
The Reaction Algebra:

A Formal Language for Event Correlation⋆

César Sánchez1, Matteo Slanina2, Henny B. Sipma1, and Zohar Manna1

1 Computer Science Department, Stanford University, Stanford, CA 94305-9025
{cesar,sipma,zm}@CS.Stanford.EDU

2 Google Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043
mslanina@google.com⋆⋆

To Boaz, pioneer and visionary – in honor of your 85th birthday.

Abstract. Event-pattern reactive programs are small programs that
process an input stream of events to detect and act upon given tem-
poral patterns. These programs are used in distributed systems to notify
components when they must react.
We present the reaction algebra, a declarative language to define finite-
state reactions. We prove that the reaction algebra is complete in the fol-
lowing sense: every event-pattern reactive system that can be described
and implemented – in any formalism – using finite memory, can also be
described in the reaction algebra.

1 Introduction

Interactive computation [6] studies the interaction of computational devices,
including reactive and embedded systems, with their (not necessarily computa-
tional) environment. The most common approach to study interactive computa-
tion is based on machine models such as automata and Turing machines, enriched
with output. In this paper we offer a complementary perspective: the reaction
algebra, a declarative language to describe finite-state reactions. Its relationship
to the machine models is similar to the relationship of regular expressions to
language acceptors.

The practical motivation for a formalization of event-pattern reactive pro-
grams is to offer developers of distributed reactive systems a declarative way
to describe temporal reaction patterns that is both formal and practical. The
advantage of this design approach is that the interaction between components
is made explicit and separate from the application code and can hence be an-
alyzed independently. In addition, the code for pattern detection and reaction
can be generated automatically from the event-pattern expressions and can be
optimized for different objectives, including minimum processing time per event
or smallest footprint.

⋆ This research was supported in part by NSF grants CCR-02-20134, CCR-02-09237,
CNS-0411363, CCF-0430102, and CSR- 0615449, and by NAVY/ONR contract
N00014-03-1-0939.

⋆⋆ Current affiliation. This work was done while at Stanford University.

2

Event-Patattern Reactive Programming. In recent years the publish/subs-
cribe architecture has become popular in the design of distributed reactive sys-
tems. In this architecture, components communicate with each other by events
via an event channel. Components publish events to the event channel that may
be of interest to other components. Components can also subscribe to the event
channel to express interest in receiving certain events. The objectives of the
publish/subscribe architecture are flexibility and scalability. Components are
loosely coupled and may be added and removed on the fly and activated only
when relevant events happen.

Most modern distributed systems are built on a middleware platform, a soft-
ware layer that hides the heterogeneity of the underlying hardware, offers a uni-
form interface to the application, and usually provides services that implement
common needs. Many middleware platforms provide an event channel that sup-
ports the publish/subscribe architecture. There are differences, however, in what
kind of subscriptions are supported. Most platforms, including Gryphon [1],
Ace-Tao [24], Siena [4], and Elvin [25], support simple “event filtering”: com-
ponents can subscribe with a list of event types and the event channel notifies
the component each time an event of one of those types is published. A slightly
more expressive mechanism is “event content filtering”, in which components in
their subscriptions can specify predicates over the data included in the event.
Notification, however, is still based on the properties of single events.

A more sophisticated subscription mechanism is “event correlation”, which
allows subscriptions in the form of temporal patterns. A component is noti-
fied only when a sequence of events that satisfies one of the patterns has been
published. An implementation of this mechanism must maintain state: it may
have to remember events it observed and may even have to store events that
may have to be delivered to a component at a later stage. Event correlation is
attractive because it separates the interaction logic from the application code
and reduces the number of unnecessary notifications. Separation of the interac-
tion logic increases analyzability. It also allows reuse of pattern detection code,
thereby simplifying the development of applications. However, providing event
correlation as a service requires that it have an intuitive, easy to use description
language with a well-defined semantics. The reaction algebra, presented in this
paper, aims to provide such a language.

Example 1. Fig. 1 shows an example of a small avionics system. It consists of
six components that all communicate with the event channel. The purpose of
the system is to control the cockpit’s display such that it shows relevant infor-
mation according to the current mode of operation, in this case tactical mode
and navigational mode. In tactical mode, the Tactical Steering (TS) component
collects data from the sensors and publishes events with tactical information to
be displayed; in navigational mode the Navigational Steering (NS) component
collects the data and performs the calculations. The mode of operation is set by
the pilot via the Pilot Control component, which publishes an event to the event
channel each time the mode is switched.

3

Navigation
Display

Navigation
Steering

Tactical
Steering

Middleware

GPS
Pilot

Control
Air Frame

(a) With no event correlation.

Navigation
Display

Navigation
Steering

Tactical
Steering

Middleware

GPS
Pilot

Control
Air Frame

EC

EC EC EC

(b) With event correlation.

Fig. 1: A simple avionics scenario

Without event correlation (Fig. 1(a)) all components receive all events that
are published, that is all components are activated by the event channel when
an event is published and their application code has to decide whether to react
to the event or discard it. This strategy is clearly inefficient. For example, both
the TS and NS component need to remember what is the current mode, or
alternatively perform superfluous calculations and publish events that will not
be used.

With event correlation (Fig.ure 1(b)) the TS component can subscribe with
the temporal pattern that specifies that it only wants to be activated when “an
event from GPS is received, after an event Mode=Navigation is received with
no event Mode=Tactical in between”, and similar for the NS component. In
this way neither the TS nor the NS component is activated unnecessarily and
no useless events are published. In addition the application code for the NS and
TS components is simpler because it does not have to decide whether to react
or not. ⊓⊔

Our first language for event correlation was ECL [21]. It was developed as
part of the DARPA PCES project, with implementations integrated in ACE-
TAO [24] and FACET [10], the underlying middleware platforms of the Boeing
Open Experimental Platform. Next, we proposed PAR [22], a simplified but
equally expressive version of ECL. With a formal semantics defined in the style of
Plotkin’s Structural Operational Semantics [18] in a coalgebraic framework [19],
PAR was more suitable for formal analysis. In this paper we further streamline
and simplify the presentation resulting in a new language called “the reaction
algebra”.

We prove that the reaction algebra is at least as expressive as finite-memory
machines, that is, that every event-pattern reactive mechanism that can be im-
plemented in finite memory, including Moore and Mealy machines [17, 15], can be
described by a reaction algebra program (a preliminary short version of the proof
appeared in [23]). This result parallels, in the domain of reactive behaviors, the
well-known equivalence between regular expressions and finite automata in the
field of formal languages [11, 14, 9] and has equally important implications. Our
result is technically more challenging, due to the more complex semantic domain
and the determinism of the language. The proof proceeds by constructing a set of

4

formulas, one for each state of the event-pattern machine, and then showing that
each formula and its corresponding state are bisimilar. Hence, by coinduction,
we can conclude that the observable behaviors are indistinguishable.

Related Work. The main difference between our reaction algebra and other
algebraic languages from concurrency theory like CCS [16], CSP [8] and process
algebras [2] is that our reaction algebra is a programming language, and therefore
it is deterministic, while every reasonable concurrency theory models nondeter-
minism. The reaction algebra resembles synchronous reactive languages such as
Esterel [3] sharing common features such as immediate reactivity and deter-
minism. There are also some significant differences, however. For instance, every
reaction algebra expression has a unique well-defined semantics, while this may
not be the case for some syntactically correct Esterel programs [26]. Moreover,
some correct Esterel programs can become incorrect when put in an enclosing
context, even if this context corresponds to correct programs on other instanti-
ations. In contrast, every reaction algebra context generates a uniquely defined
behavior when instantiated.

Paper Organization. The paper is organized as follows. Section 2 reviews the
coalgebraic framework that serves as the semantic domain. Section 3 introduces
the reaction algebra, its semantics and some examples of extensions of the basic
language. Section 4 shows that reaction algebra expressions can only define reg-
ular behaviors while Section 5 shows that they can define all regular behaviors.
Finally, Section 6 presents the conclusions.

2 Semantic Domain

Event-pattern reactive programs recognize temporal patterns in an input stream
of events and respond by generating output notifications. The reaction algebra
enables a declarative specification of these patterns.

2.1 Reactive Machines

We use reactive machines as our model of computation to define the semantics of
reaction algebra expressions. Reactive machines resemble finite-state automata:
they are state machines over a set of input events. Reactive machines describe
behaviors in terms of the output generated after each input event. In addition,
to enable compositional definition of languages, reactive machines are equipped
with a completion status function that affects reactions to future inputs.

Reactive machines satisfy the following conditions:

– Determinism and non-blocking: for every input prefix there is exactly one
instantaneous reaction;

– Causality: the current output can depend only on past inputs;

5

– Immediate reaction: outputs are generated synchronously with inputs;

Despite these restrictions reactive machines are sufficiently general to model a
wide range of reactive formalisms, including message passing systems and I/O
automata [13].

Inputs. We assume a set Σ of input events and a finite set Prop of predicates
over Σ, corresponding to elementary properties of individual events; that is, for
all p ∈ Prop, p ⊆ Σ. An element of B(Prop), the boolean algebra over Prop,
is called an observation. A valuation is an assignment of truth values to all
propositions in Prop, which is lifted to B(Prop) in the usual way.

An input event a satisfies an observation p ∈ B(Prop), written a � p, when-
ever p is true for all valuations that assign true to the elementary propositions
that contain a (i.e., valuations in which for all q ∈ Prop, if a ∈ q then q is
assigned true.) To simplify the presentation in this paper, we assume that Σ is
finite and that for every input event a there exists an observation pa in Prop.

Outputs. The output domain of a reactive machine, denoted by O, consists of sets
of symbols taken from a finite set Γ . The reason for having sets of symbols rather
than single symbols is that reaction algebra expressions can describe multiple
patterns to be detected in parallel, each with its own outputs. Outputs of an
expression, in that case, are the union of the outputs of the subexpressions. The
simplest output, or notification, is a singleton element from Γ . Absence of output
is represented by the empty set.

Completion Status. We define a completion domain C = {⊤, ι,⊥} containing
three completion statuses that intuitively indicate

– ⊤: success. The pattern has just been observed.
– ⊥: failure. The pattern cannot be observed in any stream that extends the

current prefix.
– ι: incomplete. More input is needed or the input event processed is not

relevant.

All event-pattern behaviors have the property that, once success or failure is
declared, any subsequent output will be empty and any completion status will
be incomplete.

We now define reactive machines formally:

Definition 1 (Reactive Machine). A reactive machine over input Σ and out-
put domain O is a tuple M = 〈Σ, M, o, α, ∂〉 consisting of a set M of states and
three functions defined on an input event and a state:
– o : Σ × M → O, an output function that returns an output notification,
– α : Σ×M → C, a completion function that returns a completion status, and
– ∂ : Σ × M → M , a derivative function that returns a next state.

A machine must satisfy the silent property: for every state m ∈ M and input
a ∈ Σ, if α(a, m) 6= ι then ∂(a, m) is silent. A set of states S is silent if, for
every state s ∈ S and input a, α(a, s) = ι, o(a, s) = ∅ and ∂(a, s) ∈ S. A state
is silent if it belongs to some silent set.

6

s1
a

c/⊥

s2
a

c/⊥

s3

b[A]

c/⊥

s0

Σ a a b a b b a b a c a a b . . .

O ∅ ∅ A ∅ ∅ ∅ ∅ A ∅ ∅ ∅ ∅ ∅ . . .

C ι ι ι ι ι ι ι ι ι ⊥ ι ι ι . . .

M s2 s3 s1 s2 s2 s2 s3 s1 s2 s0 s0 s0 s0 . . .

(a) Graphical representation (b) Sample run from initial state s1

Fig. 2: Example machine M with a sample evaluation for input “aababbabacaab . . .”

The silent property establishes that a terminated program (or pattern observed)
must not exhibit any subsequent behavior, that is, it must not contribute any
future outputs.

Notation. We will write oam, αam, and ∂am to stand for o(a, m), α(a, m), and
∂(a, m), respectively. Also, we extend the definitions of α, o, and ∂ to strings
of input symbols in the standard way, as αwav = αa∂wv, owav = oa∂wv, and
∂wav = ∂a∂wv. It is sometimes convenient to use a graphical representation of
machines. Nodes are labeled by states. Two nodes, labeled by states n, m ∈
M , are connected by an edge labeled by input event a whenever ∂an = m.
Completion status and outputs are also depicted on the edges, but only if αan 6= ι
and oan 6= ∅, respectively. Self-loops with labels ι and ∅ are not shown.

Example 2. Fig. 2(a) depicts a machine M. Node s0 is silent since all outgoing
edges are self-loops labeled ι and ∅. The only edge associated with nonempty
output connects s3 to s1, for which obs3 = A. Fig. 2(b) shows the run of M
for input aababbabacaabb . . . , starting from state s0; below each input symbol
appear the output, the completion status, and the next state. ⊓⊔

We use the notions of homomorphism and bisimulation to extract a unique
semantics for each state of every machine. Homomorphisms are functions that
preserve observable behavior and bisimulations capture whether two behaviors
are indistinguishable.

Definition 2 (Homomorphism). A machine homomorphism from M to M′

is a function f : M → M ′ such that, for all m ∈ M and a ∈ Σ:

oam = o′af(m),
αam = α′

af(m) and
f(∂am) = ∂′

af(m).

Definition 3 (Bisimulation). A bisimulation between machines M and M′

is a binary relation # such that for all m ∈ M , m′ ∈ M ′ and input symbol a:

if m#m′ then

oam = o′am′,

αam = α′
am′ and

∂am # ∂′
am′.

7

We say that two states m and m′ are bisimilar (and we write m ≈ m′) if there
is a bisimulation that relates them.

Example 3. One important instance of a reactive machine is the machine of all
behaviors, defined as B : 〈B, ∂B, αB, oB〉, where

– B is the set of all functions f from input prefixes Σ+ to O×C satisfying the
following silent condition. If f(w) = 〈o, c〉 for c 6= ι then f(wv) = 〈∅, ι〉 for
all input extensions v ∈ Σ+,

– ∂B
a f of f on input a is the function g such that g(w) = f(aw),

– oBa f is the first component of f(a), and
– αB

a f is the second component of f(a).

It is a routine exercise to check that B is well defined since the silent condition
for machines is implied by the silent condition imposed on the functions in the
set B. The elements of B are called “behaviors” or “reactions”. ⊓⊔

In [22] we showed that the definition of a reactive machine (Def. 1) captures a
category of coalgebras with a final object. Once Σ and O are fixed, the machine of
all behaviors is final among all machines, i.e., there is exactly one homomorphism
(usually denoted J·KM or simply J·K) from any machine M into B.

The finality of B serves two purposes. First, the formal semantics of a lan-
guage intended to describe event-pattern reactions can be defined by equipping
the set of all language expressions with appropriate functions α, o and ∂ (pro-
viding that they satisfying the silent condition). By defining these functions, the
set of all language expressions becomes a machine. Then, the semantics of an
expression ϕ is obtained by finality as its (unique) homomorphical image JϕK in
B. We call this the principle of definition by corecursion. Second, the finality of
B gives the following principle of proof by coinduction:

Theorem 1 (Coinduction). If two states m and s from arbitrary machines
are bisimilar (m ≈ s) then they define the same behavior (i.e., JmK = JsK).

In other words, bisimilarity captures whether two states react in the same way
when given the same stream of input symbols.

In Section 5 we use Theorem 1 to show that the behavior of every state of a
finite event-pattern machine can be described with a reaction algebra expression.

3 The Reaction Algebra

This section describes the language and semantics of the reaction algebra. We
first present in sections 3.1 and 3.2 the syntax and semantics of the basic con-
structs. These constructs are sufficient to express any behavior that can be rep-
resented by a finite reactive machine. In section 3.3 we extend the language with
additional constructs that do not increase the expressiveness of the language,
but are convenient to describe common patterns that occur in practice.

8

3.1 Syntax and Informal Semantics

Reaction algebra (RA) expressions are defined inductively according to the fol-
lowing syntax:

α ::= p
∣

∣ S

∣

∣ α | α
∣

∣ α ; α
∣

∣ R α
∣

∣ α ⊲ α
∣

∣ α
∣

∣ α⌈A⌉ .

The base case is the simple expression p that tests whether an input symbol sat-
isfies an observation p from B(Prop). It ranges over all observations. Compound
expressions are constructed with the operators selection (|), sequential composi-
tion (;), repetition (R), priority or otherwise operator (⊲), complementation (·),
and output operator (·⌈·⌉). The output A ranges over all output notifications.

Informal Semantics. A RA expression defines a reaction. The execution of a
RA expression consists of the processing of input events, one at a time, producing
a (possibly empty) output after each event is processed. Informally, the operators
behave as follows.

Simple Expression: The expression p declares success when an event is received
that matches the observation p; all other events are ignored. No output is gen-
erated.

Silent : The expression S does not generate any output and always declares
incomplete.

Selection: The expression x | y evaluates x and y in parallel, offering each the
same events, and generating as output the combination of the subexpressions’
outputs. Selection succeeds as soon as one of the branches succeeds and only
fails when both branches have failed.

Sequential : Sequential composition, x ; y, evaluates the first subexpression, and
upon successful completion starts the evaluation of the second. If one of them
fails, sequential immediately fails. The output generated is that of the currently
active subexpression.

Repetition: The expression R x starts by evaluating x, called the body. If the
evaluation of the body completes with success, it evaluates R x (called the contin-
uation) again. If the body fails, repetition declares failure. The output generated
is that of the body.

Otherwise: The expression x⊲y evaluates x and y in parallel. If x completes first
(or at the same time as y), the completion status of x ⊲ y is that of x. Otherwise
the completion status is that of y. The output generated is the combination of
the subexpressions’ outputs.

Negation: The expression x behaves as x except that it reverses success with
failure and vice-versa. The output generated is the output of the enclosing subex-
pression.

9

Output : The expression x⌈A⌉ evaluates x. Upon successful completion, the out-
put A is generated and combined with any output simultaneously generated by
x. The completion status of x⌈A⌉ is the same as that of x.

3.2 Formal Semantics

The formal semantics of RA expressions is defined by defining the functions αa,
oa and ∂a and applying the principle of corecursion, using the finality of the
reactive machine of all behaviors B.

The functions are defined inductively, by giving, for each of the operators,
the values of α, o, and ∂ on every input symbol, possibly based on the values
of the subexpressions. The definitions are presented as rules using the following
notation: x

a
 c stands for αax = c; x

a
→ y stands for ∂ax = y (with x

a
→ι y as

an abbreviation for both x
a
 ι and x

a
→ y); and x

a
⇒ o stands for oax = u.

Simple Expression: The rule (αEv1) captures that a simple expression p suc-
ceeds upon receiving an event that satisfies p; (αEv2) and (Ev) state that it
waits otherwise:

(αEv1) p
a
 ⊤ (if a � p)

(αEv2) p
a
 ι (if a 2 p) (Ev) p

a
→ p (if a 2 p)

(oEv) states that a simple expression does not generate any output:

(oEv) p
a
⇒ ∅

Silent : The rules for silent: (αSil), (oSil) and (Sil) establish that the expression
S does not generates any observable behavior:

(αSil) : S
a
 ι (oSil) : S

a
⇒ ∅ (Sil) : S

a
→ S

We introduce an extra rule that simplifies the definition of many others; it con-
strains the derivative of an expression that completes to be silent:

x
a

6 ι
(GlobalSil)

x
a
→ S

The rule (GlobalSil) guarantees that the derivative of an expression that de-
clares a non silent completion status is the silent expression S. This encompasses
the non-silent completion cases for the rest of the operators, and guarantees the
silent condition necessary to define a reactive machine.

10

Selection: The rules for the completion status of selection establish that x | y
succeeds if either x or y does, and fails only when both x and y fail.

x
a
 ⊤(αSel1)

x | y
a
 ⊤

y
a
 ⊤

x | y
a
 ⊤

x
a
 ⊥ y

a
 ⊥

(αSel2)
x | y

a
 ⊥

In every other case, the completion status is incomplete:

x
a
 ι y

a

6 ⊤
(αSel3)

x | y
a
 ι

x
a

6 ⊤ y
a
 ι

(αSel4)
x | y

a
 ι

The output is the combination of the outputs of x and y,

x
a
⇒ u1 y

a
⇒ u2

(oSel)
x | y

a
⇒ u1 ∪ u2

and the derivative of a selection is the selection of the derivatives,

x
a
→ι x′ y

a
→ι y′

(Sel1)
x | y

a
→ x′ | y′

unless one of them (not both) fail, in which case the derivative is the derivative
of the non-failing subexpression,

x
a
 ⊥ y

a
→ι y′

(Sel2)
x | y

a
→ y′

x
a
→ι x′ y

a
 ⊥

(Sel3)
x | y

a
→ x′

Sequential : Completion and output of a sequential composition are determined
by the first subexpression:

x
a

6 ⊥
(αSeq1)

x ; y
a
 ι

x
a
 ⊥(αSeq2)

x ; y
a
 ⊥

x
a
⇒ u(oSeq)

x ; y
a
⇒ u

The derivative of the sequential composition is given by the two rules:

x
a
→ι x′

(Seq1)
x ; y

a
→ x′ ; y

x
a
 ⊤(Seq2)

x ; y
a
→ y

Repeat : The rules for completion and output for repeat are:

x
a

6 ⊥
(αRep1)

R x
a
 ι

x
a
 ⊥(αRep2)

R x
a
 ⊥

x
a
⇒ u(oRep)

R x
a
⇒ u

The derivative rules state that either the repetition begins if the body succeeds
(Rep2), or that the body must be completed first (Rep1):

x
a
→ι x′

(Rep1)
R x

a
→ x′ ; R x

x
a
 ⊤(Rep2)

R x
a
→ R x

11

Otherwise: The completion rules for otherwise state that x ⊲ y succeeds or fails
whenever x does (αOw1) and in all other cases has the same completion status
as y (αOw2),

x
a
 c(αOw1) c 6= ι

x ⊲ y
a
 c

x
a
 ι y

a
 d

(αOw2)
x ⊲ y

a
 d

The outputs of x and y are combined,

x
a
⇒ u1 y

a
⇒ u2

(oOw)
x ⊲ y

a
⇒ u1 ∪ u2

and the derivative of x ⊲ y is the derivative of the subexpressions.

x
a
→ι x′ y

a
→ι y′

(Ow)
x ⊲ y

a
→ x′ ⊲ y′

Complementation: The completion rules state that success and failure are re-
versed:

x
a
 ⊤(αNeg1)

x
a
 ⊥

x
a
 ι(αNeg2)

x
a
 ι

x
a
 ⊥(αNeg3)

x
a
 ⊤

and the output and derivative rules reduce output and derivative to those of the
subexpression,

x
a
⇒ u(oNeg)

x
a
⇒ u

x
a
→ι x′

(Neg)
x

a
→ x′

Output : The completion and derivative rules state that x⌈A⌉ behaves as x

x
a
 c(αOut)

x⌈A⌉
a
 c

x
a
→ι x′

(Out)
x⌈A⌉

a
→ x′⌈A⌉

and the output rules state that x⌈A⌉ adds output A to the output of x if x
succeeds, and otherwise just produces the output of x,

x
a
⇒ u x

a

6 ⊤
(oOut1)

x⌈A⌉
a
⇒ u

x
a
⇒ u x

a
 ⊤(oOut2)

x⌈A⌉
a
⇒ u ∪ A

Example 4. The behavior of state s1 of machine M in Fig. 2 is described by the
expression R ((a ;a ; b⌈A⌉) ⊲ c). Alternatively, the same behavior is also described
by

(

R(a ; a ; b⌈A⌉)
)

⊲ c. These two expressions can be easily proven equivalent by
giving a bisimulation that relates them. ⊓⊔

The following theorem justifies the study of expressiveness up to bisimulation
in the reaction algebra:

Theorem 2 ([22]). Bisimilarity is a reaction algebra congruence. Bisimilarity
is the largest reaction algebra congruence that refines output equivalence.

12

3.3 Language Extensions

The operators given above are sufficient to describe any behavior that can be
represented by a finite reactive machine. For practical applications, however, it
is often convenient to have available additional operators that describe common
event-pattern behaviors. In this section we introduce some of these additional
operators. Several of these operators were specifically requested by Boeing sys-
tem developers to support the functionality of their Avionics platform. Some of
these operators were also included in ECL [21].

The operators presented below do not increase the expressiveness of the lan-
guage, that is, all of them can be defined in terms of the basic operators defined
before. For some of them we will still also give the rules for the ∂, α and o
functions, as these functions more directly describe behavior.

Immediate: The immediate occurrence of an observation p, written p! can be
defined in terms of basic operators as follows:

p!
def
= p ⊲ (¬p)

Upon the reception of an input event, it immediately terminates, either suc-
ceeding if the event satisfies p or failing otherwise. The immediate reaction is
useful to represent transitions in machines. It is easy to see that the elementary
observation (the primitive operator in the reaction algebra) can also be defined
in terms of immediate reaction, since:

p ≈ R (¬p)!

Two important particular observations are the false observation (satisfied by
no event) and the true observation (satisfied by every event). We use false to
represent the former, and true to represent the latter:

false
def
= false! true

def
= true!

Note that false fails immediately, while true succeeds immediately.

Positive and Negative: We define the positive and negative versions of an ex-
pression x as:

x+ def
= x | x x− def

= x+

An expression differs from its positive and negative versions only in the com-
pletion status (x+ cannot fail, x− cannot succeed), but not in the instant this
termination is produced or in the output generated. The positive and negative
operator are both idempotent, they cancel each other, and complementation
turns one into the other, as expressed by the following equivalences:

(x+)+ ≈ x+ (x+)− ≈ x− x+ ≈ x−

(x−)− ≈ x− (x−)+ ≈ x+ x− ≈ x+

13

More Loops : The repetition construct Rx terminates when x fails. An infinite
loop can thus be defined by applying R to the positive version of x:

L x
def
= R x+

Note that S ≈ L true and hence can be defined in terms of the other basic
constructs. S is the only basic operator that is redundant. We decided to keep S

in the set of basic operators for simplicity of the definitions.
Another repetition operator, called persist, is useful to represent repeated

attempts until success. It first evaluates the body: if the body finishes with
success, then persist also finishes with success; if the body fails then persist
restarts the evaluation. Where R x repeats the body while it succeeds, P x persists
while it fails.

The defining rules for P are:

x
a

6 ⊤
(αPer1)

P x
a
 ι

x
a
 ⊤(αPer2)

P x
a
 ⊤

x
a
⇒ u(oPer)

P x
a
⇒ u

The derivative rules determine that either the repetition begins if the body
succeeds (Per1), or that the body must be completed first (Per2):

x
a
→ι x′

(Per1)
P x

a
→ x′ ; P x

x
a
 ⊥(Per2)

P x
a
→ P x

The following equivalences show that persist is the dual of repetition:

P x ≈ R x R x ≈ P x

These duality laws could have been used as an alternative definition of P using
only repetition and negation. They also show that Theorem 2 still holds when
the basic algebra is enriched with persist.

Persist also provides a more intuitive definition of lazy observation in terms
of the immediate observation:

p ≈ P p!

Delays : Sometimes it is useful to delay the failing of one expression until some
other expression terminates. This can be accomplished with the waiting for con-
struct:

y W x
def
= y | x−

If expression y terminates with success, then y W x immediately succeeds. If, on
the other hand, y fails, then y W x waits for x to terminate and then fails.

Accumulation: A pattern commonly occurring in practice is a task that consists
of several subtasks executed in parallel that all must succeed before the main
task can proceed. This pattern can be described by the accumulation operator +:
it evaluates its subexpressions in parallel and succeeds when all subexpressions

14

have succeeded and fails as soon as one of them fails, as reflected by the following
rules for completion:

x
a
 ⊥(αAcc1)

x + y
a
 ⊥

y
a
 ⊥

x + y
a
 ⊥

x
a
 ⊤ y

a
 ⊤

(αAcc2)
x + y

a
 ⊤

In every other case, the completion status is incomplete:

x
a
 ι y

a

6 ⊥
(αAcc3)

x + y
a
 ι

x
a

6 ⊥ y
a
 ι

(αAcc4)
x + y

a
 ι

The output of an accumulation expression is the combination of outputs of its
subexpressions:

x
a
⇒ u1 y

a
⇒ u2

(oAcc)
x + y

a
⇒ u1 ∪ u2

The derivative of an accumulation expression is the accumulation of the deriva-
tives,

x
a
→ι x′ y

a
→ι y′

(Acc1)
x + y

a
→ x′ + y′

unless one of the subexpressions (but not both) succeeds, which case is captured
by rules (Acc2) and (Acc3):

x
a
 ⊤ y

a
→ι y′

(Acc2)
x + y

a
→ y′

x
a
→ι x′ y

a
 ⊤

(Acc3)
x + y

a
→ x′

Accumulation is the dual of selection, as shown by the following congruences:

x | y ≈ x + y, x + y ≈ x | y.

which could also have been used as an alternative definition of accumulation
from selection and negation.

Parallel : The parallel construct is the nonterminating version of accumulation.
It executes its subexpressions in parallel without ever terminating, even if all
subexpressions terminate

x ‖ y
def
= x+ + y+ + S

The accumulation and parallel operator were two of the operators included
in the language ECL [21], but as we show here, they are not necessary, as they
can be defined in terms of the basic operators.

15

Preemption: The construct x U y (read “try x unless y”) allows the occurrence of
one pattern (described by y) to preempt further execution of another expression
(x). Both expressions are evaluated in parallel. If y completes with success before
x then the whole expression fails. We say that y preempts x.

x
a
 ι y

a
 ⊤

(αTry2)
x U y

a
 ⊥

If x completes no later than y, the completion status is that of x, reflected in
the following rules:

x
a
 c(αTry1) c 6= ι

x U y
a
 c

x
a
 ι y

a

6 ⊤
(αTry3)

x U y
a
 ι

The output of the try-unless construct is the combination of outputs of the
subexpressions

x
a
⇒ u1 y

a
⇒ u2

(oTry)
x U y

a
⇒ u1 ∪ u2

The rules for the derivative are:

x
a
→ι x′ y

a
→ι y′

(Try1)
x U y

a
→ x′

U y′

x
a
→ι x′ y

a
 ⊥

(Try2)
x U y

a
→ x′

The try-unless can be defined in terms of previously defined operators, as shown
by the following congruence

x U y ≈ x ⊲ (y + S)

and hence its addition to the language does not increase the expressiveness of
the language.

Dual Output : A dual version of the output operator, that generates a notification
whenever an expression fails, can be defined by dualizing the rules (oOut1) and
(oOut2) above:

x
a
⇒ u x

a

6 ⊥
(oOutF1)

x⌊A⌋
a
⇒ u

x
a
⇒ u x

a
 ⊥(oOutF2)

x⌊A⌋
a
⇒ u ∪ A

The rules for completion status and derivative remain the same as for output:

x
a
 c(αOutF)

x⌊A⌋
a
 c

x
a
→ι x′

(Out)
x⌊A⌋

a
→ x′⌊A⌋

16

Duality laws : In the basic reaction algebra, as defined in Section 3.2, enriched
with accumulation, persist, and dual output, every expression is equivalent to
an expression in negation normal form, that is, an expression in which comple-
mentation is applied only to observations. The following congruences, if applied
as rewriting rules from left to right, provide a method to calculate the negation
normal form of a given reaction algebra expression:

x ≈ x

x | y ≈ x + y x + y ≈ x | y

x ⊲ y ≈ x ⊲ y

x⌈A⌉ ≈ x⌊A⌋ x⌊A⌋ ≈ x⌈A⌉

R x ≈ P x P x ≈ R x

If also the strict operator is included in the language, then complementation can
be removed completely, as shown by the following congruence:

p! ≈ (¬p)! (¬¬p) ≈ p

4 Regularity of the Reaction Algebra

A behavior is called regular if it can be described by a reactive machine with a
finite number of states. We show in this section that the reaction algebra can
only express regular behaviors.

Every expression can be decomposed according to its behavior in response
to individual observations. Given an expression x, the set of input symbols can
be partitioned according to their direct effect on the completion status of x:

S(x) = {a ∈ Σ | αa(x) = ⊤}

F (x) = {a ∈ Σ | αa(x) = ⊥}

I(x) = {a ∈ Σ | αa(x) = ι}

Also, the one-step reaction of expression x on input a can be defined as:

Stepa(x)
def
= pa!⌈oax⌉

Lemma 1 (Expansion). Every reaction algebra expression x is equivalent to
its expansion with respect to input symbols:

x ≈
(

∣

∣

a∈S(x)

Stepax
)

⊲
(

∣

∣

a∈I(x)

Stepax ; ∂ax
)

⊲
(

∣

∣

a∈F (x)

Stepax
)

.

Proof. Let ϕ(x) denote the expansion of expression x. The proof proceeds by
showing that the following relation is a bisimulation:

R = {〈x, ϕ(x)〉 | x ∈ RA} ∪ {〈x, x〉 | x ∈ RA} ∪ {〈x, S ⊲ x ⊲ S〉 | x ∈ RA}

17

For an arbitrary input symbol a and pair 〈x, ϕ(x)〉, both sides produce the same
output and completion status in all three possibilities: a ∈ S(x), a ∈ F (x) and
a ∈ I(x). In the case that a /∈ I(x), then ∂ax = S = ∂aϕ(x). In the other case,
a ∈ I(x), we have that

∂aϕ(x) = S ⊲ ∂ax ⊲ S

so 〈∂aϕ(x), ∂ax〉 is in R. Hence, R is a bisimulation. ⊓⊔

The fact that RA expressions can be described with finite memory is an easy
consequence of the Expansion Lemma and the following proposition.

Proposition 1. For every reaction algebra expression x, the set of derivatives

∆x
def
= {∂wx | for some input prefix w} is finite.

Proof. The proof proceeds by structural induction on expressions. Clearly, the
result holds for observations and the silent expression S since ∆p = {p, S} and
∆S = {S}. For selection the derivative is either silent, one of the subterms or
a selection of derivatives of the subterms, so the inductive hypothesis can be
applied. The same reasoning holds for ⊲, complementation, repeat and output.

⊓⊔

Theorem 3. Every reaction algebra expression is equivalent to a finite machine.

Proof. Given x we build a machine Mx : 〈∆x, α, o, ∂〉 by taking ∆x as the states.
For every state my corresponding to expression y ∈ ∆x, the functions are defined
as:

– α(my)(a) = α(y)(a),
– o(my)(a) = o(y)(a), and
– ∂(my)(a) = ∂(y)(a).

The binary relation {〈y, my〉 | for y ∈ ∆x} is a bisimulation which, for the par-
ticular case of the original expression x, shows that x is equivalent to the corre-
sponding state mx in Mx. ⊓⊔

5 Expressive Completeness

The converse of Theorem 3 also holds: every state of a finite reactive machine
can be described by a reaction algebra expression.

First, we observe that all silent states of a given machine are bisimilar. There-
fore, without loss of generality, we assume that the given finite machine has at
most one silent state.

We construct a set of reaction algebra expressions, each one capturing the
behavior of a state in the machine. The construction proceeds as follows. First,
the non-silent states are arbitrarily numbered from 1 to n. We will use vi to refer
to the state indexed i. The silent state, if it exists, receives index n + 1 and is
denoted by vshh . Then, we incrementally build a set of intermediate formulas
whose behavior simulates more and more accurately that of its corresponding
state for certain input strings. Finally, using the intermediate formulas we define
a set of expressions Φi, each one bisimilar to a state vi.

18

5.1 Intermediate Formulas

This stage of the construction runs for n rounds. At round k, we build a set
of formulas ϕk

ij , one for each pair of non-silent states vi and vj . The formula

ϕk
ij approximates the behavior on input prefixes that take from vi to vj of the

following form:

Definition 4 (Direct Path). A non-empty input string w is a direct path from
state v1 to state v2 if ∂wv1 = v2 and, for all proper prefixes u of w, ∂uv1 6= v2.

Direct paths correspond to paths in the graph of the machine that visit the
destination node exactly once, at the end of the traverse. The expression ϕk

ij

captures the behavior of state vi for direct paths that lead to vj visiting only
states labeled k or less along the way. Upon reaching vj , ϕk

ij completes with suc-
cess, it fails if a state of index larger than k is reached, and it declares incomplete
otherwise. Formally, we classify the set of symbols according to formula ϕk

ij as
follows:

Definition 5. Given an index k and nodes vi and vj, we partition Σ into:

– Successful symbols (Sk
ij): symbols a for which ∂avi = vj.

– Incomplete symbols (Ik
ij): symbols a for which ∂avi = vl, for l 6= j and l ≤ k.

– Failing symbols (F k
ij): symbols a for which ∂avi = vl, for l 6= j and l > k.

Incomplete symbols could, in principle, be extended to direct paths from vi to
vj (at least no violation of the restriction to visit states labeled k or less has
occurred so far). Failing symbols can never be extended to such a path, since a
state labeled greater than k (and different from j) is visited.

The correctness of the construction relies on all formulas ϕk
ij satisfying the

following property, as we will prove at every stage:

Property 1. Let a be an input symbol, and ∂avi = vm the corresponding deriva-
tive (successor state of vi in the machine):

1.1 if a is an incomplete symbol: αaϕk
ij = ι oaϕk

ij = oavi ∂aϕk
ij ≈ ϕk

mj ,

1.2 if a is a successful symbol: αaϕk
ij = ⊤ oaϕk

ij = oavi ∂aϕk
ij = S,

1.3 if a is a failing symbol: αaϕk
ij = ⊥ oaϕk

ij = ∅ ∂aϕk
ij = S.

Properties 1.1 and 1.2 guarantee that ϕk
ij generates the same output as the state

vi for all words in any direct path to vj that only visit states labeled k or less.
Notice that ϕk

ij can disagree with state vi for failing symbols since, in this case,
the output of the formula is empty and the output of the state need not be.
These properties also establish that the completion status of the formula ϕk

ij

is success for successful symbols, fail for failing symbols and incomplete for all
others. Again, in the case of successful and failing symbols the completion be-
havior can differ from vi. Consider, for example, a successful symbol, for which
the completion of ϕk

ij is ⊤. The corresponding derivative in the machine directly
connects vi to vj and, since vj is not the silent state, the completion status is

19

ι. These discrepancies are reduced during the construction as k grows. Eventu-
ally, when k = n, we have Fn

ij = ∅ and the only discrepancies left are in the
completion status.
We now define the formulas ϕk

ij inductively:

Base case (k = 0): Let vi and vj be two states:

ϕ0
ij

def
=

∣

∣

vi

a/ι⌈A⌉
−−−−→vj

pa!⌈A⌉.

Given an input symbol a, ϕ0
ij either immediately succeeds or immediately

fails; it succeeds if ∂avi = vj and fails otherwise. In particular, if there is no
input symbol connecting vi to vj , then ϕ0

ij is equivalent to false.

Example 5. For machine M in Fig. 2(a), where we number states s1 as 1, s2 as
2 and s3 as 3, we obtain:

ϕ0
12 = pa!, ϕ0

31 = pb!⌈A⌉, ϕ0
13 = false and ϕ0

22 = pb!

Lemma 2. All formulas ϕ0
ij satisfy Property 1.

Proof. First, Property 1.1 holds vacuously since there are no incomplete symbols
in the base case: every given symbol is either successful of failing. If a is a
successful symbol, by definition of pa!, ϕ0

ij succeeds, and its output coincides
with that of state vi. If, on the other hand, a is a failing symbol, then every
branch of the selection fails. Consequently, the completion status of ϕ0

ij is ⊥ and
the output is empty. ⊓⊔

Inductive step (k > 0): We assume that we have defined all the formulas ϕk−1
ij

satisfying Property 1, and proceed to define ϕk
ij . First, the particular case where

indices j and k are equal is easy: ϕk
ik

def
= ϕk−1

ik .
For the following we assume k 6= j. There are two kinds of direct paths from

vi to vj : those that visit vk and those that do not. We first consider paths that
visit state vk. These paths may loop around vk (zero, one, or more times), and
either keep looping forever or eventually enter a path that visits vj .

To define a formula that captures this case we make use of ϕk−1
ik , ϕk−1

kk and

ϕk−1
kj , previously defined. Note that the formula ϕk−1

kj must be restarted precisely

after ϕk−1
kk succeeds. This can be achieved with (ϕk−1

kk ∗ ϕk−1
kj) using the new

binary operator ∗ defined as follows:

x ∗ y
def
=

(

P (y W x)
)

⊲ R x.

The ∗ operator is designed to work for sub-formulas such that, for every
input, y completes no later than x. This is actually our case: if ϕk−1

kk completes,

then the reached state is indexed k or greater. Consequently, if ϕk−1
kj has not

completed yet, it has to do so at exactly that instant.
Informally, ∗ works as follows. For every input, the output is the combination

of that of the subexpressions. For completion, consider all possible cases:

20

vi

ϕk−1

ik

ϕk−1

ij

vk

ϕ
k−1

kj

ϕk−1

kk

vj

Fig. 3: Direct paths from vi to vj , using only nodes indexed k or less classified according
to whether vk is visited. Dotted arrows distinguish paths from edges

1. y succeeds: regardless of what x does, y W x immediately succeeds, and
consequently so does the persist term

(

P (y W x)
)

. Therefore, x ∗ y also
succeeds.

2. y fails: then, y W x waits for x to complete (which can happen at the same
time or later). At the point of completion of x, independently of the comple-
tion status of x, y W x fails, and then the persist subexpression restarts. To
see what happens with the right branch of ⊲, we consider the possible values
of x upon completion:
– x succeeds: R x is restarted, at the same time as the persist branch. In

other words, the whole formula is restarted at this point. This behavior
is used to model a loop around state vk.

– x fails: then R x fails, which makes the whole expression fail.

Now, using ∗, we are ready to define the formula that captures the behavior
of node vi for direct paths to vj that visit vk:

Kleenek
ij

def
=

ϕk−1
ik ; (ϕk−1

kk ∗ ϕk−1
kj) if i 6= k

ϕk−1
kk ∗ ϕk−1

kj otherwise

Finally, to complete the definition of ϕk
ij we also have to consider the paths that

do not visit vk, captured directly by ϕk−1
ij , and compose these two cases:

ϕk
ij

def
= ϕk−1

ij | Kleenek
ij .

Lemma 3. For all nodes vi, vj and index k, ϕk
ij satisfies Property 1.

Proof. We proceed by induction on k, with the base case already proved in
Lemma 2. For the inductive step we considered the cases for an input symbol a
separately:

1. Let a be a successful symbol (a ∈ Sk
ij). Then, ∂avi = vj , so a is also a

successful symbol for ϕk−1
ij . Hence, αaϕk−1

ij = ⊤ and therefore αaϕk
ij = ⊤ and

∂aϕk
ij = S. Moreover, by inductive hypothesis oaϕk−1

ij = oavi so oaϕk
ij = oavi.

Hence, Property 1.2 holds.

21

2. Let a be a failing symbol (a ∈ F k
ij). Similar.

3. Let a be an incomplete symbol (a ∈ Ik
ij). We consider two cases:

(a) vi
a
−→ vk. In this case a is in Sk−1

ik and also in F k−1
ij . Consequently,

αaϕk
ij = αa(Kleenek

ij) = ι, and oaϕk
ij = oa(Kleenek

ij) = oavi,

by inductive hypothesis. Finally, ∂aϕk
ij = ∂aKleenek

ij . Now, it follows
from properties of ∗:

∂aKleenek
ij = (ϕk−1

kk ∗ ϕk−1
kj) = Kleenek

kj = ϕk
kj .

Then Property 1.1 holds.
(b) vi

a
−→ vl with l < k. Then, a is also an incomplete symbol for ϕk−1

ij .

Consequently, by inductive hypothesis αaϕk−1
ij = ι and αa(Kleenek

ij) = ι,

and we can conclude that αaϕk
ij = ι. Second, oaϕk

ij = oaϕk−1
ij = oavi.

Finally, if i 6= k, then

∂aϕk
ij = ∂aϕk−1

ij | ∂aKleenek
ij

= ϕk−1
lj | (ϕk−1

lk ; Kleenek
kj) ≈ ϕk

lj .

On the other hand, if i = k we make use of the following property of
Kleene:

Kleenek
kj ≈ ϕk−1

kj | (ϕk−1
kk ; Kleenek

kj),

to conclude that

∂aϕk
ij ≈ ϕk−1

lj | (ϕk−1
lk ; Kleenek

kj) ≈ ϕk
lj .

Then, Property 1.1 also holds. ⊓⊔

5.2 Final Formulas

Using the formulas ϕn
ij obtained in the last step of the previous stage, we now

define formulas Φi, one for each non-silent state vi. The behavior of the silent
state vshh , if present, is modeled by the formula S.

First, we need to define variations of the Kleene formula to cover the cases
of succeeding and failing transitions in the machine. For each state vi:

Kleene⊤
i

def
= ϕn

ii ∗
(∣

∣

vi

a/⊤⌈A⌉
−−−−−→vshh

pa!⌈A⌉
)

Kleene⊥
i

def
= ϕn

ii ∗
(∣

∣

vi

a/⊥⌈A⌉
−−−−−→vshh

pa!⌈A⌉
)

The formula Kleene⊤
i captures the behaviors of state vi for input strings that

either loop forever around vi, or eventually succeed directly from vi. The formula
Kleene⊥

i works similarly except that it captures behaviors that fail directly from
vi. Note that Kleene⊥

i succeeds (instead of failing).
Finally, the behavior of vi is defined by composing all possible paths:

Φi
def
=

(

Kleene⊤
i |

∣

∣

j

(

ϕn
ij ; Kleene⊤

j

)

)

⊲ Kleene⊥
i |

∣

∣

j

(

ϕn
ij ; Kleene⊥

j

)

22

5.3 Proof of Correctness

The correctness of the construction relies on the following lemma:

Lemma 4. For all states vi and input symbols a,

(1) αaΦi = αavi and oaΦi = oavi.
(2) If αavi is incomplete and ∂avi = vl then ∂aΦi ≈ Φl.

Proof. (1) We proceed by cases:

1. If vi
a/ι⌈A⌉
−−−−→ vl, then all the direct branches in Kleene⊤

i and Kleene⊥
i are

not satisfied. Therefore oaΦi = ∪joaϕn
ij = ∪oavi = oavi. Moreover, all select

branches of both sides of ⊲ are incomplete, so αaΦi = ι = αavi.

2. If vi
a/⊤⌈A⌉
−−−−−→ vshh , then oaϕn

ij = ∅, and oaKleene⊤
i = oavi so oaΦi = oavi.

Also, αaKleene⊤
i = αaΦi = ⊥ = αavi.

3. The case vi
a/⊥⌈A⌉
−−−−−→ vshh is handled similarly, except that in this case the

Kleene⊥
i succeeds, so αaΦi = ⊥ = αavi.

(2) For all branches with j 6= l, ∂aϕn
ij ≈ ϕn

lj , and then ∂a(ϕn
ij ; Kleene⊤

j) ≈

(ϕn
lj ; Kleene⊤

j). On the other hand, for j = l, since αaϕn
il = ⊤, we have ∂a(ϕn

il ;

Kleene⊤
j) = Kleene⊤

l . Finally, ∂aKleene⊤
i ≈ (ϕn

li ; Kleene⊤
i). This holds since all

| branches inside Kleene⊤
i fail. Hence,

∂aΦi ≈

ϕn
li ; Kleene⊤

i | Kleene⊤
l |

∣

∣

j 6=l
ϕn

lj ; Kleene⊤
j

⊲

ϕn
li ; Kleene⊥

i | Kleene⊥
l |

∣

∣

j 6=l
ϕn

lj ; Kleene⊥
j

≈

Kleene⊤
l |

∣

∣

j
ϕn

lj ; Kleene⊤
j

⊲

Kleene⊥
l |

∣

∣

j
ϕn

lj ; Kleene⊥
j

= Φl

The reordering of terms in the last step was possible by the commutativity and
associativity of the | operator. ⊓⊔

Theorem 4. Every final formula Φi is bisimilar to its corresponding state vi.

This is a direct consequence of Lemma 4 and implies that the behavior of
state vi is captured precisely by formula Φi. Therefore, every finite graph can be
expressed by a reaction algebra expression.

23

6 Conclusions

We have introduced the reaction algebra as a formal language for interactive
computation. While most models of interactive computation start from machine-
based formalisms that are “interactive Turing-complete” the reaction algebra is
a simple and tractable language that can be enriched to describe more com-
plex behaviors. Our approach can also be interpreted as complementary to most
formalisms for the design of reactive systems, like Statecharts [7], which are usu-
ally based on machine models. Even though we use machines for the description
of the semantics, the main emphasis of our work relies on the study of simple
languages to express reactions, and their properties.

The purpose of the reaction algebra is analogous to the role of regular ex-
pressions in language acceptors. Where regular expressions aim at easily defining
regular sets, the reaction algebra can easily define reactions that can be efficiently
implemented. Even though for some expressions the smallest finite machine has
exponential size, every reaction algebra expression can be evaluated using stor-
age space O(n), performing at most n number of elementary operations per input
event. Reaction algebras have been used in practice as an event-pattern reactive
programming language; we show in this paper how to extend the basic reaction
algebra with new operators.

We have shown that every reactive behavior that can be described and imple-
mented with finite memory can be expressed in RA with a basic set of operators.
In addition to its theoretical value, this result has also has practical applications,
for example, in the development of compilers and analysis tools. Compilers only
need to support the minimal set of constructs, while additional constructs can
be reduced to this set by a preprocessor. Similarly, analysis methods need to
cover only the basic constructs.

Future work includes: (1) Study whether, unlike regular-expressions (see [5,
20, 12]), there are equational axiomatizations of the reaction algebra. (2) Con-
struct decision procedures for the problem of equational reasoning of parame-
terized RA expressions, and for the full first-order case. Efficient solutions will
allow the synthesis of reaction algebra expressions and the implementation of
behavior-preserving optimizations. (3) Go beyond the finite state case by equip-
ping the reaction algebra with capabilities to store and manipulate data, and
study to what extent the expressive power is still complete in some suitable
sense, and to what extent the analysis problems are still tractable.

References

1. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Match-
ing events in a content-based subscription system. In Symposium on Principles of
Distributed Computing, pages 53–61, 1999.

2. J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University Press,
1990.

3. G. Berry. Proof, language, and interaction: essays in honour of Robin Milner,
chapter The foundations of Esterel, pages 425–454. MIT Press, 2000.

24

4. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, Aug. 2001.

5. J. H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.
6. D. Goldin, S. A. Smolka, and P. Wegner, editors. Interactive Computation: the

New Paradigm. Springer, 2006.
7. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-

puter Programming, 8(3):231–274, June 1987.
8. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
9. J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages and

computation. Addison-Wesley, 1979.
10. F. Hunleth, R. Cytron, and C. D. Gill. Building customizable middleware using

aspect oriented programming. In Works. on Advanced Separation of Concerns
(OOPSLA’01), 2001.

11. S. C. Kleene. Representation of events in nerve nets and finite automata. In C. E.
Shannon and J. McCarthy, editors, Automata Studies, volume 34, pages 3–41.
Princeton University Press, Princeton, New Jersey, 1956.

12. D. Kozen. A completeness theorem for kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366–390, May 1994.

13. N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-
Quarterly, 2(3), 1989.

14. R. F. McNaughton and H. Yamada. Regular expressions and state graphs for
automata. IEEE Transactions on Electronic Computers, 9:39–47, 1960.

15. G. H. Mealy. A method for synthesizing sequential circuits. Bell Systems Technical
Journal, 34(5):1045–1079, 1955.

16. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
17. E. F. Moore. Gedanken-Experiments on sequential machines. In Automata Studies,

pages 129–153, 1956.
18. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report

DAIMI FN-19, University of Aarhus, 1981.
19. J. J. Rutten. Automata and coinduction (an exercise in coalgebra). In CONCUR,

1998.
20. A. Salomaa. Two complete axiom systems for the algebra of regular events. Journal

of the ACM, 13(1):158–169, January 1966.
21. C. Sánchez, S. Sankaranarayanan, H. B. Sipma, T. Zhang, D. Dill, and Z. Manna.

Event correlation: Language and semantics. In R. Alur and I. Lee, editors, EM-
SOFT 2003, volume 2855 of LNCS, pages 323–339. Spring-Verlag, 2003.

22. C. Sánchez, H. B. Sipma, M. Slanina, and Z. Manna. Final semantics for Event-
Pattern Reactive Programs. In 1st Int’l Conf. in Algebra and Coalgebra in Com-
puter Science (CALCO’05), volume 3629 of LNCS, pages 364–378. Springer, 2005.

23. C. Sánchez, M. Slanina, H. B. Sipma, and Z. Manna. Expressive completeness of
an event-pattern reactive programming language. In FORTE’05, volume 3731 of
LNCS, pages 529–532. Springer, 2005.

24. D. Schmidt, D. Levine, and T. Harrison. The design and performance of a real-time
CORBA object event service. In Proc. of OOPSLA’97, 1997.

25. B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notifica-
tion service with quenching. In Queensland AUUG Summer Technical Conference,
Brisbane, Australia, 1997.

26. O. Tardieu. A deterministic logical semantics for Esterel. In Workshop on Struc-
tural Operational Semantics, SOS ’04, 2004.

