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Abstract. We study resource management in distributed systems. In-
correct handling of resources may lead to deadlocks, missed deadlines,
priority inversions, and other forms of incorrect behavior or degraded
performance. While in centralized systems deadlock avoidance is com-
monly used to ensure correct and efficient resource allocation, distributed
deadlock avoidance is harder, and general solutions are considered im-
practical due to the high communication overhead. However, solutions
that use only operations on local data exist if some static information
about the possible sequences of remote invocations is known.
We present a family of efficient distributed deadlock avoidance algo-
rithms that subsumes previously known solutions as special instances.
Even though different protocols within the family allow different lev-
els of concurrency and consequently fewer or more executions, we prove
that they all have the same set of reachable states, expressed by a global
invariant. This result enables: (1) a design principle: the use of differ-
ent protocols at different sites does not compromise deadlock avoidance;
(2) a proof principle: any resource allocation protocol that preserves the
global invariant and whose allocation decisions are at least as liberal as
those of the least liberal in the family, guarantees absence of deadlock.

1 Introduction

Middleware services play a key role in the development of modern distributed
real-time and embedded (DRE) systems. DRE systems often consist of a variety
of hardware and software components, each with their own protocols, interfaces,
operating systems, and API’s. Middleware services hide this heterogeneity, allow-
ing the software engineer to focus on the application, by providing a high-level
uniform interface, and handling management of resources and communication
and coordination between components. However, this approach is effective only
if these services are well-defined, flexible and efficient.

In this paper we focus on resource allocation services for DRE systems. Com-
putations in distributed systems often involve a distribution of method calls over
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multiple sites. At each site these computations need resources, for example in
the form of threads, to proceed. With multiple processes starting and running at
different sites, and a limited number of threads at each site, deadlock may arise.
Traditionally three methods are used to deal with deadlock: prevention, avoid-
ance and detection. In deadlock prevention a deadlock state is made unreachable
by, for example, imposing a total order in which resources are acquired, such
as in “monotone locking” [1, 4]. This strategy can substantially reduce perfor-
mance, by artificially limiting concurrency. With deadlock detection, common in
databases, deadlock states may occur, but are upon detection resolved by, for
example, roll-back of transactions. In embedded systems, however, this is usually
not an option, especially in systems interacting with physical devices.

Deadlock avoidance methods take a middle route. At runtime a protocol is
used to decide whether a resource request is granted based on current resource
availability and possible future requests of processes in the system. A resource
is granted only if it is safe, that is, if there is a strategy to ensure that all
processes can complete. To make this test feasible, processes that enter the sys-
tem must announce their possible resource usage. This idea was first proposed
in centralized systems by Dijkstra in his Banker’s algorithm [2, 3, 13, 11], where
processes report the maximum number of resources that they can request. When
resources are distributed across multiple sites, however, deadlock avoidance is
harder because the different sites may have to consult each other to determine
whether a particular allocation is safe. Consequently, a general solution to dis-
tributed deadlock avoidance is considered impractical [12]; the communication
costs involved simply outweigh the benefits gained from deadlock avoidance over
deadlock prevention.

We study distributed deadlock avoidance algorithms that do not require any
communication between sites. Our algorithms are applicable to distributed sys-
tems in which processes perform remote method invocations and lock local re-
sources (threads) until all remote calls have returned. In particular, if the chain
of remote calls arrives back to a site previously visited, then a new resource is
needed. This arises, for example, in DRE architectures that use the WaitOnCon-
nection policy for nested up-calls [9, 10, 14]. Our algorithms succeed in providing
deadlock avoidance without any communication overhead by using static process
information in the form of call graphs that represent all possible sequences of
remote invocations. In DRE systems, this information can usually be extracted
from the component specifications or from the source code directly by static
analysis.

In this paper we analyze the common properties of a family of deadlock
avoidance protocols that include the protocols we presented in earlier papers [8,
7, 6]. We show that the two protocols Basic-P introduced in [8] and Live-P

presented in [6] are the two extremes of a spectrum of protocols that allow, going
from Basic-P to Live-P, increasing levels of concurrency. Despite these different
levels of concurrency, and thus executions permitted, we prove that all protocols
in the family have the same set of reachable states. The significance of this result
is that it allows running different protocols from the family at different sites
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without compromising deadlock. In addition, it considerably simplifies proving
correct modifications and refinements of these protocols, as proofs reduce to
showing that the new protocol preserves the same invariant.

The rest of this paper is structured as follows. Section 2 describes the com-
putational model and Section 3 introduces the protocols. Section 4 characterizes
the different levels of concurrency by comparing allocation sequences for the
different protocols, and Section 5 presents the proof that all protocols have the
same set of reachable states. Section 6 concludes with some remarks about the
design principle enabled by our results and some open problems.

2 Computational Model

We model a distributed system as a set of sites that perform computations and
a call graph, which provides a static representation of all possible resource usage
patterns. Formally, a distributed system is a tuple S : 〈R,G〉 consisting of
– R : {r1, . . . , r|R|}, a set of sites, and
– G : 〈V,→, I〉 a call graph specification.

A call graph specification G : 〈V,→, I〉 consists of a directed acyclic graph
〈V,→〉, which captures all the possible sequences of remote calls that processes
can perform. The set of initial nodes I ⊆ V contains those methods that can be
invoked when a process is spawned. A call-graph node n:r represents a method
n that runs in site r. We also say that node n resides in site r. If two nodes
reside in the same site we write n ≡R m. An edge from n:r to m:s denotes that
method n, in the course of its execution may invoke method m in site s.

We assume that each site has a fixed number of pre-allocated resources. Al-
though in many modern operating systems threads can be spawned dynamically,
many DRE systems pre-allocate fixed sets of threads to avoid the relatively large
and variable cost of thread creation and initialization. Each site r maintains a set
of local variables Vr that includes the constant Tr ≥ 1 denoting the number of
resources present in r, and a variable tr that represents the number of available
resources. Initially, tr = Tr.

The execution of a system consists of processes, created dynamically, exe-
cuting computations that only perform remote calls according to the edges in
the call graph. When a new process is spawned it starts its execution with the
graph node whose outgoing paths describe the remote calls that the process can
perform. All invocations to a call graph node require a new resource in the corre-
sponding site, while call returns release a resource. We impose no restriction on
the topology of the call graph or on the number of process instances, and thus
deadlocks can be reached if all requests for resources are immediately granted.

Example 1. Consider a system with two sites R = {r, s}, a call graph with four
nodes V = {n1, n2, m1, m2}, where n1 and m1 are initial, and edges:

n1 r n2 s m1 s m2 r

This system has reachable deadlocks if no controller is used. Let sites s and r
handle exactly two threads each. If four processes are spawned, two instances of
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n1 and two of m1, all resources in the system will be locked after each process
starts executing its initial node. Consequently, the allocation attempts for n2

and m2 will be blocked indefinitely, so no process will terminate or return a
resource. This allocation sequence is depicted below, where a • represents an
existing process that tries to acquire a resource at a node (if • precedes the
node) or has just been granted the resource (if • appears after the node).

tr = 2
ts = 2

tr = 0
ts = 2

tr = 0
ts = 0

n1 r
••

n2 s

m1 s
••

m2 r

n1 r
••

n2 s

m1 s
••

m2 r

n1 r
••

n2 s

m1 s
••

m2 r

ut

Our deadlock avoidance solution consists of two parts: (1) the offline calcu-
lation of annotations, maps from call-graph nodes to natural numbers; and (2) a
run-time protocol that controls resource allocations based on these annotations.
Informally, an annotation measures the number of resources required for a com-
putation. The protocols grant a request based on the remaining local resources
(and possibly other local variables) and the annotation of the requesting node.

Protocol A protocol for controlling the resource allocation in node n : r is
implemented by a program executed in r before and after method n is dispatched.
This code can be different for different call-graph nodes even if they reside in
the same site. The schematic structure of a protocol for a node n:r is:

n ::











when Enn(Vr) do
Inn(Vr , V

′
r )

}

entry section

f()

}

method invocation

Outn(Vr , V
′
r )

}

exit section











Upon invocation, the entry section checks resource availability by inspecting local
variables Vr of site r. If the predicate Enn(Vr), called the enabling condition,
is satisfied we say that the entry section is enabled. In this case, the request
can be granted and the local variables are updated according to the relation
Inn(Vr , V

′
r ) (where V ′

r stands for the local variables after the action is taken).
We assume that the entry section is executed atomically, as a test-and-set. The
method invocation section executes the code of the method, here represented
as f(), which may perform remote calls according to the edges outgoing from
node n in the call graph. The method invocation can only terminate after all its
invoked calls (descendants in the call graph) have terminated and returned. The
exit section releases the resource and may update some local variables in site r,
according to the relation Outn(Vr, V

′
r ). Inn is called the entry action and Outn

is called the exit action.
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Annotations Given a system S and annotation α, the annotated call graph
(V,→, 99K) is obtained from the call graph (V,→) by adding one edge n 99K m
between any two nodes that reside in the same site with annotation α(n) ≥ α(m).
A node n “depends” on a node m, which we represent n � m, if there is a path
in the annotated graph from n to m that follows at least one → edge. The
annotated graph is acyclic if no node depends on itself, in which case we say
that the annotation is acyclic.

3 A Family of Local Protocols

Our goal is to construct protocols that (1) avoid deadlock in all scenarios, (2)
require no communication between sites, and (3) maximize resource utilization
(grant requests as much as possible without compromising deadlock freedom).
The first protocol we proposed was Basic-P [8], shown in Fig. 1 for a node n:r

n ::








[
when i ≤ tr do

tr--

]

f()

tr++








Fig. 1. The protocol Basic-P.

with annotation α(n) = i. Upon a resource
request, Basic-P checks whether the num-
ber of available resources is large enough,
as indicated by the annotation i. This check
ensures that processes (local or remote)
that could potentially be blocked if the re-
source is granted, have enough resources to
complete. The correctness of Basic-P is

based on the acyclicity of the annotations:

Theorem 1 (Annotation Theorem for Basic-P [8]). Given a system S and
an acyclic annotation, if Basic-P is used to control resource allocations then all
executions of S are deadlock free.

Example 2. Reconsider the system from Example 1. The left diagram below
shows an annotated call graph with α(n1) = α(n2) = α(m2) = 1 and α(m1) = 2.
It is acyclic, and thus by Theorem 1, if Basic-P is used with these annotations,
the system is deadlock free.

n1 r
1

n2 s
1

m1 s
2

m2 r
1

n1 r
1

n2 s
1

m1 s
1

m2 r
1

Let us compare this with Example 1 where a resource is granted simply if it
is available. This corresponds to using Basic-P with the annotated call graph
above on the right, with α(n) = 1 for all nodes. In Example 1 we showed that a
deadlock is reachable, and indeed this annotated graph is not acyclic; it contains
dependency cycles, for example n1 → n2 99K m1 → m2 99K n1. Therefore
Theorem 1 does not apply. In the diagram on the left all dependency cycles are
broken by the annotation α(m1) = 2. Requiring the presence of at least two
resources for granting a resource at m1 ensures that the last resource available
in s can only be obtained at n2, which breaks all possible circular waits. ut
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n ::

2

6

6

4

»

when 1 ≤ tr do

tr--

–

f()
tr++

3

7

7

5

n ::

2

6

6

4

»

when i ≤ pr ∧ 1 ≤ tr do

〈pr--, tr--〉

–

f()
〈tr++, pr++〉

3

7

7

5

If i = 1 If i > 1

Fig. 2. The protocol Efficient-P.

The protocol Basic-P can be improved using the observation that processes
requesting resources to execute nodes with annotation 1 can always terminate, in
spite of any other process in the system. This observation leads to Efficient-P

(shown in Fig. 2) , which uses two counters: tr, as before; and pr, to keep track
of the “potentially recoverable” resources, which include not only the available
resources but also the resources granted to processes in nodes with annotation 1.
A similar version of the Annotation Theorem for Efficient-P establishes that
in the absence of dependency cycles, Efficient-P can reach no deadlocks.

The proof of the Annotation Theorem for Basic-P and Efficient-P [8]
relies on showing that the following global invariant ϕ is maintained:

ϕ
def
=

∧

r∈R

∧

k≤Tr

ϕr[k] with ϕr[k]
def
= Ar[k] ≤ Tr − (k − 1).

where ar[k] stands for the number of active processes running in site r executing
nodes with annotation k and Ar[k] stands for

∑

j≥k ar[j], that is, Ar[k] represents
the number of active processes running in site r executing nodes with annotation

n ::








[

when ϕ
(i)
r do

ar[i]++

]

f()

ar[i]--








Fig. 3. The protocol Live-P.

k or higher. In [6] we exploited this fact by
constructing the protocol Live-P, shown in
Fig. 3, which grants access to a resource pre-
cisely whenever ϕr is preserved. This proto-
col not only guarantees absence of deadlock,
it also provides, in contrast with Basic-P,
individual liveness for all processes. Its en-

abling condition, ϕ
(i)
r , is exactly the weakest

precondition for ϕr of the transition that grants the resource:

ϕ(i)
r

def
=










∧

k>i

Ar[k] ≤ Tr − (k − 1)

∧
∧

k≤i

Ar[k] + 1 ≤ Tr − (k − 1)










We use ϕ
(i)
r [j] for the clause of ϕ

(i)
r that corresponds to annotation j. Observe

that ϕ
(i)
r [j] is syntactically identical to ϕr[j] for j > i. Moreover, for j ≤ i, ϕ

(i)
r [j]

implies ϕr[j].
To compare the protocols we restate Basic-P and Efficient-P in terms

of the notation introduced for Live-P. The enabling condition of Basic-P be-
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n ::

2

6

6

6

6

4

"

when χ
(i)
r [1] do

ar[i]++

#

f()

ar[i]--

3

7

7

7

7

5

(a) 1-Efficient-P

n ::

2

6

6

6

6

4

"

when ϕ
(i)
r [1] ∧ χ

(i)
r [2] do

ar[i]++

#

f()

ar[i]--

3

7

7

7

7

5

(b) 2-Efficient-P

Fig. 4. Basic-P and Efficient-P restated using strengthenings.

comes:
Ar[1] ≤ Tr − (i − 1)

which is, as we will see, stronger than ϕ
(i)
r , that is, the enabling condition of

Basic-P implies that of Live-P. Given k ≤ i we define the k-th strengthening
formula for a request in node n:r with annotation i as:

χ(i)
r [k]

def
= Ar[k] ≤ Tr − (i − 1)

It is easy to see that the following holds for all k ≤ j ≤ i,

χ(i)
r [k] → ϕ(i)

r [j] and therefore χ(i)
r [k] →

∧

k≤j≤i

ϕ(i)
r [j].

Also, if ϕr holds before the resource is granted, then ϕ
(i)
r [j] also holds for all

i ≥ j, since the formulas for ϕ
(i)
r [j] and ϕr[j] are identical in this case. Hence:

χ(i)
r [k] →

∧

k≤j

ϕ(i)
r [j]. (1)

Finally, if ϕ
(i)
r [j] is satisfied for all values less than k, and χ

(i)
r [k] is ensured, ϕ

(i)
r

can be concluded:

(
∧

j<k

ϕ(i)
r [j]) ∧ χ(i)

r [k] → (
∧

j<k

ϕ(i)
r [j]) ∧ (

∧

j≥k

ϕ(i)
r [j])

↔
∧

ϕ(i)
r [j]

↔ ϕ
(i)
r .

Therefore, if a protocol ensures that for some k, both
∧

j<k ϕ
(i)
r [j] and the k-

strengthening χ
(i)
r [k] hold, then ϕr is an invariant.

In general, the lower the value of the strengthening point k, the less computa-
tion is needed to compute the predicate (the number of comparisons is reduced)
but the less liberal the enabling condition becomes. In the case of k = 1 the

strengthening is χ
(i)
r [1], and the protocol obtained (see Fig. 4(a)) is equivalent
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Fig. 6. A comparison of Basic-P, k-Efficient-P and Live-P.

to Basic-P. Note that this protocol is logically equivalent to Basic-P: the re-
sult of the enabling condition, and the effect of the input and output actions on
future tests are the same. The implementation of Basic-P introduced earlier
uses a single counter tr, while in this restated version, several counters are used:
ar[i] and Ar[1]. However, the effect on Ar[1] of the increments and decrements
of ar[i] are independent of i. Therefore, these actions can be implemented as
Ar[1]++ and Ar[1]-- respectively. Similarly, with a strengthening point of k = 2
we obtain a protocol equivalent to Efficient-P, shown in Fig. 4(b).

The general form of our family of protocols can now be given as k-Efficient-

P, shown in Fig. 5. It covers the full spectrum of protocols with Basic-P, which
is equivalent to 1-Efficient-P, at one end and Live-P, which is equal to Tr-
Efficient-P at the other end of the spectrum. The protocols k-Efficient-

P can be implemented in several ways. The simplest implementation needs

n ::














when

( ∧

j<k

ϕ(i)
r [j]

)
∧ χ(i)

r [k] do

ar[i]++





f()

ar[i]--











Fig. 5. The protocol k-Efficient-P.

space O(k log Tr) to store
k counters and requires O(k)
operations per allocation deci-
sion. A more sophisticated im-
plementation using an active
tree data-structure still needs
O(k log Tr), but requires only
O(log k) operations per alloca-
tion decision [6]. Fig. 6 presents
some experimental results that

compare concurrency levels allowed by the different protocols. The figures de-
pict the maximum annotation allowed by each protocol as a function of the load
(total number of active processes). The load is created by annotations picked
uniformly at random.

4 Allocation Sequences

In this section we compare the set of runs allowed by each protocol. We capture
these sets by languages over an alphabet of allocations and deallocations.

Given a call graph (V,→) let the set V contain a symbol n for every n in
V . The allocation alphabet Σ is the disjoint union of V and V . Symbols in V
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are called allocation symbols, while symbols in V are referred to as deallocation
symbols. Given a string s in Σ∗ and a symbol v in Σ we use sv for the number
of occurrences of v in s, and |s|n to stand for sn − sn. A well-formed allocation
string s is one for which every deallocation occurs after a matching allocation,
that is, for every prefix p of s, |p|n ≥ 0. An admissible allocation sequence is one
that corresponds to a prefix run of the system, according to the call graph. This
requires (1) that the string be well-formed, (2) that every allocation of a non-
root node is preceded by a matching allocation of its parent node, and (3) that
every deallocation of a node is preceded by a corresponding deallocation of its
children nodes. Formally,

Definition 1 (Admissible Strings). A well-formed allocation string s is called
admissible if for every prefix p of s, and every remote call n → m: |p|n ≥ |p|m.

Admissible strings ensure that the number of child processes (callees) is not
higher than the number of parents (caller processes), so that there is a possible
match. For brevity, we simply use string to refer to admissible string.

We say that a protocol is completely local if all the enabling conditions are
determined by: (1) the annotation of the call-graph node requested, and (2) the
set of active processes in the local site and their annotations. It is easy to see
that the protocols k-Efficient-P are completely local. We use the values of ar[·]
and Ar[·] as the (abstract) global states of the system since these values capture
all effects of completely local protocols in the outcomes of future requests. The
initial state of the system, denoted by Θ, is ar[i] = Ar[i] = 0 for all sites r and
annotations i.

Given a state σ and a protocol P , if the enabling condition of P for a node n
is satisfied at σ we write EnP

n (σ). For convenience, we introduce a new state ⊥
to capture sequences that a protocol forbids, and require that EnP

n (⊥) does not
hold. We denote by P (s) the1 state reached by P after exercising the allocation
string s, defined inductively as P (ε) = Θ and:

P (s n) =

{

InP
n (P (s)) if EnP

n (P (s))

⊥ otherwise
P (s n) =

{

OutP
n (P (s)) if P (s) 6= ⊥

⊥ otherwise

We say that a string s is accepted by a protocol P if P (s) 6= ⊥. The set of
strings accepted by P is denoted by L(P ), and we use P v Q for the partial
order defined by language inclusion L(P ) ⊆ L(Q).

Example 3. Reconsider the system in Example 1. The allocation sequence that
leads to a deadlock is s : n1n1m1m1. Even though n1n1m1 is in L(Basic-P),
the enabling condition of m1 becomes disabled, so Basic-P(s) = ⊥ and s /∈
L(Basic-P). ut

Lemma 1. The following are equivalent:

1 All our protocols are deterministic but the results can be adapted for non-
deterministic protocols as well.
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(i) L(P ) ⊆ L(Q).

(ii) For all strings s and allocation symbols n, if EnP
n (P (s)) then EnQ

n (Q(s)).

Proof. We prove both implications separately:

– Assume L(P ) ⊆ L(Q), and let s and n be such that EnP
n (P (s)). Since

s ∈ L(P ) then s ∈ L(Q). Moreover, s · n ∈ L(P ) and then s · n ∈ L(Q).
Hence, EnQ

n (Q(s)).
– Assume now (ii). We reason by induction on strings:

• First, both ε ∈ L(P ) and ε ∈ L(Q).
• Let s · n ∈ L(P ). Then EnP

n (P (s)), so also EnQ
n (Q(s)). Hence, s · n ∈

L(Q).
• Let s · n ∈ L(P ). This implies s ∈ L(P ) and by inductive hypothesis

s ∈ L(Q). Then s · n ∈ L(Q), as desired.

Therefore (i) and (ii) are equivalent. ut

Let P, Q be any two of Basic-P, Efficient-P, k-Efficient-P and Live-P.
We showed in Section 3 that the entry and exit actions are identical for all
these protocols. Therefore, if s is in the language of both P and Q then the
states reached are the same, i.e., P (s) = Q(s). It follows that if for all states σ,
EnP

n (σ) implies EnQ
n (σ), then L(P ) ⊆ L(Q).

Lemma 2. If j-Efficient-P allows an allocation then k-Efficient-P also
allows the allocation, provided j ≤ k.

Proof. Let j ≤ k. It follows from the definition that χ
(i)
r [j] implies χ

(i)
r [k]. More-

over, by (1), χ
(i)
r [j] implies

∧

j≤l≤k ϕ
(i)
r [l]. Consequently,

∧

l<j

ϕ(i)
r [l] ∧ χ(i)

r [j]

︸ ︷︷ ︸

En
j-Efficient-P

n

→
∧

l<k

ϕ(i)
r [l] ∧ χ(i)

r [k]

︸ ︷︷ ︸

Enk-Efficient-P
n

Therefore if j-Efficient-P allows a request so does k-Efficient-P. ut

Lemma 2 states that the enabling condition of k-Efficient-P becomes
weaker as k grows, that is, the enabling condition of Basic-P is stronger than
that of Efficient-P, which in turn is stronger than k-Efficient-P, which is
stronger than Live-P. An immediate consequence of Lemma 2 is:

Basic-P v Efficient-P v . . . v k-Efficient-P v . . . v Live-P

The following examples show that these language containments are strict:

Basic-P 6w Efficient-P 6w . . . 6w k-Efficient-P 6w . . . 6w Live-P

which is depicted in Fig 7(a).
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(a) Allocation sequences
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ϕa-states =
= S(Live-P)
= S(Efficient-P)
= S(k-Efficient-P)
= S(Basic-P)

(b) Reachable state spaces

Fig. 7. Comparison of the family of protocols

Example 4. Consider the following call-graph, with initial resources Tr = 2.

n2 r
2

n1 r
1

m1 r
1

The string m1n2 is accepted by Efficient-P but not by Basic-P. This system
can be generalized to show that there is a string accepted by k-Efficient-P

but not by j-Efficient-P (for j < k). Consider the following annotated call
graph, with initial resources Tr = j + 1.

nj+1 r
j+1

nj r
j

nj−1 r
j−1

· · · n1 r
1

mj r
j

mj−1 r
j−1

· · · m1 r
1

The string mjnj+1 is accepted by k-Efficient-P, but is not accepted by j-
Efficient-P. ut

5 Reachable State Spaces

The reachable state space of a protocol P , denoted by S(P ), is the set of global
states that P can reach following some admissible allocation sequence. Clearly,
for two protocols P and Q, if their actions are equivalent and P v Q then every
state reachable by P is also reachable by Q. Indeed any allocation string that
reaches a state for P also reaches that same state for Q.

Lemma 3. For every two protocols P and Q with the same entry and exit ac-
tions, if P v Q then S(P ) ⊆ S(Q).

Consequently,

S(Basic-P) ⊆ S(Efficient-P) ⊆ . . . ⊆ S(k-Efficient-P) ⊆ . . . ⊆ S(Live-P)
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Let S(ϕa) describe the set of states that satisfy ϕ and that are reachable by
some admissible allocation string. In the rest of this section we show that the
above containment relation collapses into equalities by proving

S(Basic-P) = S(Live-P) = S(ϕa)

The proof relies on the existence of a preference order on the nodes of the
annotated call graph, such that, if allocations are made following this order,
then every allocation request that succeeds in Live-P also succeeds in Basic-P.

5.1 Preference Orders

A preference order of an annotated call graph is an order on the nodes such that,
if all allocations in a given admissible string are performed following that order,
then (1) the sequence obtained is also admissible, and (2) higher annotations for
each site are visited first. This will allow us to show that Basic-P can reach all
ϕa-states.

Given a call graph, a total order > on its nodes is called topological if it
respects the descendant relation, that is, if for every pair of nodes n and m, if
n → m then n > m. Analogously, we say that an order > respects an annotation
α if for every pair of nodes n and m residing in the same site, if α(n) > α(m)
then n > m. A total order that is topological and respects annotations is called
a preference order.

Lemma 4. Every acyclically annotated call graph has a preference order.

Proof. The proof proceeds by induction on the number of call-graph nodes. The
result trivially holds for the empty call graph. For the inductive step, assume the
result holds for all call graphs with at most k nodes and consider an arbitrary
call graph with k + 1 nodes.

First, there must be a root node whose annotation is the highest among
all the nodes residing in the same site. Otherwise a dependency cycle can be
formed: take the maximal nodes for all sites, which are internal by assumption,
and their root ancestors. For every maximal (internal) node there is →+ path
reaching it, starting from its corresponding root. Similarly, for every root there is
an incoming 99K edge from the maximal internal node that resides in its site. A
cycle exists since the (bipartite) subgraph of roots and maximal nodes is finite,
and every node has a successor (a →+ for root nodes, and a 99K for maximal
nodes). This contradicts that the annotation is acyclic.

Now, let n be a maximal root node, and let > be a preference order for
the graph that results by removing n, which exists by inductive hypothesis. We
extend > by adding n > m for every other node m. The order is topological since
n is a root. The order respects annotations since n is maximal in its site. ut

5.2 Reachable States

A global state of a distributed system is admissible if all existing processes (active
or waiting) in a node n are also existing, and active, in every node ancestor of
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n. That is, if the state corresponds to the outcome of some admissible allocation
sequence.

Theorem 2. The set of reachable states of a system using Live-P is precisely
the set of ϕa-states.

Proof. It follows directly from the specification of Live-P that all reachable
states satisfy ϕ. Therefore, we only need to show that all ϕa-states are reachable.

We proceed by induction on the number of active processes in the system.
The base case, with no active process, is the initial state of the system Θ, which is
trivially reachable by Live-P. For the inductive step, consider now an arbitrary
ϕa-state σ with some active process. Since the call graph is acyclic and finite,
there must be some active process P in σ with no active descendants. The state
σ′ obtained by removing P from σ is an admissible ϕa-state (all the conditions
of admissibility and the clauses of ϕ are either simplified or identical); by the
inductive hypothesis, σ′ is reachable by Live-P. Since σ is obtained from σ′ by
an allocation that preserves ϕ (otherwise σ would not be a ϕa-state), then σ is
reachable by Live-P. ut

Theorem 2 states that for every sequence s that leads to a ϕa-state there is a
sequence s′ arriving at the same state for which all prefixes also reach ϕa-states.
The sequence s′ is in the language of Live-P.

Perhaps somewhat surprisingly, the set of reachable states of Basic-P is also
the set of all ϕa-states. To prove this we first need an auxiliary lemma.

Lemma 5. In every ϕa-state, an allocation request in site r with annotation k
has the same outcome using Basic-P and Live-P, if there is no active process
in r with annotation strictly smaller than k.

Proof. First, in every ϕa-state, if Basic-P grants a resource so does Live-P, by
Lemma 2. We need to show that in every ϕa-state, if Live-P grants a request
of k and ar[j] = 0 for all j < k, then Basic-P also grants the request. In this
case,

Tr − tr = Ar[1] =

Tr∑

j=1

ar[j] =

Tr∑

j=k

ar[j] = Ar[k], (2)

and since Live-P grants the request, then Ar[k] + 1 ≤ Tr − (k − 1) and Ar[k] ≤
Tr − k. Using (2), Tr − tr ≤ Tr − k, and tr ≥ k, so Basic-P also grants the
resource. ut

Theorem 3. The set of reachable states of a system using Basic-P is precisely
the set of ϕa-states.

Proof. The proof is analogous to the characterization of the reachable states of
Live-P, except that the process P removed in the inductive step is chosen to
be a minimal active process in some preference order >. This guarantees that P
has no children (by the topological property of >), and that there is no active
process in the same site with lower annotation (by the annotation respecting
property of >). Consequently, Lemma 5 applies, and the resulting state is also
reachable by Basic-P. ut
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Theorem 3 can also be restated in terms of allocation sequences. For every admis-
sible allocation string that arrives at a ϕa-state there is an admissible allocation
string that arrives at the same state and (1) contains no deallocations, and (2) all
the nodes occur according to some preference order. It follows from Theorem 3
that S(Basic-P) = S(ϕa), and hence, as depicted in Fig 7(b):

S(Basic-P) = S(Efficient-P) = . . . = S(k-Efficient-P) = . . . = S(Live-P).

6 Applications and Conclusions

We have generalized our earlier distributed deadlock avoidance algorithms by in-
troducing a family of protocols defined by strengthenings of the global invariant
ϕ. The most liberal protocol, Live-P, also ensures liveness, at the cost of main-
taining more complicated data-structures (which require a non-constant number
of operations per allocation request). The simplest protocol, Basic-P, can be
implemented with one operation per request, but allows less concurrency.

We have shown that all the reachable state spaces of the protocols are the
same. This result allows a system designer more freedom in the implementation
of a deadlock avoidance protocol, because it follows that every local protocol P
that satisfies the following conditions for every request is guaranteed to avoid
deadlock:

(1) if Basic-P is enabled then P is enabled, and
(2) if P is enabled then Live-P is enabled

This holds because all P -reachable states satisfy ϕ, and from those states Basic-

P guarantees deadlock freedom. Informally, (2) guarantees that the system stays
in a safe region, while (1) ensures that enough progress is made. This result
implies, for example, that the combination of different protocols at different
sites is safe. If a site has a constraint in memory or CPU time, then the simpler
Basic-P is preferable, while Live-P is a better choice if a site needs to maximize
concurrency.

This result also facilitates the analysis of alternative protocols. Proving a
protocol correct (deadlock freedom) can be a hard task if the protocol must deal
with scheduling, external environment conditions, etc. With the results presented
in this paper, to show that an allocation manager has no reachable deadlocks,
it is enough to map its reachable state space to an abstract system for which
all states guarantee ϕ, and all allocation decisions are at least as liberal as in
Basic-P. This technique is used in [5] to create an efficient distributed priority
inheritance mechanism where priorities are encoded as annotations, and priority
inheritance is performed by an annotation decrease. Although this “annotation
decrease” transition is not allowed by the protocols presented here, since the
resulting state is still a ϕ-state, it is also reachable by Basic-P (maybe using a
different sequence). Therefore, deadlocks are avoided.

Topics for further research include (1) the question whether Live-P is op-
timal, that is, does there exist a completely local protocol P that guarantees
deadlock avoidance such that Live-P @ P , and (2) the question whether k-
Efficient-P is optimal with O(k log Tr) storage space.
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