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Abstract—We study efficient translations of Regular Linear
Temporal Logic (RLTL) into automata on infinite words. RLTL
is a temporal logic that fuses Linear Temporal Logic (LTL)
with regular expressions, extending its expressive power to all
ω-regular languages.

The first contribution of this paper is a novel bottom up
translation from RLTL into alternating parity automata of
linear size that requires only colors 0, 1 and 2. Moreover, the
resulting automata enjoy the stratified internal structure of
hesitant automata. Our translation is defined inductively for
every operator, and does not require an upfront transformation
of the expression into a normal form. Our construction builds
at every step two automata: one equivalent to the formula
and another to its complement. Inspired by this construction,
our second contribution is to extend RLTL with new operators,
including universal sequential composition, that enrich the logic
with duality laws and negation normal forms.

The third contribution is a ranking translation of the
resulting alternating automata into non-deterministic Büchi
automata. To provide this efficient translation we introduce
the notion of stratified rankings, and show how the translation
is optimal for the LTL fragment of the logic.

Keywords-temporal logic; formal verification; formal meth-
ods;

I. INTRODUCTION

We study the problem of formal temporal verification of
reactive systems, which starts from a specification of the
intended behavior in some temporal logic. In this paper we
study the logic RLTL [1], [2] that extends LTL [3], [4] with
regular expressions.

The automata-theoretic approach to model checking re-
duces this verification problem to automata constructions
and automata decision problems. The verification process
begins by translating the negation of the formula into an
equivalent automaton on infinite words. This automaton
accepts all the traces that violate the specification. Then,
the automaton is composed synchronously with the system
description. Finally, a non-emptiness check reveals whether
the system admits some counterexample trace.

Modernly, specifications are translated into alternating
automata because their richer structure enables a direct
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translation from temporal logics, postponing a potentially
exponential blow-up. Another advantage of alternation is the
easy dualization (see Muller and Schupp [5]) provided by
the availability of both conjunctive and disjunctive transition
relations. However, to obtain an automaton accepting the
complement language of a given automaton, one also needs
to complement the acceptance condition (see for example
[6]). For LTL one can first translate a formula (e.g., the
negation of the specification) into negation normal form
(NNF) by pushing negation to the propositional level, and
then use automata with weak acceptance conditions [7],
[8], in which the structured of the automaton consists of
strongly connected components (SCC) all of which are
either accepting or rejecting. Extensions of LTL with regular
expression, like RLTL, do not have negation normal forms.
Hence, a translation of the logical negation operator must
be given, precluding the use of weak acceptance conditions.

In this paper we show how to translate RLTL into strong
parity automata on words (APW) with a particular internal
structure, and study the complementation construction for
the resulting APW. The classical complementation for the
parity condition increments in one unit the color assigned
to every state, turning an arbitrary sequence of states from
accepting into rejecting (and viceversa). However, if this
construction is used to translate the logical negation operator,
the total number of colors in the resulting automaton can
grow linearly in the size of the formula. The best known
algorithm [9] for translating an APW with n states and k
colors into a non-deterministic Büchi automaton requires
2O(nk log nk). In this work, we use a faster complementation
construction based on the following intuition. Traces of runs
of the automaton get trapped in an SCC, meaning that all
states in a suffix of a given trace belong to some SCC
of the automaton. Hence, it is sufficient for a complemen-
tation construction to consider SCCs independently. This
idea enables a translation of RLTL (including the negation
operator) into APW using only colors 0, 1 and 2. These
automata are equivalent to alternating Streett automata on
words (ASW) with one accepting pair (denoted ASW{1}).
The translation proceeds inductively, building at each step
a pair of complement automata. Then, inspired by this
translation we enrich RLTL with new constructs, including
universal sequential composition. The enriched logic admits



a negation normal form.
Finally, we study the translation into non-deterministic

Büchi automata (NBW). Streett{1} rankings (see [10])
directly allow to translate an ASW{1} into an NBW of
size 2O(n logn). Here, we use again the particular stratified
structure of the ASW{1} automata obtained from RLTL
expressions. Each stratum in the generated ASW{1} is either
Büchi (only colors 1 and 2) or coBüchi (colors 0 and
1), making these automata equivalent to hesitant automata
AHW (see [11]). We introduce a notion of stratified ranking
and show that for all RLTL operators (except one), the
ranking of each state can be statically predetermined. This
result produces NBW with size 2O(n logm) where m is the
size of the largest stratum that cannot be predetermined. In
particular, all LTL operators generate strata of size 1, which
result into NBW of size 2O(n) when using our method to
translate LTL into NBW.

The rest of the of paper is structured as follows. Section II
presents the preliminaries, and Section III introduces RLTL.
Section IV shows the translation from RLTL into stratified
ASW{1}, and Section V the translation into NBW, including
stratified rankings. Section VI shows our empirical study.
Finally, Section VII concludes.

II. PRELIMINARIES

We use B+(X ) for the positive Boolean formulas over a
set of propositions X . These formulas are built from true,
false and elements of X , using ∧ and ∨. A minimal model
M of a positive Boolean formula θ is a subset of X such
that M satisfies θ but no strict subset of M satisfies θ. For
example, given the set Q = {q0, q1, q2, q3}, the formula
θ1 = (q1 ∧ q2) ∨ q3 is a B+(Q) formula. The minimal
models of θ1 are {q1, q2} and {q3}. Given a positive Boolean
formula θ there is a dual formula θ̃ obtained by switching
∧ and ∨, and switching true and false. For example, the
dual of θ1 above is θ̃1 = (q1 ∨ q2) ∧ q3, or equivalently in
disjunctive normal form θ̃1 = (q1 ∧ q3) ∨ (q2 ∧ q3). The
minimal models of θ̃1 are {q1, q3} and {q2, q3}.

An alternating automaton is a tuple A : 〈Σ, Q, δ, I, F 〉
where Σ is a propositional alphabet, Q is a finite set of states,
δ : Q× Σ→ B+(Q) is the transition function, I ∈ B+(Q)
is the initial condition, and F is the acceptance condition.
A frame of an automaton A is the tuple 〈Σ, Q, δ, I〉. A
frame is called non-deterministic whenever I , and δ(q, a)
for all states q and symbols a, have singleton sets as
minimal models. In other words, I and δ(q, a) are equivalent
to disjunctive formulas. A frame is called universal if I ,
and δ(q, a) for all states q and symbols a, have a unique
minimal model. In other words, I and δ(q, a) are equivalent
to conjunctive formulas. A frame is deterministic if it is
both non-deterministic and universal, that is if both the
initial condition and transition functions correspond to true,
false or a single successor state. In general a frame is
neither universal nor non-deterministic, but fully alternating.

A transition function δ can be extended to positive Boolean
formulas δ : B+(Q)×Σ→ B+(Q) in the standard way, tak-
ing δ(q, a) as the base case and letting δ(true, a) = true,
δ(false, a) = false, δ(A ∨ B, a) = δ(A, a) ∨ δ(B, a) and
δ(A ∧ B, a) = δ(A, a) ∧ δ(B, a).

Given a word w ∈ Σω , a run of w on a frame F :
〈Σ, Q, δ, I〉 is a DAG (V,E) with nodes V ⊆ Q× N, s.t.:

1) The set {m | (m, 0) ∈ V } is a minimal model for I .
2) ∀(q, k) ∈ V , {q′ | (q′, k + 1) ∈ V ∧ ((q, k), (q′, k +

1)) ∈ E} is a minimal model for δ(q, w[k]).
A trace of a run is an infinite path in the run, or a finite
path finishing in an state with no successor in the run. A
non-deterministic frame may admit multiple different runs
for a given word, but each run contains a unique trace. A
universal frame admits just one run for each word, but this
run may contain multiple traces. In general a frame admits
multiple runs each with multiple traces.

Given a frame F : 〈Σ, Q, δ, I〉, the specular frame is
F̃ : 〈Σ, Q, δ̃, Ĩ〉, where Ĩ is the dual of I and δ̃ is the dual
transition function: δ̃(q, a) is the dual formula of δ(q, a) for
all states q and symbols a. The graph of a frame has Q
as a set of nodes and contains an edge p → q whenever q
is in some minimal model of δ(p, a) for some symbol a.
The graphs of a frame and its specular frame are identical,
because if q is in some minimal model of δ(p, a) then q is
also in some minimal model of δ̃(p, a). Therefore, a frame
admits a trace iff its specular frame also admits the trace.

An automaton equips a frame with an acceptance condi-
tion, which determines whether an infinite sequence of states
is accepting. A finite trace finishing in a state (q, i) with no
successor is accepting. Given an infinite sequence of states
π : q0, q1, q2 . . . we let inf(π) be those states from Q that
occur infinitely many times in π. In this paper we consider
the following acceptance conditions:
• Büchi: F ⊆ Q. π is accepting when inf(π) ∩ F 6= ∅.
• coBüchi: F ⊆ Q. π is accepting when inf(π) ∩ F = ∅.
• parity: F : Q → {0 . . . d}. π is accepting when

max{F (q) | q ∈ inf(π)} is even. The elements of
{0 . . . d} are called colors.

• Streett: F = {〈B1, G1〉, 〈B2, G2〉, . . . , 〈Bk, Gk〉}. π is
accepting when for all 1 ≤ i ≤ k, if inf(π) ∩ Bi 6= ∅
then inf(π) ∩Gi 6= ∅.

• Streett{1}: F = (B,G). π is accepting when if inf(π)∩
B 6= ∅ then inf(π) ∩G 6= ∅.

• hesitant: F ⊆ Q, and H = 〈(S0 . . . , Sk), <, α〉 is a
partition of Q induced by the SCCs, ordered by <
according to reachability in the automaton graph, and
α marks each partition as either Büchi or coBüchi. A
trace π is accepting when
– inf(π) ⊆ Si, Si is Büchi and inf(π) ∩ F 6= ∅, or
– inf(π) ⊆ Sj , Sj is coBüchi and inf(π) ∩ F = ∅.
Observation: A parity acceptance condition with colors

{0, 1, 2} corresponds to the Streett condition (B,G) with
B = {q | F (q) = 1} and G = {q | F (q) = 2}. The Streett



pair (B,G) forces (for a trace to be accepting) that if some
state marked 1 is visited infinitely often, then some state
marked 2 is also visited infinitely often. The other possible
case is that only states that are not marked either B or G
states are visited infinitely often. In this case, the trace is
also good for the parity automaton.

We use stratum to refer to an SCC of an automaton
graph. The stratification of hesitant automata given by the
partition implies that every infinite trace gets trapped in a
stratum Si. Then, the Büchi or coBüchi condition on the
stratum determines whether the trace is accepting. We use
ABW (resp. AcBW, APW, ASW and AHW) to represent
Büchi (resp. coBüchi, parity, Streett and hesitant) alternating
automata on words. We use APW{0, 1, 2} for APW that only
use colors 0, 1 and 2 and ASW{1} for ASW with only one
pair.

When a trace π is accepted according to an acceptance
condition F , we write π ∈ acc(F ). A run of an alternating
automaton is called accepting whenever all its traces are
accepting. We say that a word w is in the language of
automaton A, and we write w ∈ L(A), whenever there is
an accepting run for w on A.

The following definition and theorem relate the notions
of specular pairs and complement languages.

Definition 1 Two automata A and B over the same alpha-
bet are a specular pair whenever their frames are specular
and for all paths π in the frame graph π ∈ acc(FA) if and
only if π /∈ acc(FB).

Theorem 2 (Specular Automata and Complement)
Let A and B be a specular pair of automata. Then
L(A) = Σω \ L(B).

Theorem 2 reduces the proof that two automata with dual
frames are complements to checking that the traces that can
happen have opposite acceptance. In the next section, we
use this result to build an incremental translation, in which
we only need to check the new traces added at each step.

III. THE LOGIC RLTL

Regular Linear Temporal Logic [1], [2] is a formalism
for specifying w-regular languages. The logic is defined in
two stages, similarly to PSL [12] or ForSpec [13]. In the
first stage we build regular expressions that define finite
non-empty segments of infinite words. In the second stage,
we build RLTL expressions to define sets of infinite words.
The syntax of each of these two formalisms contain only
a finite collection of constructor symbols. In particular, the
language of RLTL contains no fix-point binders or automata
constructors.

Regular Expressions: The basic elements of regular
expressions are basic expressions, which are Boolean com-
binations of a finite set of atomic propositions, whose truth

value is interpreted in a single state. The syntax of regular
expressions is given by the following grammar:

α ::= α+ α
∣∣ α ; α

∣∣ α ∗ α
∣∣ p

where p ranges over basic expressions. The intended inter-
pretation of the operators +, ; and ∗ are the standard union,
concatenation and binary Kleene-star.

Our version of regular expressions describe segments of
infinite words. Given an infinite word w ∈ Σω , a position
is a natural number. We use w[i] for the symbol at position
i in word w. Given an infinite word w and two positions i
and j, the tuple (w, i, j) is called the segment of the word
w between positions i and j. Note that a segment consists
of the whole word w with two tags, not just the sequence of
symbols that occur between two positions. This allows the
extension of regular expressions to past expressions [2], but
in this paper we only study future expressions. A pointed
word is a pair (w, i) formed by a word w and a position
i. The formal semantics of regular expressions is defined
as a binary relation �RE between segments and regular
expressions, as follows. Given a basic expression p, regular
expressions r and s, and a word w:
• (w, i, j) �RE p, whenever w[i] satisfies p and j = i+ 1.
• (w, i, j) �RE r + s whenever either (w, i, j) �RE r or

(w, i, j) �RE s, or both.
• (w, i, j) �RE r ; s whenever for some k, (w, i, k) �RE r

and (w, k, j) �RE s.
• (w, i, j) �RE r ∗ s whenever either (w, i, j) �RE s, or

for some sequence (i0 = i, i1, . . . im) and all k ∈
{0, ..,m− 1}, (w, ik, ik+1) �RE r and (w, im, j) �RE s.

RLTL: Expressions in Regular Linear Temporal Logic
define languages over infinite words. The key elements
of RLTL are the power operators that generalize many
constructs from different linear-time logics and calculi. The
syntax of RLTL expressions is defined by the grammar:

ϕ ::= ∅
∣∣ ϕ ∨ ϕ ∣∣ ¬ϕ ∣∣ α ; ϕ

∣∣ ϕ|α〉〉ϕ ∣∣ ϕ|α〉ϕ
where α ranges over regular expressions. The symbol ∨
stands for union of languages (logical disjunction), and
¬ represents language complement (logical negation). The
symbol ; stands for the concatenation of an expression over
finite words followed by an expression over infinite words.
The operator ∅ defines the empty language (logical false).

The operators ϕ|α〉〉ϕ and its weak version ϕ|α〉ϕ are
called the power operators. The expressions x|r〉〉y and x|r〉y
(read x at r until y, and, respectively, x at r weak-until y) are
built from three elements: y (the attempt), x (the obligation)
and r (the delay). For x|r〉〉y to hold, either the attempt holds,
or the obligation is met and the whole expression evaluates
successfully after the delay. For x|r〉〉y to hold, the obligation
must be met after a finite number of delays. On the contrary,
x|z〉y does not require the attempt to be met after a finite



number of delays, allowing the obligation and delay to be
repeated ad infinitum.

These two simple operators allow the definition of many
other temporal operators. For example, the strong until
operator x U y of LTL can be seen as an attempt for y
to hold, or otherwise an obligation for x to be met and a
delay of a single step. Similarly, the ω-regular expression
xω can be interpreted as a weak power operator having no
possible escape and a trivially fulfilled obligation, with a
delay indicated by x. Then, conventional ω-regular expres-
sions can describe sophisticated delays with trivial attempts
and obligations, while conventional LTL constructs allow
complex attempts and obligations but trivial one-step delays.
Power operators generalize both types of constructs. The
completeness of RLTL with respect to ω-regular languages
follows immediately from the expressibility of ω-regular
expressions. In particular, Wolper’s example [14] of an ω-
regular language not definable in LTL (p happening at every
even state) can be defined as p|true ; true〉∅. The size
of an RLTL formula is defined as the total number of its
symbols.

The semantics of RLTL relates expressions and pointed
words. Given two RLTL expressions x and y, a regular
expression r, and a word w:
• (w, i) � ∅ never holds.
• (w, i) � x ∨ y iff either (w, i) � x or (w, i) � y.
• (w, i) � ¬x iff (w, i) 6� x.
• (w, i) � r ;y iff for some k,(w, i, k)�REr and (w,k)�y.
• (w, i) � x|r〉〉y iff (w, i) � y or for some sequence

(i0 = i, i1, . . . im), for all k < m: (w, ik, ik+1) �RE r
and (w, ik) � x, and (w, im) � y.

• (w, i) � x|r〉y whenever either x|r〉〉y or for some infi-
nite seq (i0 = i, i1, . . .), for all k > 0, (w, ik, ik+1)�REr
and (w, ik) � x.

The semantics of x|r〉〉y establishes that either the obli-
gation y is satisfied at the point i of the evaluation, or
there is a sequence of delays—each determined by r—after
which y holds, and x holds before each individual delay.
The semantics of x|r〉y also allow the case where y never
holds, but x always holds before any number of evaluations
of r. Languages are associated with RLTL expressions as
usual: a word w ∈ Σω is in the language of an expression
x, denoted by w ∈ L(x), whenever (w, 0) � x.

IV. RLTL INTO APW USING SPECULAR PAIRS

We present here a translation of RLTL expressions into
APW{0, 1, 2} based on Theorem 2. The main idea is to
generate, at each step, a specular automata pair with the first
automaton accepting the same language as the expression.
By duality, the specular automaton accepts the complement
language. Handling logical negation becomes trivial: one
simply needs to switch the elements of the pair.

A previous translation of RLTL presented in [2] needed
n colors (n being the size of the formula) instead of 3.

Using [10], [9] to translate APW into NBW would produce
NBW with 2O(n2 logn) states for the old translation and
2O(n log n) states for the one presented here. In Section V
below we show how to reduce it further to 2O(n log m)

(where m is the size of the largest stratum), and 2O(n) for
the LTL fragment of RLTL.

The translation is described inductively. For every oper-
ator, we show how to compute the specular automata pair,
starting from the automata pairs for the sub-expressions. In
particular, assume that (Ax,Ax) and (Ay,Ay) are specular
pairs for RLTL expressions x and y and that Nr is an NFA
for regular expression r. We use q →a Fr for “q ∈ Qr and
δ(q, a) ∩ Fr 6= ∅,” and we use q 6→a Fr for “q ∈ Qr and
δ(q, a) ∩ Fr = ∅.”

Empty: The pair (A∅,A∅) has state set Q = {q0},
and initial conditions I = q0 and I = q0. The acceptance
conditions are F (q0) = 0 and F (q0) = 0. The transition
relations are δ(q0, ) = false and δ(q0, ) = true. This
choice of δ and δ allow all traces to be accepting for A∅ and
no trace to be accepting for A∅, so A∅ accepts all words
and A∅ accepts no word, as desired.

Disjunction: The state space of Ax∨y : 〈Σ, Q, δ, I, F 〉
and Ax∨y : 〈Σ, Q, δ, I, F 〉 are Q = Qx ∪ Qy . The initial
conditions are I = Ix ∨ Iy and I = Ix ∧ Iy . The transition
functions and acceptance condition are:

if δ(q, a) δ(q, a) F (q) F (q)

q ∈ Qx δx(q, a) δx(q, a) Fx(q) Fx(q)

q ∈ Qy δy(q, a) δy(q, a) Fy(q) Fy(q)
Sequential: The state space of both

Ar;x : 〈Σ, Q, δ, I, F 〉 and Ar;x : 〈Σ, Q, δ, I, F 〉 are Qr∪Qx.
The initial conditions are I = Ir and I = Ĩr. The transition
function is:

if δ(q, a) δ(q, a)

q 6→a Fr δr(q, a) δ̃r(q, a)

q →a Fr δr(q, a) ∨ Ix δ̃r(q, a) ∧ Ix
q ∈ Qx δx(q, a) δx(q, a)

The acceptance condition is: for q ∈ Qx then F (q) = Fx(q)
and F (q) = Fx(q). For q ∈ Qr then F (q) = 1 and F (q) =
0.

Complementation: Consider now an RLTL sub-
expression x, with specular pair (Ax,Ax). Since (w, i) �
Ax if and only if (w, i) 6� Ax, it follows that (Ax,Ax) is a
specular pair for ¬x.

Power: Let q0 be a fresh state, not present in Qx
or Qy . The state spaces of Ax|r〉〉y : 〈Σ, Q, δ, I, F 〉 and
Ax|r〉〉y : 〈Σ, Q, δ, I, F 〉 are Qr ∪Qx ∪Qy∪{q0}. The initial
conds. are I = q0 and I = q0. For the transition relation:

if δ(q, a) δ(q, a)

q = q0 δ(Iy ∨ (Ix ∧ Ir), a) δ(Iy ∧ (Ix ∨ Ir), a)

q 6→a Fr δr(q, a) δ̃r(q, a)

q →a Fr δr(q, a) ∨ q0 δ̃r(q, a) ∧ q0
q ∈ Qx δx(q, a) δx(q, a)

q ∈ Qy δy(q, a) δy(q, a)



For the acceptance condition:
if F (q) F (q)

q ∈ Qx Fx(q) Fx(q)
q ∈ Qy Fy(q) Fy(q)
q ∈ Qr or q = q0 1 0
Even though the frame of these automata could have been

defined without introducing q0 (by cleverly choosing I and
δ), the introduction of q0 is justified by the necessity to
distinguish in the acceptance condition traces that visit q0
infinitely often versus traces that get trapped in Qr.

Weak Power: Again, the state spaces of both Ax|r〉y :

〈Σ, Q, δ, I, F 〉 and Ax|r〉y : 〈Σ, Q, δ, I, F 〉 is Qr∪Qx∪Qy∪
{q0} for a fresh state q0. For the initial condition I = q0
and I = q0. The transition relation and acceptance condition
are exactly the same as for the Power operator except for
the following cases:

F (q) =

{
2 if q = q0

1 if q ∈ Qr
F (q) =

{
1 if q = q0

0 if q ∈ Qr

Theorem 3 Let ϕ be an RLTL expression and Aϕ be the
automaton obtained using the construction described in this
section. Then, L(ϕ) = L(Aϕ).

The proof of Theorem 3 is greatly simplified by The-
orem 2 because at every stage the construction builds
automata with specular frame, so one only needs to reason
about the acceptance of traces that get trapped in SCCs
formed by the freshly added states. The construction also
satisfies two important properties:

1) each stage introduces a new stratum (SCC) that cannot
be reached from strata added in previous stages. That is,
traces that move to the automaton of a sub-expression
do not visit the stratum added for the containing ex-
pression.

2) The stratum at each stage is decorated only with color
0 (an accepting stratum), only with color 1 (a rejecting
stratum), only with colors 0 and 1 (a coBüchi stratum)
or only with colors 1 and 2 (a Büchi stratum).

These two observations imply that the automaton has the
particular structure of a stratified ASW{1} or equivalently
of hesitant automaton AHW. We show in Section V how to
efficiently translate these automata into NBW using a refined
version of Streett rankings.

A Universal Sequential Operator: In the previous
construction, we observe that the specular automaton for
the sequential operator r ; x describes the set of traces in
which “all occurrences of r (if any) are followed by failing
occurrences of x”. This observation inspires the introduction
of the universal sequential operator r · x, whose semantics
is:
• (w, i) � r ·x iff forall k s.t. (w, i, k) �RE r, (w, k) � x.

The translation of r · x is precisely Ar;¬x above, and the
specular automaton is exactly Ar;¬x. Note that the stratum

corresponding to r in Ar·x has a universal frame, obtained
by dualizing the non-deterministic transition relation of Nr.
The duality laws ¬(r ; x) ≡ r · ¬x and ¬(r · x) ≡ r ; ¬x
hold immediately.

Universal Power Operators: Similarly, we define new
operators x‖r〉〉y and x‖r〉y, duals of x|r〉y and x|r〉〉y,
respectively. These new operators force repetitions to hold
at all possible delays, instead of at some possible delay. The
semantics are:
• (w, i) � x‖r〉〉y iff (w, i) � y and for all seq (i =
i0, . . . , im) with (w, ik, ik+1) �RE r, either (w, ij) � x
for some j ≤ k or (w, ik+1) � y, and for all infinite seq
(i = i0, i1 . . .) with (w, ik, ik+1) �RE r and (w, ik) � y,
there is an m with (w, im) � x.

• (w, i) � x‖r〉y iff (w, i) � x‖r〉〉y, or (w, i) � y and
for all k and j with (w, i, j) �RE r

k then (w, j) � y.
The translation of x‖r〉〉y is Ax|r〉y (the dual being

Ax‖r〉〉y = Ax|r〉y), and the translation of x‖r〉y is the pair
(Ax|r〉〉y,Ax|r〉〉y). The following duality laws hold:

¬(x|r〉〉y) ≡ ¬x‖r〉¬y ¬(x‖r〉y) ≡ ¬x|r〉〉¬y (1)
¬(x|r〉y) ≡ ¬x‖r〉〉¬y ¬(x‖r〉〉y) ≡ ¬x|r〉¬y (2)

Finally, x ∧ y is defined with translation (Ax∨y,Ax∨y). The
deMorgan laws hold: (¬¬x ≡ x), (¬(x ∨ y) ≡¬x ∧¬y) and
(¬(x ∧ y) ≡¬x ∨¬y).

Orienting these duality laws from left to right allows
to push logical negation ¬ to the propositional level, so
RLTL extended with these operators admits a negation
normal form. Note that this negation normal form is obtained
after the translation by specular pairs. It does not follow
immediately that the existence of such a normal form enables
a translation into automata with weak acceptance condition,
because one has to show translations for the new operators,
including essentially all elements of pairs in the translation
of RLTL presented above.

V. FROM STRATIFIED ASW{1} INTO NBW

This section shows how to translate the alternating au-
tomata obtained in Section IV into NBW. We first revisit
the notion of Streett ranking from [10], which in turn is
based on the notion of coBüchi ranking [15]. Then, we refine
rankings to exploit the stratification of the automata obtained
as a result of the translation from RLTL. We first show a
general translation of ASW{1} into NBW.

Rankings for ASW{1}: We use [k] an abbreviation for
the set {0 . . . k}. The following definitions assume a given
ASW{1} automaton A with n states, acceptance condition
(B,G), a word w ∈ Σω and a run G : (V,E) of A on w.

Definition 4 An S{1}-ranking is a function f : V × N →
[2n] that satisfies: (i) if q ∈ B then f(〈q, l〉) is even, (ii) for
all 〈q, l〉 → 〈q′, l′〉 in E, either q ∈ G or f(〈q, l〉) ≥
f(〈q′, l′〉).



It follows that for every path π on a run DAG G, either π
visits infinitely often G states or, after some prefix, condition
(ii) applies continuously. Hence, since the image of f is
bounded, the value of f converges to a value: there is a
number l, such that, for every l′ > l, f(π(l′)) = f(π(l)).
The following definition of odd S{1}-ranking relates the
convergence to an odd value with the fact that B states
are visited only finitely often. Then, the construction of the
NBW below is justified by Lemma 6.

Definition 5 (odd S{1}-ranking) An S{1}-ranking is odd
whenever, for every path π of G, either (i) π visits infinitely
often G states, or (ii) f converges to an odd value on π.

Lemma 6 G is an accepting run iff there is an odd
S{1}-ranking for G.

An equivalent NBW: We describe here the translation
from ASW{1} into NBW. The main idea is to encode in
the states of the NBW cuts of a run DAG of the ASW{1},
decorated with enough information to check whether an odd-
ranking exists. In particular, each state of the alternating
automaton present in a given state of the NBW is labeled
with a ranking value. This annotation must respect the
definition of ranking (Def. 4). Additionally, the set of states
of the ASW{1} that form a state of the NBW are partitioned
into those that owe an improvement in the ranking (either
a visit to a G state or a decrease in the ranking), and those
that already showed improvement. Membership to the owe
set is propagated, so an accepting state is one in which all
constituent states have seen some progress since the last
accepting state. After an accepting state, the owe set is reset.

Formally, we start from an ASW{1} automaton A :
〈Σ, QA, IA, δA, {(B,G)}〉 and we build an NBW N :
〈Σ, QN , IN , δN , FN 〉 as follows:
• QN contains elements of the form (S,O, f) where S ⊆
QA is a subset of states of A, O ⊆ S, and f : S → [2n]
is a function that satisfies:
Q1. if q ∈ B then f(q) is even.

• IN contains all those (M,O, f) ∈ QN where
I1. M is a minimal model of IA and O = {q ∈
M | q /∈ G and f(q) is even}.

• FN = {(S,O, f) ∈ QN | O = ∅}.
• δN : QN × Σ → 2QN , such that (S′, O′, f ′) ∈
δN ((S,O, f), a) whenever there is one minimal model
Mq of δA(q, a) for each q ∈ S satisfying:
D1. S′ = ∪q∈SMq ,
D2. For all p ∈ S′, the rank annotation f ′(p) ≤

min{f(q) | q ∈ pred(p) \G} where pred(p) = {q ∈
S | p ∈Mq} denotes the set of predecessors of p.

D3. O′ is given as follows. Let p ∈ S′ \G, we have
• If O = ∅ then p ∈ O′ iff f ′(p) is even.
• If O 6= ∅ then p ∈ O′ iff f ′(p) = f(q)

for some q ∈ (pred(p) ∩O).

The states of N consist of a set S representing elements
of a cut of a run DAG of A. The function f represents
an S{1}-ranking, where Q1 guarantees that no B node
receives an odd value, and D2 guarantees the non-increasing
condition of rankings. Condition D1 ensures that successor
states of N correspond to legal successor cuts of a run of A.
Finally, condition D3 ensures that O contains those vertices
of the run DAG that have not seen progress for some path
leading to them, where progress is defined as visiting a G
state, or experiencing a decrease in f . A reset of this check is
represented by a final state, which can happen only when all
paths to all states contain some progress, as captured by FN .
Finally, I1 captures that the initial states of N correspond
to initial cuts of runs of A. All these facts imply that a
successful run DAG of A is matched by a successful run of
N .

Theorem 7 Let A be an ASW{1} and N the corresponding
NBW. Then w ∈ L(A) if and only if w ∈ L(N).

The automaton obtained can be easily pruned with one
simple observation: if there is an odd S{1}-ranking, then
there is an odd S{1}-ranking where all decreases (according
to D2) only drop to the highest legal value. That is:

f ′(p) =

{
M or M − 1 if p /∈ B
M or M − 2 if p ∈ B

where M = min{f(q) | q ∈ pred(p) \G}.
This observation reduces the guessing in f to only two

possibilities, providing a more efficient translation. The
next paragraphs exploit the internal structure of stratified
ASW{1} automata to introduce a faster solution, specific
for the particular case of AHW.

Rankings for Stratified ASW{1}: Consider a stratified
ASW{1}. This is an automaton for which Q is divided into
strata (S1, . . . , Sk) ordered according to <, and each stratum
is labeled by a function α as either Büchi (all states are
either B or G) or coBüchi (no state is G). The stratification
structure implies that for every q ∈ Si and successor p with
p ∈ Sj , either Sj = Si or Sj < Si.

Remark: This automaton is equivalent to an AHW with
H = 〈(S1, . . . , Sk), <, α〉 and

F =
⋃
i

{Si ∩G | if Si is Büchi} ∪
⋃
i

{Si ∩B | if Si is coBüchi}

We use mj = |Sj | to refer to the number of states in stra-
tum Sj . We first define the notion of stratified S{1}-ranking:

Definition 8 A stratified S{1}-ranking is a family of func-
tions fj : Sj × N → [2mj ] that satisfies: (i) if q ∈ Sj ∩ B
then fj(〈q, l〉) is even, (ii) for every 〈q, l〉 → 〈q′, l′〉 in E
with q, q′ ∈ Sj , then fj(〈q, l〉) ≥ fj(〈q′, l′〉), unless q ∈ G.

Intuitively, a stratified ASW{1} ranking is like an
ASW{1} ranking except values need not decrease when



moving across strata. Due to the stratification, every trace of
a run gets trapped in a stratum of the automaton. Once the
trace converges to a stratum, either the trace visits infinitely
many good nodes, or the ranking converges to a single value.
Again, the notion of odd ranking captures whether the suffix
traces are accepting.

Definition 9 A stratified S{1}-ranking is odd whenever, for
every infinite path π of G, either (i) π visits infinitely often G
states, or (ii) π gets trapped in stratum Sj and fj converges
to an odd value on π.

The following lemma justifies the construction of NBW
using stratified rankings.

Lemma 10 G is an accepting run iff there is a stratified
odd S{1}-ranking for G.

Stratified rankings drastically limit the guessing that is
necessary in the construction of the states of the NBW,
because each ranking is local to the stratum under consid-
eration. The following choices produce a good ranking for
stratum Sj , if there is one such a good ranking
G1. If Sj is an accepting stratum and qj ∈ Sj , fj(qj) = 1.
G2. If Sj is a rejecting stratum and qj ∈ Sj , fj(qj) = 2.
G3. If Sj is Büchi, then assign fj(qj) = 2 to qj ∈ B, and

fj(qj) = 1 to qj ∈ G.
G4. If Sj is coBüchi then fj(qj) ∈ [2mj ].

Note that this restriction eliminates the guessing except
for coBüchi strata, and consequently ranking guessing only
happens to the states of Nr in expressions x‖r〉〉y. In terms
of the LTL fragment, all delays are one step so the size of
|Nr| = 1 and hence the maximum size of the coBüchi strata
is 1. In fact, for LTL sub-expressions of the form x‖r〉〉y,
Nr consists of a single B state, which can be assigned
value 2. Consequently, following the steps in this paper LTL
expressions get translated into NBW of size 2O(n).

An equivalent NBW using Stratified Rankings:
We refine the construction for general ASW{1} rankings,
limiting the guesses using G1-G4. Also, only predecessors
within the same stratum are considered when computing f :
Q1s. if q ∈ Sj ∩B then fj(q) is even.
D2s. f ′j(p) ≤ min{fj(q) | q ∈ pred(p) \ G} where

pred(p) = {q ∈ Sj | p ∈ Mq} now only considers
predecessors from the same stratum.

D3s. O′ is given as follows. Let p ∈ S′j \G, we have
• If O = ∅ then p ∈ O′ iff f ′j(p) is even.
• If O 6= ∅ then p ∈ O′ iff f ′j(p) = fj(q)

for some q ∈ (pred(p) ∩O ∩ Sj).

Theorem 11 Let A be a stratified ASW{1} and N the cor-
responding NBW using stratified rankings. Then w ∈ L(A)
if and only if w ∈ L(N).

VI. EMPIRICAL EVALUATION

This section reports the result of an empirical evaluation
of the translation algorithms presented above. The evaluation
was performed using a sequential implementation written in
OCaml, available online at [16]. The running times reported
in Fig. 1 were obtained using an Intel Core2 @ 2.83GHz
with 8GB of RAM running a 64 bit Linux kernel. Fig. 1
compares the number of states and the running time used
to compute explicit NBW representations of two families of
formulas (and their negation), for i = 8, 11, 17, 20. These
choices are inspired by [8]:
• Ai =

(
p1 U (p2 U (. . . U pi) . . .

)
. The ex-

pression Ai is equivalent to the RLTL expression
p1|true〉〉

(
p2|true〉〉. . .

)
.

• Bi = p1|true5〉〉
(
p2|true5〉〉. . .

)
, where true5 stands

for a five instant delay true ; true ; true ; true ; true.
These are not expressible in LTL.

The table illustrates that the general ASW{1} ranking is
only practical for the smallest cases. Limiting the guessing
to the highest ranks allows to handle slightly larger formu-
las. The stratified ranking translation results in a dramatic
improvement, comparable to state of the art LTL translators,
particularly considering that our prototype does not use
simulations or handle propositional alphabets (only discrete
alphabets). Simulation reductions have been reported [8] to
be a very effective method to reduce the size of the NBW
generated, but this optimization is currently ongoing work.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a novel translation from the
logic RLTL into alternating parity automata using only
colors 0, 1 and 2, based on a bottom-up construction of
specular pairs accepting complement languages. Inspired by
the duality in the translation we introduce universal sequen-
tial operators that enrich the logic with negation normal
forms. We also show that the resulting automata enjoy some
stratified structure in their transition relation that makes all
their strata purely Büchi or coBüchi. These automata are
equivalent to hesitant automata. Then, we study translations
of the resulting automata into NBW. The main result is the
specialization of Street rankings to stratified automata to
obtain a more efficient ranking translation. Unlike [11] our
construction preserves the alphabet between the alternating
automaton an the NBW. We are currently investigating al-
ternative algorithms for model-checking RLTL specifications
based on bounded model checking [17], antichains [18] and
IC3 [19].
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APPENDIX

This section shows a self-contained proof of Theorem 2.
Positive Boolean Formulas:: Every positive boolean

formula can be expressed in disjunctive normal form, as
disjunction of conjunctions of propositions. Given a positive
boolean formula θ there is a dual formula θ̃ obtained by
switching ∧ and ∨, and switching true and false. Some
easy properties of dual formulas are:

Proposition 12 (Duals) For every θ and θ̃, and for every
M ∈ Mod(θ):

1) For every M ′ ∈ Mod(θ̃), M ∩M ′ 6= ∅.
2) Let q ∈M . There is an M ′ in Mod(θ̃) with q ∈M ′.

For example, the dual of θ1 above is θ̃1 = (q1 ∨ q2) ∧
q3, or equivalently in disjunctive normal form θ̃1 = (q1 ∧
q3) ∨ (q2 ∧ q3). The minimal models of θ̃1 are {q1, q3} and
{q2, q3}.

A choice function is a map f that chooses, for a model
M of θ an element of M , i.e., f : Mod(θ) → X such
f(M) ∈M . Some interesting properties of choice functions
follow:

Proposition 13 (Choice Functions) Let θ be a formula
and θ̃ its dual. Then

1) If f is a choice function for θ, then Img f ∈ Mod(θ̃).
2) If M ∈ mod(θ) then there is a choice function f of θ̃

such that Img f = M .

Proof: We prove 13.1 first. Consider θ in disjunctive
normal form. Each child subexpression of the root expres-
sion corresponds to a conjunction of states that form a
model. The choice function f chooses one state from each
model of θ. Expressing θ̃ dualy, each child subexpression of
θ is a disjunction of the corresponding set of states. Hence,
the element that f chooses in each child satisfies the corre-
sponding disjunction, and

(
Img f =

⋃
M∈Mod(θ) f(M)

)
is

a model of θ̃.
We now show 13.2. Let M be a minimal model of θ.

Consider an arbitrary choice function f for θ̃ with:

f(M ′) = q for some q ∈M ∩M ′.

By Prop. 12.1 for any M ′ there is one such q, so f is well
defined, and by construction Img f ⊆ M . By Prop. 13.1
Img f is a model of θ, and since M is a minimal model it
has no proper sub-model, so Img f = M . �

Automata and Games: We show now that specular
automata accept complement languages, using game theory.
From a given automaton A and a word w, we create a
parity game called a word game as a tuple G(A, w) :

〈VA, VP , EA, EP , f〉 where:

VA = Q× ω
VP = {(M, q, i) |M ∈ Mod(δ(q, w[i]))}

∪ {(M, ·, 0) |M ∈ Mod(I)}
EA = (q, i)→ (M, q, i) for each M ∈ Mod(δ(q, w[i]))

EP = (M, q, i)→ (q′, i+ 1) for q′ ∈M
The game is played by two players: Automaton (A) and

Pathfinder (P ). The set of positions V = VA ∪ VP is
partitioned into positions in which A plays and those in
which P plays. The game begins by A choosing a model
of I , which determines the initial position (M, ·, 0) (here ·
represent an irrelevant state). The legal moves of the game
are captured by the relation E = EA∪EP which correspond
to A choosing a model from a VA position, and P choosing
the next successor from a given model from a VP position.
A play is an infinite sequence of positions π : V0v0V1v1 . . .
with V0 being an initial position, vi obtained from Vi by a P
move, and Vi+1 obtained from vi by an A move. The map
f : V → {0 . . . d} determines the outcome of a play. We
define the trace of a play π : V0v0V1v1 . . . as the sequence
of states trace(π) : p0p1 . . . obtained by projecting the first
component of the VP positions of the play (i.e., vi = (pi, i)).
The following follows directly from the definition:

Proposition 14 Every trace of a play of G(A, w) is also a
trace of some run of A on w.

As for parity automata the outcome of a play is deter-
mined by the highest color that is seen infinitely often in
the play. Player A wins play π whenever:

max{f(q) | q ∈ inf(trace(π))} is even

Otherwise, P wins play π. A strategy for player A is a map
ρA : (V ∗VA ∪ ε)→ V , that maps histories of positions into
moves. Here, ε denotes the empty sequence of positions, to
let player A choose an initial state in the game. A memo-
ryless strategy simply takes into account the last position:
ρA : VA ∪ ε → V . Since parity games are memoryless
determined it is enough to consider memoryless strategies.
Similarly, a strategy for player P is a map ρP : VP → V .
A play π : V0v0V1v1 . . . is played according to strategy ρA
whenever the initial position is V0 = ρA(ε) and all moves of
A are played according to it Vi = ρA(vi). A strategy ρA is
winning for player A whenever all plays played according
to ρA are winning for A. Memoryless determinacy of parity
games guarantees that either player A has a memoryless
winning strategy or player P has a memoryless winning
strategy. We say that π is a G · ρA play whenever π is
played in G according to ρA.

We restrict our attention to strategies for A that choose
minimal models, and strategies for P that are proper choice
functions. This is not a drastic restriction. Clearly, if there



is a winning strategy for A that does not choose a minimal
model, then any strategy that chooses a smaller minimal
model is also winning. This is because the set of plays is
reduced, and all plays in the unrestricted set are winning for
A. Similarly, if ρP is a winning strategy for P , then restrict-
ing its moves to be a proper choice functions (by restricting
the image) also gives a winning strategy. In both cases, the
set of successor moves is restricted but still confined within
winning regions. This lemma is essentially Prop. 2 from
[6], where complementation of weak alternation automata
by dualization is studied.

Lemma 15 w ∈ L(A) if and only if A has a winning
strategy in G(A, w).

Proof: Assume w ∈ L(A) and let σ : (Vσ, Eσ) be a
successful run of w on A. We first build a strategy ρA for
A on G(A, w) and then show that ρA is winning:

ρA(ε) = (M0, ·, 0)

with M0 = {q | (q, 0) ∈ Vσ}
ρA(q, i) = (M, q, i+ 1)

with M = {q′ | (q, i)→ (q′, i+ 1) ∈ Eσ}

The set M in (M, q, i + 1) is a model of δ(q, i) because
σ is a run. For positions (q, i) that do not appear in the
run σ, the strategy ρA(q, i) = (M, q, i + 1) can assign any
model M in Mod(δ(q, w[i])). This model is not relevant
because no play played according to ρA will visit these
states. Consider now an arbitrary play π : V0v0V1v1 . . . of
G(A, w) played according to ρA. We show by induction that
trace(π) : p0p1 . . . is a trace of σ.
• base: By construction M0 is the set of initial positions

of σ. Since p0, chosen by player P , is v0 ∈ M0, then
v0 is a prefix of a trace of run σ.

• induction step: assume p0 . . . pi is a prefix of some trace
in σ, so (pi, i) is in Vσ . Hence, ρA(pi, i) = (M,pi, i+
1) for M being the set of successors of (pi, i) in Eσ .
Consequently pi+1 = (q, i + 1) for some (pi, i) →
(pi+1, i + 1) in Eσ , so v0 . . . vivi+1 is a longer prefix
of a trace of run in σ.

This shows that trace(π) is a trace of the run σ. Now,
since σ is a successful run all its traces must be accepting,
and then:

max{F (q) | q ∈ inf(trace(π)} is even,

which shows that ρA is a winning strategy for G(A, w).
We now show the other direction: we start from a winning

strategy ρA for A in G(A, w) and show that there is a
successful run σ of w on A. Let (M, ·, 0) = ρA(ε). Then
we let Vσ contain (q, 0) for all q ∈ M . Note that M is
a minimal model of I . Now, consider an arbitrary position
(q, i) and let (M, q, i+1) be ρA(q, i). We add to Eσ all pairs

of the form (q, i)→ (q′, i+ 1) for all q′ ∈ M . We have to
show that σ is successful run. We show by induction that all
traces of σ correspond to plays in G(A, w) played according
to ρA. For the base case (q, 0) is the initial state of the
trace. By construction (q, 0) ∈ ρA(ε) so (q, 0) is a possible
choice of player P , and consequently a play prefix. For
the inductive case, assume that trace prefix (q0, 0) . . . (qi, i)
is a play prefix, and let (qi, i) → (qi+1, i + 1) be in Eσ .
By construction ρA(qi, i) contains position (qi+1, i + 1) so
player P can again move to it. This shows that the arbitrary
trace of σ correspond to a play played according to ρA. �

Specular Pairs and Complementation: We show now
that specular automata accept complement languages. In the
rest of the section we let A and Ã be a specular automata
pair, w be a word and G : G(A, w) and G̃ : G(Ã, w) be the
corresponding word games. First we need some preliminary
definitions.

Definition 16 We say that strategies ρA (for A in G) and
ρ̃P (for P in G̃) are duals whenever both:
• for every G · ρA play π there is a G̃ · ρP play π̃ s.t.

trace(π̃) = trace(π).
• for every G̃ · ρP play π̃ there is a G · ρA play π s.t.

trace(π̃) = trace(π).

Theorem 17 (Dual Strategies) The following holds:
(1) For every strategy ρA for A in G, there is a dual strategy

ρ̃P for P in G̃.
(2) For every ρP for P in G, there is a dual strategy ρ̃A

for A in G̃.

Proof: We prove the two statements separately:
(1): Let ρA be a strategy for A in G. This strategy ρA

is characterized by

ρA(ε) = (M0, ·, 0) where M0 ∈ mod(I)
ρA((q, i)) = (M, q, i+ 1) where M ∈ mod(δ(q, w[i]))

By Prop. 13.1 there are choice functions satisfying

fM0
: Mod(Ĩ)→ Q Img fM0

= M0

f〈M,q,a〉 : Mod(δ̃(q, a))→ Q Img f〈M,q,a〉 = M

Moreover, these functions are proper choice functions. We
now define the dual strategy ρ̃P for P in G̃ as follows:

ρ̃P ((N0, ·, 0)) = (fM0
(N0), 0)

ρ̃P ((N, q, i+ 1)) = (f〈M,q,a〉(N), q, i+ 1)

where M is the move of A in G from (q, i): ρA(q, i) =
(M, q, i+ 1), and a = w[i]. Our choice of choice functions
f〈M,q,a〉 guarantees that for every move of player P from
M , there is a move for player A in G̃ that, when followed
by f〈M,q,a〉 results in the same state. The properties of fM0

and f〈M,q,a〉 ensure that the strategy ρ̃P is proper.
We are ready to show that for every G · ρA play there is

a G̃ · ρP play with the same trace, and vice-versa.



“→” Consider an arbitrary G·ρA play π : V0v0V1v1 . . ., and
let ρA(ε) = (M0, ·, 0) and ρA(vi) = (Mi+1, qi, i + 1).
We use qi for vi = (qi, i). Note that qi+1 ∈ Mi+1

because all moves of player P in π are legal moves. We
create the G̃ · ρP play π̃ : Ṽ0, ṽ0, Ṽ1, ṽ1 . . . as follows:
– Ṽ0 = (N0, ·, 0) where N0 is such that fM0(N0) =
q0. One such N0 exists since Img fM0 = M0 and
q0 ∈ M0 (recall that (q0, 0) is the result of a move
of P in G from (M0, ·, 0)).

– From (qi, i), player A chooses in G̃ the position
(Ni+1, qi, i + 1), where Ni+1 is chosen such that
f〈Mi+1,q,w[i]〉 = qi+1.

By induction, we show that vi = ṽi. First, ṽ0 =
ρ̃P ((N0, ·, 0)) = (fM0(N0), 0) = (q0, 0) = v0.
Now, assume that for some i, vi = ṽi. Then, Ṽi =
(Ni+1, qi, i+1), and Vi = ρA(qi, i) = (Mi+1, qi, i+1).
Now,

ṽi+1 = ρ̃P (Ṽi) = ρ̃P ((Ni+1, qi, i+ 1)) =
= (f〈Mi+1,qi,w[i]〉(Ni+1), i+ 1) =
= (qi+1, i+ 1) =
= vi+1.

Hence, trace(π) = trace(π̃).
“←” Consider an arbitrary G̃ · ρP play π̃ : Ṽ0ṽ0Ṽ1ṽ1 . . .,

and let qi and Ni be such that:

ṽi = (qi, i) Ṽ0 = (N0, ·, 0) Ṽi+1 = (Ni+1, qi, i+ 1)

Since π̃ is a G̃ · ρP play, it satisfies that

ṽi+1 = ρ̃P (Ṽi+1) = (f〈Mi+1,qi,w[i]〉(Ni+1), i+ 1)

where Mi is obtained from ρA(qi, i) = (Mi+1, i+ 1).
Now, we define the play π : V0v0V1v1 . . . as follows.
First the move for A is played according to ρA:

V0 = ρA(ε) = (M0, ·, 0) Vi+1 = ρA(vi)

Then, we let the moves of P to be:

v0 = (q0, 0) vi+1 = (qi+1, i+ 1)

We only need to show that these moves for P are legal.
First, q0 = fM0

(N0), and since Img fM0
= M0 it

follows that q0 ∈ M0, so moving from V0 into v0 is a
legal move.
Moreover, (qi+1 = f〈Mi+1,qi,w[i]〉(Ni)). Since
Img f〈Mi+1,qi,w[i]〉 = Mi+1 it follows that qi+1 ∈
Mi+1, so again moving from Vi+1 into vi+1 is a legal
move. By construction, trace(π) = trace(π̃) again.
(2): Assume now that ρP is a (proper) strategy for P
in G. The strategy ρP is characterized by

ρP ((M0, ·, 0)) = (q0, 0) ρP ((M, q, i)) = (qi, i)

Since the strategy is proper there are proper choice
functions:

g0 : Mod(I)→ Q gq,i : Mod(δ(q, w[i]))→ Q

with

g0 : Mod(I)→ Q

Img g0 ∈ mod(Ĩ)

gq,i : Mod(δ(q, w[i]))→ Q

Img gq,i ∈ mod(δ̃(q, w[i]))

(3)

We define the strategy ρ̃A for A in G̃ as follows:

ρ̃A(ε) = Img g0 ρ̃A((q, i)) = Img gq,i

By (3), ρ̃A is well defined. We show now that ρ̃A and
ρP are dual strategies. First, consider (q, i) an arbitrary
state and (M, q, i) a legal move for player A in G.
Player P will move to (q′, i+ 1) = ρP ((M, q, i)) with
q′ = gq,i((M, q, i)). In G̃, player A will move from
(q, i) into (Img gq,i, q, i). We let player P move in G̃ to
(q′, i+1), which is legal, since q′ ∈ Img gq,i. Consider
now an arbitrary state (p, i) and the move of A in G̃:
ρ̃A((p, i)) = (Img gp,i, p, i), and consider an arbitrary
legal move for P , (p′, i + 1), hence p′ ∈ Img gp,i.
Consequently, there is an M ∈ Mod(δ(p, w[i])) such
that gp,i((M,p, i)) = p′. Let A choose (M,p, i) as the
move from (p, i), which is a legal move. Then, playing
from (M,p, i) in G according to ρP , the resulting state
is (p′, i + 1). This shows that ρA and ρ̃P are dual
strategies.

It is important to note that the moves of the players
playing against the strategies are not restricted to follow
proper strategies (give minimal models or be proper choice
functions). Still, ρA is winning precisely whenever ρP is.
�

The following theorem follows directly from Lemma 15
and Theorem 17. This theorem allows to reason about
complementation simply by reasoning about traces of two
automata with dual frames.

Theorem 18 Let A and Ã be specular automata. Then
L(A) = Σω \ L(Ã).

We show the correctness of Streett ranking algorithm.

Lemma 19 Let G be an accepting run, and let G′ be a non-
empty sub-graph of G with no G vertices and only infinite
paths. Then, there is some node in G′ that cannot access
any B node.

Proof: Consider, by contradiction that there is no one
such a node in G′ = (V ′, E′), or equivalently, that all
vertices in G′ can access a B node:

for all 〈q, l〉 ∈ V ′, there is some 〈q′, l′〉 ∈ V ′
with q′ ∈ B and 〈q, l〉 →∗E′ 〈q′, l′〉.

Then, every node can be associated with a B node by
a map next(〈q, l〉) that returns one path to a B reachable



node (for example, the shortest non-empty path to a B state,
and picking the smallest according to some lexicographic
order among the shortest ones.) Then using induction define,
starting from an arbitrary node 〈q, l〉 ∈ V ′, an infinite
path in G′ that visits infinitely B nodes infinitely often by
concatenating the paths returned by next. Let us call π one
such path.

Since π(0) = 〈q, l〉 is a node of G′, and consequently a
node of G, π(0) is reachable from some initial node by point
3 in the definition of a run. Let πpre be a finite path in G
from a node 〈q0, 0〉 ∈ V . The path πpreπ is a trace in G that
visits G nodes finitely often (only nodes in πpre can possibly
be G nodes) and B nodes infinitely often in π. This trace
contradicts that G is an accepting run. �

We will use the following notation, for a given sub-graph
G′ of a run:

access(G′, 〈q, l〉) def
= {〈q′, l′〉 | 〈q, l〉 →∗ 〈q′, l′〉}

finite(G′) def
= {〈q, l〉 | access(G′, 〈q, l〉) is finite}

nobad(G′) def
= {〈q, l〉 | access(G′, 〈q, l〉) ∩B = ∅}

width(G′, l) def
= |{〈q, l〉 ∈ G′}|

Lemma 6 G is an accepting run iff there is an odd
S{1}-ranking for G.

Proof: We prove the two directions separately:

“⇐” Assume there is an odd S{1}-ranking f for G and let π
be an arbitrary trace of G. Since, f is odd, either π visits
infinitely many G states, in which case π is accepting,
or f(π) converges to an odd value. In this second case,
there is l such that for all l′ > l, f(π(l′)) = f(π(l)) and
f(π(l)) is odd. By definition of S{1}-ranking (point
(i)), π(l′) cannot be a B state, and consequently π visits
only finitely many B states. Hence, π is an accepting
trace.

“⇒” Assume G is an accepting run for A.
– Initial Stage The construction of f starts by remov-

ing from G all G vertices. Let VG be {〈q, l〉 | q ∈ G},
then f(〈q, l〉) = 0 for all 〈q, l〉 ∈ VG. Also, let
V0 = finite(G \ VG), we let f(〈q, l〉 = 0 for all
〈q, l〉 ∈ V0. Also G0 = G \ (VG∪V0), which contains
the original graph except the G nodes, and every
node that reach G nodes in all its outgoing paths.

– Incremental Stage The algorithm proceeds in at
most n rounds, performing the following two op-
erations in each round k. The round begins with
subgraph G2k of G.
− Phase I: Let V2k+1 = nobad(G2k). Then,

f(〈q, l〉) = 2k + 1 for all 〈q, l〉 ∈ V2k+1.
G2k+1 = G2k \ V2k+1.

− Phase II: Let V2k+2 = finite(G2k+1). Then,

f(〈q, l〉) = 2k + 2 for all 〈q, l〉 ∈ V2k+2.
G2k+2 = G2k \ V2k+2.

The graphs G0 as well all graphs G2k+2 are either
empty, or guaranteed to have only infinite paths,
since all nodes that can only access finitely many
nodes are removed. (a finite path ends in a node with
no successor).
Hence, if V2k is non-empty Lemma 19 guarantees
that V2k+1 is non-empty as well: there is a node in
V2k+1 that accesses infinitely many vertices, but no
B node. In particular there is an infinite path that
is removed in Phase I. Hence, for some level l, all
l′ > l satisfy that

width(G2k+1, l
′) + 1 ≤ width(G2k, l′)

Phase II only removes nodes, so

width(G2k+2, l
′) ≤ width(G2k+1, l

′)

Since, initially width(G, l) ≤ n for all levels l, it
follows that, at the end of round k, for a sufficiently
large l′:

width(G2k+1, l
′) ≤ n− (k + 1)

Consequently, at the end of Phase II of round n −
1: width(G2n−1, l′) ≤ 0. All remaining vertices in
G2n−1 can access only finitely many vertices. Hence
G2n = ∅, and the algorithm terminates. Note that
it is possible that G2k = ∅ in an earlier round, but
guaranteed that after round n, G2n = ∅.

It remains to be seen that f is indeed an odd
S{1}-ranking.
The function f is a S{1}-ranking:: By construction,
all B vertices are marked in Phase II of some round
because B∩nobad(Gi) = ∅, and hence receive an even
value. Therefore, all B nodes satisfy condition (i) of the
definition of S{1}-ranking. Now consider an arbitrary
node 〈q, l〉. We consider three cases:
1) If 〈q, l〉 is removed in the Initial Stage then q is

either a G node, in which case (ii) holds trivially, or
it is in V0. In the latter case, all its outgoing paths
hit a G node in a finite number of steps, and all
the intermediate nodes are mapped to 0. Hence, if
〈q, l〉 → 〈q′, l′〉, then f(〈q′, l′〉) = 0 = f(〈q′, l′〉)
and f(〈q, l〉) ≥ f(〈q′, l′〉), and condition (ii) holds.

2) If 〈q, l〉 is removed in Phase I of round k, so 〈q, l〉 ∈
V2k+1. Then all its outgoing paths either hit a node
removed in a previous round or are in V2k+1. In both
cases 〈q, l〉 → 〈q′, l′〉 implies f(〈q, l〉) ≥ f(〈q′, l′〉).

3) If 〈q, l〉 is removed in Phase II of round k, so
〈q, l〉 ∈ V2k+2. Then all its outgoing paths either hit
a node removed in a previous round, or are in V2k+1



or in V2k+2. In all cases 〈q, l〉 → 〈q′, l′〉 implies
f(〈q, l〉) ≥ f(〈q′, l′〉).

The function f is an odd S{1}-ranking:: Consider
an arbitrary path π. If π visits infinitely many G nodes,
then the condition for f being odd on π holds. If π does
not visit infinitely many G nodes, then f converges on
π to some value. This value cannot be even, because
that would imply that all these infinitely many vertices
are in some V2k+2, but there are not infinite paths
containing these kind of node: by construction all nodes
label in Phase II have finite outgoing paths before
changing ranking.

This finishes the proof. �

Theorem 7 Let A be an ASW{1} and N the corresponding
NBW. Then w ∈ L(A) if and only of w ∈ L(N).

Proof: We prove the two directions separately:
“⇒” We assume w ∈ L(A) and show that w ∈ L(N). Let
G be a run dag for w on A, and f an odd S{1}-ranking.
Consider the sequence Q0Q1 . . . of states of N induced
by G and f as Qi = (Si, Oi, fi) with the set of states
in Si:

Si = {q | 〈q, i〉 ∈ G}
and the pending states Oi:

O0 = {p | 〈p, 0〉 ∈ G with p /∈ G
and f(〈p, 0〉) is even}

Oi+1 = {p | 〈p, i+ 1〉 ∈ G with p /∈ G
and f(〈p, i+ 1〉) even} if Oi = ∅

Oi+1 = {p | 〈p, i+ 1〉 ∈ G
and p /∈ G, and for some q ∈ Oi,
f(〈p, i+ 1〉) = f(〈q, i〉)
and 〈q, i〉 → 〈p, i+ 1〉} if Oi 6= ∅

and
fi(q) = f(〈q, i〉)

It is routine to check that Q0Q1 . . . is a run. We show
that this run is accepting for N . By contradiction, if
Q0Q1 . . . is non accepting, there exists i such that,
for all j ≥ i, Qj /∈ FN , hence Oj 6= ∅. By D3
every qj+1 ∈ Oj+1 has a predecessor qj ∈ Oj with
fj(qj) = fj+1(qj+1) being an even value by definition
of Oi above. Since, as shown above, every Oj 6= ∅,
it follows that there is an infinite sub-dag of nodes in
G of the form 〈qj , j〉 with f(〈qj , j〉) being even, and
with infinitely many nodes having an incident edge.
By König’s lemma, since this dag is finitely branching,
it has an infinite path, all whose nodes are assigned
the same even value by f . This is a contradiction with
f being an odd S{1}-ranking for G. Hence we find

that Q0Q1 . . . is a run that accepts w which shows
w ∈ L(N).

“⇐” We assume now w ∈ L(N) and show that w ∈ L(A).
Let Q0Q1Q2 . . . be an accepting run for w on N and
let G = (V,E) and f be an induced run and function
V → [2n]. We conclude from Q1 and D2, respectively,
that properties (i) and (ii) of S{1}-ranking holds on
f . Therefore f is a S{1}-ranking. Now let us show
that f is an odd S{1}-ranking. To this end, consider
an arbitrary path π in G for which we will show that
either condition (i) or (ii) of the definition of odd
S{1}-ranking holds. If π visits G nodes infinitely often,
then condition (i) holds. Otherwise, there is an i after
which no more G nodes are visited in π. Hence, since
every node π(i′) with i′ > i+ 1 has a predecessor not
in G, D2 shows that f converges on π to some value.
Let j ≥ i′ be such that f has converged already (i.e.,
f(π(j′)) = f(π(j)) for all j′ ≥ j). Let Qk, Ql ∈ FN
with j ≤ k < l be two accepting states in the run Q0Q1

of w on N . It must be the case that π(k+ 1) /∈ Ok+1.
Assume the contrary (i.e. π(k + 1) ∈ Ok+1), since π
visits no G node after k and f has converged, then we
conclude by D3 that π(k′) ∈ Ok′ for all k′ > k, hence
that Ol 6= ∅, and finally that Ql /∈ FN by definition of
FN which is a contradiction.
Also since π(k + 1) /∈ Ok+1 and Qk ∈ FN , D3 shows
that f(π(k+ 1)) is odd. Hence f converges on π to an
odd value showing that condition (ii) of the definition
of S{1}-ranking holds.
This concludes that f is an odd S{1}-ranking for G.
Finally Lem. 6 shows that G is an accepting run, hence
that w ∈ L(A). �

Lemma 20 G is an accepting run iff there is a stratified
odd S{1}-ranking for G.

Proof: We prove the two directions separately:
“⇐” Assume there is a stratified odd S{1}-ranking {fj} for

G and let π be an arbitrary trace of G. Since, {fj} is
odd, either π visits infinitely many G states, in which
case π is accepting, or π converges to a stratum Sj
and fj(π) converges to an odd value. In this second
case, there is l such that for all l′ > l, fj(π(l′)) =
fj(π(l)) and fj(π(l)) is odd. By definition of stratified
S{1}-ranking (point (i)), π(l′) cannot be a B state,
and consequently π visits only finitely many B states.
Hence, π is an accepting trace.

“⇒” Assume now that G is an accepting run for A. The
construction of each fj works at each stratum indepen-
dently. Fix Sj . First, one removes all G vertices and all
those vertices not in Sj . The algorithm works exactly
as with the proof of Lemma 6 by stages, at each stage
first removing those states that cannot access B nodes,



and then remove those states that only access finitely
many nodes. Since at each stage one removes at least
one element from all cuts at a sufficiently large l, at the
width of elements from Sj is at most |Sj |, the algorithm
is guaranteed to finish in |Sj | rounds, generating an odd
S{1}-ranking for stratum Sj . It is routine to check that
{fj} is indeed a stratified S{1}-ranking. �

Theorem 11 Let A be a stratified ASW{1} and N the cor-
responding NBW using stratified rankings. Then w ∈ L(A)
if and only of w ∈ L(N).

Proof: The proof is analogous to Theorem 11.

Fig. 2 depicts the translation of RLTL into APW.
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Figure 2. Specular automata pairs for ∅, x ∨ y, ¬x, x ; y, x|r〉〉y and x|r〉y.


