
DEADLOCK AVOIDANCE FOR

DISTRIBUTED REAL-TIME AND EMBEDDED SYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

César Sánchez

May 2007

c© Copyright by César Sánchez 2007

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Zohar Manna) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Hector Garćıa-Molina)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Christopher D. Gill)

Washington University, St. Louis, MO

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Henny B. Sipma)

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

This thesis studies how to prevent deadlocks in distributed real-time and embedded systems.

Deadlocks are undesirable states of concurrent systems, characterized by a set of processes

in a circular wait state, in which each process is blocked trying to gain access to a resource

held by the next one in the chain. Solutions can be classified into three categories:

• Deadlock detection is an optimistic approach. It assumes that deadlocks are infrequent

and detects and corrects them at runtime. This technique is not applicable to real-time

systems since the worst case running time is long. Moreover, in embedded systems

actions cannot be undone.

• Deadlock prevention is a pessimistic approach. The possibility of a deadlock is broken

statically at the price of restricting concurrency.

• Deadlock avoidance takes a middle route. At runtime each allocation request is ex-

amined to ensure that it cannot lead to a deadlock.

Deadlock prevention is commonly used in distributed real-time and embedded systems but,

since concurrency is severely limited, an efficient distributed deadlock avoidance schema can

have a big practical impact. However, it is commonly accepted (since the mid 1990s) that

the general solution for distributed deadlock avoidance is impractical, because it requires

maintaining global states and global atomicity of actions. The communication costs involved

simply outweigh the benefits gained from avoidance over prevention.

This thesis presents an efficient distributed deadlock avoidance schema that requires

no communication between the participant sites, based on a combination of static analysis

and runtime protocols. This solution assumes that the possible sequences of remote calls

are available for analysis at design time. This thesis also includes protocols that guarantee

liveness, and mechanisms to handle distributed priority inversions.

v

Acknowledgements

First, I thank Zohar Manna for being my Ph.D. advisor. He has always been available

whenever I needed his help. It is not a coincidence that under his guidance, many world

renowned researchers have matured. I am really proud to become a member of the selective

group of Zohar’s advised students.

I am especially thankful to Henny Sipma for her support during all these years. We have

worked together in many research endeavors, and she has always been ready for a research

discussion or a personal advice. She has constantly been a careful listener, pointing out the

important aspects of the situation at hand.

I would like to thank Hector Garćıa-Molina for being a member of my oral and reading

committee in a short notice, and to David Dill and Marc Pauly for serving in my oral

committee. Many thanks to Chris Gill for all the discussions about interesting research

directions in distributed real-time and embedded systems’ research. During these meetings

we identified some of the initial problems whose solutions are contained in this dissertation.

Thanks also for serving in my reading committee.

Many thanks to the members of the REACT research group: Aaron Bradley, Michael

Colón, Bernd Finkbeiner, Sriram Sankaranarayanan, Matteo Slanina, Calogero Zarba, and

Ting Zhang for all the lively discussions about research problems. Special thanks to Bernd,

Matteo, Henny and Sriram for all the coffee and informal talk. Congratulations to Matteo

for surviving the hard adventure of being my officemate. Thanks to all the wonderful

friends that I have met during my years at Stanford. It has been a pleasure to share this

time with a very diverse crowd of acquaintances, now friends for life. Many thanks to

Maggie McLoughlin and Wendy Cardamone for their administrative support.

I would like to thank my first mentor, Ángel Álvarez, for creating the opportunity for

me (and many others) to expand our horizons.

Last, but not least, thanks to all of those who, unconditionally, always believed in me,

vi

when not even I did myself: my father José Antonio, my mother Adela, my brothers Marcos,

Enrique and Alejandro. Also, thanks to my children Mart́ın and Emma for understanding

that I devoted to my research many moments that naturally belonged to them. Finally,

many, many thanks to my wife Teresa. Her encouragement and patience has made this

work possible. Teresa, this thesis is dedicated to you, with all my love.

vii

Financial Acknowledgements

This research contained in this thesis was supported in part by NSF grants CCR-01-

21403, CCR-02-20134, CCR-02-09237, CNS-0411363, and CCF-0430102, by ARO grant

DAAD19-01-1-0723, by ARPA/AF contracts F33615-00-C-1693 and F33615-99-C-3014, and

by NAVY/ONR contract N00014-03-1-0939.

viii

Contents

Abstract v

Acknowledgements vi

Financial Acknowledgements viii

1 Introduction 1

1.1 Overview . 1

1.1.1 Middleware for DRE Systems . 2

1.1.2 Deadlock . 5

1.1.3 The Dynamic Dining Philosophers Problem 7

1.2 Contributions . 9

1.3 Related Work . 10

1.3.1 Intra-resource Deadlock . 10

1.3.2 Priority Inversions . 12

1.3.3 Flexible Manufacturing Systems . 13

1.4 Structure of the Dissertation . 14

2 Model of Computation 15

2.1 System Model . 15

2.2 Runtime Protocols . 18

2.3 Dynamic Behavior . 20

2.4 Properties . 23

2.5 Allocation Sequences . 26

2.6 Summary . 28

ix

3 Basic Solutions 29

3.1 An Introduction to Annotations . 29

3.2 Single Agent . 30

3.3 A Basic Solution for Multiple Agents . 32

3.4 Deadlock Avoidance with the Height Annotation 35

3.5 Efficient Annotations . 37

3.6 A Solution to the Dynamic Dining Philosophers 40

3.7 A More Efficient Protocol . 41

3.8 Summary . 43

4 Annotations 44

4.1 Problem Taxonomy . 44

4.2 Generating Minimal Annotations . 45

4.3 Cyclic Annotations . 48

4.3.1 Deadlocks with Cyclic Annotations 50

4.4 Deciding Deadlock Reachability . 58

4.5 Computing Annotations with Resource Constraints 61

4.5.1 Arbitrary number of Resources . 61

4.5.2 Mutual Exclusion Resources . 64

4.6 Summary . 65

5 Liveness 66

5.1 Local Schedulers . 66

5.2 Deadlock versus Starvation . 68

5.3 A Liveness Protocol . 69

5.3.1 Protocol Schema . 69

5.3.2 Deadlock Avoidance . 70

5.3.3 Liveness . 72

5.4 Implementation . 73

5.4.1 Allocation Manager . 74

5.4.2 Implementation of a Fair Scheduler 80

5.4.3 Implementation of the Controller . 81

5.5 Experimental Results . 81

5.6 Summary . 85

x

6 Proving New Protocols 86

6.1 A Family of Local Protocols . 86

6.2 Allocation Sequences . 90

6.3 Reachable State Spaces . 93

6.3.1 Preference Orders . 93

6.3.2 Reachable States . 94

6.4 Summary . 96

7 Dealing with Priority Inversions 98

7.1 Distributed Priority Inheritance . 98

7.2 Priority Based Annotations . 100

7.3 Model of Computation with Priorities . 103

7.3.1 Synchronous Accelerations . 104

7.3.2 Asynchronous Accelerations . 105

7.4 Summary . 106

8 Conclusions 108

Bibliography 113

xi

List of Tables

5.1 A bad sequence for Bad-P . 74

5.2 Asymptotic running times of implementations of Live-P 80

xii

List of Figures

1.1 Middleware for DRE systems . 2

1.2 A sequence of remote calls with a nested upcall 4

1.3 The dynamic dining philosophers, and a deadlock state 7

1.4 Dynamic dining philosophers, using deadlock detection and prevention . . . 8

1.5 Solution to the dynamic dining philosophers using avoidance 8

2.1 A system description . 16

2.2 A sequence of remote invocations . 17

2.3 Protocol schema . 18

2.4 The protocol Empty-P . 19

2.5 The protocol Adequate-P . 24

3.1 The height and local-height annotations of a call graph 30

3.2 The protocol Basic-P . 32

3.3 An annotated global call graph . 37

3.4 An instance of the dynamic dining philosophers 40

3.5 The corresponding system for the dynamic dining philosophers instance . . 41

3.6 The protocol Efficient-P . 42

4.1 CalcMin: An algorithm for computing minimal acyclic annotations 45

5.1 A schematic view of a resource allocation controller 67

5.2 The protocol Live-P . 70

5.3 The protocol Bad-P . 74

5.4 MaxLegal: computes the maximal legal annotation 78

5.5 Average Minimal Illegal annotation of Basic-P and Live-P 82

xiii

5.6 Comparing implementations of Live-P, for L = 0 83

5.7 Comparing implementations of Live-P, for L = TA

4 84

5.8 Comparing implementations of Live-P, for TA = 63 85

6.1 The protocol Basic-P, restated using strengthenings 88

6.2 The protocol Efficient-P, restated using strengthenings 88

6.3 The protocol k-Efficient-P . 89

6.4 Average minimum illegal annotation of k-Efficient-P for T = 20 90

6.5 Sequences allowed by the deadlocks avoidance protocols 92

6.6 Reachable state spaces of the deadlock avoidance protocols 96

xiv

Chapter 1

Introduction

This dissertation studies the deadlock problem in the context of distributed real-time and

embedded (DRE) systems, and in particular how to design systems that are deadlock-free

by construction while optimizing the concurrency and utilization of resources. This first

chapter includes an overview of the contributions contained in the rest of the dissertation,

and discusses alternative approaches and related work.

1.1 Overview

Embedded systems are reactive systems that maintain an ongoing interaction with their

physical environment, and are required to function in a wide range of scenarios (from

low energy availability to a diversity of physical conditions). The software deployed in

these systems cannot receive user assistance for correct functioning. In real-time systems,

correctness is defined not only in terms of a functional specification but also in terms of a

timing specification: not only must the response be the correct one, but it must be produced

within a specific time interval. In distributed systems computations are performed in parallel

by several processing units that are placed in different locations and are connected through

a communication network. Distributed real-time and embedded systems are (often large)

computational infrastructures used to control a variety of artifacts across a number of sites,

with typical applications ranging from avionics to automotive control systems.

1

2 CHAPTER 1. INTRODUCTION

App App App

Middleware

Event Channel

Deadlock Avoidance

Scheduling

OS1 OS2 OS3

Figure 1.1: Middleware for DRE systems

1.1.1 Middleware for DRE Systems

Modern distributed real-time and embedded systems are built using a common layer of

software, called middleware, which serves two purposes. The first goal is to ease the de-

velopment of applications by abstracting away the particular details of the hardware and

operating system that executes in each computational site. The second purpose is to pro-

vide a family of services that are common to many applications, simplifying component

design and increasing reusability while allowing specific optimizations for a particular de-

ployment. This approach, though, can only be successful if the middleware services have

clean semantics that make their behavior predictable. Moreover, rich interfaces between

services and client components enable the validation of designs based on the combination

of independent validations of components and services. Figure 1.1 depicts the middleware

approach to DRE systems.

One example of a middleware service is event correlation. Many middleware platforms

provide an event channel that supports the Publish/Subscribe Architecture. Application

components publish events that may be of interest to other components, by sending them

to the event channel. Components can also subscribe to the event channel to express in-

terest in receiving certain events. There are differences, however, in what kind of subscrip-

tions are supported. Most platforms, including Gryphon [ASS+99], Ace-Tao [SLH97],

Siena [CRW01], and Elvin [SA97], support simple “event filtering”: components can sub-

scribe with a list of event types and the event channel notifies the component each time an

1.1. OVERVIEW 3

event of one of those types is published. A slightly more expressive mechanism is “event

content filtering”, in which components in their subscriptions can specify predicates over the

data included in the event. Notification, however, is still based on the properties of single

events. A more sophisticated subscription mechanism is “event correlation”. It allows sub-

scriptions in the form of temporal patterns. A component is notified only when a sequence

of events has been published that satisfies one of the patterns. An implementation of this

mechanism must maintain state: it may have to remember events it observed and may even

have to store events that may have to be delivered to a component at a later stage. Event

correlation is attractive because it separates the interaction logic from the application code

and reduces the number of unnecessary notifications. In [SSS+03, SSSM05a, SSSM05b]

we introduced a formal model of event correlation as a middleware service and proved its

correctness. Prototype implementations were integrated in the state-of-the art middlewares

ACE/TAO [Insty] and Facet [HCG01].

This thesis focuses on another middleware service: deadlock-free resource allocation.

Ensuring efficient and correct concurrent resource allocation in DRE systems is an important

and compelling problem. The resource that we focus on in this dissertation is threads needed

to dispatch requests to execute methods. Ideally, the utilization of resources should be

optimized so, in principle, requests should be granted whenever possible. However, whenever

there are concurrent processes competing for a finite set of resources, there is a potential risk

of reaching a deadlock. A deadlock is an undesirable state of concurrent systems in which a

set of processes is blocked indefinitely, even though the resources present may be potentially

sufficient for the participating processes to progress and eventually complete. In current

practice, middleware architectures are realized in software frameworks designed according

to documented best practices. These guidelines, however, do not guarantee absence of

deadlock [SG04]. A more formal basis is needed to increase the reliability of DRE systems

in this respect.

This thesis studies a formal model of resource allocation in distributed systems for

resources that are requested and released in a nested manner: an acquired resource is not

released until all resources acquired after it have been released (like in call sequences). The

main motivation for this model is thread allocation, in which processes running in one

processor can make two-way method calls to execute code that runs in other processors,

including “nested upcalls”. A nested upcall is produced when a process executing method

n in processor A performs a remote invocation to another method that runs in processor

4 CHAPTER 1. INTRODUCTION

A B

F C

E D

n1

(a) Method n1 starts in site A

A B

F C

E D

n1

n2

(b) A remote invocation to n2 in C

A B

F C

E D

n1

n2

n3

n5

(c) The execution of n2 performs two remote
invocations: n5 in E and n3 in B

A B

F C

E D

n1

n2

n3

n5

n4

(d) The nested upcall n4 in site A is invoked

Figure 1.2: A sequence of remote calls with a nested upcall

B, which in turn results in one or more method calls (possibly through other invocations

transitively) in A before n returns. Nested upcalls can occur in the context of a variety of

middleware concurrency architectures, including the Leader/Followers [SSRB00] approach

used in TAO [Sch98, Insty] and the Half-Sync/Half-Async [SSRB00] approach used in one

variant of nORB [Centy]. Figure 1.2 shows an example of a nested upcall, in a system with

six sites: {A,B,C,D,E, F}. In (a), a process is started to run method n1 in A. During

the execution of n1 a remote invocation of method n2 in C is produced, depicted in (b).

Figure (c) shows how, in turn, the execution of n2 performs two more remote invocations of

methods n5 and n3. Finally, a nested upcall to method n4 is produced during the execution

of n3, shown in (d).

There are two commonly used alternative strategies to deal with nested upcalls. The

first is known as WaitOnConnection, where the process holds on to the thread used to

execute the caller method. With this strategy any nested upcalls to methods will have to

acquire a new thread to run. The second approach relies on the use of a reactor , a tech-

nique for multiplexing asynchronously arriving events onto one or more threads [SSRB00].

This second approach is known as WaitOnReactor , in which a process releases the thread

1.1. OVERVIEW 5

after the method call is made. To preserve the semantics of the two-way call, the reactor

maintains a stack and keeps track of the order in which methods were invoked, such that

they are exited in reverse order. Both approaches have advantages and disadvantages. A

disadvantage of WaitOnConnection is that threads cannot be reused while the process is

waiting for the remote invocation to return, which can lead to a deadlock. A disadvantage

of WaitOnReactor is that the stack must be unwound in last-in-first-out order, resulting in

blocking delays for the completion of methods initiated earlier, which can lead to deadline

violations. This may be especially problematic in systems with multiple agents, where this

strategy can lead to unbounded delays.

This thesis focuses on mechanisms for deadlock-free thread allocation in distributed

real-time and embedded systems that use the WaitOnConnection allocation policy.

1.1.2 Deadlock

The phenomenon of deadlock has been studied extensively in the context of computer

operating systems [SGG03, Sta98]. It is well known [CES71] that there are four necessary

conditions (sometimes known as Coffman’s conditions) for a system to reach to a deadlock:

1. mutual exclusion: processes require the exclusive use of a resource, that is, every

resource is either assigned to a single process or available.

2. hold while waiting : processes hold on to resources while waiting for additional required

resources to become available.

3. no preemption: only the process holding a resources may determine when it is released.

4. circular wait : there is a closed chain of processes in which each process is waiting for

a resource held by the next process in the chain.

Traditionally three techniques are used to deal with deadlocks:

• Deadlock detection is an optimistic method for concurrency control [Pap86, GMUW01],

where deadlocks are detected at runtime and corrected by, for example, the roll-back

of transactions. Hence, one of the first three conditions is broken. This approach is

common in databases, but in embedded systems it is usually not applicable, especially

in systems interacting with physical devices. In particular, in DRE systems that use

the WaitOnConnection policy (1) threads can only be allocated to one process at

6 CHAPTER 1. INTRODUCTION

a time, (2) a thread is held until the call is finished, which may require subsequent

threads in the same and other processing sites, and (3) a thread being held by one

process cannot be released in order to be used by another process.

• Deadlock prevention, also known as monotone-locking [Hav68, Bir89], breaks the

fourth condition statically. First, a total order on the resources is fixed. At run-

time, this order (which is not necessarily the order of use) is followed to acquire the

resources. Thus, a process that needs a resource n and may require in the future the

use of a resource m with a lower index in the order, must acquire m before n. This

strategy may be used in DRE systems if a high assurance that deadlocks will not be

reached is required. However, this technique imposes some burden on the program-

mer, and—often a more important concern—it substantially reduces performance, by

artificially limiting concurrency.

• Deadlock avoidance takes a middle route. At runtime there is a controller that keeps

the system in a “safe” state where the circular chain of resource contention that pro-

duces the deadlock does not occur. The controller tries to maximize concurrency by

granting requests as long as the system is guaranteed to remain in a safe state. A

classic deadlock avoidance algorithm for centralized systems is Dijkstra’s Banker’s

algorithm [Dij65], which initiated much follow-up research [Hab69, Hol72, ASK71]

and is still the basis for most current algorithms. Its key characteristic is the use of

a combination of static knowledge (the maximum amount of resources potentially de-

manded by each process) and dynamic knowledge (the resource availability) to make

its dynamic decisions about resource allocation. For distributed systems, on the other

hand, it was observed in [SS94, Sin89] that a general solution to distributed dead-

lock avoidance is impractical, since it requires global atomic actions, or distributed

synchronization. A distributed deadlock prevention algorithm usually outperforms

a deadlock avoidance solution based on global synchronization running the Banker’s

algorithm on top.

Even though an efficient deadlock avoidance algorithm could have a big impact on

the system’s performance and analyzability, distributed real-time and embedded systems

usually implement a deadlock prevention algorithm. This thesis studies an efficient deadlock

avoidance mechanism for distributed real-time and embedded systems. This solution is

1.1. OVERVIEW 7

Figure 1.3: The dynamic dining philosophers, and a deadlock state

enabled by requiring more static information about the processes than in the Banker’s

algorithm.

1.1.3 The Dynamic Dining Philosophers Problem

We illustrate the class of deadlock scenarios that we deal with in this dissertation with the

introduction of the dynamic dining philosophers problem, a variation of the classical dining

philosophers [Dij71, LR81, CM84, AS90]. In this new setting several philosophers can arrive

at any point in time to a table in order to have dinner. When a new philosopher arrives, he

chooses a place to sit down from a predetermined set of places around the table. If there

are other philosophers already eating in the same spot, all of them will share the food.

To aid the philosophers, the table contains a collection of chopsticks, organized in piles

around the table in between every two consecutive eating spots. The chopsticks in each

pile are shared among the philosophers eating at the two adjacent places. In order to eat

their food, each philosopher needs to take two chopsticks, one from his left and one from his

right. For example, Figure 1.3 (left) shows a scenario with three spots and two philosophers

waiting to eat in each spot. In this example, the three piles contain two chopsticks.

In order to eat their desired dinner the philosophers behave as follows. Each philosopher

tries to grab the left and right chopsticks sequentially, in no predetermined order. Philoso-

phers are stubborn, so once a philosopher gets a chopstick he will not return it until he gets

the other and completes his dinner. After finishing he returns both chopsticks and leaves

the table. A deadlock situation can be reached if several philosophers arrive to each place

(as many as chopsticks are in, for example, the right pile), and each grabs a chopstick from

his right. At this point, there are no remaining chopsticks on the table, no philosopher will

8 CHAPTER 1. INTRODUCTION

PSfrag replacements
A
B
C

PSfrag replacements

A

B

C

Figure 1.4: Dynamic dining philosophers, using deadlock detection and prevention

return a chopstick, and no philosopher will get his dinner. This situation is depicted in

Figure 1.3 (right).

The dynamic version of dining philosophers extends the classical setting with the pos-

sibility of multiple philosophers arriving and leaving dynamically, and multiple resources

(chopsticks). In the analogy to DRE systems, the philosophers represent processes, the

chopstick piles are the computation nodes, and each individual process represents a re-

source.

Figure 1.4 (left) depicts a deadlock detection and recovery solution, where some mech-

anism detects the deadlock situation, and one philosopher is required to return a chopstick

to the table. Figure 1.4 (right) shows a solution based on deadlock prevention where each

philosopher is instructed to get the chopsticks in some predetermined order: for example,

all philosophers must get the right chopstick first, except for one particular spot at the

table in which all philosophers get the left chopstick first. Based on the labeling of places

shown in Figure 1.4 (right), philosophers pick chopsticks from piles in the order of increasing

alphabetical order.

Finally, Figure 1.5 shows the deadlock avoidance solution. On the left, in the centralized

version, every philosopher can inspect the global situation (how many philosophers are

present in each place together with the chopsticks they hold) before deciding to grab a new

chopstick. A safe state is one in which all philosophers can be ordered in a list such that

each philosopher can get his resources and finish his dinner, assuming that all philosophers

higher in the list have returned their resources. Clearly, a safe state is not a deadlock.

In this centralized solution, a philosopher can check whether such a list exists in case

he picks a chopstick, and only then take it. This case is an instance of the Banker’s

1.2. CONTRIBUTIONS 9

?

PSfrag replacements
A
B
C

?

?

?PSfrag replacements

A

B

C

Figure 1.5: Solution to the dynamic dining philosophers using avoidance

algorithm for this simple scenario. However, our main interest is in a distributed algorithm,

where a philosopher can only see the state of the pile he intends to pick a chopstick from.

This situation is depicted in Figure 1.5 (right). One distributed solution for the dynamic

dining philosophers problem works as follows. First, the piles are ordered, for example

as in Figure 1.5 (right). Then, each philosophers can decide to pick his two chopsticks

in increasing or decreasing alphabetical order. A philosopher that follows an increasing

alphabetical order can proceed as he wishes with no restriction. A philosopher that follows

a decreasing alphabetical order makes sure that he does not exhaust the pile when picking

his first chopstick. In this solution, only the labeling of piles, which is statically determined,

and the local availability is inspected. In this dissertation we prove that this solution is

correct, and generalize it to arbitrary control flow and resource availability scenarios.

1.2 Contributions

The main contribution of this thesis is to show that efficient distributed deadlock avoidance

for DRE systems is possible if the set of remote invocation sequences is known statically, be-

fore deployment. An “efficient” solution in this context is a resource allocation mechanism

that optimizes concurrency (granting as many requests as possible) while being implemented

in a completely distributed fashion: in order to decide whether an allocation is safe, only op-

erations over local data are performed, and no messages are exchanged. Where the Banker’s

algorithm showed that deadlock avoidance in centralized systems is possible assuming only

that each process announces its maximum resource utilization, the solution presented in this

thesis illustrates how distributed deadlock avoidance is possible if the sequences of resource

10 CHAPTER 1. INTRODUCTION

allocations are known statically. In other words, the algorithms presented in this disserta-

tion display a trade-off between static knowledge and efficient solvability of the distributed

deadlock avoidance problem.

These solutions are realized by a combination of static analysis and runtime protocols.

The static analysis extracts from the components’ code the exact (or an over-approximation

of the) set of possible sequences of remote invocations that each method can initiate. This

information is used to compute annotations—one number for each of the methods executable

in the system— which are agreed to by all processing sites before the system starts running.

The runtime protocols implement the resource allocation policy, and decide dynamically—

depending on resource availability—whether to grant each request.

A second contribution of this thesis is that individual liveness—every process eventu-

ally progresses—can also be guaranteed using a more sophisticated runtime protocol. The

drawback is that each operation (allocation or deallocation) is no longer implementable in

constant time, but depends logarithmically on the size of the system description and the

size of the resource pool.

The third contribution consists of a distributed priority inheritance algorithm based on

the aforementioned deadlock avoidance protocols. All solutions previously known to deal

with distributed priority inversionseither severely limit the sequences of resource alloca-

tions, or use distributed versions of the priority ceiling protocol, which is computationally

expensive. Our solution uses a more efficient priority inheritance mechanism. This solution

is made possible by starting from an already deadlock free allocation system.

1.3 Related Work

1.3.1 Intra-resource Deadlock

The deadlock situations mentioned above are caused by the interleaving of accesses to

different resources. A second kind of deadlock can be caused by the incorrect handling of

accesses to a single resource, which we call intra-resource deadlock.

An intra-resource deadlock is a state in which a set of processes is waiting to be granted

permission to access a single resource, but no future action will help any of these processes

to gain access. Absence of intra-resource deadlock is one of the requirements of a solution to

mutual exclusion, together with exclusive access and, sometimes, lack of starvation. Intra-

resource deadlocks in centralized systems are typically avoided through the use of (counting)

1.3. RELATED WORK 11

semaphores, based on atomic actions. This solution was first proposed by Dijkstra for the

THE operating system [Dij68]:

`0 :

[

when 0 < s do

s--

]

`1 : critical

`2 : s++

`3 :

This description of a semaphore follows the notation that we will use later for distributed

deadlock avoidance protocols, where {l0, . . . , l3} represent program locations. If the value

of s is initially 1, this solution is called a binary semaphore; if s > 1 initially, it is called

a counting semaphore. Each of the statements is executed atomically. In particular, a

statement of the form [

when guard do

action

]

executes the action atomically if the guard is satisfied. If the guard is not satisfied, the

process is blocked until the system reaches a state in which it is satisfied. The statement

critical represents the critical section, that processes are required to execute in mutual

exclusion.

In distributed systems, resource allocation without intra-resource deadlock is commonly

known as the distributed mutual exclusion problem. Different solutions have been pro-

posed depending on whether the access control to the resource is distributed among the

participants or it is centrally handled by a predetermined site.

1. two classes of distributed access control algorithms have been proposed [SABS05]:

• Permission-based: processes communicate with each other to decide which one

will gain access next. A requesting process is granted the resource if there is una-

nimity [RA81, CR83, RA83] among the participants about the safety of the ac-

cess. This condition can be relaxed to majority quorums [Gif79, Tho79, Mae85],

later improved to majorities in coteries [GMB85, AA91]. The message complexi-

ties range from 2(N−1) in the original Ricart-Agrawala algorithm [RA81], where

every participant must cast a vote, to O(log N) best case (with no failures) in

the modern coterie-based approaches.

12 CHAPTER 1. INTRODUCTION

• Token-based: the system is equipped with a single token per resource, which is

held by the process that accesses it. Upon release, the holding process passes

the token to one of the requesting participants. A distributed dynamic data-

type is maintained to select the next recipient. The most popular token-based

distributed mutual exclusion algorithms are Suzuki-Kasami’s [SK85], which ex-

hibits a complexity of O(N) messages per access, and Raymond’s [Ray89] and

Naimi-Tehel’s approach [NTA96], which use spanning trees to obtain an average

of O(log N), still exhibiting a O(N) worst case.

2. In centralized access control [AD76] a distinguished site arbitrates all accesses to a

resource, trivially reducing the communication complexity to O(1) message per re-

quest. Hence, the problem of distributed mutual exclusion is reduced to its central-

ized version. The drawback of this approach is fault-tolerance, since the controller

site becomes a single point of failure. This strategy is preferred if it is natural to

couple a resource tightly to a particular processing site. After all, if the printer has an

attached participant processor, the best strategy to arbitrate accesses to the printing

service is to let the printer processor resolve all requests. Centralized access control

is the strategy followed in this dissertation to prevent intra-resource deadlocks.

1.3.2 Priority Inversions

It is common in real-time systems to assign priorities to processes in order to achieve a

higher confidence that critical tasks will be accomplished in time. A dynamic scheduling

decision function then arbitrates to favor processes with higher priority. A priority inversion

is produced when a high priority process is blocked by a lower priority one. State-of-the-

art DRE middleware solutions, based for example on CORBA ORBs, may suffer priority

inversions [SMFGG98]. This thesis shows how priority inversions can be handled efficiently,

when using a distributed deadlock avoidance algorithm as a building block.

The conventional techniques to deal with priority inversions are the Priority Inheritance

Protocol (PIP) and the Priority Ceiling Protocol (PCP). These were introduced in [SRL90]

as methods to bound priority inversions in hard real-time systems with shared resources

and static priorities. Later, they were extended to dynamic priorities (for example earliest

deadline first) in [Spu95] (see [But05] for a wider discussion). PIP can bound blocking times

if processes are periodic, and a bound on the running time of each process and all its critical

1.3. RELATED WORK 13

sections is known. Since PIP does not prevent deadlocks, PCP was introduced to also deal

with deadlocks, at the cost of reducing concurrency further.

In [Mue99] Müller presents a solution to both distributed priority inversion and dead-

locks, based on a distributed implementation of the priority ceiling protocol together with

a token-based algorithm for distributed mutual exclusion. While PCP deals with priority

inversions and guarantees that no inter-resource deadlock can occur, its implementation

involves a high message complexity overhead. Before an allocation is granted, the ceiling of

each resource that is globally in use must be queried; this includes asking whether a resource

is assigned or free. Even though this solution is more general than the solution presented

in this dissertation (in [Mue99] it is not assumed that call graphs are known), we benefit

from using a deadlock-avoidance algorithm—that guarantees the absence of deadlocks—to

then deal with priority inversions using the simpler and more efficient priority inheritance

protocol (PIP). Our priority inheritance protocol allows more concurrency and involves no

communication when priority inversions are not present, which is locally testable. More-

over, when inversions do exist, the priority inheritance procedure requires only one-way

communication, and does not need any return information to proceed.

1.3.3 Flexible Manufacturing Systems

Resource allocation has received a lot of attention recently in the control community, espe-

cially in the context of automated production systems (see, for example, [Rev05]), with the

popularization of flexible manufacturing systems (FMS). FMS are fabrication plants where

a variety of different products can be manufactured sharing a common collection of basic

processing units. Deadlock potentially can be reached because each processing unit has

fixed sized input and output buffers. In the first FMS plants, deadlocks were resolved by a

human operator, who had to release items from buffers and reset some units. A second gen-

eration of solutions employed ad-hoc or simplistic methods to prevent deadlocks. Modern

solutions are based on the specification of fabrication paths, typically as Petri Nets, and the

static generation of a scheduler that tries to optimize utilization while preventing deadlock.

The main interest then is to study the complexity of computing optimal schedulers, and to

develop efficient methods to generate safe approximations.

While our approach can be considered a refinement of the Banker’s algorithm that

exploits the availability of resource paths, there are two differences between FMS and the

problems studied in this thesis. First, the systems considered in FMS are centralized.

14 CHAPTER 1. INTRODUCTION

All processing units have, at all times, an accurate view of the system’s global state. As

mentioned earlier, adapting centralized approaches to asynchronous distributed systems

is usually impractical. The second difference is the nature of the resource handled. In

manufacturing plants resources are slots in the queue of a fabrication unit, and consequently

they are acquired and released in a sequential or “chained” manner. In this dissertation we

focus on resources acquired in a nested fashion. It remains as future research to assess the

applicability of the techniques developed here to distributed flexible manufacturing systems.

1.4 Structure of the Dissertation

The rest of this document is structured as follows. Chapter 2 describes the formal model

of computation, and introduces the properties (deadlock, liveness, etc) that will be studied

later. We introduced this general model in [SSS+05], and it is the basis for all further

developments. Chapter 3 contains the most basic protocols that guarantee deadlock avoid-

ance. These protocols depend on annotations of the call graphs, which must be computed

statically. Properties of these annotations, in particular how to compute them efficiently,

is the subject of Chapter 4. The basic protocols first appeared in [SSS+05], and different

aspects of the annotations where explored in [SSM+06] and [SSM07b]. Chapter 5 shows

that individual liveness can be achieved by a more sophisticated protocol, and presents the

trade-offs in implementing this new protocol, which was studied in [SSMG06]. Chapters 6

and 7 introduce two applications. The former contains results on how new protocols can be

shown correct without having to build new proofs from scratch [SSM07a], while in the latter

we present a solution to priority inversions in distributed systems, published in [SSGM06].

Finally, Chapter 8 presents the conclusions.

Chapter 2

Model of Computation

This chapter introduces the model of computation that will be used in the rest of the

dissertation. This is a very general model of resource allocation for DRE systems that

comprises many different classes of resource types and call semantics. We start by defining

an abstract notion of a distributed system, and presenting the schema of a runtime protocol.

Then, we derive the notion of a state transition system that captures the dynamic behavior

of a distributed system, and introduce the properties, including absence of deadlock, that

will be studied later. Several protocols will be designed in the next chapters to enforce

these properties. All these protocols are instances of the protocol schema. Finally, the

chapter introduces allocation sequences, used to characterize the class of protocols under

consideration. Allocation sequences will be used later to derive correctness results.

2.1 System Model

A distributed system consists of a set of computational sites connected via an asynchronous

network. Each site is capable of executing some predefined methods, controls a fixed set

of resources, and maintains a collection of local variables. A method is an implementation,

in a programming language like C or Java, of the steps to be taken to accomplish some

useful task. One important instruction in these methods is the remote invocation to an-

other method in a distant site. At runtime, an instance of an execution of a method is

called a process. We will use resource or thread interchangeably to refer to the execution

context that is needed to run a method. Since the distributed system under consideration

is asynchronous, no site has access to the variables stored in other sites.

15

16 CHAPTER 2. MODEL OF COMPUTATION

A B

F C

E D

n1 •

n2
•

n3•

n4
•

n5

•

Figure 2.1: A system description

During the execution of a system, several processes can be spawned dynamically, so

multiple processes may be running concurrently. Each of these processes will need a local

resource to execute its method. Since for every scenario, the number of methods are finite

(given by the program to be deployed), there is a finite set of kinds of processes, which we will

capture by a call graph. A call graph abstracts the program by considering only the methods

and their possible remote invocations: paths in the call graph represents all the possible

sequences of remote invocations that a process can perform. In practice, this information

can be present explicitly in the specification or extracted from the implementation by static

program analysis: a simple analysis consists on listing the remote invocations that appear

in the code of a given method and add the corresponding edges.

We now formalize this notion of a system.

Definition 2.1.1 (System Description). A system description consists of a finite set R
of computational sites and a set of methods M . Each method m is assigned to a unique

site A that can execute it; we say that m resides in A, and write m:A.

We use site(m) to denote the site where method m resides. Also, m ≡R n is used to

represent that methods m and n reside in the same site. We will use lower case letters n, m,

n1, n2 to range over method names. Figure 2.1 shows an example of a system description

with six sites R : {A,B,C,D,E, F} and five methods M : {n1, n2, n3, n4, n5}. Methods n1

and n4 reside in site A, while methods n2, n3 and n5 reside in C, B and E respectively.

At runtime, a process will start its execution by running some method. The methods

that can be invoked by newly created processes are called initial. During the execution of

a method, a remote invocation to another method that resides in a different site may be

required. Each new method invoked by a process requires a new resource in the site where

the method resides. For ease of exposition we assume that the only method invocations are

2.1. SYSTEM MODEL 17

A B

F C

E D

n1 •

n2
•

n3•

n4
•

n5

•

Figure 2.2: A sequence of remote invocations

remote calls. From the point of view of resource allocation, invocations to local methods

can be run in the same thread and implemented as conventional function calls. A call graph

captures the relations between methods and their remote invocations.

Definition 2.1.2 (Call Graph). Given a system description with sites R and methods M

a call graph (N,→, n) consists of a graph (N,→), where N is a subset of methods from M .

The method n ∈ N is initial. An edge m1 :A → m2 :B denotes that method m1, in the

course of its execution in A, may invoke method m2 in remote site B.

If the graph (N,→) does not contain any cycle we say that the call graph is acyclic. A

nested upcall is a path that ends in a method residing in a site A, such that some other

method in the path also resides in A.

Example 2.1.3. Consider the sequence of remote invocations depicted in Figure 2.2. It

corresponds to the following call graph

n3 B n4 A

n1 A n2 C n5 E

where n1 :A is the only initial method, represented by n1 A . This call graph is acyclic,

and it contains a nested upcall to method n4 :A.

Definition 2.1.4 (System). Given a system description with sites R and methods M , we

define a DRE system S as a tuple 〈R,M,G〉 where G : {G1, . . . , G|G|} is set of distinct

acyclic call graphs.

Formally, the requirement of acyclic call graphs to be distinct is given by Ni ∩Nj = ∅

given call graphsGi : (Ni,→i, ni). This assumptions simplifies the theoretical treatment and

18 CHAPTER 2. MODEL OF COMPUTATION

n ::

`0 :
when Enn(VA) do

Inn(VA, V
′
A)

}

entry section

`1 : n.run()

}

method invocation

`2 : Outn(VA, V
′
A)

}

exit section

`3 :

Figure 2.3: Protocol schema

does not imply a restriction in the systems modeled, since each method can be (conceptually)

replicated for each call graph in which it appears. Also, without loss of generality we assume

that every method listed in the system appears in some call graph (formally, ∪iNi = M) and

that every method is reachable from an initial method. Otherwise, a system that accepts

the same runs and has all methods reachable can be obtained by removing non-reachable

methods. Moreover, every acyclic graph can be turned into a tree by replicating methods if

necessary. In this way, G is equivalent to a forest (collection of trees) in which each method

occurs in exactly one tree. We will sometimes merge all the call graphs into a global call

graph, defined as (M,→, I), where I = ∪ini is the set of all possible initial methods.

Each site A manages a fixed number of pre-allocated resources (threads). Although in

many modern operating systems threads can be spawned dynamically, many DRE systems

pre-allocate fixed sets of threads to avoid the relatively large and variable cost of thread

creation and initialization. We assume that each site A maintains a set of local variables

VA, called protocol variables that will be used for controlling the resource allocation. VA

includes the constant TA ≥ 1 that denotes the total number of resources present in A, and

a variable tA whose value represents the number of available threads (threads not being

used). Initially, tA = TA for every site A. The allocation of resources is controlled by a

piece of code that runs in the site before and after the methods are dispatched. This notion

of resource allocation manager is captured by runtime protocols.

2.2 Runtime Protocols

A runtime protocol for controlling the resource allocation in site A to execute method

n :A is implemented by a program, containing sections of code executed before and after

method n is dispatched, that are analogous to the operations P and V in conventional

2.2. RUNTIME PROTOCOLS 19

n ::

`0 :

[
when true do

skip

]

`1 : n.run()

`2 : skip

`3 :

Figure 2.4: The protocol Empty-P

semaphores [Dij68]. In practice, this code can be different for different call graph methods

even if they reside in the same site (typically, the code is the same but parametrized by the

call graph method). The schematic structure of a protocol that controls the execution of

a method n :A appears in Figure 2.3. Upon invocation, the entry section checks resource

availability by inspecting local variables VA of site A. If the predicate Enn(VA), called the

enabling condition, is satisfied we say that the entry section is enabled. In this case, the

request can be granted and the local variables updated according to the logical relation

Inn(VA, V
′
A), where V ′

A stands for the values of the protocol variables after the action is

taken. In case the enabling condition is not satisfied, the process must wait. We assume that

the entry section is executed atomically, as a test-and-set. The method invocation section

executes the code of the method, which may perform remote calls according to the outgoing

edges from method n in the call graph. The method invocation can only terminate after all

its own invoked calls have terminated and returned. The exit section releases the resource

and may update some local variables in site A, according to the relation Out n(VA, V
′
A). Inn

is called the entry action and Outn is called the exit action of the protocol. Note that

this call semantics are more general than synchronous semantics, since the execution can

continue after a remote invocation, for example to perform more remote invocations. We

assume, though, that all results of all calls must be collected before the caller terminates.

Example 2.2.1. Figure 2.4 illustrates the simplest possible protocol, Empty-P, where the

code is shown for method n:A. The enabling condition is always satisfied, and no variable

is modified in the entry or exit section (represented by the void statement skip). Note

that the protocol Empty-P does not restrict the number of allocations to be less than the

number of resources. This property is studied in Section 2.4.

This model of a protocol captures our goal of designing protocols that decide resource

allocations without exchanging any messages between remote sites. We call these protocols

local protocols.

20 CHAPTER 2. MODEL OF COMPUTATION

2.3 Dynamic Behavior

The dynamic behavior of a DRE system is represented by sequences of global states, where

each state contains (1) the set of running processes, indicating for each of them a protocol

location, and (2) the valuation of the protocol variables of every site. To model the state

of a process we introduce the notion of labeled call graph.

Definition 2.3.1 (Labeled Call Graph). Let `0, `1, `2, and `3 be protocol location labels

representing the progress of a process, as illustrated in Figure 2.3. A labeled call graph

(Gi, γ) is an instance of a call graph Gi : (Ni,→i, ni) ∈ G and a labeling function γ : Ni 7→
{⊥, `0, `1, `2, `3} that maps each method in the call graph to a protocol location, or to ⊥ for

method calls that have not been performed yet.

The state of a process is modeled formally as a labeled call graph. A subtree of a

labeled call graph corresponds to the state of a subprocess. A subprocess is an execution

started in a remote site to run a method serving a remote invocation. We will use the

term “process” to refer to either a process or a subprocess, and use “proper process” and

“subprocess” explicitly only when the distinction is relevant. A process is active if its root

method is labeled `1 or `2, that is, if the process has been granted a resource. A process

is waiting if it is labeled `0, and terminated if it is labeled `3. A terminated process has

already returned its assigned resource. We use upper-case letters P,Q, P1, . . . to range over

processes. To simplify the presentation, given a process state P = (G, γ) we use γ(P) as an

alias of γ(root(P)). We also say that process P is in location ` if γ(P) = `.

Definition 2.3.2 (Global State). A global state of a DRE system is a pair 〈P, sR〉 con-

sisting of a finite indexed set of processes P together with their local states, and a valuation

sR of the local variables in all sites.

For example, the initial global state of a system consists of an empty set of processes and

a valuation sR for all variables of every site, in particular sR(tA) = TA to denote that all

resources are initially available.

A system S : 〈R,M,G〉 gives rise to the state transition system (see [MP95]) Ψ :

〈V,Θ, T 〉. V is a set of variables that describe system states, Θ is a logical predicate

that captures the possible initial states, and T is a logical relation describing the state

changes that define the system dynamics. Formally,

2.3. DYNAMIC BEHAVIOR 21

• V : {I} ∪ VR is a set of variables, containing I to index the set of existing processes,

and the local protocol variables VR =
⋃

A∈R VA of every site. A valuation of V is a

global state, where the value of I is the set of currently running processes P.

• Θ : I = ∅ ∧ ∧

A∈R ΘA: the initial condition, specifying initial values for the local

variables and initializing the set of processes to the empty set.

• T : a set of state transitions consisting of the following global transitions:

1. Creation: A new process P (where P is a fresh process index) is created, with

initial status γ(n) = ⊥ for all methods n in its call graph. The valuation of I is

updated to add P . The logical relation that describes a creation transition is:

τ1 : I ′ = I + P ∧ pres(VR)

where + represents the addition of P to I, and the predicate pres(VR) states

that all variables in VR are preserved.

2. Process initialization: Let P ∈ I be an existing proper process with γ(P) = ⊥.

A process initialization changes the annotation of P to `0. Formally,

τ2 : γ(P) = ⊥ ∧ γ ′(P) = `0 ∧ pres(VR)

3. Method invocation: Let P be an existing process and Q be a proper sub-

process of P with γ(Q) = ⊥ and γ(parent(Q)) = `1. This corresponds to a

remote invocation that creates Q. The method invocation transition changes the

annotation of Q to `0:

τ3 : γ(Q) = ⊥ ∧ γ(parent(Q)) = `1 ∧ γ′(Q) = `0 ∧ pres(VR)

4. Method entry: Let Q be a waiting process, running method n : A, whose

enabling condition is satisfied. The method entry describes that process Q is

granted its resource. Transition τ4 changes the label of Q to `1 and updates the

local variables in its site according to the protocol for n:A. Formally,

τ4 : γ(Q) = `0 ∧ Enn(VA) ∧ γ′(Q) = `1 ∧ Inn(VA, V
′
A) ∧ pres(VR − VA)

22 CHAPTER 2. MODEL OF COMPUTATION

5. Method execution: Let Q be a process in `1 such that all its descendants are

labeled ⊥ or `3. This transition denotes the termination of Q. The status of Q

is updated to `2:

τ5 : γ(Q) = `1 ∧ ∧

D∈descs(Q)

[

γ(D) = ⊥ ∨ γ(D) = `3

]

∧ γ′(Q) = `2 ∧
∧ pres(VR)

6. Method exit: Let Q be a process in `2, running method n :A. The method

exit transition moves Q to `3 and updates the variables in site A according to

the exit action for n:A. Formally,

τ6 : γ(Q) = `2 ∧ γ′(Q) = `3 ∧ Outn(VA, V
′
A) ∧ pres(VR − VA)

7. Deletion: A proper process P that has terminated (is labeled `3) is removed

from I:

τ7 : γ(P) = `3 ∧ I ′ = I − P ∧ pres(VR)

8. Silent: In the silent transition all variables are preserved:

τ8 : pres(V)

All transitions except creation and silent are called progressing transitions, since they

correspond to the progress of some existing process. The system, as defined, is nonde-

terministic. It assumes an external environment that determines when new processes are

created and selects which transitions are taken. Since a remote invocation is modeled by

the method invocation transition τ3, this notion of uncontrolled environment models the

uncertainty in the delivery of messages natural to the asynchronous underlying network.

Also, in a situation in which different processes compete for a resource, the environment

decides which one proceeds to the invocation section, by scheduling its method entry

transition. Note also that an arbitrary number of processes can be spawned dynamically,

as long as each of them is assigned a process type (a labeled call graph) and a unique index.

The only restriction that we impose on the environment is that no progressing transition

can be continuously enabled without being taken. Therefore, unless there are no processes

running or the system is deadlocked, an infinite sequence of silent transitions cannot occur

because a progressing transition must be eventually scheduled. Moreover, since all call

2.4. PROPERTIES 23

graphs are acyclic, this fairness condition implies that all processes will eventually terminate

if granted their demanded resources.

We are now ready to define the notion of run, which captures a possible execution of

the DRE system. We will later define properties that protocols must impose on all runs of

a system.

Definition 2.3.3 (Run). A run of a system is an infinite sequence σ0, σ1, . . . of global

states such that σ0 is an initial state, and for every i, there exists a transition τ ∈ T such

that σi+1 results by taking τ from σi.

2.4 Properties

In this section we formally define properties to study the correctness of the protocols. Most

of these properties are presented as invariants.

Definition 2.4.1 (Invariant). Given a system S, an expression ψ over the system vari-

ables of S is an invariant if it is true in every state of every run of S.

An expression can be proved invariant by showing that it is inductive or implied by

an inductive expression. An expression ψ is inductive for a transition system 〈V,Θ, T 〉 if

it is implied by the initial condition, Θ → ψ, and it is preserved by all its transitions,

ψ ∧ τ → ψ′, for all τ ∈ T . Using invariants we now define adequacy.

Definition 2.4.2 (Adequate). A protocol is adequate if the number of resources allocated

in every site A never exceeds the total number of initially available resources TA.

Adequacy is a fundamental property, required in every reasonable protocol, since no

more resources than available can possibly be granted. Figure 2.5 shows Adequate-

P, a simple adequate protocol. This protocol is a simple generalization of a counting

semaphore for the variable tA that keeps count of the available resources. The entry section

of Adequate-P blocks further progress until the guard expression 0 < tA evaluates to true,

that is, until there is at least one resource available. The adequacy of Adequate-P is a

consequence of the following invariants:

ψ1 : for all sites A. tA ≥ 0

ψ2 : for all sites A. TA = tA + at `1,A + at `2,A

24 CHAPTER 2. MODEL OF COMPUTATION

n ::

`0 :

[
when 0 < tA do

tA--

]

`1 : n.run()

`2 : tA++

`3 :

Figure 2.5: The protocol Adequate-P

where the symbol at `i,A represents, for a given global state, the total number of processes

running in site A that are labeled `i. In particular, at `1,A + at `2,A denotes the total

number of active processes in site A. It is easy to show that ψ1 and ψ2 are inductive, since

they hold initially and every transition preserves them, provided that Adequate-P is used

as allocation protocol.

On the other hand, the protocol Empty-P (Figure 2.4) does not guarantee the adequacy

property. One can easily build a run that violates adequacy as follows. First, pick any call

graph (let the root node be n:A), and spawn TA+1 processes to follow this call graph. Then,

activate all processes by scheduling the appropriate process initialization and method

entry transitions, after which more than TA resources are in use in site A.

The next property that we formally define is deadlock, which is the central notion

studied in this dissertation. Our goal is to build protocols that prevent any deadlock from

happening.

Definition 2.4.3 (Deadlock). A state σ is a deadlock if some process is waiting, but only

non-progressing transitions are enabled.

If a deadlock is reached, the processes involved cannot progress. Intuitively, each of

the processes has locked some resources that are necessary for other processes to complete,

but none of them has enough resources to terminate. The following example shows that

Adequate-P does not guarantee absence of deadlock.

Example 2.4.4. Consider the system S : 〈R,M, {G1, G2}〉 with two sites R : {A,B}, four

methods M = {n1, n2,m1,m2}, and the following two call graphs

n1 A n2 B

m1 B m2 A

G1 :

G2 :

Assume that both sites have two resources initially available (TA = TB = 2), and that

2.4. PROPERTIES 25

Adequate-P is used to control resource allocation for all methods. Let the global state

σ : 〈{P1, P2, Q1, Q2}, tA = 0, tB = 0〉 consist of four processes: P1 and P2, instances of G1

both with γ(n1) = `1 and γ(n2) = `0, and Q1 and Q2 instances of G2 with γ(m1) = `1 and

γ(m2) = `0. It is easy to see that σ is a deadlock: no progressing transition is enabled.

Furthermore, σ is reachable from an initial state and hence appears in some run. A run

from the initial state 〈∅, tA = 2, tB = 2〉 to the deadlock state σ is depicted below:

tA = 2

tB = 2

tA = 0

tB = 2

tA = 0

tB = 0

tA = 0

tB = 0

n1 A
••

n2 B

m1 B
••

m2 A

n1 A
••

n2 B

m1 B
••

m2 A

n1 A
••

n2 B

m1 B
••

m2 A

n1 A n2 B
××

m1 B m2 A
××

In this diagram a • represents an existing process that tries to acquire a resource at a

method (if • precedes the method) or has just been granted the resource (if • appears after

the method). A × represents that the enabling condition is not satisfied so the method

entry transition cannot be executed.

The following result is a fundamental lemma that holds independently of the protocol

used. This lemma states that if a process P is present in a deadlock while holding a resource,

then P must be blocked waiting for a remote call to return.

Lemma 2.4.5. In a deadlock state, every active process has a waiting descendant.

Proof. Let σ be a deadlock state and P an active process running method n. Since P

is active, either γ(P) = `1 or γ(P) = `2. In the latter case, transition τ6 is enabled,

contradicting deadlock, so the labeling of P must be `1. We prove that P has at least one

waiting descendant by induction on the minimum distance in the call graph from n to a

leaf. For the base case, let n be a leaf. In this case the method execution transition

τ5 is enabled for P , contradicting deadlock. Hence, a leaf method cannot be active in a

deadlock state. For the inductive case, let Q1, . . . , Qn be the descendants of P . If some

Qi is waiting the result follows. If some Qi is active, by the inductive hypothesis it has a

waiting descendant, and hence P also has a waiting descendant. The last case is, for all Qi,

γ(Qi) = ⊥ or γ(Qi) = `3. But then τ5 is enabled for P , contradicting deadlock.

Another desirable property of resource allocation protocols is absence of starvation, that

is, every individual process eventually progresses.

26 CHAPTER 2. MODEL OF COMPUTATION

Definition 2.4.6 (Starvation). A process P starves in a run of a system if, after some

prefix of the run, the labeling of P never changes thereafter. A system prevents starvation

if no process starves in any of its runs.

In the model of computation introduced above, every process terminates after a finite

number of transitions, so if a process does not starve, it eventually terminates. Deadlock

implies starvation because every process present in a deadlock state starves. The converse

does not hold, as will be shown in Chapter 5.

2.5 Allocation Sequences

We finish our discussion of the model of computation by presenting allocation sequences.

It is clear from the definition of the state transition system that the only transitions that

modify the values of the protocol variables are method entry and method exit.

We abstract here a system’s run into the sequence of allocations and deallocations that

are performed, and define some natural requirements for the protocols based on allocation

sequences.

Given a system S and its global call graph (M,→, I) let the set M contain a symbol

n for every method n in M . The allocation alphabet Σ is defined as the disjoint union of

M and M . Symbols in M are called allocation symbols, while symbols in M are referred

to as deallocation symbols. Every prefix of a system run can be abstracted into an alloca-

tion sequence by considering only the method entry transition τ4 and the method exit

transition τ6.

Given a string s in Σ∗ and an allocation symbol n in Σ we use sn for the number of

occurrences of n in s (similarly sn represents the number of occurrences of the deallocation

symbol n), and use |s|n to stand for sn − sn. A well-formed allocation string s is one for

which every deallocation occurs after a matching allocation, that is, for every prefix p of

s, |p|n ≥ 0. An admissible allocation sequence is one that corresponds to a prefix run of

the system. This requires (1) that the string is well-formed, (2) that every allocation of a

non-root method is preceded by a matching allocation of its parent method, and (3) that

every deallocation of a method is preceded by a corresponding deallocation of its children

methods. Formally,

Definition 2.5.1 (Admissible Strings). A well-formed allocation string s is called ad-

missible if for every prefix p of s, and every remote call n→ m: |p|n ≥ |p|m .

2.5. ALLOCATION SEQUENCES 27

Admissible strings ensure that the number of children processes (callees) is not higher

than the number of parent (caller) processes, so that there is a possible match, and the string

corresponds to a feasible run. For brevity, we simply use string to refer to an admissible

string.

Given a state σ and a protocol P , if the enabling condition of P for a node n is satisfied

at σ we write EnP
n (σ). For convenience, we introduce a new state ⊥ to capture sequences

that a protocol forbids, and require that no enabling condition is satisfied in state ⊥. We

denote by P (s) the1 state reached by P after exercising the allocation string s, defined

inductively as P (ε) = Θ and:

P (s n) =

InP
n (P (s)) if EnP

n (P (s))

⊥ otherwise
P (s n) =

OutP
n (P (s)) if P (s) 6= ⊥

⊥ otherwise

We say that a string s is accepted by a protocol P if P (s) 6= ⊥. In other words, P (s) 6= ⊥
for all strings that correspond to prefixes of runs when P is used as allocation manager.

The set of strings accepted by P is denoted by L(P).

Example 2.5.2. Reconsider the system in Example 2.4.4. The allocation sequence that

leads to a deadlock is s : n1n1m1m1, which is in the language of Adequate-P. The reached

state is Adequate-P(n1n1m1m1) = 〈{P1, P2, Q1, Q2}, tA = 0, tB = 0〉, a deadlock state.

Intuitively, allocations imply that the resource availability is reduced, and deallocations

that it is increased. We are interested in exploring protocols that follow this intuition. We

say that a protocol is monotone if an allocation by a process cannot help some other waiting

process to gain a resource, and a deallocation cannot turn a different process from enabled

into waiting. Formally,

Definition 2.5.3 (Monotone Protocol). A protocol P is called monotone if for all strings

s1 and s2, method m and allocation symbol n,

1. if EnP
m(P (s1s2)) is false, then so is EnP

m(s1ns2), and

2. if EnP
m(P (s1s2)) is true, then so is EnP

m(s1ns2).

1all the protocols studied in this dissertation are deterministic but the results can be easily adapted for
non-deterministic protocols.

28 CHAPTER 2. MODEL OF COMPUTATION

Another characteristic of the resources we model is that they are reusable. After a

process finishes using a thread and returns it, the thread is intact and ready for another

process. This is captured by the notion of a reversible protocol. Intuitively, a protocol is

reversible if a deallocation undoes all the effects of its matching allocation. Formally,

Definition 2.5.4 (Reversible Protocol). A protocol P is called reversible if for all strings

s1 and s2, and allocation symbol m, whenever P (s1ms2m) 6= ⊥, then the states P (s1ms2m)

and P (s1s2) are identical.

This includes the fact that P (smm) is equivalent to P (s), whenever P (smm) 6= ⊥. We

will focus our attention on local, monotone and reversible protocols, and call them simply

protocols in the rest of this thesis.

2.6 Summary

In this chapter we have introduced a new model of computation. DRE systems are modeled

as a finite set of sites that are able to execute a predetermined finite collection of methods,

and a set of acyclic call graphs that capture the possible sequences of remote method

invocations. Runtime protocols implement the resource allocation policy, controlling each

resource allocation and deallocation. We are interested in studying protocols that are local

(only local variables are inspected and manipulated), monotone (allocations cannot help

waiting processes, and deallocations cannot obstruct enabled requests), and reversible (the

effects of allocations and deallocations cancel each other). Given a system and a protocol

for every method, the dynamics are described by a state transition system, from which we

derive formally the notion of a deadlock state.

The semantics of remote invocation defined here correspond to asynchronous calls that

must collect results before terminating. Since synchronous calls are a special case, captured

by a subset of the runs, protocols that prevent deadlocks in our model will also prevent

deadlocks for synchronous call semantics. Fully asynchronous invocations without result

collection can also be described, by removing the edge that corresponds to a fully asyn-

chronous call that does not require collection. Such an invocation will be modeled by a

new process being spawned to perform the callee. Other semantics of remote invocation

(at-most-once, at-least-once, etc) can also be incorporated in this model easily, but these

adaptations are out of the scope of this dissertation.

Chapter 3

Basic Solutions

This chapter contains the first protocols that guarantee deadlock free resource allocation.

These protocols are parameterized by annotations of the call graph methods. The annota-

tion is computed before the system is deployed, and all sites agree on the same annotation.

We begin by presenting some examples of annotations that ensure deadlock freedom in sce-

narios with no concurrency. Then, we describe a protocol that provides deadlock avoidance

with arbitrary concurrency. Finally, we capture the precise property that annotations must

satisfy to guarantee absence of deadlock.

3.1 An Introduction to Annotations

We first introduce the notion of annotation. Consider a system with a global call graph

(M,→, I). An annotation is a map from methods to the natural numbers α : M 7→ N.

Intuitively, an annotation provides a measure of the resources that need to be available in

the local site to complete the task described by the method. We now define two simple

annotations: height and local height. The height of a method in a call graph is the usual

height of a node in a tree.

Definition 3.1.1 (Height). Given a call graph (M,→, I), the height of a method n, de-

noted by h(n), is defined inductively as

h(n) =

0 if n is a leaf

1 +max{h(m) | n→ m} otherwise.

29

30 CHAPTER 3. BASIC SOLUTIONS

n3 B
1

n4 A
0

n1 A
3

n2 C
2

n5 E
0

(a) A height annotation

n3 B
0

n4 A
0

n1 A
1

n2 C
0

n5 E
0

(b) A local height annotation

Figure 3.1: The height and local-height annotations of a call graph

Local height is defined similarly, but only taking into account methods that reside in the

same site. The local height of a method n is the maximum number of methods in the same

site that are traversed in any outgoing path from n:

Definition 3.1.2 (Local Height). Given a call graph (M,→, I), the local height of a

method n, denoted by lh(n) is defined inductively as

lh(n) =

0 if n is a leaf, and

1 +max{lh(m) | n→+ m and n ≡R m} otherwise.

where →+ is the transitive closure of →, i.e., n →+ m represents that there is a sequence

of remote invocations from n to m.

Example 3.1.3. Figure 3.1 shows the call graph of Example 2.1.3 annotated with height,

in Figure 3.1(a), and local-height, in Figure 3.1(b). For example, n1 :A has local height 1

because n1 may indirectly call n4 in the same site through a nested upcall.

The previous definitions are sound because the call graphs are acyclic. Annotations play

a special role in the deadlock avoidance protocols introduced later in this chapter. Chapter 4

contains several results about annotations including effective procedures to compute optimal

ones.

3.2 Single Agent

For simplicity, let us begin by considering scenarios with a single agent sequentially acti-

vating processes, first studied in [SG04]. These scenarios correspond to environments that

cannot perform concurrent process spawning, and in which all remote invocations follow

synchronous call semantics. In terms of the formal model introduced in the previous chap-

ter, this implies that the number of processes in any state is at most 1, that is, |I| ≤ 1

3.2. SINGLE AGENT 31

is an invariant. The following theorem establishes a necessary and sufficient condition to

guarantee absence of deadlock in the single agent case:

Theorem 3.2.1 (from [SG04]). A method n:A with local-height k can be executed with

absence of deadlock, if more than k resources are available in A.

Theorem 3.2.1 provides a simple design-time technique to compute the minimum number

of resources needed in each site to guarantee deadlock free operation: the value of TA must

be at least the maximum local height for any method residing in A in any call graph. The

condition is necessary, because if it is violated a deadlock will occur, independently of the

protocol used. If this condition is violated, a run that follows a path that contains the

method with maximum local height leads to a deadlock. The condition is sufficient because

if it is met no deadlock will occur. Thus, in the single agent case the protocol Empty-P

will guarantee absence of deadlock, provided all sites manage initially at least the required

number of threads. Trivially, Adequate-P also guarantees absence of deadlock, while

unnecessarily testing for resource availability.

In practice, this scenario faithfully represents an environment that is restricted to per-

form no concurrent calls. In cases where multiple processes can run in parallel, or can

perform asynchronous remote invocations, the condition expressed in Theorem 3.2.1 is

necessary but not sufficient to guarantee the absence of a deadlock—using Empty-P or

Adequate-P—as the following example shows.

Example 3.2.2. Consider a system with two sites, A and B, with TA = TB = 2 and the

call graph
n A

1

m B
0

n2 A
0

where the local-height annotation is depicted. This system satisfies the condition of The-

orem 3.2.1. If two processes are spawned and then both of them gain access to n, the

resources in A are exhausted. The system will arrive at a deadlock as soon as the processes

try to execute n2. These nested calls will be blocked in the entry section of n2 forever:

tA = 2

tB = 2

tA = 0

tB = 2

tA = 0

tB = 0

n A
1••

m B
0

n2 A
0

=⇒ n A
1••

m B
0

n2 A
0

=⇒ n A
1

m B
0

n2 A
0××

This example can be scaled up to any number of resources in site A, simply by spawning

the same number of processes and scheduling each of them to acquire a thread to run n:A,

which is a possible prefix run.

32 CHAPTER 3. BASIC SOLUTIONS

n ::

`0 :

[
when α(n) < tA do

tA--

]

`1 : n.run()

`2 : tA++

`3 :

Figure 3.2: The protocol Basic-P

3.3 A Basic Solution for Multiple Agents

Examples 3.2.2 and 2.4.4 show that neither Empty-P nor Adequate-P guarantee ab-

sence of a deadlock in a general execution environment. Indeed, it is easy to see that in

these examples no number of pre-allocated resources can make deadlock unreachable, in

the presence of an unbounded number of concurrent invocations. Thus, more sophisticated

protocols are needed to control resource allocation.

In this section we introduce the first and simplest deadlock avoidance protocol, called

Basic-P , which is parameterized by an annotation α, and show properties that hold for

every annotation. Then, in the next sections we prove that this protocol provides deadlock

avoidance for some specific annotations, including height.

The protocol Basic-P is shown in Figure 3.2 for call graph method n:A. The variable tA,

as usual, keeps track of the threads currently available in site A. In the entry section access

is granted to run method n only if the number of resources indicated by the annotation

α(n) is strictly less than the number of resources available. When access is granted, tA is

decremented by just one unit, reflecting that only one thread has been allocated. Note that

not all resources provisioned are locked. The protocol Basic-P is local since the annotation

of every method n:A is provided statically and the only variable used is tA. It is monotone

because the comparison < used in the enabling condition is monotone. It is reversible

because the effects of decrement (tA--) and increment (tA++) cancel each other.

We now establish some properties that hold for Basic-P, for any annotation α. We

first introduce some notation and abbreviations. Recall that the symbol at `i ,A represents

the number of processes in site A that are at location `i. This way, the number of active

processes in A is given by ActA
def
= at `1 ,A + at `2 ,A. We use actA[k] to denote the number

of active processes running methods with annotation k, and Act A[k] for the number of active

processes in A with annotation greater than or equal k. That is, Act A[k] =
∑

j≥k actA[j]

3.3. A BASIC SOLUTION FOR MULTIPLE AGENTS 33

and, in particular, ActA[0] = ActA. With initial condition ΘA : TA = tA, it is easy to

verify that the following are inductive invariants for all sites, when Basic-P is used as the

allocation protocol:

ϕ1 : tA ≥ 0

ϕ2 : TA = tA + ActA

The following lemmas apply to all sites A.

Lemma 3.3.1. If tA = 0 then there exists at least one active process with annotation 0 in

A, that is,

ϕ3 : tA = 0→ actA[0] ≥ 1

is an invariant.

Proof. The predicate ϕ3 is inductive, so it is an invariant.

Lemma 3.3.1 states that when resources are exhausted there is at least one active process

with the lowest annotation. We now prove some results that connect resource availability

with guarantees on the existence of active processes running methods with a small enough

annotation value.

Lemma 3.3.2. The number of active processes in A running methods with annotation k

or higher is less than or equal to TA − k. That is, for all sites A and annotations k

ActA[k] ≤ TA − k

is an invariant. We call this invariant ϕ.

Proof. Clearly, ϕ holds initially. To prove that ϕ is an invariant, it suffices to show that in

a state where ActA[k] = TA− k, a waiting process Q attempting to execute a method m:A

with annotation value α(m) ≥ k cannot proceed. Note that, by definition, Act A ≥ ActA[k]

for every site A and annotation value k. Then, by ϕ2,

TA = tA + ActA

≥ tA + ActA[k]

= tA + (TA − k).

34 CHAPTER 3. BASIC SOLUTIONS

Therefore, k ≥ tA. Then, the enabling condition of m is not satisfied and process Q must

wait, as desired.

Global states that satisfy the invariant ϕ are called ϕ-states. The fact that Basic-P

preserves ϕ is the central keystone in the proof of deadlock avoidance. This invariant will

be revisited in Chapter 5 and refined into a protocol that provides liveness for individual

processes. We use ϕA for the clauses that involve site A, and ϕA[k] for the clause for k:

ActA[k] ≤ TA − k. Some instances of ϕ for particular values of k are:

• ϕA[0]: ActA[0] ≤ TA. This implies that there can be a maximum of TA active processes

in A, which is equivalent to the adequacy condition.

• ϕA[1]: ActA[1] ≤ TA − 1. Processes running methods with annotation 1 or higher

cannot exhaust all resources. There will always be one resource reserved for processes

with the lowest annotation.

• ϕA[TA − 1]: ActA[TA − 1] ≤ 1. There can be at most one active process running a

method with the maximum annotation TA − 1.

Lemma 3.3.3. If a process is waiting in `0 to run a method n:A, and its enabling condition

is not satisfied, then there is an active process running a method m : A with annotation

α(m) ≤ α(n).

Proof. Let k = α(n). Since n is not enabled, k ≥ tA. By the invariant ϕA for k + 1,

ActA[k + 1] ≤ TA − (k + 1). Hence,

ActA[k + 1] ≤ TA − (k + 1)

≤ TA − (tA + 1)

< TA − tA
= ActA

Consequently, since the number of active processes with annotation at most k is given by

ActA −ActA[k + 1], there must be one such process.

Lemma 3.3.3 establishes that if there is a waiting process, then there is some active

process running a method with annotation at most that of the waiting process. This is the

3.4. DEADLOCK AVOIDANCE WITH THE HEIGHT ANNOTATION 35

key element in the proof of deadlock avoidance, that can be constructed now by contradicting

the existence of a minimal annotation of a waiting process in a deadlock state.

3.4 Deadlock Avoidance with the Height Annotation

In the previous section we introduced the protocol Basic-P and studied some of its prop-

erties for a generic annotation. We study now two particular annotations: height and local

height. Local height requires the least resources and is necessary to prevent deadlocks:

every annotation that prevents deadlock must map each method to at least its local height.

Unfortunately, local height does not guarantee freedom from deadlock in all scenarios. A

simple counterexample was provided by Example 3.2.2.

We prove here that Basic-P , when instantiated with height, does guarantee absence

of deadlock. However, for many designs, height is too restrictive in its requirements and

utilization of resources. To mitigate this problem, in Section 3.7 we study a sufficient

condition that annotations must satisfy to guarantee deadlock freedom.

We assume that for every site A the number of resources TA is at least the highest

annotation of any method that runs in A in any call graph. We first prove one more

auxiliary lemma.

Lemma 3.4.1. When using Basic-P with the height annotation, for every process P run-

ning a method with annotation 0 there is a continuation of the run in which P completes.

Proof. Let P be a process running a method n with annotation 0. Note that P can always

progress when it is active, since n is a leaf node and therefore P performs no remote

invocations. Thus, it is sufficient to show that P can eventually progress when it is waiting

at `0. If tA > 0, the enabling condition is satisfied and P can progress immediately. If

tA = 0, by Lemma 3.3.1, there exists an active process running a method m : A with

annotation h(m) = 0. This process, being active, can be scheduled to terminate, thereby

incrementing tA and unblocking P , which can then be scheduled to proceed.

We are now ready to prove deadlock avoidance for Basic-P when used with the height

annotation.

Theorem 3.4.2. Basic-P with height annotation guarantees absence of deadlock.

36 CHAPTER 3. BASIC SOLUTIONS

Proof. By contradiction, suppose that σ is a reachable deadlock state. Let P be a process

in σ, running a method n :A such that h(n) is minimal, among all the processes present in

σ. Consider the two possible cases:

1. h(n) = 0. By Lemma 3.4.1, P can eventually progress, contradicting deadlock.

2. h(n) > 1. If P is active, then by Lemma 2.4.5 it must have a waiting descendant,

contradicting that P has minimal height. If P is waiting, then by Lemma 3.3.3

there exists an active process Q running a method m :A with h(m) ≤ h(n). Again,

h(m) < h(n) contradicts the minimality of n. If h(m) = h(n) then Q—being active—

must have a waiting descendant, by Lemma 2.4.5. In this case, the the minimality of

n is also contradicted.

Theorem 3.4.2 provides a design methodology to guarantee deadlock free operation in

all scenarios. First, annotate every call graph method with its height and provide every

site A with at least as many threads as the maximum height of a method that resides in

A. Then, at runtime, use Basic-P as the local resource allocation protocol in every site.

The disadvantage of using height as an annotation is that the number of resources needed

in each site can be much larger than is strictly necessary. Using height implies not only an

underutilization of resources, but also precludes the use of some useful idioms, as illustrated

by the following example.

Example 3.4.3. Consider a system S : 〈R,M, {G1, . . . , Gk}〉. A simple idiom to force

invocations of G1, . . . , Gk to be performed sequentially is to introduce a new site S— called

the serializer—and create a wrapper initial method m :S. The method m has as descen-

dants the initial methods of all Gi. When using Basic-P with the height annotation, the

annotation of the new initial method is h(m) = max{h(G1), . . . , h(Gk)}+ 1, which may be

a large number. Moreover, S needs to be provided with exactly TS = h(m) + 1 resources,

even though annotating m with 0 and providing TS = 1 would have sufficed.

Clearly, using height may be wasteful of resources. Fortunately, more efficient annota-

tions can be used in most cases.

3.5. EFFICIENT ANNOTATIONS 37

n1 A
3

n2 B
2

n3 A
2

n4 B
1

m1 B
2

m2 A
2

m3 B
1

m4 A
1

Figure 3.3: An annotated global call graph

3.5 Efficient Annotations

Intuitively, deadlock is caused by cyclic dependencies. Using Basic-P with an annotation

that breaks all cyclic dependencies between waiting processes would prevent deadlock. Ex-

ample 3.2.2 showed that the deadlock reached when local height is used as annotation is

caused by the interaction of processes executing different call graphs. Thus, a check for

cyclic dependencies must consider all call graphs at once. To capture this intuition we

introduce annotated global call graphs.

Definition 3.5.1 (Annotated Global Call Graph). Given a system S : 〈R,M,G〉 and

an annotation α, the annotated global call graph GS,α : (M,→, 99K) has M as the set of

vertices and contains two kinds of edges:

• → is the union of the remote invocation relations of all the call graphs.

• there is an edge n 99K m whenever n and m reside in the same site and α(n) ≥ α(m).

Note that two methods can be related by 99K even if they belong to different call graphs.

Definition 3.5.2 (Dependency Relation). Given a global call graph GS,α : (M,→, 99K)

we say that method n depends on method m, written n � m, if there is a path from n to m

in GS,α containing at least one → edge.

An annotated global call graph has a cyclic dependency if some method n depends on

itself, i.e., if for some n, n � n. Given a system S, if an annotation α does not create cyclic

dependencies in the annotated global call graph, we say that α is an acyclic annotation of

S.

Example 3.5.3. Figure 3.3 shows an annotated call graph, where transitive edges are not

depicted, for clarity. Method m1 depends on n3 because m1 99K n2 → n3. However, m1

does not depend on n2 because the only path is m1 99K n2. This annotation is acyclic.

38 CHAPTER 3. BASIC SOLUTIONS

The following theorem provides a general sufficient condition on annotations for which

Basic-P guarantees deadlock free operation.

Theorem 3.5.4 (Annotation Theorem). The use of Basic-P with an acyclic annotation

guarantees absence of deadlock.

Proof. This proof follows closely that of Theorem 3.4.2. We first observe that, in the absence

of cyclic dependencies, the dependency relation � is a partial order on the set of methods

M . By contradiction, assume that σ is a reachable deadlock state, and let P be a process

present in σ running a method n :A that is minimal with respect to � (among all existing

processes in σ). Consider the three possible cases:

1. P is active. Then, by Lemma 2.4.5, P must have a waiting descendant Q running

method m, but then n � m, contradicting the minimality of n.

2. P is waiting and α(n) = 0. Then tA = 0 (otherwise P could proceed, contradicting

deadlock), and by Lemma 3.3.1, there exists an active process Q running m :A with

annotation 0. Therefore, Q can proceed, contradicting deadlock.

3. P is waiting and α(n) > 1. By Lemma 3.3.3, there exists an active process Q running

method m:A, so α(m) ≤ α(n). If Q is active and present in a deadlock, it must have a

waiting descendant, by Lemma 2.4.5. Let this waiting descendant be running method

m2. It follows that n � m2, which, again, contradicts the minimality of n.

The condition of α being an acyclic annotation is known as the annotation condition.

It is easy to see that the annotation condition implies that the annotation subsumes local

height: if the annotation value of some method is smaller than its local height there is

immediately a dependency cycle. On the other hand, height clearly satisfies the annotation

condition. For many systems, however, there are acyclic annotations that are significantly

smaller than height. For example, in Example 3.4.3, the serializer node can safely be given

annotation 0, instead of 1 plus the maximum height of all call graph methods. The next

chapter studies properties of acyclic annotations, including an algorithm that computes

minimal acyclic annotations efficiently. The following example illustrates why acyclic an-

notations guarantee deadlock freedom.

3.5. EFFICIENT ANNOTATIONS 39

Example 3.5.5. Let us revisit the system of Example 2.4.4. Consider the protocol Basic-

P, together with local height annotation:

n1 A
0

n2 B
0

m1 B
0

m2 A
0

In this case, the annotation condition is not satisfied: the path n1 → n2 99K m1 → m2 99K

n1 is a dependency cycle. Therefore deadlock freedom is not guaranteed by the Annotation

Theorem. Indeed, with all nodes annotated 0, Basic-P is equivalent to Adequate-P , and

the same run that exhibits a deadlock in Example 2.4.4 is admitted here:

tA = 2

tB = 2

tA = 0

tB = 2

tA = 0

tB = 0

tA = 0

tB = 0

n1 A
0••

n2 B
0

m1 B
0••

m2 A
0

n1 A
0••

n2 B
0

m1 B
0••

m2 A
0

n1 A
0••

n2 B
0

m1 B
0••

m2 A
0

n1 A
0

n2 B
0××

m1 B
0

m2 A
0××

If the height annotation is used instead:

n1 A
1

n2 B
0

m1 B
1

m2 A
0

there is no dependency cycle, and the Annotation Theorem guarantees deadlock free oper-

ation. The run to deadlock is not accepted, since after the first process advances to execute

n1 the second process is not allowed to enter the method section of m1. In other words, the

last resource in A is reserved to execute m2. Similarly, the last resource in B is reserved to

run n2. Pictorially, the run that previously led to deadlock becomes:

tA = 2

tB = 2

tA = 1

tB = 2

tA = 1

tB = 1

n1 A
1••

n2 B
0

m1 B
1••

m2 A
0

n1 A
1•×

n2 B
0

m1 B
1••

m2 A
0

n1 A
1•×

n2 B
0

m1 B
1•×

m2 A
0

· · ·

The height annotation is not, in this case, a minimal acyclic annotation. It is enough if one

method among n1 and m1 takes the “pessimistic” approach of reserving the last resource

40 CHAPTER 3. BASIC SOLUTIONS

for the corresponding leaf node:

n1 A
1

n2 B
0

m1 B
0

m2 A
0

Even though m1 99K n2 99K m1 is a cycle, it is not a dependency cycle, and it does not

correspond to a potential blocking chain. This annotation is also acyclic, and Basic-P

guarantees deadlock avoidance, as ensured by the Annotation Theorem.

3.6 A Solution to the Dynamic Dining Philosophers

The dynamic dining philosophers was introduced in Section 1.1.3 to illustrate the kind

of deadlock scenarios under study. Dynamic dyning philosophers generalizes the classical

dining philosophers with several philosophers sharing a place at the table, and joining and

leaving dynamically. Distributed solutions also restric the algorithms such that philosophers

can only see the pile of chopsticks they are picking from. The number of philosophers present

and the other piles are hidden.

Figure 3.4 shows an instance of the problem with three eating places and two chopsticks

per pile. Figure 3.5 depicts a system description that captures this instance of dynamic

dining philosophers. Piles are modeled as sites, all of them with initial size 2. Possible

philosopher behaviors are modeled in the following call graph, where method names are

omitted:
A B B C C A

B A C B A C

The call graphs in the left correspond to the two possible behaviors of philosophers sitting

between piles A andB: either they pick a chopstick fromA and then from B or the other way

PSfrag replacements
A

B

C

Figure 3.4: An instance of the dynamic dining philosophers

3.7. A MORE EFFICIENT PROTOCOL 41

C

A

B

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3.5: The corresponding system for the dynamic dining philosophers instance

around. Similarly, the middle graphs describe the behaviors of philosophers sitting between

B and C, and the graphs on the right the behaviors of philosophers that sit between C and

A. One acyclic annotation of this call graph is:

A
0

B
0

B
0

C
0

C
1

A
0

B
1

A
0

C
1

B
0

A
0

C
0

With this annotation, the annotation theorem guarantees absence of deadlock if Basic-P

is used as allocation manager. This corresponds to the solution sketched in Section 1.1.3:

it is enough if philosophers following a decreasing alphabetical order do not take the last

chopstick when they pick from the first pile.

3.7 A More Efficient Protocol

The protocol Basic-P can be refined to allow more concurrency while still preventing dead-

lock. The protocol Efficient-P , shown in Figure 3.6 exploits the observation that with

acyclic annotations, every process running a method that requires just one resource can

always terminate, independently of other parallel executions. The protocol Efficient-P

maintains two local variables, tA and pA. The variable tA, as in Basic-P, keeps track of

the number of threads currently available, and pA tracks the threads that are potentially

available. The difference with Basic-P is that the number of potentially available resources

is not decremented when a resource is granted to a process that runs a method with annota-

tion 0, because these resources will always be returned. With Efficient-P fewer processes

are blocked, thus increasing potential concurrency and improving resource utilization.

42 CHAPTER 3. BASIC SOLUTIONS

n ::

`0 1 :

[
when 0 < tA do

tA--

]

`1 1 : n.run()

`2 1 : tA++

`3 1 :

n ::

`0 2 :

[
when α(n) < pr ∧ 0 < tA do

〈pr--, tA--〉

]

`1 2 : n.run()

`2 2 : 〈tA++, pr++〉
`3 2 :

If α(n) = 0 If α(n) > 0

Figure 3.6: The protocol Efficient-P

Example 3.7.1. Consider the system S : 〈{A,B}, {n,m1,m2}, {G1, G2}〉 with TA = 2 and

TB = 1 and the following call graphs, where the height annotation is depicted

n A
0

m1 A
1

m2 B
0

G1 :

G2 :

Assume the following arrival of processes. First, P is spawned as an instance of G1. Then,

Q is created to run G2. With Basic-P, Q is blocked until P finishes and has released the

resource in A:
tA = 2

tB = 1

tA = 1

tB = 1

n A
0•

m1 A
1•

m2 B
0

=⇒

n A
0•

m1 A
1×

m2 B
0

With Efficient-P, Q can run concurrently with P :

tA = 2 pA = 2

tB = 1

tA = 1 pA = 2

tB = 1

n A
0•

m1 A
1•

m2 B
0

=⇒

n A
0•

m1 A
1•

m2 B
0

This illustrates how Efficient-P allows more concurrent executions than Basic-P.

The proof of deadlock avoidance of Efficient-P follows similar steps as the one for

Basic-P , except that it uses specific invariants that make use of combined properties of

pA and tA. Chapter 6 presents a family of allocation procotocols based on the invariant ϕ,

and proves the correctness of all instances. The protocols Basic-P and Efficient-P are

shown to be members of this family.

3.8. SUMMARY 43

3.8 Summary

In this chapter we have introduced the first deadlock avoidance algorithms, implemented

by protocols that are parameterized by annotations of the call graph methods. The proto-

col Basic-P guarantees freedom from deadlock by comparing the annotation value of the

incoming request with the local resource availability. Upon a successful request, only one

thread is locked. Some requests are denied depending on the resource utilization—even if

there is a resource available—which prevents unobserved remote processes from creating a

cyclic blocking chain. The correctness of Basic-P is captured by the Annotation Theorem,

which establishes a sufficient condition on annotations to prevent deadlocks. The condition,

known as the annotation condition, states that the annotation must be acyclic. Finally, we

have presented the protocol Efficient-P, that increases concurrency while preserving dead-

lock freedom, by accounting separately for processes with the minimal annotation value,

that are guaranteed to terminate in spite of unobserved remote processes.

Chapter 4

Annotations

The previous chapter has presented protocols that guarantee deadlock free operation. These

protocols are parameterized by annotations of the methods in the form of natural numbers.

The Annotation Theorem guarantees that if the annotations are acyclic then no deadlock is

reachable. This chapter investigates the following questions: (1) how to efficiently compute

minimal acyclic annotations; (2) whether deadlock freedom is compromised if an annotation

is cyclic, (3) how to decide if there is a minimal annotation given constraints on the initial

resources managed by the sites.

4.1 Problem Taxonomy

Let us first introduce some notation to refer to the problems that we study in this chapter.

Given a system specification S : 〈R,M,G〉 we use 〈S, α,T〉 to denote whether the system

S along with an annotation α and initial configuration of resources T : {TA = kA}A∈R has

reachable deadlocks. In the next sections we study:

1. 〈S, ?, ?〉: For a given system S with no constraints on the initial configuration of

resources, we show how to compute a minimal acyclic annotation and determine the

initial resources required.

2. 〈S, α,T〉: Given S with cyclic annotation α and initial resources T, we prove that de-

ciding whether Basic-P guarantees absence of deadlock in all runs is an NP-complete

problem.

3. 〈S, ?, {TA = kA}A∈X〉: Given S and a set of constraints on the number of resources

for some of the sites X ⊆ R, this is the decision problem of determining whether there

44

4.2. GENERATING MINIMAL ANNOTATIONS 45

exists an acyclic annotation compatible with the restrictions. We study two sub-cases:

first we show that the general case of arbitrary restrictions is NP-hard, and then we

consider mutual exclusion as the only restriction, to conclude that this simpler case

is in P.

4.2 Generating Minimal Annotations

In this section we study the problem 〈S, ?, ?〉 of generating a minimal acyclic annotation for

a given system S. An acyclic annotation is minimal if no annotation value of any method

in the call graph can be reduced without creating cycles. It follows that, in a minimal

annotation, reducing more than one value also creates cycles. We begin by presenting an

algorithm, called CalcMin, that computes minimal acyclic annotations. Then we prove

that the algorithm is complete in the sense that it can generate every acyclic annotation.

CalcMin takes as input a call graph and a reverse topological order of its methods.

This order is followed to calculate the annotation values; in other words, callee methods

are visited before caller methods. Then, when calculating α(n), the annotations of all

descendants of n have been computed. Figure 4.1 shows the pseudo-code of CalcMin.

The algorithm computes, at the iteration for method n, the minimum possible value for

α(n) such that no dependency cycle is created containing only n and the methods already

visited. Lines 5-8 compute the set of methods that can be reached from n. These are

1: {Order M in reverse topological order}
2: {Let ReachX = {m | x(→ ∪ 99K)∗m,x ∈ X}}
3: {Let Siten = {m | n ≡R m} }
4: for n = n1 to n|M | do
5: R = {n}
6: repeat
7: R← ReachR

8: until fix-point
9: if R ∩ Siten is empty then

10: α(n) = 0
11: else
12: α(n) = 1 + max{α(m) | m ∈ R ∩ Siten}
13: end if
14: end for

Figure 4.1: CalcMin: An algorithm for computing minimal acyclic annotations

46 CHAPTER 4. ANNOTATIONS

methods m whose annotation has been computed in previous iterations, and for which

n � m, independently of the value of α(n). Line 9 determines the methods that are

candidates to precede n in a potential cycle. Finally, lines 10 or 12 assign to α(n) the

minimum value that creates no cycle. The following example illustrates how CalcMin

computes an annotation.

Example 4.2.1. Consider the system S : 〈R,M, {G}〉 with three sites R : {A,B,C}, eight

methods M : {n0, . . . , n7} and call graph G:

G :

n1 A n2 B n6 A n7 B

n0 C

n3 B n4 C n5 A

Assume that the topological order is ni < nj whenever i < j. We show how CalcMin

generates the annotation value for n3; the values of α for n4, n5, n6 and n7 have already

been computed in previous iterations:

n1 A n2 B n6 A
0

n7 B
0

n0 C

n3 B
?

n4 C
0

n5 A
0

In lines 5-8, the set R of methods reachable from n3 is first approximated as {n4, n5}
because these are the descendants of n3. Then, n6 is added because it is reachable from

n5. Finally, R = {n4, n5, n6, n7} considering also the descendants of n6. This set is the

fix-point. The only method in R that resides in the same site as n3 is n7, so α(n3) is set to

1 + α(n7) = 1 + 0 = 1. Continuing with the iterations for n2, n1 and n0, the whole graph

is annotated as follows:

n1 A
1

n2 B
1

n6 A
0

n7 B
0

n0 C
1

n3 B
1

n4 C
0

n5 A
0

Theorem 4.2.2. The algorithm CalcMin computes a minimal acyclic annotation.

Proof. We first show that CalcMin always computes an acyclic annotation. By contradic-

tion, assume that the annotation generated is not acyclic. Given a dependency cycle, the

method that is highest, according to <, is called the top of the cycle. Consider the cycle C

4.2. GENERATING MINIMAL ANNOTATIONS 47

that has a minimum top, n. Because of this choice of C, before computing the annotation

value of n there are no cycles, and the value computed for n creates a cycle. Moreover,

the cycle is of the form: n → n2 · · ·m 99K n. Consequently, α(n) ≤ α(m). But m is in

R∩Siten in line 12 so, α(n) > α(m), a contradiction. Essentially, the algorithm guarantees

that, after each step, no new cycle is created.

We now prove minimality. For each method n, every acyclic annotation satisfies:

α(n) ≥ 1 +max{α(m) | n � m and n ≡R m}

Otherwise, a cycle n � m 99K n could be formed. In line 12, R ∩ Siten is a subset of the

methods that n finally depends on, so

α(n) = 1 +max{α(m) | m ∈ R ∩ Siten}

≤ 1 +max{α(m) | n � m and n ≡R m}.

This shows that α is a minimal annotation.

We prove now that the algorithm CalcMin can generate every minimal acyclic an-

notation, simply by providing the right order. This is shown by, given a minimal acyclic

annotation α, constructing an appropriate reverse topological order <α from which Calc-

Min generates α.

Lemma 4.2.3. Every minimal acyclic annotation can be produced by CalcMin.

Proof. Given acyclic α, let <α be an order compatible with→, 99K and �. The existence of

such an order (called preference order) follows directly from the acyclicity of α and is proved

in Corollary 6.3.3. We show by complete induction on <α that CalcMin(<α) generates an

acyclic minimal annotation β with β(n) = α(n) for every method n. Let n be an arbitrary

method. By our choice of order, all methods m with n � m have been visited before, and

by the inductive hypothesis β(m) = α(m). The value α(n) creates no cycle, so in line 12,

β(n) ≤ α(n). Assume, by contradiction, that β(n) < α(n). In this case replacing α(n) by

β(n) makes α still an acyclic annotation which contradicts the minimality of α. Therefore,

β(n) = α(n).

48 CHAPTER 4. ANNOTATIONS

4.3 Cyclic Annotations

The previous section presented how to compute minimal acyclic annotations. An immediate

question is what happens if a smaller annotation, which is necessarily a cyclic annotation,

is used. In this case, the Annotation Theorem does not guarantee absence of deadlock,

and Example 3.5.5 shows a case where deadlocks are indeed reachable. This section studies

whether deadlocks are always reachable if the annotation is not acyclic. The main result

is that, even though for some values of the initial resources deadlocks may not be present,

deadlocks are always reachable if initial resources are increased sufficiently. This result

exhibits a rather surprising anomaly: in the presence of cyclic dependencies, increasing the

number of threads may introduce the possibility of deadlock in an originally deadlock free

system. This anomaly resembles the Belady anomaly [BNS70] that shows, in the context

of operating systems, that for some scheduling algorithms assigning more resources can

degrade performance. This anomaly is clearly undesirable from an engineering perspective,

since it is common practice to “over-provision”, that is to assign extra resources to seek

higher confidence that safety and performance requirements will be met. Therefore, to avoid

this situation, the annotation condition must be satisfied.

We first refine the notion of cyclic dependencies and introduce simple dependency cycles

and unavoidable deadlocks. A cyclic dependency occurs when there is a sequence of methods

v1, . . . , vk, with v1 = vk such that:

1. for all i, either vi →+ vi+1 or vi 99K vi+1, and

2. for some j, vj →+ vj+1.

Without loss of generality, since both relations →+ and 99K are transitive, if one such

sequence exists, then there is another sequence such that edges from→+ and 99K alternate:

Definition 4.3.1 (Dependency Cycle). A dependency cycle consists of two sequences of

methods 〈[a1, . . . , ak], [b1, . . . , bk]〉, of the same length, such that for all i, there is an edge

ai →+ bi, and an edge bi 99K ai⊕1 (here ⊕ stands for addition modulo k + 1):

a1

+

a2

+

a3

+

. . .

ak

+

b1 b2 b3 bk

The methods ai are called “above” or a-methods, and the bi’s are called “below” or b-

methods. We say that a dependency cycle is simple if all a-methods reside in different sites.

4.3. CYCLIC ANNOTATIONS 49

Consequently, no two b-methods reside in the same site either.

Lemma 4.3.2. If an annotated global call graph GS,α has a dependency cycle, it also has

a simple dependency cycle.

Proof. By contradiction, assume that there is a dependency cycle but no simple dependency

cycle. Let C = 〈[a1, . . . , ak], [b1, . . . , bk]〉 be a dependency cycle with minimum number of

pairs of a-methods that reside in the same site. In C there exist ai and aj that reside in the

same site (w.l.o.g. we assume j > i). Then, either α(ai) ≥ α(aj) or α(ai) < α(aj). In the

first case:

ai−1

+

ai

+

aj

+

bi−1 bi bj

by transitivity of 99K, bi−1 99K aj and therefore

〈 [a1, . . . , ai−1, aj , . . . , ak],

[b1, . . . , bi−1, bj , . . . , bk]〉

is a dependency cycle with strictly fewer pairs of a-methods residing in the same site.

Similarly, if α(ai) < α(aj), as shown in:

ai

+

aj−1

+

aj

+

bi bj−1 bj

By transitivity bj−1 99K ai, and then the sub-graph

〈 [ai, . . . , aj−1],

[bi, . . . , bj−1]〉

is a dependency cycle with fewer coincidences. In both cases the minimality of C is contra-

dicted. Hence, there is a simple dependency cycle, as desired.

The following definition models the sequence of remote invocations that a process must

go through to execute a particular method:

50 CHAPTER 4. ANNOTATIONS

Definition 4.3.3 (Path). A path is a sequence of methods, starting from an initial method,

that follows the descendant relation →. The path leading to a method n is the ordered

sequence of its ancestors. The methods n1, . . . , nk−1 are called internal methods of the path

π : (n1, . . . , nk−1, nk).

We introduce the notion of “unavoidable deadlock” to aid in reasoning about system

states that will inevitably reach a deadlock. An unavoidable deadlock state will reach a

deadlock if the processes involved are scheduled to execute. Hence, in every continuation

of the run either the processes are not scheduled and starve, or the system reaches a dead-

lock. In either case the processes involved in an unaviodable deadlock cannot progress to

termination. Unavoidable deadlocks are easier to create in proofs than are deadlocks.

Definition 4.3.4 (Unavoidable Deadlock). A global state σ is an unavoidable deadlock

state if no process present in σ terminates in any state reachable from σ.

An alternative characterization is given by:

Lemma 4.3.5. If in state σ no process can individually proceed to completion even if

continuously scheduled, then σ is an unavoidable deadlock state.

Proof. We show that if σ is not an unavoidable deadlock state, then there is a process that

proceeds to termination if continuously scheduled. Consider a shortest run ζ extending σ

for which an existing process P terminates. Clearly, there is no creation of new processes

in ζ because, by monotonicity of protocols, one could remove all the creation transitions

to produce a strictly shorter run in which P also terminates. If all transitions in ζ are

related to P , the result is shown. If not, pick one of the transitions τ that is not related to

P . Since τ does not increase resources, all transitions that are subsequently enabled in ζ

after τ , would also have been enabled had τ not been taken, again by monotonicity of the

protocols. Therefore, we can produce a shorter run by removing τ , which contradicts the

minimality of ζ.

4.3.1 Deadlocks with Cyclic Annotations

We show now that, in the presence of dependency cycles, an unavoidable deadlock can be

reached if enough resources are initially present.

The method presented in this section calculates, given a system together with a cyclic

annotation, some initial resources for which some run leads to deadlock. We calculate

4.3. CYCLIC ANNOTATIONS 51

these resources by generating a symbolic run in which when all the a-methods in a simple

dependency cycle are executed, no more processes can visit any a-method, and consequently

no b-method can be executed either. In effect, the processes reach an unavoidable deadlock

state.

We construct the symbolic run as follows. Let 〈[a1, . . . , am], [b1, . . . , bm]〉 be a simple

dependency cycle for (distinct) sites A1, . . . , Am. Let π1, . . . , πm be the paths leading to the

a-methods a1, . . . , am. We build an execution by spawning ki processes for each path πi and

scheduling the ki processes that gain access to each of the methods in πi simultaneously.

For every step in the symbolic execution we generate a constraint—on the possible values

of ki and the total number of threads {TA}—that determines that the step is legal. Then,

another constraint determines that when all the ki processes execute their target method

ai the threads are exhausted. A global predicate consisting of the conjunction of all these

intermediate constraints captures for which values the symbolic run has a concrete instance.

Finally, we prove that this global constraint is always satisfiable. Each solution corresponds

to an execution of the system that reaches an unavoidable deadlock.

The first two constraints capture that the sets of resources are not empty and that at

least one process follows each path:

∧

A

TA ≥ 1
∧

πi

ki ≥ 1 (4.1)

A (macro) step in the symbolic execution consists of all the ki processes entering the

method section of a method n in πi. In terms of the computational model described in

Chapter 2, this corresponds to ki consecutive executions of the method entry transition.

We use (n, ki) to denote that all the ki processes gain access to execute n, and say that

the ki processes “visit” method n. The symbol H represents the set of all visits that occur

during a symbolic execution:

H
def
= {(n, ki) | n belongs to path πi}.

Observe that, in principle, the same method n could belong to different paths if these paths

share a common prefix, and therefore there can be more than one visit to the same method

n (for different ki’s).

The steps of the different paths can be interleaved in many ways, each of which leads

52 CHAPTER 4. ANNOTATIONS

to a different run and corresponds to a different set of constraints. We consider any total

order < on the set of visits H that respects the topological order of each path, that is, if

n appears before m in path πi then (n, ki) < (m, ki). Also, we restrict our attention to

acceptable total orders in which every a-method is the last method visited residing in its

site (i.e., if (n, kj) resides in Ai then (n, kj) < (ai, ki)). Finally, we define (HA, <A) to be

the projection of (H,<) for methods that reside in site A:

HA
def
= {(n, ki) ∈ H | site(n) = A}.

Note that the order < is acceptable precisely when every ai is maximum in <Ai
.

Once an acceptable order is picked, the symbolic run is completely determined. The set

of constraints created in the symbolic run that leads to an unavoidable deadlock is:

• Resources are exhausted: For all sites Ai, all threads are exhausted after the ki

processes visit ai, such that no further executions of ai are possible:

ψi : TAi
−

∑

(n,kj)∈HAi

kj = α(ai). (C1)

Note that
∑

(n,kj)∈HAi
kj corresponds to the total number of resources granted in site

Ai in the whole execution. This constraint forces the remaining threads in Ai to be

α(ai), which is insufficient for any subsequent visit to ai, according to the enabling

condition for Basic-P. Consequently, no subsequent visit to bi	1 is allowed either.

• The run is feasible: For all intermediate methods (n, ki) ∈ H (i.e., n 6= ai) the

protocol grants the resource allocation to all ki processes. Assuming that method n

resides in A, this is expressed by

φ(n,ki) : TA −
∑

(m,kj)≤A(n,ki)

kj ≥ α(n). (C2)

The term
∑

(m,kj)≤A(n,ki)
kj accounts not only for the resources allocated by the ki

processes visiting n, but also for all the previous visits to methods in A by processes

following any path.

Finally, to prove that an unavoidable deadlock is reached it is sufficient to show that

4.3. CYCLIC ANNOTATIONS 53

the following global constraint—together with (4.1)—is satisfiable:

Φ : (
∧

ν∈H

φν) ∧ (
∧

ai

ψi)

A solution to Φ provides the initial resources and the number of processes following each

path such that an unavoidable deadlock is reached. To see that Φ is satisfiable we first

simplify (C1) as:

TAi
=

∑

(n,kj)∈HAi

kj + α(ai). (C1’)

This equation gives a means to compute the value of TAi
once all the ki values are deter-

mined. Since α(ai) ≥ 0 and ki ≥ 1, then TAi
≥ 1 and this equation is consistent with (4.1).

Using (C1’) we simplify the constraint (C2) corresponding to φ(n,ki) to the following form:

∑

(m,kj)>Ai
(n,ki)

kj ≥ α(n)− α(ai). (C2’)

The following example illustrates the use of this technique to construct a run.

Example 4.3.6. Consider a scenario with the following annotated global call graph:

G1 : n1 C
0

n2 A
0

n3 B
0

G2 : m1 C
0

m2 B
0

m3 A
0

This annotated graph has a simple dependency cycle 〈[n2,m2], [n3,m3]〉. If the initial

resources allocated are TA = 1, TB = 1 and TC = 1 no deadlock is reachable. To see this,

observe that only one process can be granted access to either method n1 or m1, so the fact

that TC = 1 and that the root methods have annotation 0 serializes the access to the rest

of the methods in both call graphs. The serialization breaks the cyclic contention that the

annotation condition intends to capture. However, using the technique outlined above we

show that allocating more resources (by increasing TC) could lead to a deadlock. The two

paths leading to a-methods are π1 = (n1, n2) and π2 = (m1,m2). Let k1 denote the number

of processes following π1 and let k2 follow π2. The set of visits is:

H = {(n1, k1), (n1, k1), (m1, k2), (m2, k2)}.

54 CHAPTER 4. ANNOTATIONS

We pick the following acceptable total order <, that respects the topological order of π1

and π2 and for which the a-methods are the last visits of their sites: (n1, k1) < (m1, k2) <

(n2, k1) < (m2, k2). The set of constraints is:

TC − k1 ≥ α(n1)

TC − k1 − k2 ≥ α(m1)

TA − k1 = α(n2)

TB − k2 = α(m2)

Simplifying with the numerical values of the annotation α and using the substitutions (C1’)

and (C2’):

TC − k1 ≥ 0

TC − k1 − k2 ≥ 0

TA = k1

TB = k2

This system is clearly satisfiable, as shown by picking k1 = k2 = 1, and TA = TB = 1

and TC = 2. In other words, the following sequence leads to an unavoidable deadlock. In

the diagrams, ••• represents the set of k1 processes traversing path π1, and ◦◦◦ symbolizes the

set of k2 processes traversing π2. First, k1 and k2 processes are spawned:

n1 C
0•••

n2 A
0

n3 B
0

m1 C
0◦◦◦

m2 B
0

m3 A
0

Then, according to <, the k1 processes gain access to n1:

n1 C
0•••

n2 A
0

n3 B
0

m1 C
0◦◦◦

m2 B
0

m3 A
0

after which, the k2 processes visit m1:

n1 C
0•••

n2 A
0

n3 B
0

m1 C
0◦◦◦

m2 B
0

m3 A
0

At this point, processes start visiting the a-nodes of the dependency cycle. First, the k1

4.3. CYCLIC ANNOTATIONS 55

processes visit n2:

n1 C
0

n2 A
0•••

n3 B
0

m1 C
0◦◦◦

m2 B
0

m3 A
0

and after them, the k2 processes visit m2:

n1 C
0

n2 A
0•••

n3 B
0

m1 C
0

m2 B
0◦◦◦

m3 A
0

At this point tA = tB = 0, and consequently none of the processes can proceed independently

to completion, so the deadlock is unavoidable.

The previous discussion shows that if we violate the annotation condition, even if we

come up with a set of resources (TA = 1, TB = 1 and TC = 1) that avoids deadlock, by

allocating more resources (TA = 1, TB = 1 and TC = 2) there is a possibility of deadlock.

The following example shows a more sophisticated scenario, were paths leading to the

methods causing the deadlock have common ancestors:

Example 4.3.7. Consider a scenario with the following annotated global call graph

n2 C
0

n3 A
0

n4 B
0

n1 A 2

n5 B
0

n6 A
0

It is easy to see that, even though there is a simple dependency cycle C : 〈[n3, n5], [n4, n6]〉,
with initial resources TA = 3, TB = TC = 1 the system cannot reach a deadlock. The reason,

again, is that n1 serializes accesses to the rest of the call graph. After a process executes

n1 no other process can become active in n1. However, there are still 2 free resources in A,

which breaks the potential cyclic conflict. Again, we show how to compute minimal initial

resources that exercise the dependency cycle.

The cycle C generates the paths π1 : (n1, n2, n3) and π2 : (n1, n5). Path π1 represents

the sequence of methods that are visited prior to n3, while path π2 contains the sequence

ending in n5. Observe that method n1 is shared among the two paths. Let k1 processes

follow path π1 and k2 processes follow π2. The set of visits for these two paths is

H = {(n1, k1), (n2, k1), (n3, k1), (n1, k2), (n5, k2)}.

56 CHAPTER 4. ANNOTATIONS

One acceptable total order is (n1, k1) < (n2, k1) < (n1, k2) < (n5, k2) < (n3, k1). The

symbolic run starts by spawning all the k1 and k2 processes

n2 C
0

n3 A
0

n4 B
0

n1 A 2
•••

◦◦◦
n5 B

0
n6 A

0

First, the k1 processes gain access to n1,

n2 C
0

n3 A
0

n4 B
0

n1 A 2
•••

◦◦◦
n5 B

0
n6 A

0

and then execute n2:

n2 C
0•••

n3 A
0

n4 B
0

n1 A 2

◦◦◦
n5 B

0
n6 A

0

After which, the k2 processes gain access to n1.

n2 C
•••0

n3 A
0

n4 B
0

n1 A 2

◦◦◦
n5 B

0
n6 A

0

At this point, all intermediate methods have been visited. Now, the k2 processes visit the

a-method n5:

n2 C
0•••

n3 A
0

n4 B
0

n1 A 2

n5 B
◦◦◦0

n6 A
0

and, finally, the k1 processes visit n3:

n2 C
0

n3 A
0•••

n4 B
0

n1 A 2

n5 B
0◦◦◦

n6 A
0

4.3. CYCLIC ANNOTATIONS 57

The set of constraints generated is:

TA − k1 ≥ α(n1)

TC − k1 ≥ α(n2)

TA − k1 − k2 ≥ α(n1)

TB − k2 = α(n5)

TA − (k1 + k2)− k1 = α(n3)

which rewritten, according to (C1’) and (C2’):

k2 + k1 ≥ 2

TC − k1 ≥ 0

k1 ≥ 2

TB = k2

TA = k1 + k2 + k1

This system of equations is clearly satisfiable. One possible solution is k1 = 2, k2 = 1, and

TA = 5, TB = 1, TC = 2. In other words, if the sites A, B and C have initially available 5,

1 and 2 threads (resp.), then 2 processes can be spawned to follow the path π1, and 1 to

follow π2 causing a deadlock if properly scheduled.

We now show the general result. Every scenario that violates the annotation condition

can potentially reach a deadlock:

Theorem 4.3.8. If an annotation has dependency cycles then, given enough resources, a

deadlock is reachable.

Proof. Let S be a system and α an annotation such that the annotated global call graph

GS,α has dependency cycles. Consider a simple cycle C which, by Lemma 4.3.2, always

exists. There is an acceptable order for visiting the methods in C: the order < where first

all internal methods of every path πi are visited in any topological order, and then all ai

are visited. Using any admissible order the generated set of constraints (C1’) and (C2’) is

satisfiable. The following values of ki and TA satisfy all the constraints:

(1) if a site A does not appear in any constraint then assign TA = 1.

(2) Take ki to be the largest value of the right hand side of any formula φ(n,ki) where ki

appears. This way, all (C2’) are satisfied.

(3) Compute the values of TAi
using (C1’).

58 CHAPTER 4. ANNOTATIONS

(4) Finally, if some site A is visited in some intermediate method but no ai resides in A,

simply pick TA to be the addition of all other elements appearing in all constraints

involving TA. All these are of type (C2) which are then satisfied.

Using the same construction we can show that Φ is still satisfiable even if we add extra

constraints of the form TA > c for constants c. Therefore, given any set of resources, a

scenario with reachable deadlocks can always be built for an annotation with dependency

cycles by allocating more resources.

4.4 Deciding Deadlock Reachability

In this section we study the decision problem 〈S, α,T〉: we show that checking deadlock

reachability for a fixed number of resources when the annotation is cyclic is computationally

hard. These results indicate that, in practice, the annotation condition must be fulfilled.

We first present a non-deterministic algorithm that decides in polynomial time whether a

system has reachable deadlocks. Then, we introduce a reduction from 3-CNF to deadlock

reachability that proves that the decision problem 〈S, α,T〉 is NP-hard.

Lemma 4.4.1 (Finding Deadlocks). Given a system S, cyclic annotation α, and as-

signment of resources T : {TA = kA}A∈R, there exists a non-deterministic algorithm that

decides in polynomial time whether a deadlock is reachable.

Proof. First, we say that a proper process is “relevant” in an execution if it is granted some

resource. It is clear that if there is a run to a deadlock, then there is a run where only

relevant processes exist, because the run obtained by removing irrelevant processes also

reaches a deadlock.

Corollary 6.3.3 and Theorem 6.3.5 show that every reachable state can be reached by

Basic-P performing only allocations, and following some topological order. We show now

a non-deterministic algorithm that first guesses a deadlock state σ, and then guesses an

order < of allocations such that Basic-P reaches σ following <. The run is constructed

by merging all allocations of a single method n into a macro step in which more than one

process simultaneously acquire a resource in n.

Given a system specification 〈S, α,T〉 a state of the algorithm is a vector 〈p1, . . . , p|M |〉,
where entry pn represents the number of active processes running method n. A macro step

4.4. DECIDING DEADLOCK REACHABILITY 59

is represented by `k
n, corresponding to k processes gaining access to method n:

〈p1, . . . , pn, . . . , p|M |〉 `k
n 〈p1, . . . , pn + k, . . . , p|M |〉

where the only entry modified is pn. A run is a sequence σ1 `k1
n1
σ2 `k2

n2
. . . `kl

nl
σl of macro

steps. A run is legal if σ1 is 〈0, . . . , 0〉, and if every state σi+1 is obtained from σi by a legal

(macro) allocation. It is easy to establish that a macro allocation `ki
ni

is legal, by checking

that:

1. the enabling condition of Basic-P for method ni holds in σi for all the ki processes,

2. the only entry modified is pni
which is increased by exactly ki units, and

3. the parent method n of method ni satisfies pn ≥ pni
+ ki, i.e., there are enough caller

processes to perform all the remote invocations.

A legal run follows a total order < if all the steps are carried out following it: ni < ni+1 for

all i. This implies that the maximum length of a run that follows some total order is |M |.
The state of the algorithm can be encoded in size linear in the size of the specification, each

step can be checked in linear time, and the final state being a deadlock can also be checked

in linear time. Therefore, this algorithm decides deadlock reachability in non-deterministic

polynomial time.

Lemma 4.4.2 (Deadlock Reachability). Given a system S, cyclic annotation α and

assignment of resources T : {TA = kA}A∈R, deciding whether a deadlock is reachable is

NP-hard.

Proof. The proof proceeds by reducing 3-CNF to deadlock reachability. Given a 3-CNF

formula θ, we create a system specification

〈S, α, {TA = 1}A∈R〉

whose size is linear in the size of the formula, and which has deadlocks reachable if and only

the formula is satisfiable. We use Cj for the clauses in θ and Xi for its variables.

• Sites: The set of sites R includes one site Ki per clause Ci and one site Vj per variable

Xj :

R def
= {Ki} ∪ {Vj}.

60 CHAPTER 4. ANNOTATIONS

• Methods: For each variable Xj we introduce two call graph methods, xj : Vj and

xj :Vj . Similarly, for every clause Ci there are two methods, ai :Ki and bi :Ki. The

set of initial methods I contains all the methods corresponding to variables:

M
def
= {(xj :Vj), (xj :Vj) | for every variable Xj} ∪

{(ai :Ki), (bi :Ki) | for every clause Ci}

I
def
= {(xj :Vj), (xj :Vj) | for every variable Xj}

• Resources: The total number of resources is set to TVj
= 1 for all variable sites and

TKi
= 1 for all clause sites.

• Annotations: The annotation of every method is 0, the only possible value consistent

with TVj
= 1 and TKi

= 1. Consequently, there can be at most one active process

running each method.

• Edges: Every method ai is connected through a remote invocation edge to the method

bi⊕1 of the clause with the next index, including ak → b1 for the last clause. Given

that all annotation values are 0, this immediately creates a simple dependency cycle

in the annotated graph:

a1 → b2 99K a2 → b3 · · · ak → b1 99K a1.

This is the only cycle in the call graph. Finally, there is an edge from a variable xi

to all the clauses where Xi appears in positive form and one edge from xi to all the

clauses where Xi appears in negative form. For example, if X1 appears in clauses C1

and C3, and X1 appears in clause Ck, the call graph will include:

a1 K1

0

b2 K2

0

x1 V1

0

a2 K2

0

b3 K3

0

x1 V1

0

a3 K3

0

b4 K4

0

.

ak Kk

0

b1 K1

0

4.5. COMPUTING ANNOTATIONS WITH RESOURCE CONSTRAINTS 61

Since, for all variables, the call graph methods xi and xi reside in the same site Vi and their

annotation is 0, in any execution, at most one of them can have an active process. This

corresponds to picking a valuation for the variable Xi. Then, the only clause methods that

can have active processes are those with some process in a predecessor variable method: this

corresponds to a clause being satisfied. Therefore, there is a run to a deadlock (exercising

the only cycle in the graph), if and only if all the clauses can be satisfied. Since 3-CNF is

NP-hard, so is the 〈S, α,T〉 problem.

Lemmas 4.4.1 and 4.4.2 imply:

Theorem 4.4.3. Deciding whether 〈S, α,T〉 has reachable deadlocks, where α is cyclic, is

NP-complete.

4.5 Computing Annotations with Resource Constraints

In many scenarios, there are imposed constraints on the number of resources available in

certain sites. Since the algorithm presented in Section 4.2 generates all minimal acyclic

annotations, it immediately provides a decision procedure for the problem 〈S, ?, {TA =

kA}A∈X〉 of whether an acyclic annotation exists that accommodates these constraints. One

can guess the order <, generate the annotation α with CalcMin(<) and check whether α

satisfies the constraints. Hence:

Lemma 4.5.1. Checking whether there is an acyclic annotation for 〈S, ?, {TA = kA}A∈X〉
is in NP.

We show now that the problem 〈S, ?, {TA = kA}A∈X〉 is NP-hard for arbitrary values of

kA, but it can be decided in polynomial time if all the restrictions are of the form kA = 1.

4.5.1 Arbitrary number of Resources

Lemma 4.5.2. The problem 〈S, ?, {TA = kA}A∈X〉 is NP-hard.

Proof. We use, again, a reduction from 3-CNF. First, every 3-CNF formula θ can be

transformed into an equi-satisfiable formula θ ′ by rewriting each clause Cj : (V1 ∨ V2 ∨ V3),

where V1 stands for a variable X1 or its negation X1, as follows

C ′
j : (V1 ∨ Yj ∨ Zj) ∧ (V2 ∨ Yj) ∧ (V3 ∨ Zj).

62 CHAPTER 4. ANNOTATIONS

The auxiliary variables Yj and Zj are introduced to separate the occurrences of the different

variables in the original formula. We say that θ ′ is in separated normal form (SNF). This

transformation increases the number of variables by at most 2|C|, where |C| is the number

of clauses in the original formula, and increases the number of clauses by a factor of 3.

Consequently, the generated formula is linear in the size of the original one.

Given a formula θ in SNF we build a distributed system S : 〈R,M,G〉—linear in the size

of the formula—and a problem specification 〈S, ?, {TA = kA}A∈R〉, such that the system

admits an acyclic annotation if and only if there is a satisfying valuation of θ.

• Resources: The resource constraint T is set to {TA = 2} for all sites. This enforces

all feasible annotations to be α(n) ≤ 1, for every method n.

• Sites: For each of the variables Xi in the formula θ′ we introduce two sites, Xi and

Xi. The former represents the positive occurrence, while the latter the negative.

• Methods and Edges: For each of the variables Xi in the formula we introduce the

following “variable gadget”:

• •

: Xi : Xi

: Xi : Xi

G(Xi)

The only two possible acyclic annotations of this gadget that respect the constraints

TXi
= 2 and TXi

= 2 are:

• •

: Xi

1

: Xi

0

: Xi

0

: Xi

0

• •

: Xi

0

: Xi

1

: Xi

0

: Xi

0

There is a one-to-one correspondence between acyclic annotations of these gadgets

and valuations as follows: an annotation : Xi

1

denotes that variable Xi is false in

the corresponding valuation, while : Xi

1

denotes that Xi is true. For each variable

4.5. COMPUTING ANNOTATIONS WITH RESOURCE CONSTRAINTS 63

occurrence in a clause Cj : (X1 ∨ Yj ∨Zj) we introduce the following “clause gadget”,

where we depict also the only possible acyclic annotation:

: X1

1

: X1

0

• •

G(Yj)

: Yj

1

: Yj

0

• •

G(Zj)

: Zj

1

: Zj

0

• •

G(X1)

Similarly, if the clause is of the form Cj : (X1 ∨ Yj ∨ Zj):

: X1

1

: X1

0

• •

G(Yj)

: Yj

1

: Yj

0

• •

G(Zj)

: Zj

1

: Zj

0

• •

G(X1)

For each of the clauses (X2 ∨ Yj) the gadget is:

: X2

1

: X2

0

• •

G(Yj)

: Yj

1

: Yj

0

• •

G(X2)

Similarly, if the clause is (X2 ∨ Yj)

: X2

1

: X2

0

• •

G(Yj)

: Yj

1

: Yj

0

• •

G(X2)

64 CHAPTER 4. ANNOTATIONS

The gadgets for the third sub-clause—either (X3 ∨ Zj) or (X3 ∨ Zj)—are defined

analogously.

The separation variables Yj only occur once in positive form and once in negative form.

Then the only possible cycles in the graph, once a valuation for all variables has been

picked, involve all the upper methods in some clause gadget. This cycle exists if and only if

not all the clauses are satisfied. Therefore, if all clauses are satisfied the induced annotation

has no cycles, and if there is an annotation with no cycles the corresponding valuation is

satisfying. Since 3-CNF is NP-hard, this reduction implies that checking whether a graph

admits an acyclic annotation, with restrictions {TA = kA} for kA ≥ 2, is also NP-hard.

4.5.2 Mutual Exclusion Resources

We show now that the problem 〈S, ?, {TA = kA}A∈X〉 becomes tractable if all the con-

straints are of the form kA = 1. That is, the only restriction is that some of the resources

must be accessed in mutual exclusion, while the initial amount of all the other resources is

unrestricted.

Lemma 4.5.3. The problem 〈S, ?, {TA = 1}A∈X〉 is in P.

Proof. Consider the partially annotated graph Gα that only contains annotation values,

α(n) = 0, for all methods residing in those sites A ∈ X that are marked as mutual exclusion

resources (0 is the only possible annotation for these methods). If there are dependency

cycles in Gα then there is no acyclic annotation since all fully annotated graphs extend

Gα. Let < be any reverse topological order that extends the dependencies � present in Gα,

which exists if Gα is acyclic.

Now, the algorithm CalcMin(<) generates an acyclic annotation β. When n : A is

visited in CalcMin, no descendant of n can reach any method that resides in A, since that

would imply the existence of a cycle in Gα. Therefore, β(n) receives value 0 in line 10 of

CalcMin, and β is an acyclic annotation that extends α, as desired.

In case the technique described in Lemma 4.5.3 fails there is no protocol that can provide

deadlock avoidance without communication. In practice, the alternative solution is to use

deadlock prevention for some of the resources to break the cycles in the partially annotated

call graph Gα. Lemma 4.5.3 also provides an efficient conservative procedure to check

the feasibility of the general problem, presented in Section 4.5.1. Some of the constrained

4.6. SUMMARY 65

resources can be over-restricted to be binary semaphores. Then Lemma 4.5.3 can be used to

check feasibility, because every solution with binary semaphores is a solution to the general

problem.

4.6 Summary

The Annotation Theorem establishes a criteria, the annotation condition, to guarantee

that the protocol Basic-P provides deadlock avoidance. This chapter has studied some

properties of annotations. First, we have designed the algorithm CalcMin that computes

minimal acyclic annotations, and presented a proof that every minimal annotation can be

generated by this algorithm. We have also shown that if the annotation condition is not

satisfied, then the following anomaly occurs: even when some systems can be deadlock

free for certain initial resources, every system with a cyclic annotation will have reachable

deadlocks if initial resources are increased enough. In this chapter we have also proved that

deciding whether a system with a given cyclic annotation and initial resources has reachable

deadlocks is NP-hard. Therefore, as a design principle, to ensure that deadlock freedom is

guaranteed, acyclic annotations must be used. Finally, we have shown that if some of the

sites have restrictions in their amount of initial resources, computing acyclic annotations is

an NP-hard problem. This problem becomes polynomially solvable if the only restrictions

state that some resources must be accessed in mutual exclusion.

Chapter 5

Liveness

This chapter studies liveness: how to guarantee that every individual process eventually

progresses. The protocols presented in previous chapters ensure that no deadlock can be

reached, but there are still runs in which some processes starve, while other processes

advance. We present here a new deadlock avoidance protocol that guarantees individual

liveness, while still operating on local data. Interestingly, this algorithm allows more con-

currency than all previous protocols. Finally, we discuss the implementation trade-offs, and

present experimental results comparing all these protocols.

5.1 Local Schedulers

We begin by taking a closer look at how resources are managed. Deadlock avoidance

protocols implement the resource allocation policy by deciding which requests are enabled.

However, protocols do not control which enabled process, if there is more than one, gains

access. In the model of computation introduced in Chapter 2, the environment selects which

transition fires, among the enabled ones. We refine this situation here by introducing local

schedulers.

At each site, resource allocation is implemented by a controller consisting of two coop-

erating components: an allocation manager and a scheduler. The allocation manager, im-

plemented by a runtime protocol, decides which requests are safe. The scheduler arbitrates

among the safe processes whenever there is a competition. Thus, when a new incoming

request arrives, the controller proceeds by consulting the allocation manager about whether

the request can be granted safely.

66

5.1. LOCAL SCHEDULERS 67

PSfrag replacements

A

B

C

CONTROLLER
Scheduler

Request(i)

Release(i)
Allocation
Manager

Scheduler

{. . . p . . .}

p

Wait Active

Figure 5.1: A schematic view of a resource allocation controller

• If the request is safe, a unit of resource is assigned and the protocol variables are

updated accordingly.

• If the request is not safe, the process is inserted in a waiting queue.

Upon release, the controller delegates to the allocation manager the computation of the

subset of processes in the waiting queue whose pending request becomes safe. Then, the

controller transfers to the scheduler the job of picking one of these safe processes, which

receives the resource. This interaction takes place until either the waiting queue is empty,

or there are no more enabled processes. This model of the resource controller is depicted in

Figure 5.1.

As for deadlock avoidance protocols, we are interested in schedulers that operate only

on local data, which we call local schedulers. The ability of the algorithm studied in this

chapter to provide individual liveness is based on the following property of schedulers.

Definition 5.1.1 (Fair Scheduler). A scheduler is called fair if no process can be offered

infinitely often without being selected.

This fairness condition essentially restricts the choices of the environment with respect

to how the method entry transitions can be interleaved. In the context of reactive

systems this notion of fairness is known as compassion or strong fairness. There are many

scheduling policies that are fair in this sense: earliest deadline first, earliest creation first,

etc. Section 5.4.2 below shows how to build an efficient fair scheduler.

68 CHAPTER 5. LIVENESS

5.2 Deadlock versus Starvation

Clearly, deadlock implies starvation because no process present in a deadlock progresses.

However, starvation can be present for other reasons, like processes coordinating to monopo-

lize the resources, or schedulers that discriminate against some participant. The Annotation

Theorem establishes that Basic-P guarantees that some process in the system can progress.

This does not necessarily imply that every individual process can eventually progress. In

fact, Basic-P allows runs with starvation, as the following example shows:

Example 5.2.1. Consider the following system, with initial resources TA = TB = 2:

n1 A
0

n2 B
0

m1 B
1

m2 A
0

The annotation is acyclic so Basic-P guarantees that no deadlock can be reached. We

exhibit a run in which a process starves. The run begins with two processes starting their

execution in n1. After these processes perform the remote call to n2 and become active,

all the resources are in use. At this point, a new process P is spawned to execute m1. As

tB = 0, the allocation manager—implemented by Basic-P—indicates that P must wait.

Even if one of the processes executing n2 finishes and releases its resources, P is still blocked,

because the request for m1 requires the availability of two resources in B. A new process

executing n1, however, can start, because running n1 and n2 only requires one resource in

A and then one in B, both of which are available. Repeating this pattern results in an

execution in which tB ≤ 1 in all future states. Hence the entry condition for P is never

enabled, and P will wait forever, independently of any scheduler. This run is depicted

below:

tA = 2

tB = 2

tA = 0

tB = 2

tA = 0

tB = 0

tA = 1

tB = 1

n1 A
0••

n2 B
0

m1 B
1

m2 A
0

=⇒

n1 A
0••

n2 B
0

m1 B
1

m2 A
0

=⇒

n1 A
0

n2 B
0••

m1 B
1×

m2 A
0

=⇒
⇐=

n1 A
0•

n2 B
0•

m1 B
1×

m2 A
0

The annotation value α(m1) = 1 instructs Basic-P to take a pessimistic approach for re-

quests to execute m1. Unfortunately, this pessimism allows a malicious coalition of processes

to monopolize the resources in B, and prevent m1 from ever being executed.

5.3. A LIVENESS PROTOCOL 69

5.3 A Liveness Protocol

We present in this section a protocol that provides liveness. An acyclic annotation of a call

graph provides, for every method n, a measure of the number of (directly or indirectly)

dependent methods that execute in the same site as n. We first revisit the invariant ϕ,

introduced in Lemma 3.3.2, which is the essential element in the proof of deadlock avoidance

of Basic-P. For every site A and annotation value k, there are never more than TA − k
active processes executing methods with annotation value k or higher. Recall that the

symbol ϕA denotes the clause of ϕ for site A. A global state that satisfies ϕA in all sites

A is called a ϕ-state. Maintaining ϕ invariant is one of the properties of Basic-P, but

sometimes Basic-P disables transitions that would also preserve ϕ. We propose here a

protocol that grants precisely all requests that keep the system in a ϕ-state, and show that

doing so guarantees individual liveness.

5.3.1 Protocol Schema

To express ϕA more formally we first introduce and review some notation. Recall that

actA[k] represents the number of active processes in A executing methods with annotation

value k, and ActA[k] is a shorthand for
∑

j≥k actA[j]. The property ϕA[k] holds if the

number of active processes executing methods with annotation k or higher does not exceed

TA − k, that is,

ϕA[k]
def
= ActA[k] ≤ TA − k.

The invariant ϕ that the protocol must preserve is then:

ϕ
def
=

∧

A∈R

ϕA ϕA
def
=

∧

k

ϕA[k]

Here, k ranges over all annotation values of methods residing in A. Let Act
(i)
A [j] and act

(i)
A [j]

represent the values of ActA[j] and actA[j] after a process requesting a resource to run a

method with annotation i becomes active (i.e., actA[i] is incremented):

act
(i)
A [j]

def
=

actA[j] if j > i

actA[j] + 1 if j = i

actA[j] if j < i

Act
(i)
A [j]

def
=

ActA[j] if j > i

ActA[j] + 1 if j = i

ActA[j] + 1 if j < i

70 CHAPTER 5. LIVENESS

n ::

`0 :

[

when ϕ
(i)
A do

actA[i]++

]

`1 : n.run()

`2 : actA[i]--

`3 :

Figure 5.2: The protocol Live-P

Then, the condition that ϕA is preserved if a resource is granted to a process requesting

access to run a method with annotation i is given by the formula ϕ
(i)
A defined as follows:

ϕ
(i)
A [k]

def
= Act

(i)
A [k] ≤ TA − k

ϕ
(i)
A

def
=

∧

k

ϕ
(i)
A [k]

The formula ϕ
(i)
A is the weakest precondition on a transition that preserves ϕ when granting

a request to run a method with annotation value i.

Figure 5.2 shows the protocol schema Live-P that controls resource allocation for a

method n:A with annotation value α(n) = i. Live-P is a schema, because the actual imple-

mentations of the test ϕ
(i)
A and the operations actA[i]++ and actA[i]-- are left unspecified.

Several implementations are possible, ranging from a brute force approach using tables to

store actA[i] and repeated computations of ActA[i], to more efficient implementations pre-

sented later in this chapter. Any correct implementation of these operations guarantees

absence of deadlock and also guarantees liveness, as we now prove.

5.3.2 Deadlock Avoidance

To show that Live-P guarantees absence of deadlock we first prove an auxiliary lemma.

Lemma 5.3.1. If ϕA holds and a clause ϕ
(i)
A [j] does not hold, then there is at least one

active process with annotation j.

Proof. From the fact that ϕA holds it follows that

ActA[j] ≤ TA − j
ActA[j + 1] ≤ TA − (j + 1) < TA − j

5.3. A LIVENESS PROTOCOL 71

From the fact that ϕ
(i)
A [j] does not hold, we infer

Act
(i)
A [j] = ActA[j] + 1 > TA − j

which, with ActA[j] ≤ TA − j, gives

ActA[j] = TA − j

and thus, with ActA[j + 1] < T − j, we have

ActA[j + 1] < ActA[j] .

Since ActA[j] = actA[j] + ActA[j + 1] we conclude actA[j] > 0, as desired.

The following corollary holds immediately, by observing that if ϕA holds but ϕ
(i)
A does

not, there must be some offending clause for some j ≤ i.

Corollary 5.3.2. If ϕ
(i)
A is not satisfied, then there is some active process running a method

with annotation at most i (i.e.,
∑

j≤i actA[j] ≥ 1).

We are now ready to show a version of the Annotation Theorem for Live-P , that

establishes that this protocol provides deadlock avoidance.

Theorem 5.3.3 (Annotation Theorem for Live-P). Given a system S and an acyclic

annotation, if every site uses Live-P to control allocations then all executions of S are

deadlock-free.

Proof. We first observe that, in the absence of cyclic dependencies, the relation � is a

partial order on call graph methods. By contradiction, suppose that there is a reachable

deadlock state. Let P be a process involved in the deadlock, blocked in a method n:A that

is minimal in �, and let i be the annotation value of n. We consider the two possible cases:

1. P is active. In this case a nested call to some descendant method m must be blocked,

but then n � m which contradicts the minimality of n.

2. P is waiting and ϕ
(i)
A is false. By Corollary 5.3.2 there must be an active process

running some method n1 :A with annotation α(n1) ≤ i. Since this process is active, it

must be blocked in some subsequent remote invocation (to some method n2). Then

n 99K n1 →+ n2, so n � n2 again contradicting the minimality of n.

Hence, no deadlock is reachable.

72 CHAPTER 5. LIVENESS

5.3.3 Liveness

We show now that any implementation of Live-P prevents starvation, provided the local

schedulers are fair. In the presence of a fair scheduler, it is sufficient to show that every

waiting process will eventually be enabled, that is, the entry condition of Live-P will

eventually be satisfied. This guarantees that every process progresses and eventually receives

all the resources it requests. In our model of computation this, in turn, implies that the

process terminates. We first prove some auxiliary lemmas.

Lemma 5.3.4. ϕ
(k)
A implies ϕ

(i)
A , for k ≥ i.

Proof. First, ϕ
(k)
A [j] ≡ ϕ

(i)
A [j] for all j ≥ k and for all j < i since the formulas are syntacti-

cally identical. Now, take an arbitrary j within i ≤ j < k. In this case,

ϕ
(k)
A [j] ≡

(
ActA[j] + 1 ≤ TA − j

)

ϕ
(i)
A [j] ≡

(
ActA[j] ≤ TA − j

)
,

and if ϕ
(k)
A [j] holds, so does ϕ

(i)
A [j].

Corollary 5.3.5 (Maximal Enabled Annotation). In every state σ there exists a value

i within 0 ≤ i ≤ TA such that all requests with annotation lower than i are enabled, and

all those with annotation at least i are disabled. The annotation value i is the maximal

enabled annotation in site A, and i+ 1 is the minimal illegal annotation.

The protocols Basic-P and Efficient-P also provide a notion of maximal enabled and

minimal illegal annotation values. In the case of Basic-P the minimal illegal annotation is

tA. For Efficient-P, it is pA (or 0 if tA = 0). In general, these values are smaller than the

one provided by Live-P , as the experimental results reported in Section 5.5 below confirm.

Theorem 5.3.6 (Liveness). Given a system S and an acyclic annotation, if Live-P is

used as the allocation manager then in every run all waiting processes eventually become

enabled.

Proof. By contradiction, consider a run π with some starving process and let P starve in

some method n : A that is minimal in � (among all methods with starving processes in

π). Let i be α(n), the annotation value of n. After some prefix of π the system reaches a

state σ after which P is continuously disabled, i.e., ϕ
(i)
A does not hold. Let j be the highest

annotation value of an offending clause ϕ
(i)
A [j]. Note that in any state after σ no request

5.4. IMPLEMENTATION 73

for intermediate annotations k (with j ≤ k ≤ i) can be granted without P being enabled.

This implies that ϕ
(i)
A [j] remains the highest annotation value of an offending clause.

By Lemma 5.3.1, there must be some active process running a method with annotation

j; all these processes terminate in the run π (by the minimality assumption on n). Let Q

be the first such process to terminate. After Q releases its resources, all clauses ϕ
(i)
A [k] for

values k ≤ j are satisfied since the release of the resource decrements ActA[k]. Therefore P

becomes enabled right after Q terminates.

The intuition behind the proof is that if P is disabled and j is the highest offending

annotation, no request for an intermediate annotation value can be granted without P

becoming enabled. This property is not satisfied by any of the previous protocols, as shown

in Example 5.2.1.

Example 5.3.7. Let us revisit the system of Example 5.2.1, now using Live-P as the

allocation manager. As soon as the first subprocess executing method n2 terminates, P

becomes enabled because granting the resource to P would lead to act A[0] = 1 and actA[1] =

1, which is a ϕ-state.

n1 A
0••

n2 B
0

m1 B
1

m2 A
0

=⇒

n1 A
0••

n2 B
0

m1 B
1

m2 A
0

=⇒

n1 A
0

n2 B
0••

m1 B
1×

m2 A
0

=⇒
⇐=

n1 A
0•

n2 B
0 •

m1 B
1•

m2 A
0

Consequently, either P ’s request is denied infinitely often, which cannot happen if the

scheduler is fair, or P eventually receives its demanded resource.

5.4 Implementation

Live-P can be implemented in different ways to accommodate different requirements on

processing time and space available. While Basic-P and Efficient-P only require simple

checks and updates on one (resp. two) variables, Live-P must, in principle, maintain

the tables actA[·] and ActA[·], which requires space proportional to the largest annotation

value in the annotated call graph. We describe now some strategies for implementing the

three components of Live-P: the allocation manager, the scheduler, and the controller that

combines them. To justify the, rather complex, efficient implementation strategies for the

allocation manager, we first present a simple implementation that only checks and updates

74 CHAPTER 5. LIVENESS

n ::

`0 :

[
when 0 < tA ∧ ActA[i] < (TA − i) do

tA-- ; actA[i]++

]

`1 : n.run()

`2 : tA++ ; actA[i]--

`3 :

Figure 5.3: The protocol Bad-P

the clause corresponding to the annotation of the requesting process, and show that this

implementation is not correct.

5.4.1 Allocation Manager

A Tempting (but Incorrect) Implementation A tempting implementation of Live-P

consists of only checking the clause that corresponds to the annotation value of the method

requested, resulting in the protocol Bad-P, shown in Figure 5.3. Unfortunately, the protocol

Bad-P is not a correct implementation of Live-P, and it compromises deadlock freedom.

Example 5.4.1. Consider a scenario with TA = 3 and the following call graph:

n A
2

n2 A
1

n3 A
0

m A
1

m2 A
0

o A
0

Let s : ommon be an allocation sequence for site A. Table 5.1 shows the values of actA[·] and

ActA[·] after each allocation or deallocation. All requests satisfy the conditions of the entry

Sequence actA[0] actA[1] actA[2] ActA[0] ActA[1] ActA[2]

ε 0 0 0 0 0 0

o 1 0 0 1 0 0

om 1 1 0 2 1 0

omm 1 2 0 3 2 0

ommo 0 2 0 2 2 0

ommon 0 2 1 3 3 1

Table 5.1: A bad sequence for Bad-P

5.4. IMPLEMENTATION 75

section of protocol Bad-P, so they are immediately granted. The last row in Table 5.1,

though, corresponds to a state that does not satisfy the invariant clause ϕA[1]:

ActA[1] = 3 6≤ TA − 1 = 3− 1 = 2 .

This illegal state is reached after a request for a method with annotation 2 (n in the call

graph) is allowed. Granting this request causes a violation of ϕA[1], but the violation is not

detected by Bad-P because it is not produced in the clause checked: ϕA[2]. Moreover, all

previous requests for annotation value 1 were granted rightfully. The illegal state reached

is:
n A

2•
n2 A

1
n3 A

0

m A
1••

m2 A
0

o A
0

At this state all resources are used, tA = 0, and all processes are involved in a deadlock.

This example seems to indicate that a linear number O(TA) of tests and operations are

needed to perform correctly each request and release of Live-P. However, a more efficient

implementation is possible.

An Efficient and Correct Implementation The key idea of this efficient implemen-

tation is the use of a new data-structure, called an active tree, that stores the number of

active processes for each annotation j (denoted as actA[j] above) with efficient operations

of:

1. inserting a process,

2. removing a process, and

3. obtaining the highest annotation of a request that can be safely granted without

violating ϕ. By Corollary 5.3.5 this value is unique.

We describe here how to implement this data-structure using a binary search tree with the

annotation as the key, and where each node also stores the number of active processes with

that annotation, in a field named count. This data-structure can be maintained:

• in O(TA) space and O(log TA) time per insertion and removal using a complete binary

tree, or

76 CHAPTER 5. LIVENESS

• in O(L) space and O(log L) time per insertion and removal using a balanced tree (for

example a Red-Black tree), where L is the number of different annotations among

those methods with some active processes. This parameter is called the diversity

load .

When a request to run a method with annotation i is granted, if a node with key i exists

in the tree, its count field is incremented; otherwise a new node with key i and count 1 is

added to the tree.

In order to obtain an efficient calculation of the maximal legal annotation, the search

tree is augmented with extra information in each node, based on the following observation.

If the active processes were linearly ordered according to the annotation of the method they

are executing, a violation of ϕA would be witnessed by a process with annotation i being

located further than TA − i positions from the end of the list. Similarly, the value of the

minimal illegal annotation corresponds to the process with smallest i that is precisely TA− i
positions to the end of the list. We maintain enough information in each method to retrieve

the smallest such offending annotation in time proportional in the height of the tree. In the

following description we use tree(x) to denote the (sub)tree rooted at node x, and left(x)

and right(x) for the left and right subtrees resp. If foo is a field, the instance of foo at node

x is represented by x.foo. Each node in the tree stores the following fields:

1. key : the annotation of the processes that the node describes.

2. count: the number of active processes with that annotation.

3. size: the total number of processes in tree(x), including all the x.count.

4. larger: the maximum number of processes with annotation larger than the largest key

in tree(x), that could be added (or that exist in the super-tree containing tree(x))

without causing a ϕ violation with respect to any of the nodes in tree(x).

5. larger me: the maximum number of processes with annotation larger than the largest

key in tree(x), that could be added (or that exist in the super-tree containing tree(x))

without causing a ϕ violation with respect to the node x itself.

6. larger left: the maximum number of processes with annotation larger than the largest

key in tree(x), that could be added (or that exist in the super-tree containing tree(x))

without causing a ϕ violation in left(x). Note that x.count and all the processes

5.4. IMPLEMENTATION 77

described in right(x) are already present and higher than any annotation stored in

left(x).

7. larger right: the maximum number of processes with annotation larger than or equal

to the largest key in tree(x), that could be added (or that exist in the super-tree

containing tree(x)) without causing a ϕ violation with respect to right(x).

It is well-known (see for example [CLRS01], Theorem 15.1) that an augmented Red-

Black tree can be maintained, with the regular operations of insertion and removal still in

O(log n), if all fields can be computed from simpler fields of the node and all the fields of

the children nodes. This augmentation result obviously holds for complete binary trees as

well. Our augmentations satisfy this property, since:

1. key and count are primitive fields, not depending on other fields in any node in the

tree.

2. size can be computed from the primitive count field and the size fields of the children:

x.size = left(x).size + right(x).size + x.count.

3. larger is just the minimum of three other augmentation fields:

x.larger = min(x.larger me, x.larger left, x.larger right).

4. larger me can be computed using

x.larger me = TA − x.key− (x.count + right(x).size).

This holds because if there are x.larger me + right(x).size active processes with anno-

tation higher than x.key, then the total number of processes with annotation x.key

or higher is

ActA[x.key] = x.count + x.larger me + right(x).size,

and then ActA[x.key] would be TA − x.key. This is the largest value that satisfies ϕ.

5. larger right is directly the largest value of the right subtree:

x.larger right = right(x).larger.

78 CHAPTER 5. LIVENESS

1: MaxLegal(x, extra) :
2: if (x.larger left− extra = 0) then
3: return MaxLegal(left(x), extra + right(x).size + x.count)
4: else if (x.larger me− extra = 0) then
5: return x.key− 1
6: else if (x.larger right− extra = 0) then
7: return MaxLegal(right(x), extra)
8: else
9: return TA − 1

10: end if

Figure 5.4: MaxLegal: computes the maximal legal annotation

6. Finally, larger left can be computed from the left subtree by considering the processes

already present in the root and right subtrees:

x.larger left = left(x).larger − (right(x).size + x.count).

In all the definitions above, if the left (resp. right) subtree is missing, then left(x).size is 0,

and left(x).larger = ∞. A tree stores a legal configuration of active processes if the value

of root.larger is non-negative.

Finally, Figure 5.4 shows the algorithm that calculates the maximum value of a legal

insertion. The initial call is MaxLegal(root, 0). The algorithm traverses the tree seeking

for the leftmost occurrence of a method x satisfying the following condition:

(x.larger me− extra) = 0 (5.1)

Since the parameter extra passes the number of active processes with annotation actually

larger than x.key in the whole tree, condition (5.1) captures precisely whether a new inser-

tion of a value larger than or equal to x.key would cause a ϕA[x.key] violation. This search

can be performed in a number of steps proportional to the height of the tree, which gives

a complexity of O(log L) where L is the size of the tree (the diversity load) with the use of

balanced trees, and O(log TA) with the complete tree.

Example 5.4.2. Consider a site A with TA = 10 resources, and the following tree, which

5.4. IMPLEMENTATION 79

is a possible active tree representing the set of active processes {1, 2, 3, 4, 4, 4, 5, 6, 9}:

444

2 6

1 3 5 9

The values of (larger left, larger me, larger right) for each of the nodes are:

444(0,0,0)

2(6,6,6) 6(2,2,0)

1(−,8,−) 3(−,6,−) 5(−,4,−) 9(−,0,−)

MaxLegal(root, 0) returns 0, after performing the sequence of calls:

MaxLegal(444(0,0,0), 0) 7→MaxLegal(2(6,6,6), 6)

7→MaxLegal(1(−,8,−), 8)

7→ 1− 1 = 0

The maximum annotation of a method with an enabled entry section is 0 since it can be

legally inserted, and any insertion of 1 or higher would cause a violation in the node 1(−,8,−).

Suppose that the process with annotation 3 releases its resource, and that the resulting tree

is:

444(1,0,0)

2(7,7,−) 6(2,2,0)

1(−,8,−) 5(−,4,−) 9(−,0,−)

In this case the maximal legal annotation is 3 since:

MaxLegal(444(1,0,0), 0) 7→ 4− 1 = 3

80 CHAPTER 5. LIVENESS

data-structure time space

Array O(TA) O(TA)

CompleteBinaryTree O(log TA) O(TA)

Red-Black Tree O(log L) O(L)

Table 5.2: Asymptotic running times of implementations of Live-P

Finally, if one of the processes with annotation 4 releases its resource, the resulting tree is:

44(2,1,0)

2(7,7,−) 6(2,2,0)

1(−,8,−) 5(−,4,−) 9(−,0,−)

The maximal annotation is 8 as indicated by:

MaxLegal(44(2,1,0), 0) 7→MaxLegal(6(2,2,0), 0)

7→MaxLegal(9(−,0,−), 0)

7→ 9− 1 = 8

The asymptotic running times of the three methods presented to implement Live-P is

summarized in Table 5.2. Section 5.5 reports experimental results comparing the running

times of these implementations.

5.4.2 Implementation of a Fair Scheduler

We sketch how to implement a local fair scheduler based on an oldest process first policy.

An earliest deadline first (EDF) policy, which is also strongly fair, could be accomplished

similarly. The implementation is based on a data structure, called a waiting tree, that can

perform three operations:

1. insert a process,

2. remove a process,

3. obtain the oldest process with a certain annotation or smaller.

5.5. EXPERIMENTAL RESULTS 81

Similarly to the discussion of the previous section, an efficient waiting tree can be imple-

mented using a binary search tree, with the annotation as the key but this time including

a priority queue to store the waiting processes running methods with the same annotation.

In a waiting tree each node is also augmented with the oldest process present in the left

and right subtrees. These augmentations only depend on the values of the corresponding

children nodes, so its maintenance is efficient. Using a Red-Black tree, this data-type can

be maintained in O(log w + log m), where w is the number of different annotations with

some waiting process, and m is the maximum size of any priority queue (maximum number

of waiting processes for the worst annotation). Using a complete tree a running time of

O(log TA + log m) is obtained.

5.4.3 Implementation of the Controller

Finally, the controller can be built by combining the active tree that implements the dead-

lock avoidance algorithm with the waiting tree that implements the scheduler, as follows:

• allocation request: check whether the annotation of the requesting process is at

most MaxLegal(root, 0).

– If the check succeeds, grant the resource and insert the process in the active tree.

– If the check fails, insert the process in the waiting tree.

• resource release: remove the process from the active tree, and recalculate k =

MaxLegal(root, 0). Obtain the oldest process P with annotation k or smaller from

the waiting tree (if any); extract it, and perform an allocation request. This allocation

is guaranteed to be successful.

5.5 Experimental Results

The experimental results reported in this section were obtained using a direct implemen-

tation of the data structures in C++, executed on a 1GHz Pentium III Xeon with 1GB of

RAM. The experiments consist of a sequence of allocations in a single site, for annotation

values generated uniformly at random.

82 CHAPTER 5. LIVENESS

BasicP
LiveP

Average minimum illegal annotation, for TA = 10 and varying load

Load

M
in

im
u
m

il
le

g
a
l
a
n
n
o
ta

ti
o
n

1086420

10

8

6

4

2

0

PSfrag replacements

A

B

C

CONTROLLER

Scheduler

Request(i)

Release(i)
Allocation
Manager

Scheduler

{. . . p . . .}

p

Wait

Active

Figure 5.5: Average Minimal Illegal annotation of Basic-P and Live-P

Experiment #1: Level of Concurrency of Live-P vs Basic-P

All the deadlock avoidance protocols presented so far have the property that if a request

for an annotation value is enabled then every request for a smaller annotation value is

also enabled. Similarly, if a request is denied, all requests for higher values must also be

denied. This fact gives rise to the notions of maximal legal annotation and minimal illegal

annotation. In the case of Live-P, these values are given by Corollary 5.3.5. For Basic-P

the minimal illegal annotation is directly given by the enabling condition α(n) < tA. This

enabling condition can, in turn, be related to load (the number of active processes) and

total number of resources by Load = TA − tA.

In this experiment we measure the minimal illegal annotation as a function of the load.

For a given load, we create a configuration by selecting active processes with annotations

chosen uniformly at random, ensuring that the state is legal, i.e., it is an ϕ-state. Then

then we compute the minimal illegal annotation for each protocol. Figure 5.5 shows the

(average) minimal illegal annotation allowed by Basic-P and Live-P as a function of the

load. The curve indicates that Live-P allows more concurrency than Basic-P, by granting

more requests. The two curves coincide when all the resources are available (minimum load)

and when no resource is available (maximum load). In the former case the minimal illegal

annotation is TA, so all requests are allowed. In the latter, the minimal illegal annotation is

5.5. EXPERIMENTAL RESULTS 83

RedBlack
Complete

Array

Time for 106 allocation and deallocations, for uniform α and L = 0

Total number of resources TA

T
im

e(
m

s)

1009080706050403020100

900

800

700

600

500

400

300

200

100

PSfrag replacements

A

B

C

CONTROLLER

Scheduler

Request(i)

Release(i)
Allocation
Manager

Scheduler

{. . . p . . .}

p

Wait

Active

Figure 5.6: Comparing implementations of Live-P, for L = 0

0, so no request is permitted. With an intermediate load, Basic-P allows only the values

according to the linear law dictated by the enabling condition, while Live-P statistically

allows more concurrency.

Experiment #2: Comparing Implementations of Live-P

In this group of experiments we compare the running times of the three different imple-

mentations of Live-P presented in Section 5.4. The “Array” implementation stores all the

values of actA[·] and actA[·] in a table, and traverses the table for each operation. The

“Complete” implementation uses an augmented complete binary search tree to implement

the active tree. The “RedBlack” algorithm implements the active tree using an augmented

Red-Black tree.

The experiments consist of repeatedly performing one million allocation operations (each

followed by a corresponding deallocation) under different circumstances, and measuring the

time needed to execute this sequence of operations. The annotation of the request is a legal

annotation picked uniformly at random. We consider three different scenarios:

1. No load (L = 0): Figure 5.6 reports the execution times for the sequence of allocations

in a state with no load, for different values of TA (the total number of resources

handled). Since “RedBlack” does not depend on the size of the resource pool, the

84 CHAPTER 5. LIVENESS

RedBlack
Complete

Array

Time for 106 allocation and deallocations, for uniform α and L = TA

4

Total number of resources TA

T
im

e(
m

s)

1009080706050403020100

900

800

700

600

500

400

300

200

100

PSfrag replacements

A

B

C

CONTROLLER

Scheduler

Request(i)

Release(i)
Allocation
Manager

Scheduler

{. . . p . . .}

p

Wait

Active

Figure 5.7: Comparing implementations of Live-P, for L = TA

4

running time is constant. For “Complete”, the time reported grows logarithmically,

since the height of the complete binary tree grows logarithmically with the size of the

resource pool. Finally, “Array” reports a linear growth.

2. Some load (L = TA

4): in this experiment the allocations are performed in a state with

a load of 25%, for different values of TA. Figure 5.7 shows that, in this case, the imple-

mentations that use active trees report a logarithmic growth, while “Array” reports

a linear growth. The growth of “ReadBlack” is logarithmic because the number of

operations in this implementation depends (logarithmically) on the load.

3. in this experiment we fix the size of the resource pool (TA = 63) and perform the

allocations under different diversity loads. Figure 5.8 shows the dependency of the

Red-Black implementation with the diversity load. While the “Array” and “Com-

plete” implementations do only depend on the total size of the resource pool, and not

on the number or kind of active processes, the time required for an operation in the

“RedBlack” implementation grows logarithmically with the diversity load.

5.6. SUMMARY 85

RedBlack
Complete

Array

Time for 106 allocation and deallocations, for TA = 63

Diversity load L

T
im

e(
m

s)

706050403020100

900

800

700

600

500

400

300

200

PSfrag replacements

A

B

C

CONTROLLER

Scheduler

Request(i)

Release(i)
Allocation
Manager

Scheduler

{. . . p . . .}

p

Wait

Active

Figure 5.8: Comparing implementations of Live-P, for TA = 63

5.6 Summary

This chapter has shown that not only deadlock avoidance, but also individual liveness, is

enforceable in a completely distributed fashion, without communication. The protocols in-

vestigated in previous chapters allow runs in which some processes starve. In this chapter

we have introduced the protocol Live-P and pro ved that it prevents starvation, provided

that the local scheduler arbitrates ties between competing processes fairly: no enabled pro-

cess loses forever. Liveness is accomplished by granting precisely those allocations that

preserve the invariant ϕ that guarantees deadlock avoidance, thereby allowing more con-

currency than all previous protocols. The price to pay with Live-P is that the operations

of allocation and deallocation are no longer implementable in constant time. This chapter

also presents an implementation that requires a logarithmic number of operations, in terms

of the size of the initial resource pool.

Chapter 6

Proving New Protocols

This chapter presents a uniform framework that relates all the protocols introduced in the

previous chapters. All protocols are seen as safe approximations of the invariant ϕ, il-

lustrating a trade-off between the complexity of the implementation and precision of the

approximation. We show that, somewhat surprisingly, even though the more precise proto-

cols allow more allocation sequences, the reachable set of states of all the protocols is the

same. This enables an important design principle: to prove that a new protocol provides

deadlock avoidance, it is sufficient to show that none of its allocation decisions are ever more

conservative than Basic-P or more liberal than Live-P . The first restriction guarantees

that enough progress is made. The second, that deadlock freedom is not compromised by

allowing too much concurrency.

6.1 A Family of Local Protocols

In this section we restate the protocols presented in previous chapters in a uniform frame-

work. This framework will allow comparing the protocols based on their enabling conditions,

and prove that all the protocols have the same reachable state spaces. The main idea in the

development of the framework is to redefine the enabling condition of as an strengthening

of the invariant ϕ, which is the essence of deadlock avoidance for all these protocols. Let

us recall that ϕA[k], the clause of ϕ for site A and annotation value k, is ActA[k] ≤ TA− k.
Even though Basic-P makes ϕ invariant, the enabling condition of the protocol Basic-P

was not stated directly in terms of ϕ. The enabling condition of Basic-P, for a method

n:A with annotation i = α(n) is:

86

6.1. A FAMILY OF LOCAL PROTOCOLS 87

i < tA (EnBasic-P
n)

Now, ActA[0] = TA − tA accounts for the total number of resources being used in A.

Reordering terms, tA = TA − ActA[0]. This expressions allows to re-write the enabling

condition of Basic-P as:

i < TA −ActA[0]

or, equivalently,

ActA[0] < TA − i . (EnBasic-P
n)

Note that since every successful allocation will increment Act A[0], the value of Act
(i)
A [0] is

always ActA[0]+1, independently of i. This way, the enabling condition of Basic-P is also

equivalent to:

Act
(i)
A [0] ≤ TA − i (EnBasic-P

n)

or, equivalently,

ActA[0] + 1 ≤ TA − i . (EnBasic-P
n)

This expression is almost identical to ϕ
(i)
A [k], except that the left hand side considers all

the resources allocated (ActA[0]) instead of just the resources with annotation value k or

higher (ActA[k]). As we will see, this expression is stronger than ϕ
(i)
A . In other words, the

enabling condition of Basic-P implies that of Live-P .

Given k ≤ i we now define the k-th strengthening formula for a request to run a method

with annotation value i as:

χ
(i)
A [k]

def
= Act

(i)
A [k] ≤ TA − i

≡ ActA[k] + 1 ≤ TA − i

It is easy to see that the following holds for all k ≤ j ≤ i,

χ
(i)
A [k]→ ϕ

(i)
A [j]

and therefore

χ
(i)
A [k]→

∧

k≤j≤i

ϕ
(i)
A [j].

88 CHAPTER 6. PROVING NEW PROTOCOLS

n ::

`0 :

[

when χ
(i)
A [0] do

actA[i]++

]

`1 : n.run()

`2 : actA[i]--

`3 :

Figure 6.1: The protocol Basic-P, restated using strengthenings

Also, if ϕA holds before a request for annotation value i, then ϕ
(i)
A [j] also holds for all

i ≥ j, since the formulas for ϕ
(i)
A [j] and ϕA[j] are identical in this case. Hence:

χ
(i)
A [k]→

∧

k≤j

ϕ
(i)
A [j]. (6.1)

Finally, if ϕ
(i)
A [j] is satisfied for all values less than k, and χ

(i)
A [k] also holds, then ϕA[i] can

be concluded:
(
∧

j<k

ϕ
(i)
A [j]) ∧ χ(i)

A [k] → (
∧

j<k

ϕ
(i)
A [j]) ∧ (

∧

j≥k

ϕ
(i)
A [j])

↔
∧

ϕ
(i)
A [j]

↔ ϕ
(i)
A .

Therefore, if a protocol enforces that for some k, both
∧

j<k ϕ
(i)
A [j] and the k-strengthening

χ
(i)
A [k] hold, then the protocol preserves ϕA as an invariant.

In general, the lower the value of the strengthening point k, the less computation is

n ::

`0 :

[

when ϕ
(i)
A [0] ∧ χ(i)

A [1] do

actA[i]++

]

`1 : n.run()

`2 : actA[i]--

`3 :

Figure 6.2: The protocol Efficient-P, restated using strengthenings

6.1. A FAMILY OF LOCAL PROTOCOLS 89

n ::

`0 :

when
(∧

j<k

ϕ
(i)
A [j]

)
∧ χ(i)

A [k] do

actA[i]++

`1 : n.run()

`2 : actA[i]--

`+ 3:

Figure 6.3: The protocol k-Efficient-P

needed to check the enabling condition (the number of comparisons is reduced) but the less

precise the enabling condition becomes. In the case of k = 0 the strengthening is χ
(i)
A [0], and

the protocol obtained (see Figure 6.1) is equivalent to Basic-P . Note that this protocol

is logically equivalent to Basic-P: the result of the enabling condition, and the effect of

the input and output actions on future tests are the same. The implementation of Basic-

P introduced in Chapter 3 uses a single counter tA, while in this restated version, several

counters are used: actA[i] and ActA[0]. However, the effect on ActA[0] of the increments and

decrements of actA[i] are independent of i. Therefore, these actions can be implemented

instead as ActA[0]++ and ActA[0]--. Similarly, with a strengthening point of k = 2 we

obtain a protocol equivalent to Efficient-P , shown in Figure 6.2.

The general form of the family of protocols can now be given as k-Efficient-P , shown

in Figure 6.3. It covers the full spectrum of protocols: Basic-P—which is equivalent to

0-Efficient-P—lies at one end, and Live-P—which is equal to (TA − 1)-Efficient-P—

lies at the other end of the spectrum. The protocols k-Efficient-P can be implemented

in several ways. The simplest implementation needs space O(k log TA) to store k counters

and requires O(k) operations per allocation decision. A more sophisticated implementation

using an active tree data-structure—introduced in Section 5.4—still needs O(k log TA)

space, but requires only O(log k) operations per allocation decision.

Experiment #3: Level of Concurrency of k-Efficient-P for varying k

In this experiment we compare the minimum illegal annotation for different instances of

k-Efficient-P, as a function of the load. The load was generated by picking active pro-

cesses with annotations uniformly at random, ensuring that state generated is a ϕ-state.

Figure 6.4 shows how for any given load k-Efficient-P allows more requests as k grows.

This experiment generalizes the experimental results of Section 5.5 where only Basic-P

90 CHAPTER 6. PROVING NEW PROTOCOLS

BasicP
EfficientP

5-EfficientP
10-EfficientP
15-EfficientP

LiveP

Average minimum illegal annotation, for T = 20 and varying load

Load

M
in

im
u
m

il
le

g
a
l
a
n
n
o
ta

ti
o
n

20151050

20

15

10

5

0

PSfrag replacements

A

B

C

CONTROLLER

Scheduler

Request(i)

Release(i)
Allocation
Manager

Scheduler

{. . . p . . .}

p

Wait

Active

Figure 6.4: Average minimum illegal annotation of k-Efficient-P for T = 20

and Live-P (the extreme cases) were compared.

6.2 Allocation Sequences

This section continues the study of allocation sequences, introduced in Section 2.5, to com-

pare the runs that each protocol allows. Recall that a sequence s of allocations and deallo-

cation is accepted by a protocol P if P (s) 6= ⊥. We use L(P) to denote the set of sequences

accepted by a protocol, and use P v Q for the partial order defined by language inclusion

L(P) ⊆ L(Q).

Example 6.2.1. Reconsider the system of Examples 2.4.4 and 3.5.5. Let Basic-P be used

as the resource allocation protocol, with TA = TB = 2 and the following annotated call

graph:
n1 A

0
n2 B

0

m1 B
1

m2 A
0

The allocation sequence that leads to a deadlock if no resource allocation protocol is used

is s : n1n1m1m1. Even though n1n1m1 is in L(Basic-P), the enabling condition of m1

becomes disabled, so Basic-P(s) = ⊥ and s /∈ L(Basic-P).

We order the protocols according to the allocation sequences they allow. First, we prove

6.2. ALLOCATION SEQUENCES 91

an auxiliary lemma, that relates enabling conditions and protocol languages.

Lemma 6.2.2. The following are equivalent:

(i) L(P) ⊆ L(Q).

(ii) For all strings s and methods n, if EnP
n (P (s)) then EnQ

n (Q(s)).

Proof. We prove each implication separately:

• Assume L(P) ⊆ L(Q), and let s and n be such that EnP
n (P (s)). Since s ∈ L(P) then

s ∈ L(Q). Moreover, s · n ∈ L(P) and then s · n ∈ L(Q). Hence, EnQ
n (Q(s)).

• Assume now (ii). We reason by induction on strings:

– First, both ε ∈ L(P) and ε ∈ L(Q).

– Let s · n ∈ L(P). Then EnP
n (P (s)), so also EnQ

n (Q(s)). Hence, s · n ∈ L(Q).

– Let s·n ∈ L(P). This implies s ∈ L(P) and by the inductive hypothesis s ∈ L(Q).

Then s · n ∈ L(Q), as desired.

Therefore (i) and (ii) are equivalent.

Let P,Q be any two of Basic-P , Efficient-P , k-Efficient-P and Live-P . We showed

in Section 6.1 that the entry and exit actions are logically identical for all these protocols,

and that the enabling conditions can be restated in terms of the ActA[·] and actA[·]. Hence,

these protocols operate on the same state space of protocol variables. Consequently, if s is

in the language of both P and Q then the states reached are the same, i.e., P (s) = Q(s).

It follows, by Lemma 6.2.2, that if for all global states σ, EnP
n (σ) implies EnQ

n (σ), then

L(P) ⊆ L(Q). This allows the reasoning in terms of enabling conditions of the protocols at

an arbitrary state.

Lemma 6.2.3. If j-Efficient-P allows an allocation then k-Efficient-P also allows the

allocation, provided j ≤ k.

Proof. Let j ≤ k. It follows from the definition that χ
(i)
A [j] implies χ

(i)
A [k]. Moreover, by

(6.1), χ
(i)
A [j] implies

∧

j≤l≤k ϕ
(i)
A [l]. Consequently,

∧

l<j

ϕ
(i)
A [l] ∧ χ(i)

A [j]

︸ ︷︷ ︸

En
j-Efficient-P
n

→
∧

l<k

ϕ
(i)
A [l] ∧ χ(i)

A [k]

︸ ︷︷ ︸

Enk-Efficient-P
n

Therefore if j-Efficient-P allows a request so does k-Efficient-P.

92 CHAPTER 6. PROVING NEW PROTOCOLS

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

L(Live-P)

L(k-Efficient-P)

L(Efficient-P)

L(Basic-P)

Figure 6.5: Sequences allowed by the deadlocks avoidance protocols

Lemma 6.2.3 states that the enabling condition of k-Efficient-P becomes weaker as

k grows, that is, the enabling condition of Basic-P is stronger than that of Efficient-

P, which in turn is stronger than k-Efficient-P, which is stronger than Live-P. An

immediate consequence of Lemma 6.2.3 is:

Basic-P v Efficient-P v . . . v k-Efficient-P v . . . v Live-P

The following example shows that these language containments are strict:

Basic-P 6w Efficient-P 6w . . . 6w k-Efficient-P 6w . . . 6w Live-P

which is depicted in Figure 6.5.

Example 6.2.4. Consider the following call graph, with initial resources TA = 2.

n2 A
1

n1 A
0

m1 A
0

The stringm1n2 is accepted by Efficient-P but not by Basic-P. This system can be gener-

alized to show that there is a string accepted by k-Efficient-P but not by j-Efficient-P

(for j < k). Consider the following annotated call graph, with initial resources TA = j + 1.

nj A
j

nj−1 A
j−1

nj−2 A
j−2

· · · n0 A
0

mj−1 A
j−1

mj−2 A
j

· · · m0 A
0

6.3. REACHABLE STATE SPACES 93

The string mj−1nj is accepted by k-Efficient-P, but is not accepted by j-Efficient-P.

6.3 Reachable State Spaces

The reachable state space of a protocol P , denoted by S(P), is the set of global states that

P can reach following some admissible allocation sequence. Clearly, for two protocols P

and Q, if their actions are equivalent and P v Q then every state reachable by P is also

reachable by Q. Indeed any allocation string that reaches a state for P also reaches that

same state for Q.

Lemma 6.3.1. For every two protocols P and Q with the same entry and exit actions, if

P v Q then S(P) ⊆ S(Q).

Consequently,

S(Basic-P) ⊆ S(Efficient-P) ⊆ . . . ⊆ S(k-Efficient-P) ⊆ . . . ⊆ S(Live-P)

Let S(ϕ) describe the set of ϕ-states that are reachable by some admissible allocation

string. These are ϕ-states that correspond to some run, if allowed by the allocation proto-

col. In the rest of this section we show that the above containment relation collapses into

equalities by proving

S(Basic-P) = S(Live-P) = S(ϕ)

The proof relies on the existence of a preference order on the nodes of the annotated call

graph, such that, if allocations are made following this order, then every allocation request

that succeeds in Live-P also succeeds in Basic-P.

6.3.1 Preference Orders

A preference order of an annotated call graph is an order on the methods such that, if

all allocations in a given admissible string are performed following that order—instead of

the order in the string—then (1) the sequence obtained is also admissible, and (2) higher

annotations for each site are visited first. This will allow us to show that Basic-P can

reach all S(ϕ).

Given a call graph, a total order > on its methods is called topological if it respects the

descendant relation, that is, if for every pair of methods n and m, if n → m then n > m.

94 CHAPTER 6. PROVING NEW PROTOCOLS

Analogously, we say that an order > respects an annotation α if for every pair of methods

n and m residing in the same site, if α(n) > α(m) then n > m. A total order that is

topological and respects annotations is called a preference order.

Lemma 6.3.2. Every acyclically annotated call graph has a preference order.

Proof. The proof proceeds by induction on the number of call graph methods. The result

trivially holds for the empty call graph. For the inductive step, assume the result holds

for all call graphs with at most k methods and consider an arbitrary call graph with k + 1

methods.

First, there must be a root method whose annotation is the highest among all the

methods residing in the same site. Otherwise a dependency cycle can be formed: take the

maximal methods for all sites, which are internal by assumption, and their root ancestors.

For every maximal (internal) method there is a →+ path reaching it, starting from its

corresponding root. Similarly, for every root there is an incoming 99K edge from the maximal

internal method that resides in its site. A cycle exists since the (bipartite) sub-graph of

roots and maximal methods is finite, and every method has a successor (a →+ for root

methods, and a 99K for maximal methods). This contradicts that the annotation is acyclic.

Now, let n be a maximal root method, and let > be a preference order for the graph that

results by removing n, which exists by the inductive hypothesis. We extend > by adding

n > m for every other method m. The order is topological since n is a root. The order

respects annotations since n is maximal in its site.

The following corollary follows immediately.

Corollary 6.3.3. Every acyclically annotated call graph has a preference order > that

satisfies that if n � m then n > m.

6.3.2 Reachable States

A global state of a distributed system is admissible if all existing processes (active or waiting)

in a method n have a matching caller process in every ancestor method of n. That is, if the

state corresponds to the outcome of some admissible allocation sequence.

Theorem 6.3.4. The set of reachable states of a system using Live-P as the allocation

manager is precisely the set S(ϕ).

6.3. REACHABLE STATE SPACES 95

Proof. It follows directly from the specification of Live-P that all its reachable states satisfy

ϕ. Therefore, we only need to show that all admissible ϕ-states are reachable.

We proceed by induction on the number of active processes in the system. The base case,

with no active process, is the initial state of the system Θ, which is trivially reachable by

Live-P. For the inductive step, consider an arbitrary admissible ϕ-state σ with some active

process. Since the call graph is acyclic and finite, there must be some active process P in σ

with no active descendants. The state σ ′ obtained by removing P from σ is an admissible

ϕ-state (all the conditions of admissibility and the clauses of ϕ are either simplified or

identical); by the inductive hypothesis, σ ′ is reachable by Live-P. Since σ is obtained from

σ′ by an allocation that preserves ϕ, then σ is reachable by Live-P.

Theorem 6.3.4 states that for every sequence s that leads to a ϕ-state there is a sequence

s′ arriving at the same state for which all prefixes also reach ϕ-states. The sequence s ′ is

in the language of Live-P. Perhaps somewhat surprisingly, the set of reachable states of

Basic-P is also S(ϕ), the set of all admissible ϕ-states. To prove this we first need an

auxiliary lemma.

Lemma 6.3.5. In every ϕ-state, an allocation request in site A with annotation k has the

same outcome using Basic-P and Live-P, if there is no active process in A running a

method with annotation value strictly smaller than k.

Proof. First, in every ϕ-state, if Basic-P grants a resource so does Live-P, by Lemma 6.2.3.

We need to show that in every ϕ-state, if Live-P grants a request for annotation value k

and actA[j] = 0 for all j < k, then Basic-P also grants the request. In this case,

TA − tA = ActA[0] =

TA−1∑

j=0

actA[j] =

TA−1∑

j=k

actA[j] = ActA[k]. (6.2)

Since Live-P grants the request, then ActA[k] + 1 ≤ TA − k and ActA[k] < TA − k.

Using (6.2), TA − tA < TA − k, and consequently k < tA, so Basic-P also grants the

resource.

Theorem 6.3.6. The set of reachable states of a system using Basic-P as allocation man-

ager is precisely the set S(ϕ).

Proof. The proof is analogous to the characterization of the reachable states of Live-P,

96 CHAPTER 6. PROVING NEW PROTOCOLS

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

S(ϕ) =
= S(Live-P)
= S(Efficient-P)
= S(k-Efficient-P)
= S(Basic-P)

Figure 6.6: Reachable state spaces of the deadlock avoidance protocols

except that the process P removed in the inductive step is chosen to be a minimal ac-

tive process in some preference order >. This guarantees that P has no subprocesses (by

the topological property of >), and that there is no active process in the same site with

lower annotation (by the annotation respecting property of >). Consequently, Lemma 6.3.5

applies, and the resulting state is also reachable by Basic-P.

Theorem 6.3.6 can also be restated in terms of allocation sequences. For every admis-

sible allocation string that arrives at a ϕ-state there is an admissible allocation string that

arrives at the same state and (1) contains no deallocations, and (2) all the allocations occur

following some preference order. It follows from Theorem 6.3.6 that S(Basic-P) = S(ϕ),

and hence, as depicted in Figure 6.6:

S(Basic-P) = S(Efficient-P) = . . . = S(k-Efficient-P) = . . . = S(Live-P).

6.4 Summary

In this chapter we have generalized all the distributed deadlock avoidance algorithms pre-

sented earlier by restating them in terms of strengthenings of the invariant ϕ. The most

liberal protocol, Live-P , also ensures liveness at the cost of maintaining more complicated

data-structures, which requires a non-constant number of operations per allocation request.

The simplest protocol, Basic-P , can be implemented with one operation per request but

allows less concurrency.

We have shown that the reachable state spaces of these protocols are the same. This

6.4. SUMMARY 97

fact enables the following design principle, which provides the system designer with more

freedom to implement new protocols: every local protocol P guarantees deadlock avoidance

if P satisfies the following conditions:

(1) whenever Basic-P enables a request, so does P , and

(2) whenever P enables a request so does Live-P.

If both conditions are fulfilled, then all reachable states of the protocol P satisfy ϕ and

Basic-P guarantees that P allows some progress. Informally, (2) guarantees that the

system stays in a safe region, while (1) ensures that enough progress is made. This principle

immediately allows, for example, the combination of different protocols in the family at

different sites. If a site has a constraint in memory or CPU time, then the simpler Basic-P

is preferable, while Live-P is a better choice if a site needs to maximize concurrency.

This result also facilitates the analysis of alternative protocols. Proving a protocol

correct (deadlock free) can be a hard task if the protocol must deal with scheduling, external

environmental conditions, etc. With the results presented in this chapter, to show that an

allocation manager has no reachable deadlocks it is enough to map its reachable state space

to that of an abstract system in which all states satisfy ϕ, and all allocation decisions are at

least as liberal as in Basic-P. This technique is used in next chapter to design an efficient

distributed priority inheritance mechanism.

Chapter 7

Dealing with Priority Inversions

This chapter studies how to alleviate priority inversions in distributed real-time and em-

bedded systems, and proposes a solution based on a distributed version of the priority

inheritance protocol (PIP). The PIP protocol does not prevent deadlocks, but we remedy

this shortcoming by starting from an already deadlock free system, with the use of the

deadlock avoidance protocols presented in previous chapters. In our framework, priority

inversions can be detected locally, so we obtain an efficient dynamic resource allocation

system that avoids deadlocks and handles priority inversions.

Alternative approaches to priority inversions in distributed systems use variations of

the priority ceiling protocol (PCP). The PCP was designed in centralized systems as a

modification of PIP that also prevents deadlocks. However, its adaptation to distributed

system requires maintaining a global view of the acquired resources, which involves a high

communication overhead.

7.1 Distributed Priority Inheritance

In this section we describe the distributed priority inheritance protocol. We will later show

how to implement it using resource allocation managers, and illustrate how this mechanism

helps to alleviate priority inversions. In this chapter we restrict our attention to fixed-

priorities.

Priorities are used in real-time systems to gain a higher confidence that more important

tasks will be accomplished in time. Higher priority processes are chosen by schedulers over

lower priority ones. Since resources are limited and non-preemptable, it can happen that a

98

7.1. DISTRIBUTED PRIORITY INHERITANCE 99

process must wait for a lower priority process to complete and release the resource. This

situation is called a priority inversion, which can affect performance and the ability of the

system to satisfy safety requirements. We show here how to alleviate priority inversions

and bound their blocking times.

Given a system S : {R,M,G} with call graph (M,→, I) a priority specification consists

of a description of the possible priorities at which processes can run. Priorities are specified

as a fixed, finite and totally ordered set Prio. Without loss of generality, we take Prio =

{1, . . . , pm}, where lower value means higher priority. The highest priority is represented

by 1, while pm stands for the lowest priority.

Definition 7.1.1 (Priority Assignment). A priority assignment is a map from initial

methods to sets of priorities:

P : I → 2Prio .

Informally, a priority assignment of an initial method i indicates the possible priorities

at which processes starting at i can execute. A priority specification 〈R,M,G,P〉 equips a

system with a priority assignment. When a process is created, it declares both the initial

method i—as in the unprioritized environment— and its initial priority from P(i), called

the nominal priority of the process.

We now describe the distributed priority inheritance protocol:

(PI1) A process maintains a running priority, which is set initially to its nominal priority.

(PI2) Let P be a process, running at priority p, that is denied access to a resource in site

A, and let Q be an active process in A running at a priority lower than p. Q and all

its subprocesses set their priority to p or their current running priority, whichever is

higher. We say that Q is accelerated to p. Since subprocesses of Q may be running

in remote sites, an acceleration can require sending “acceleration messages”.

(PI3) When a process is accelerated it does not decrease its running priority until it com-

pletes.

Essentially, (PI2) captures the situation of a lower priority process blocking a higher

priority one. The lower priority process temporarily inherits the higher priority to complete

faster and minimize the blocking time. Rule (PI3) is concerned with remote invocations

that a processes being accelerated executed previously, indicating that the subprocesses

serving the remote invocations must also accelerate to the higher priority.

100 CHAPTER 7. DEALING WITH PRIORITY INVERSIONS

We now characterize the set of priorities at which a method can run. A method n:A can

be executed at a priority p either if p ∈ P(i) for some initial ancestor of n, or if a process

can execute n at priority lower than p and block another process running at p. This block

can be produced either if there is some method in A that can be executed at p, or if some

ancestor of n can block one such process. Formally,

Definition 7.1.2 (Potential Priority). The set of potential priorities M pr ⊆ M × Prio

is the smallest set containing:

1. (n, p) for every method n that descends from i→∗ n, with i ∈ I and p ∈ P(i).

2. (n, p) for every (m, p) ∈M pr with n ≡R m, and (n, q) ∈M pr for some q ≥ p.
3. (n, p) if some ancestor m→+ n can also run at p, that is (m, p) ∈M pr .

Example 7.1.3. Consider the prioritized system 〈{A,B},M,G,P〉 where the set of meth-

ods M is {n,m, o1, o2}, the call graph G is:

n A

m B

o1 A o2 B

and the priority assignment P(n) = {1},P(m) = {2},P(o1) = {3}. The set of potential

priorities of this system is:

n m o1 o2

{1} {1, 2} {1, 3} {1, 2, 3}

Method o1 can run at priority 1 because o1 resides in the same site as n and o1 can run

at 3. Since o2 is a descendant of o1, o2 can also run at 1, and since m resides in the

same site as o2—and o2 can run at higher priority 1—m can also run at 1. Moreover, m

can run at 2, higher than o2 running at 3, so o2 can also run at 2. This way, M pr =

{(n, 1), (m, 1), (m, 2), (o1 , 1), (o1, 3), (o2, 1), (o2, 2), (o2, 3)}.

7.2 Priority Based Annotations

We extend the state transition system with a new transition called acceleration. When

an acceleration transition is taken, a process P running at priority q accelerates to higher

7.2. PRIORITY BASED ANNOTATIONS 101

priority p (p < q). It is easy to see that, if the priority inheritance protocol is used, a

process running in n can only accelerate from q to p when both (n, p) and (n, q) are in M pr .

In this section we adapt the notion of a call graph and its annotation to handle prioritized

specifications, and illustrate how blocking delays caused by priority inversions are bounded.

Then, in Section 7.3, we formally present the extended model of computation and show

that Basic-P still prevents deadlock in the presence of accelerations.

Definition 7.2.1 (Prioritized Call Graph). Given a call graph G : (M,→, I) the prior-

itized call graph is defined as Gpr : (Mpr ,
pr→,⇒, Ipr), where

• Mpr is the set of potential priorities,

• there is a remote invocation edge (n, p)
pr→ (m, p) for every invocation in the original

graph n→ m for which both methods can run at the same priority p,

• accelerations connect different priorities of the same method (n, q) ⇒ (n, p) if p < q,

and

• each initial method starts at a nominal priority: (i, p) ∈ I pr whenever i ∈ I, and

p ∈ P(i).

A prioritized annotation α is a map from M pr to the natural numbers. It respects

priorities if for every two pairs (n, p) and (m, q) in M pr , with n ≡R m, α(n, p) > α(m, q)

whenever p > q, that is, if higher priorities receive lower annotations. As with unprioritized

call graphs, we create an annotated call graph by adding an edge relation
pr

99K connecting two

methods (n, p)
pr

99K (m, q) whenever n and m reside in the same site and α(n, p) ≥ α(m, q).

If there is a path from (n, p) to (m, q) that contains at least a
pr→ edge we say that (n, p)

depends on (m, q), and we write (n, p) � (m, q). An annotation is acyclic if there is no path

from (n, p) to (m, q) that contains at least one
pr→ edge. The following diagram represents

the prioritized call graph of Example 7.1.3, with an annotation that is acyclic and respects

priorities:
(n, 1) A

0
(m, 1) B

0
(o1, 1) A

0
(o2, 1) B

0

(m, 2) B
1

(o2, 2) B
1

(o1, 3) A
1

(o2, 3) B
2

Example 7.2.2. This example shows how priority inheritance bounds the blocking time

caused by priority inversions. Consider the specification of Example 7.1.3, annotated as

above, and using Basic-P as resource allocation manager for every method. Let the total

number of resources be TA = 3 and TB = 2, and let state σ contain two active processes

102 CHAPTER 7. DEALING WITH PRIORITY INVERSIONS

executing n at priority 1, one active process M running in m at priority 2, and one active

process O running in o1 at priority 3. In σ the available resources are tA = 0, tB = 1. Let

N be a new process spawned to run n with nominal priority 1:

(n, 1) A
•

N
••

(m, 1) B (o1, 1) A (o2, 1) B

(m, 2) B
•

M
(o2, 2) B

(o1, 3) A
•

O

(o2, 3) B

N is blocked trying to access (n, 1) because no more resources are available in A, and there

is a priority inversion since O holds an A resource, while running at lower priority 3. If no

acceleration is performed, then the remote call of O to o2 is blocked until M completes,

so N will be blocked indirectly by M , as represented by the time interval [t3, t4] in the

following diagram:

t0 t1 t2 t3 t4 t5 t6 t7

O A
∗ B

M B

N ∗ A

Even worse, if there are several processes waiting to execute (m, 2), all of them will be

scheduled in preference to O, thus blocking O and indirectly N , causing an unbounded

blocking delay. This unbounded delay is represented by the open time interval [t3, . . .):

t0 t1 t2 t3 t4 t5 t6 t7

O A
∗ · · ·

M B B B · · ·
N ∗ · · ·

With priority inheritance in place, O inherits priority 1 from N , and the resulting state

after the acceleration is:

(n, 1) A
• ••

(m, 1) B (o1, 1) A
•

(o2, 1) B

(m, 2) B
•

(o2, 2) B

(o1, 3) A (o2, 3) B

7.3. MODEL OF COMPUTATION WITH PRIORITIES 103

In this state, O will be granted a resource in o2 in spite of M and other processes waiting

at m with priority 2. O will terminate, freeing the resource demanded by N . The blocking

time of N is bounded by the running time of O at priority 1, as depicted in the following

time diagram, where the acceleration of O occurs at instant t1:

t0 t1 t2 t3 t4 t5 t6 t7

O A
�

B

M B

N ∗ A

The following results hold in spite of when and how accelerations are produced:

Lemma 7.2.3. If an annotation respects priorities, then accelerations preserve ϕ.

Proof. Let P be a process that accelerates from priority q to p. If P is waiting, the result

holds immediately since the global state does not change. If P is active, executing method

n :A, its annotation α(n, q) > α(n, p) decreases. Therefore, all terms Act A[k] are either

maintained or decreased, and ϕ is preserved.

The following is an immediate corollary:

Corollary 7.2.4. The set of reachable states of a prioritized system that uses Basic-P as

the allocation manager with an acyclic annotation that respects priorities is a subset of the

ϕ-states.

7.3 Model of Computation with Priorities

In this section we show that if Basic-P is used with accelerations according to the priority

inheritance protocol, deadlocks are not reachable. When a process inherits a new priority,

all its existing subprocesses must accelerate as well, including those running in remote sites

as a result of a remote invocation. A message is sent to all sites where a subprocess may

be running. When the message is received, if the process exists, then it is accelerated. If

the process does not yet exist, the acceleration is recorded as a future obligation. We first

show deadlock-freedom if all acceleration requests are delivered immediately with global

atomicity. Then, we complete the proof for asynchronous delivery in general.

104 CHAPTER 7. DEALING WITH PRIORITY INVERSIONS

Formally, we enrich the model of computation introduced in Chapter 2 to cover execu-

tions of the distributed priority inheritance protocol. First, the state of a process is enriched

to include the running priority. The state of a process P is then modeled as (G, γ,Π) where

(G, γ) is a labeled call graph as before, and Π : M → Prio is the priority value of each

subprocess.

7.3.1 Synchronous Accelerations

We enrich the model of computation with a new transition corresponding to synchronous

accelerations, where both the process and all its subprocesses accelerate instantaneously1.

9. Synchronous acceleration: Let P be a process waiting to execute n :A, and let

Q be an active process running in A with Π(Q) > Π(P). The process Q and all its

subprocesses accelerate instantaneously to Π(P). Formally,

τ9 : γ(Q) = `1,2 ∧ γ(P) = `0 ∧ ¬Enn(VA) ∧ Π(Q) > Π(P) ∧
∧

S∈desc(Q)

Π′(S) = max{Π(S),Π(P)} ∧ pres(VR)

In order to prove that Basic-P provides deadlock avoidance in the extended model of

computation, we derive an abstract (unprioritized) system and show that if the prioritized

system has reachable deadlocks so does the derived system.

Definition 7.3.1 (Flat call graph). Given a priority specification and its prioritized call

graph (Mpr ,
pr→,⇒, Ipr), the derived flat call graph G[: 〈Mpr ,→[, I[〉 consists of the following

components:

• Mpr is the set of methods with their potential priorities,

• there is an edge (n, q)→[(m, p) if p ≤ q and n→ m in the original call graph, and

• I[is the set of initial methods with all their potential priorities.

We use S[: 〈R,M,G[〉 for the (unprioritized) system that results from the flat call

graph. It is easy to see that the reachable state space of a process (the resources and running

priorities of the process and each of its active subprocesses) is the same in a system and its

flat version. Moreover, if an annotation α of a prioritized specification is acyclic and respects

1We number this new transition τ9 because it is added to the set {τ1, . . . , τ8} introduced in the basic
model of computation in Chapter 2.

7.3. MODEL OF COMPUTATION WITH PRIORITIES 105

priorities then α, when interpreted in the flat call graph, is also acyclic. For example, the

following diagram shows the flat call graph for the specification in Example 7.1.3, annotated:

(n, 1) A
0

(m, 1) B
0

(o1, 1) A
0

(o2, 1) B
0

(m, 2) B
1

(o2, 2) B
1

(o1, 3) A
1

(o2, 3) B
2

Theorem 7.3.2. Given a prioritized system S and an acyclic annotation that respects

priorities, every global state reachable by S is also reachable by S [, if Basic-P is used as

the allocation manager.

Proof. Corollary 7.2.4 states that every global state reachable by S is a ϕ-state. Theo-

rem 6.3.6 says that Basic-P can reach all S(ϕ) states. The result follows immediately.

It is important to note that Theorem 7.3.2 states that for every sequence of requests

and accelerations that leads to state σ in S, there is a—possibly different— sequence that

leads to σ in the abstract system S [. Theorem 7.3.2 does not imply, though, that every

transition in S can be mimicked in S [, which is not the case—in general—for accelerations.

A consequence of Theorem 7.3.2 is that deadlocks are not reachable in S, since the same

deadlock would be reachable in S [, which is deadlock free:

Corollary 7.3.3. If α is an acyclic annotation that respects priorities, and Basic-P is used

as the resource allocation manager, then all runs of S when accelerations are executed in

global atomicity are deadlock free.

7.3.2 Asynchronous Accelerations

Let us first introduce an alternative extension to the model of computation that does not

assume that all subprocesses accelerate in global atomicity.

9. Asynchronous acceleration: Let P be a process waiting to execute n :A, and let

Q be an active process running in A with Π(Q) > Π(P). This transition models the

acceleration of Q to Π(P). Formally,

τ9 : γ(Q) = `1,2 ∧ γ(P) = `0 ∧ ¬Enn(VA) ∧ Π(Q) > Π(P) ∧

Π′(Q) = Π(P) ∧ pres(VR)

106 CHAPTER 7. DEALING WITH PRIORITY INVERSIONS

10. Subprocess acceleration: Let S be a proper subprocess of a process Q, such that

S runs at a lower priority. This corresponds to a situation where Q has accelerated,

and the acceleration of S is pending, waiting for the acceleration message to arrive.

Formally,

τ10 : S ∈ desc(Q) ∧ Π(S) > Π(Q) ∧ Π′(S) = Π(Q) ∧ pres(VR)

When an arbitrary asynchronous subsystem is assumed, the proof of deadlock freedom is

more challenging. In this case, the flat system does not directly capture the reachable states

of the system with priorities, since subprocesses may accelerate later than their ancestors.

Theorem 7.3.4 (Annotation Theorem for Prioritized Specifications). If α is an

acyclic annotation that respects priorities, and Basic-P is used as a resource allocation

manager for every call graph method, then all runs are deadlock free.

Proof. Not all states reachable in the prioritized system are reachable states of the derived

flat system S[. However, it is easy to see that this is the case when no transition τ10 is

enabled. Assume, by contradiction, that deadlocks are reachable, and let σ be a deadlock

state. In σ no progressing transition is enabled, so all the pending messages have been

delivered (no τ10 transition is enabled). Therefore, the reachable state is indeed a state of

S[. By Theorem 7.3.2 Basic-P ensures that some process can progress, which contradicts

that σ is a deadlock state.

7.4 Summary

This chapter has presented a distributed priority inheritance protocol built using a dead-

lock avoidance mechanism. This protocol involves less communication overhead than a

distributed PCP, since inversions can be detected locally. Using this protocol, an explicit

calculation of the upper-bound on blocking times can be carried out, assuming known la-

tencies of messages, periods of processes and running times of methods. Then, potentially,

schedulability analysis can be performed, but that is out of the scope of this dissertation.

The message complexity of a single occurrence of an acceleration due to priority inher-

itance is given by the number of different sites in the set of descendants of the accelerated

process, which in the worst case is |R|. However, this communication is one-way, in the

7.4. SUMMARY 107

sense that once the message is sent to the network, the local process can immediately pro-

ceed with the acceleration. Moreover, broadcast can be used when available. Under certain

semantics for remote calls, this worst case bound can be improved. For example, with

synchronous remote calls (a caller is blocked until its remote invocation returns), one can

build, using a pre-order traversal of the descendant subtree, an order on the visited sites.

Then, a binary search on this order can be used to find the active subprocess where the

nested remote call is executing. This gives a worst case log |R| upper-bound on the message

complexity.

Most dynamic priority assignment mechanisms, like EDF, require querying for the cur-

rent status of processes in order to compare their relative priorities. Our priority inheritance

mechanism can be used with dynamic priorities if there is some static discretization of the

set of priorities at which processes may run. The only requirement of a priority change

mechanism presented in this chapter is that subprocesses must only increase (never de-

crease) their priorities. In the case of EDF, accelerations would not only be caused by a

priority inversion but also by the decision of the processes to increase its priority to meet a

deadline, which does not compromise deadlock freedom.

Chapter 8

Conclusions

Modern distributed real-time and embedded systems are built using a middleware that

abstracts away lower level details and provides a variety of useful services. However, this

approach will only be effective as long as the services have well defined and predictable

semantics. In this thesis we have studied one important middleware service: thread allo-

cation with deadlock avoidance guarantees. The main contribution is to show that even

though the general adaptation of centralized deadlock avoidance techniques to distributed

systems is widely regarded as impractical, efficient solutions exist if more information about

the systems is known in the form of remote call dependencies between components. These

dependencies can be extracted by static program analysis. Even though static anlysis is usu-

ally performed for verification or bug hunting purposes, this dissertation shows that static

analysis can be used to generate distributed deadlock avoidance algorithms for particular

cases for a problem that admits no general solution. The techniques developed in this dis-

sertation offer a practical trade-off: if an accurate description of the processes involved is

known before deployment, then a specific allocation manager that guarantees deadlock free

operation can be tailored for the particular scenario at hand.

The following are possibilities for further work in this line of research.

• the protocols presented here assume that each method receives a single annotation

based on a call graph, which captures the remote invocations that each method may

perform. In other words, each method is treated monolithically and all possible sce-

narios are considered at once. A more sophisticated schema could exploit further

information about the calls that will be performed. This extra information can be

108

109

available statically if, for example, it is known that in differente phases or modes of

execution some methods can only perform certain remotes calls. Also, a finer grain

annotation could assign different values to different code segments within the same

method. This can thenq be exploited dynamically, by allowing a process to change

(decrease) its annotation based on the fact that from its current state the process can

only perform some subset of the remote calls.

• The policy for thread allocation studied in this dissertation is WaitOnConnection,

which stablishes that process cannot be preempted and the thread assigned is only

reclaimed after the process terminates. One alternative policy, called WaitOnReactor

permits the reuse of a thread as soon as the process blocks waiting for a remote reply.

This policy immediately prevents deadlocks, but can lead to deadline violations. In

fact, it is easy to show that under WaitOnReactor there are scenarios in which no

process ever terminates, even though WaitOnConnection would allow every process

to complete in time. An interesting follow-up problem consists of the study of mixed

strategies. For example, a policy can allow a resource to be reused by nested upcalls

generated by the process that holds the thread. This strategy will permit the adap-

tation of the techniques presented in this dissertation to increase resource utilization

while still avoiding deadlocks. Moreover, one such strategy could handle recursive

calls to the same method (that is, cyclic call graphs), which is not supported by the

scheme presented here.

• Another factor that is not exploited in the algorithms presented in this dissertation is

the existence of more global information about the system being deployed, for example

a bound on the maximum number of processes in the system. If these bounds are

known, a deadlock free system can be constructed by allocating enough resources—

even with no resource allocation manager. Alternatively, if resources are fixed, the

annotations could be reduced for a given scenario based on the maximum allocation

possible, as provided by the bounds.

Summary

This dissertation has studied how to efficiently prevent deadlocks in distributed systems.

The processes involved in a deadlock state cannot proceed to complete their assigned tasks,

110 CHAPTER 8. CONCLUSIONS

in spite of sufficient availability of resources. The circular block is caused by an unfortunate

lack of coordination between the actions of the processes involved. The target applica-

tion domain of this work is distributed real-time and embedded systems, where reaching a

deadlock state—even if it can be detected—is usually not acceptable.

The model of execution in this application domain is the two-way remote procedure

call, where the execution of a method in a remote processor may be required to complete

a task. The resource handled is the thread or execution context needed locally to run a

method. Naturally, a nested dependency between execution contexts at different processing

sites arises due to the flow of computation of a process. One strategy commonly used for

managing threads in DRE systems is WaitOnConnection. This strategy specifies that a

process locks the thread until its running method terminates, which requires the collection

of results from remote invocations. Since thread pools are of fixed size, and there is no re-

striction on the nature or number of processes running in parallel, deadlocks can potentially

be reached.

The conventional mechanism to prevent deadlocks in DRE systems is monotone locking,

where resources are forced to be acquired in a predetermined order. Even though monotone

locking suffers a high overhead due to the reduced concurrency and the delay due to the

two-way communication necessary to reserve resources upfront, many current state of the

art implementations of DRE systems use this strategy to prevent deadlock. This thesis

presents an efficient alternative, in the form of a distributed deadlock avoidance mechanism:

at runtime deadlocks are dynamically avoided by a controller that keeps the system in a

safe state, where progress is ensured.

A general distributed adaptation of centralized deadlock avoidance algorithms is widely

considered impractical, due to the communication overhead necessary to maintain global

views in asynchronous distributed systems. This thesis shows that efficient solutions exist,

provided that accurate information about the control flow of the processes is known—in

the form of call graphs—before deployment. An efficient solution in this context is one that

requires no communication between sites to decide the safety of an allocation.

The solution consists on the combination of static computations based on the call graphs,

and runtime protocols that control the thread allocation. The call graph information can

be obtained from the specification or directly from the code by static analysis. These call

graphs are then analyzed to generate an annotation for each of the methods, which provides

an estimate of the level of resource availability needed to safely grant a thread to run the

111

method. These annotations are agreed upon by all processors before the system starts its

execution. At runtime, the protocols can inspect the current local resource availability, and

together with the annotation of the method that a process requests, use that information

to decide whether to allocate the resource.

Chapter 3 includes formal proofs of the correctness of these deadlock avoidance pro-

tocols. The simplest protocol, Basic-P , compares the annotation against the current

resource availability, assigning a resource if the availibity is higher. More sophisticated pro-

tocols keep track of the number of processes running local methods with different annotation

levels. The ability of these protocols to prevent deadlocks is based on properties of annota-

tions, in particular on a simple notion of acyclicity. Chapter 4 details methods to generate

the most efficient acyclic annotations, and contains proofs of the risks involved when using

cyclic annotations. First, deciding statically whether a particular scenario with a cyclic

annotation and fixed initial set of resources can reach a deadlock is computationally hard.

Second, every scenario with a cyclic annotation will have reachable deadlocks if provided

with enough initial resources in each site. Hence, in practice, to ensure the correctness of a

deployment the annotations must be acyclic.

Chapter 5 introduces Live-P , an advanced version of these protocols, that can also

prevent starvation, by ensuring that every process eventually gets its needed resources. This

solution is still accomplished in a completely local fashion, without extra communication.

This protocol, however, cannot be implemented in a conventional programming language

with a constant number of operations per allocation and deallocation. We show that there

are efficient ways to implement Live-P using a logarithmic number of operations, in terms

of the size of the resource pool managed.

Finally, Chapter 6 shows that, quite surprisingly, all the deadlock avoidance protocols

have the same reachable state space, even though the more efficient protocols allow more

runs than the less liberal protocols. Beyond its theoretical interest, this result has a practical

impact, since it eases the design and proof of new deadlock avoidance protocols. It is

enough to show that, for each request, the new protocol is never more conservative than

Basic-P—the most conservative in the family—and never more liberal than Live-P—

the most liberal. In particular, this technique enables the construction of a distributed

priority inheritance mechanism in Chapter 7, which is one of the most efficient ways known

to alleviate priority inversions in distributed real-time and embedded systems. Since the

system is already deadlock free, a simple priority inheritance protocol bounds the blocking

112 CHAPTER 8. CONCLUSIONS

time caused by priority inversions efficiently. Alternative solutions in the literature either

drastically restrict the nature of the processes, or deal with deadlock and priority inversions

altogether, obtaining less efficient solutions.

Bibliography

[AA91] Divyakant Agrawal and Amr El Abbadi. An efficient and fault-tolerant solution

for distributed mutual exclusion. ACM Transactions on Computer Systems,

9(1):1–20, February 1991.

[AD76] Peter A. Alsberg and John D. Day. A principle for resilient sharing of dis-

tributed resources. In Proceedings of the 2nd international conference on Soft-

ware engineering (ICSE ’76), pages 562–570, Los Alamitos, CA, 1976. IEEE

Computer Society Press.

[AS90] Baruch Awerbuch and Michael Saks. A dining philosophers algorithm with

polynomial response time. In Proceedings of the IEEE Symposium on the

Foundations of Computer Science (FOCS’90), pages 65–74. IEEE, 1990.

[ASK71] Toshiro Araki, Yuji Sugiyama, and Tadao Kasami. Complexity of the deadlock

avoidance problem. 2nd IBM Symposium on Mathematical Foundations of

Computer Science, pages 229–257, 1971.

[ASS+99] Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,

and Tushar Deepak Chandra. Matching events in a content-based subscription

system. In Symposium on Principles of Distributed Computing, pages 53–61,

1999.

[Bir89] Andrew D. Birrell. An introduction to programming with threads. Research

Report 35, Digital Equipment Corporation Systems Research Center, 1989.

[BNS70] Laszlo A. Belady, Robert A. Nelson, and Gerald S. Shedler. An anomaly in

space-time characteristics of certain programs running in a paging machine.

Communications of the ACM, 12(6):349–353, 1970.

113

114 BIBLIOGRAPHY

[But05] Giorgio C. Buttazzo. Hard real-time computing systems: predictable scheduling

algorithms and applications. Springer, New York, NY, 2005.

[Centy] Center for Distributed Object Computing. nORB—Special

Purpose Middleware for Networked Embedded Systems.

http://deuce.doc.wustl.edu/nORB/, Washington University.

[CES71] Edward G. Coffman, M. J. Elphick, and Arie Shoshani. System deadlocks.

Computing Surveys, 3:67–78, 1971.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. MIT Press, second edition, 2001.

[CM84] K. Mani Chandy and Jayadev Misra. The drinking philosophers problem.

ACM Transactions on Programming Languages and Systems, 6(4):632–646,

October 1984.

[CR83] O. S. F. Carvalho and G. Roucairol. On mutual exclusion in computer net-

works. Communications of the ACM, 26(2):146–147, 1983.

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and

evaluation of a wide-area event notification service. ACM Transactions on

Computer Systems, 19(3):332–383, August 2001.

[Dij65] Edsger W. Dijkstra. Cooperating sequential processes. Technical Report

EWD-123, Technological University, Eindhoven, the Netherlands, 1965.

[Dij68] Edsger W. Dijkstra. The structure of the “THE”-multiprogramming system.

Communication of the ACM, 11(5):341–346, 1968.

[Dij71] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta Infor-

matica, 1(2):115–138, 1971.

[Gif79] David K. Gifford. Weighted voting for replicated data. In Proceedings of the

seventh ACM symposium on Operating systems principles (SOSP ’79), pages

150–162, Pacific Grove, CA, 1979. ACM Press.

[GMB85] Hector Garcia-Molina and Daniel Barbara. How to assign votes in a distributed

system. Journal of the ACM, 32(4):841–860, 1985.

http://deuce.doc.wustl.edu/nORB/

BIBLIOGRAPHY 115

[GMUW01] Hector Garćıa-Molina, Jeffrey D. Ullman, and Jennifer D. Widom. Database

Systems: The Complete Book. Prentice-Hall, 2001.

[Hab69] Arie N. Habermann. Prevention of system deadlocks. Communications of the

ACM, 12:373–377, 1969.

[Hav68] James W. Havender. Avoiding deadlock in multi-tasking systems. IBM Sys-

tems Journal, 2:74–84, 1968.

[HCG01] Frank Hunleth, Ron Cytron, and Christopher D. Gill. Building customizable

middleware using aspect oriented programming. In Proceedings of the Work-

shop on Advanced Separation of Concerns (OOPSLA’01), pages 1–6, 2001.

[Hol72] Richard C. Holt. Some deadlock properties of computer systems. ACM Com-

puting Surveys, 4:179–196, 1972.

[Insty] Institute for Software Integrated Systems. The ACE ORB (TAO).

http://www.dre.vanderbilt.edu/TAO/, Vanderbilt University.

[LR81] Daniel Lehmann and Michael O. Rabin. On the advantages of free choice: a

symmetric and fully distributed solution to the dining philosophers problem.

In Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages (POPL’81), pages 133–138. ACM Press, 1981.

[Mae85] Mamory Maekawa. A
√
N algorithm for mutual exclusion in decentralized

systems. ACM Transactions on Computer Systems, 3(2):145–159, May 1985.

[MP95] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems.

Springer-Verlag, 1995.

[Mue99] Frank Mueller. Priority inheritance and ceilings for distributed mutual exclu-

sion. In Proceedings of 20th IEEE Real-Time Systems Symposium (RTSS’99),

pages 340–349, Phoenix, AZ, December 1999. IEEE Computer Society.

[NTA96] Mohamed Naimi, Michel Trehel, and André Arnold. A log(n) distributed

mutual exclusion algorithm based on path reversal. Journal of Parallel and

Distributed Computing, 34(1):1–13, 1996.

http://www.dre.vanderbilt.edu/TAO/

116 BIBLIOGRAPHY

[Pap86] Christos Papadimitriou. The Theory of Database Concurrency Control. Com-

puter Science Press, 1986.

[RA81] Glenn Ricart and Ashok K. Agrawala. An optimal algorithm for mutual exclu-

sion in computer networks. Communications of the ACM, 24(1):9–17, January

1981.

[RA83] Glenn Ricart and Ashok K. Agrawala. Author’s response to On mutual ex-

clusion in computer networks. Communications of the ACM, 26(2):147–148,

1983.

[Ray89] Kerry Raymond. A tree-based algorithm for distributed mutual exclusion.

ACM Transactions on Computer Systems, 7(1):61–77, February 1989.

[Rev05] Spyros A. Reveliotis. Real-time Management of Resource Allocation Systems: a

Discrete Event Systems Approach. International Series In Operation Research

and Management Science. Springer, 2005.

[SA97] Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe

notification service with quenching. In Queensland AUUG Summer Technical

Conference, Brisbane, Australia, 1997.

[SABS05] Julien Sopena, Luciana Arantes, Marin Bertier, and Pierre Sens. A fault-

tolerant token-based mutual exclusion algorithm using a dynamic tree. In

Proceedings of Euro-Par’05, volume 3648 of LNCS, pages 654–663, Lisboa,

Portugal, 2005. Spring-Verlag.

[Sch98] Douglas C. Schmidt. Evaluating Architectures for Multi-threaded CORBA Ob-

ject Request Brokers. Communications of the ACM Special Issue on CORBA,

41(10), October 1998.

[SG04] Venkita Subramonian and Christopher D. Gill. A generative programming

framework for adaptive middleware. In Proceedings of the 37th Hawaii Inter-

national Conference on System Sciences (HICSS’04). IEEE, 2004.

[SGG03] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System

Concepts. John Wiley & Sons, Inc., New York, NY, Sixth edition, 2003.

BIBLIOGRAPHY 117

[Sin89] Mukesh Singhal. Deadlock detection in distributed systems. IEEE Computer,

22(11):37–48, November 1989.

[SK85] Ichiro Suzuki and Tadao Kasami. A distributed mutual exclusion algorithm.

ACM Transactions on Computer Systems, 3(4):344–349, November 1985.

[SLH97] Douglas C. Schmidt, David L. Levine, and Timothy H. Harrison. The design

and performance of a real-time CORBA object event service. In Proceedings of

the 12th ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications (OOPSLA’97), pages 184–200, 1997.

[SMFGG98] Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan, and Anirud-

dha S. Gokhale. Alleviating priority inversion and non-determinism in real-

time CORBA ORB core architectures. In Proc. of the Fourth IEEE Real Time

Technology and Applications Symposium (RTAS’98), pages 92–101, Denver,

CO, June 1998. IEEE Computer Society Press.

[Spu95] Marco Spuri. Earliest deadline scheduling in real-time systems. PhD thesis,

Scoula Superiore S. Anna, Pisa, Italy, 1995.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance

protocols: An approach to real-time synchronization. IEEE Transactions on

Computers, 39(9):1175–1185, September 1990.

[SS94] Mukesh Singhal and Niranjan G. Shivaratri. Advanced Concepts in Operat-

ing Systems: Distributed, Database, and Multiprocessor Operating Systems.

McGraw-Hill, Inc., New York, NY, 1994.

[SSGM06] César Sánchez, Henny B. Sipma, Christopher D. Gill, and Zohar Manna. Dis-

tributed priority inheritance for real-time and embedded systems. In Alex

Shvartsman, editor, Proceedings of the 10th International Conference On Prin-

ciples Of Distributed Systems (OPODIS’06), volume 4305 of LNCS, Bordeaux,

France, 2006. Springer-Verlag.

[SSM+06] César Sánchez, Henny B. Sipma, Zohar Manna, Venkita Subramonian, and

Christopher Gill. On efficient distributed deadlock avoidance for distributed

118 BIBLIOGRAPHY

real-time and embedded systems. In Proceedings of the 20th IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS’06), Rhodas,

Greece, 2006. IEEE Computer Society Press.

[SSM07a] César Sánchez, Henny B. Sipma, and Zohar Manna. A family of distributed

deadlock avoidance protocols and their reachable state spaces. In Fundamental

Approaches to Software Engineering (FASE’07), volume 4422 of Lecture Notes

in Computer Science, pages 155–169. Springer-Verlag, 2007.

[SSM07b] César Sánchez, Henny B. Sipma, and Zohar Manna. Generating efficient dis-

tributed deadlock avoidance controllers. In Proceedings of the Fifteenth In-

ternational Workshop on Parallel and Distributed Real-Time Systems (WP-

DRTS’07). IEEE Computer Society Press, 2007.

[SSMG06] César Sánchez, Henny B. Sipma, Zohar Manna, and Christopher Gill. Efficient

distributed deadlock avoidance with liveness guarantees. In Proceedings of the

6th Annual ACM Conference on Embedded Software (EMSOFT’06), Seoul,

South Korea, 2006. ACM Press.

[SSRB00] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.

Pattern-Oriented Software Architecture: Patterns for Concurrent and Net-

worked Objects, Volume 2. Wiley & Sons, New York, 2000.

[SSS+03] César Sánchez, Sriram Sankaranarayanan, Henny B. Sipma, Ting Zhang,

David Dill, and Zohar Manna. Event correlation: Language and semantics. In

Rajeev Alur and Insup Lee, editors, EMSOFT 2003, volume 2855 of LNCS,

pages 323–339. Spring-Verlag, 2003.

[SSS+05] César Sánchez, Henny B. Sipma, Venkita Subramonian, Christopher Gill, and

Zohar Manna. Thread allocation protocols for distributed real-time and em-

bedded systems. In Farn Wang, editor, 25th IFIP WG 2.6 International

Conference on Formal Techniques for Networked and Distributed Systems

(FORTE’05), volume 3731 of LNCS, pages 159–173, Taipei, Taiwan, Octo-

ber 2005. Springer-Verlag.

[SSSM05a] César Sánchez, Henny B. Sipma, Matteo Slanina, and Zohar Manna. Final

semantics for Event-Pattern Reactive Programs. In José Luiz Fiadeiro, Neil

BIBLIOGRAPHY 119

Harman, Markus Roggenbach, and Jan Rutten, editors, First International

Conference in Algebra and Coalgebra in Computer Science (CALCO’05), vol-

ume 3629 of LNCS, pages 364–378. Springer-Verlag, September 2005.

[SSSM05b] César Sánchez, Matteo Slanina, Henny B. Sipma, and Zohar Manna. Expres-

sive completeness of an event-pattern reactive programming language. In Farn

Wang, editor, 25th IFIP WG 2.6 International Conference on Formal Tech-

niques for Networked and Distributed Systems (FORTE’05), volume 3731 of

LNCS, pages 529–532. Springer-Verlag, October 2005.

[Sta98] William Stallings. Operating Systems: Internals and Design Principles. Pren-

tice Hall, Inc., Upper Saddle River, NJ, Third edition, 1998.

[Tho79] Robert H. Thomas. A majority consensus approach to concurrency control for

multiple copy databases. ACM Transactions on Database Systems, 4(2):180–

209, June 1979.

Index

ϕA, 76

ϕ, 33, 42, 69, 76, 85, 86, 93, 96

ϕ -state, 34, 93

3-CNF, 58, 59, 61

acceleration, 101

acceptable order, 52, 54

active process, 20, 76

active tree, 75, 89

acyclic annotation, 37, 44, 45, 48, 69

adequate protocol, 23

Adequate-P, 23, 31, 39

admissible string, 26

allocation manager, 66

allocation sequences, 26

annotated global call graph, 37

annotation, 29, 43, 44

annotation condition, 38, 43, 65

Annotation Theorem, 38, 39, 40, 43, 44, 48,

65, 68, 71, 106

asynchronous acceleration transition, 105

Bad-P, 74

Banker’s algorithm, 6

Basic-P, 32, 32, 35, 36, 38, 39, 41–43, 52,

58, 65, 68, 72, 73, 82, 86, 87, 89, 91,

93, 96, 101, 103, 111

MaxLegal, 78, 81

CalcMin, 45, 47, 65

call graph, 17, 37, 45

centralized access control, 12

Coffman’s conditions, 5

compassion, 67

controller, 66, 81

CORBA, 12

creation transition, 21, 50

critical section, 11

cyclic dependency, 37

deadlock, 3, 5, 10, 24, 35, 39, 68, 101

avoidance, 6, 35, 42, 43, 69

detection, 5

intra-resource, 10

prevention, 6

reachability, 59

deletion transition, 22

dependency cycle, 40, 48

dependency relation, 37

Dijkstra, Edsger W., 6, 10

distributed access control, 11

distributed priority inheritance protocol, 99

distributed real-time and embedded,

see DRE

distributed systems, 1, 15

diversity load, 76

DRE, 1, 5, 9, 12, 28

120

INDEX 121

dynamic dining philosophers, 7, 40

earliest creation first, 67

earliest deadline first, 12, 67, 80, 107

EDF, see earliest deadline first

Efficient-P, 41, 41, 42, 72, 73, 89, 91, 93

embedded systems, 1

Empty-P, 19, 31

enabling condition, 19

fair scheduler, 67, 80

flat call graph, 104

flexible manufacturing systems, 13

FMS, 13

global call graph, 18

global state, 20

height, 29, 35, 38

height annotation, 35, 42

inductive invariant, 23

invariant, 23

k-Efficient-P, 89, 91, 93

labeled call graph, 20

liveness, 10, 66, 69, 72

Live-P, 70, 71–73, 82, 85–87, 91, 93, 96, 111

local height, 30, 35, 38

local protocol, 19

local scheduler, 66, 67

maximal enabled annotation, 72

maximal legal annotation, 76

method, 3

method entry transition, 21, 26, 51, 67

method execution transition, 22, 25

method exit transition, 22, 26

method invocation transition, 21

middleware, 2

minimal annotation, 45

minimal illegal annotaiton, 72

minimal illegal annotation, 76, 82

model of computation, 15

monotone locking, 6

monotone protocol, 27

mutual exclusion, 5, 11, 45

nested upcall, 3

nominal priority, 99

NP-complete, 44

NP-hard, 45, 59, 61

oldest process first, 80

P, 45

path, 50

PCP, see priority ceiling protocol

Petri Net, 13

PIP, see priority inheritance protocol

preference order, 47

prioritized annotation, 101

priority inversion, 10

priority assignment, 99

priority ceiling, 10

priority ceiling protocol, 12, 98, 106

priority inheritance, 10

priority inheritance protocol, 12, 98

priority inversion, 12

priority specification, 99

process initialization transition, 21

122 INDEX

processor, 3

progressing transition, 22

property, 23

protocol location, 20

protocol schema, 18, 70

protocol variable, 18, 19

reachable state space, 93

reactor, 4

real-time systems, 1

Red-Black tree, 76

remote invocation, 3

revere topological order, 45

reversible protocol, 28

run, 23

running priority, 99

runtime protocol, 15

scheduler, 66

semaphore, 10, 18

separated normal form, 62

serializer, 36

silent transition, 22

site, 18

starvation, 10, 26, 68

state transition system, 15, 20

static analysis, 16

strengthening, 87

strong fairness, 67

subprocess, 20

subprocess acceleration transition, 106

symbolic run, 52

synchronous acceleration transition, 104

system, 17

system description, 16

terminated process, 20

thread, 3, 15

transition

asynchronous acceleration, 105

creation, 21

deletion, 22

method entry, 21, 26, 51, 67

method execution, 22, 25

method exit, 22, 26

method invocation, 21

process initialization, 21

silent, 22

subprocess acceleration transition,

106

unavoidable deadlock, 50

waiting process, 20

waiting tree, 80

WaitOnConnection, 4, 109

WaitOnReactor , 4, 109

well-formed allocation string, 26

	Abstract
	Acknowledgements
	Financial Acknowledgements
	1 Introduction
	1.1 Overview
	1.1.1 Middleware for DRE Systems
	1.1.2 Deadlock
	1.1.3 The Dynamic Dining Philosophers Problem

	1.2 Contributions
	1.3 Related Work
	1.3.1 Intra-resource Deadlock
	1.3.2 Priority Inversions
	1.3.3 Flexible Manufacturing Systems

	1.4 Structure of the Dissertation

	2 Model of Computation
	2.1 System Model
	2.2 Runtime Protocols
	2.3 Dynamic Behavior
	2.4 Properties
	2.5 Allocation Sequences
	2.6 Summary

	3 Basic Solutions
	3.1 An Introduction to Annotations
	3.2 Single Agent
	3.3 A Basic Solution for Multiple Agents
	3.4 Deadlock Avoidance with the Height Annotation
	3.5 Efficient Annotations
	3.6 A Solution to the Dynamic Dining Philosophers
	3.7 A More Efficient Protocol
	3.8 Summary

	4 Annotations
	4.1 Problem Taxonomy
	4.2 Generating Minimal Annotations
	4.3 Cyclic Annotations
	4.3.1 Deadlocks with Cyclic Annotations

	4.4 Deciding Deadlock Reachability
	4.5 Computing Annotations with Resource Constraints
	4.5.1 Arbitrary number of Resources
	4.5.2 Mutual Exclusion Resources

	4.6 Summary

	5 Liveness
	5.1 Local Schedulers
	5.2 Deadlock versus Starvation
	5.3 A Liveness Protocol
	5.3.1 Protocol Schema
	5.3.2 Deadlock Avoidance
	5.3.3 Liveness

	5.4 Implementation
	5.4.1 Allocation Manager
	5.4.2 Implementation of a Fair Scheduler
	5.4.3 Implementation of the Controller

	5.5 Experimental Results
	5.6 Summary

	6 Proving New Protocols
	6.1 A Family of Local Protocols
	6.2 Allocation Sequences
	6.3 Reachable State Spaces
	6.3.1 Preference Orders
	6.3.2 Reachable States

	6.4 Summary

	7 Dealing with Priority Inversions
	7.1 Distributed Priority Inheritance
	7.2 Priority Based Annotations
	7.3 Model of Computation with Priorities
	7.3.1 Synchronous Accelerations
	7.3.2 Asynchronous Accelerations

	7.4 Summary

	8 Conclusions
	Bibliography

