithm as follows:

• allocation request: check whether the annotation of
the requesting process is at most CalcMax(root, 0).

– If the check succeeds, grant the resource and in-
sert the process in the active tree.

– If the check fails, insert the process in the waiting
tree.

• resource release: remove the process from the active
tree, and recalculate N = CalcMax(root, 0). Obtain
the oldest process P with annotation N or smaller from
the waiting tree (if any); extract it, and perform an
allocation request. This allocation is guaranteed to be
successful.

5. CONCLUSIONS
We have presented an efficient distributed deadlock avoid-

ance mechanism that guarantees liveness. The construc-
tion is possible under the assumption that all possible call
graphs are known a priori, and that processes announce the
call graph they are going to execute when they are created.
These are reasonable assumptions in distributed real-time
and embedded systems. We have proved the correctness of
the protocol and presented the different trade-offs to imple-
ment it in practice.

Our distributed deadlock-avoidance liveness protocol can

serve as a basis for several new developments. Ongoing
and future research include a distributed priority inheritance
protocol that serves as a mathematically sound basis to deal
with priority inversions in DREs, an important problem as
indicated in [11].

In this paper we have assumed that every site models a
type of resource (a different thread pool) and is placed in a
separate distributed node. In practice, different sites can be
mapped into the same processor, so there is a potential opti-
mization using shared memory. While in the extreme case a
purely centralized controller can be synthesized (see [3]) if all
sites are mapped to the same processor—without the need
of annotations—it is worth investigating mixed approaches
for partially distributed placement.

We have shown that if all local schedulers are strongly fair
then the controller obtained using an implementation of our
deadlock avoidance algorithm guarantees liveness globally.
However, it will be interesting to investigate what is the
effect of local scheduling policies in the global scheduling
goals.

6. REFERENCES
[1] Andrew D. Birrell. An introduction to programming

with threads. Research Report 35, Digital Equipment
Corporation Systems Research Center, 1989.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms.
MIT Press, second edition, 2001.

[3] Luca de Alfaro, Vishwanath Raman, Marco Faella,
and Rupak Majumdar. Code aware resource
management. In Proceedings of the 5th ACM
international conference on Embedded software
(EMSOFT’05), pages 191–202. ACM Press, 2005.

[4] Edsger W. Dijkstra. Cooperating sequential processes.
Technical Report EWD-123, Technological University,
Eindhoven, the Netherlands, 1965.

[5] Arie N. Habermann. Prevention of system deadlocks.
Communications of the ACM, 12:373–377, 1969.

[6] James W. Havender. Avoiding deadlock in
multi-tasking systems. IBM Systems Journal, 2:74–84,
1968.

[7] César Sánchez, Henny B. Sipam, and Zohar Manna.
On efficient deadlock avoidance for distributive
recursive processes. Submitted for publication.

[8] César Sánchez, Henny B. Sipma, Zohar Manna,
Venkita Subramonian, and Christopher Gill. On
efficient distributed deadlock avoidance for distributed
real-time and embedded systems. In Proc. of the 20th
IEEE Int’l Parallel and Distributed Processing
Symposium (IPDPS’06). IEEE Computer Society
Press, 2006.

[9] César Sánchez, Henny B. Sipma, Venkita
Subramonian, Christopher Gill, and Zohar Manna.
Thread allocation protocols for distributed real-time
and embedded systems. In Farn Wang, editor, 25th
IFIP WG 2.6 International Conference on Formal
Techniques for Networked and Distributed Systems
(FORTE’05), volume 3731 of LNCS, pages 159–173.
Springer-Verlag, October 2005.

[10] Douglas C. Schmidt. Evaluating Architectures for
Multi-threaded CORBA Object Request Brokers.
Communications of the ACM Special Issue on

CORBA, 41(10), October 1998.

[11] Douglas C. Schmidt, Sumedh Mungee, Sergio
Flores-Gaitan, and Aniruddha S. Gokhale. Alleviating
priority inversion and non-determinism in real-time
CORBA ORB core architectures. In Proc. of the
Fourth IEEE Real Time Technology and Applications
Symposium (RTAS’98), pages 92–101, June 1998.

[12] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and
Frank Buschmann. Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked
Objects, Volume 2. Wiley & Sons, New York, 2000.

[13] Abraham Silberschatz, Peter B. Galvin, and Greg
Gagne. Operating System Concepts. John Wiley &
Sons, Inc., Sixth edition, 2003.

[14] Mukesh Singhal and Niranjan G. Shivaratri. Advanced
Concepts in Operating Systems: Distributed, Database,
and Multiprocessor Operating Systems. McGraw-Hill,
Inc., 1994.

[15] William Stallings. Operating Systems: Internals and
Design Principles. Prentice Hall, Third edition, 1998.

[16] Venkita Subramonian, Guoliang Xing, Christopher D.
Gill, Chenyang Lu, and Ron Cytron. Middleware
specialization for memory-constrained networked
embedded systems. In Proc. of 10th IEEE Real-Time
and Embedded Technology and Applications
Symposium (RTAS’04). IEEE Computer Society
Press, May 2004.

