
How to Efficiently Translate Extensions of
Temporal Logics into Alternating Automata

César Sánchez1,2 and Julian Samborski-Forlese1

1 IMDEA Software Institute, Madrid, Spain
2 Institute for Applied Physics, CSIC, Madrid, Spain

{cesar.sanchez}@imdea.org

Abstract. This paper presents studies efficient and general translations
of extensions of linear temporal logic (LTL) into alternating automata,
which can be applied to improve algorithms for the automata-theoretic
approach to model-checking. In particular, we introduce—using a game
theoretic framework—a novel finer grain complementation theorem for
the parity condition. This result enables simple and efficient translations
of temporal operators into pairs of automata accepting complement lan-
guages, using up to 3 colors. Moreover, our results: (1) allows to translate
directly operators from LTL and different extensions (2) that can be com-
bined without restriction; and (3) does not require to eliminate negation
upfront, or to start from formulas in negation normal form.

1 Introduction

We study the problem of temporal verification of reactive systems, that starts
from a finite description of a system and a specification given in linear temporal
logic [11, 9]. The problem consists in deciding whether all runs of the systems are
accepted by the specification. The automata-theoretic approach to model check-
ing [14, 15] allows to reduce this verification problem to automata constructions
(like product and complementation) and automata decision problems (like non-
emptiness and language containment). First, one builds an automaton on infi-
nite words for the negation of the formula. Then, this automaton is composed
synchronously with the system. Finally, an emptiness check is used to conclude
whether the resulting product admits some trace (counter-example) or the sys-
tems is correct with respect to the specification.

In modern incarnations of the automata approach to model checking, specifi-
cations are translated into alternating automata. Their richer structure of al-
ternating automata enables a more direct translation than non-deterministic
automata, and allows to postpone a potentially exponential blow-up. Another
advantage of alternation is the easy dualization (see Muller and Schupp [10])
provided by the availability of both conjunctive and disjunctive transition rela-
tions. However, to obtain an automaton accepting the complement language, one
also needs to complement the acceptance condition (see, for example [13]).

In this paper we study complementation constructions for parity automata
and applications to translate formulas from LTL and extensions into automata

2

more efficiently. The parity acceptance condition allows a simple and well-known
complementation construction: increment the color assigned to every state. This
operation preserves the relative order between the colors of any two states, and
inverts the parity of the maximum color in any given sequence of states. This way,
accepting traces become non-accepting traces, and non-accepting traces become
accepting traces. Even though this construction is simple and elegant, it suffers
the drawback that the number of colors in the resulting automaton grows with
every complementation step. If this construction is used to translate the logical
negation operator, the total number of colors used in the resulting automaton
can grow linearly in the size of the formula. The best known algorithms for alter-
nating parity automata becomes less efficient as the number of colors grow. For
example, translating an alternating parity automaton with n states and k colors
into non-deterministic Büchi automaton [3] requires O(2nk log nk). Hence, many
researchers [7] have suggested translations of LTL into automata with weaker
acceptance conditions enabled by an upfront manipulation of formulas in the log-
ical level. Unfortunately, some extensions of LTL, particularly operators that use
regular expressions, preclude the use of these simpler forms of automata.

In this paper we alleviate the problem of the inefficient translation into au-
tomata with the parity condition by exploiting the following intuition. The clas-
sical parity complementation construction complements all sequence of states in
the automaton, while only a subset of these sequences can be exercise by the
automaton. We show that the set of traces of an automaton and its dual are
identical, and that to complement an automaton it is enough to provide a pair of
parity assignment with opposite outcomes on these traces. The second contribu-
tion of this paper is a translation of temporal logics based on our complementation
results. Each operator is translated into a pair of complement automata, starting
from a pair of complement automata for the operands.

The rest of the of paper is structured as follows. Section 3 presents the notion
of specular automata pairs, and show that they accept complement languages.
Section 4 shows translations of some temporal operators from LTL and extensions
into specular automata pairs. Finally, Section 5 concludes.

2 Preliminars

Positive Boolean Formulas: We use B+(X) for the positive boolean formulas
over a set of propositions X. These formulas are built from true, false and
elements of X, combined using ∧ and ∨. A model of a formula θ is a subset of X
that makes θ true. A minimal model M of a formula θ is a model of θ such that no
strict subset of M is a model of θ. For example, given the set Q = {q0, q1, q2, q3},
the formula θ1 = (q1 ∧ q2) ∨ q3 is a B+(Q) formula. The sets {q1, q2} and {q3}
are the minimal models of θ1. We use Mod(θ) for the set of models of θ and
mod(θ) for the set of minimal models.

Every positive boolean formula can be expressed in disjunctive normal form,
as disjunction of conjunctions of propositions. Given a positive boolean formula
θ there is a dual formula θ̃ obtained by switching ∧ and ∨, and switching true
and false. Some easy properties of dual formulas are:

3

Proposition 1 (Duals). For every θ and θ̃, and for every M ∈ Mod(θ):

1. For every M ′ ∈ Mod(θ̃), M ∩M ′ 6= ∅.

2. Let q ∈M . There is an M ′ in Mod(θ̃) with q ∈M ′.

For example, the dual of θ1 above is θ̃1 = (q1 ∨ q2) ∧ q3, or equivalently in

disjunctive normal form θ̃1 = (q1 ∧ q3) ∨ (q2 ∧ q3). The minimal models of θ̃1
are {q1, q3} and {q2, q3}.

A choice function is a map f that chooses, for a model M of θ an element of
M , i.e., f : Mod(θ) → X such f(M) ∈ M . Some interesting properties of choice
functions follow:

Proposition 2 (Choice Functions). Let θ be a formula and θ̃ its dual. Then

1. If f is a choice function for θ, then Img f ∈ Mod(θ̃).

2. If M ∈ mod(θ) then there is a choice function f of θ̃ such that Img f = M .

Clearly, not every choice function has a minimal model as image (2.1 states
that it must be a model but not necessarily minimal). Those choice functions
whose images are minimal models are called proper choice functions. We will
later focus our attention to proper choice functions as strategies for players in
certain classes of parity games.

3 Specular Automata Pairs

Alternating Frames We study now the layout of alternating automata. An
automaton frame, or simply a frame, is a tuple F : 〈Σ,Q, δ, I〉 where Σ is an
alphabet, Q is a finite set of states, δ : Q×Σ → B+(Q) is the transition function,
and I ∈ B+(Q) is the initial condition of the frame. A frame determines which
are the legal traces for a given automaton and input word. We will later introduce
automata as frames equipped with an acceptance condition, which will determine
which traces of the frame are good. A frame is non-deterministic whenever I,
and δ(q, a) for all states q and input symbols a, have singleton sets as minimal
models. In other words, I and δ(q, a) are equivalent to disjunctive formulas. A
frame is called universal if I, and δ(q, a) for all states q and symbols a, have a
unique minimal model. In other words, I and δ(q, a) are equivalent to conjunctive
formulas. A frame is deterministic if it is both non-deterministic and universal,
that is if both the initial condition and transition functions correspond to true,
false or a single successor state. In general a frame is neither universal nor non-
deterministic, but fully alternating.

Run and trace Given a word w ∈ Σω, a run of w on a frame F : 〈Σ,Q, δ, I〉 is
a DAG (V,E) with nodes V ⊆ Q× N, such that:

1. The nodes (m, 0) ∈ V form a minimal model of I.
2. for every (q, k) in V , there is a minimal model M of δ(q, w[k]) such that E

contains an edge (q, k)→ (q′, k + 1) for all q′ in M .

4

A trace of a run is an infinite path in the run, following edges. A non-deterministic
frame may admit multiple different runs for a given word, but each run contains
a unique trace. A universal frame admits just one run for each word, but this run
may contain multiple traces. In general a frame admits multiple runs each with
multiple traces.

Given a frame F : 〈Σ,Q, δ, I〉, the specular frame is the frame F̃ : 〈Σ,Q, δ̃, Ĩ〉,
where Ĩ is the dual formula of I and δ̃ is the dual transition function: δ̃(q, a) is
the dual formula of δ(q, a) for all states q and symbols a.

Frame Graphs We define the graph of a frame F as (VF , EF) where VF = Q
and there is an edge in EF from p → q whenever q is in some minimal model
of δ(p, a) for some symbol a. Since the union of all minimal models of a formula
is the same set as the union of all minimal models of its dual formula, the edge
relation is the same for the graph of a frame and its specular frame:

Proposition 3 (Frame Graphs). The graph of a frame and the graph of its
specular frame are identical.

By construction, if (p, k) → (q, k + 1) is an edge in some run of a given frame,
then p→ q is an edge in the graph of the frame. Consequently, the set of traces
of runs of a frame correspond to the set of walks in the graph, which in turn is
also the set of traces of runs of the specular frame.

Automata A frame F : 〈Σ,Q, δ, I〉 can be enriched into an automaton A :
〈Σ,Q, δ, I, F 〉 by adding an acceptance condition F . In this paper we will use the
parity acceptance condition defined by a map F : Q → {0 . . . d}. Let π be an
infinite sequence of states π : q0, q1, q2 . . . and inf (π) be those states that occur
infinitely many times in π. The sequence π is accepting according to F , which we
denote π ∈ acc(F), whenever the maximum value that occurs infinitely often in
F (π) is even:

max{F (q) | q ∈ inf (π)} is even

A run of a word w on an automaton A is a run on its frame. A run is called
accepting whenever all its traces are accepting sequences. We say that a word w
is in the language of automaton A, and we write w ∈ L(A) whenever there is an
accepting run for w on A.

Definition 1 (Specular Automata). Two automata A : 〈Σ,Q, δ, I, FA〉 and

B : 〈Σ,Q, δ̃, Ĩ, FB〉 with specular frames are specular automata whenever for all
paths π in the frame graph:

π ∈ acc(FA) if and only if π /∈ acc(FB).

The standard construction for complementing alternating parity automata
consists in creating the specular frame by dualizing the initial condition and
transition functions, and making FB(q) = FA(q) + 1 for every q. However, in
many cases it is possible to exploit the particular structure of A to define lower
values for FB .

5

Automata and Games We show now that specular automata accept comple-
ment languages, using game theory. From a given automaton A and a word w, we
create a parity game called a word game as a tuple G(A, w) : 〈VA, VP , EA, EP , f〉
where:

VA =Q× ω
VP ={(M, q, i) |M ∈ Mod(δ(q, w[i]))} ∪ {(M, ·, 0) |M ∈ Mod(I)}
EA =(q, i)→ (M, q, i) for each M ∈ Mod(δ(q, w[i]))

EP =(M, q, i)→ (q′, i+ 1) for q′ ∈M

The game is played by two players: Automaton (A) and Pathfinder (P). The
set of positions V = VA ∪ VP is partitioned into positions in which A plays and
those in which P plays. The game begins by A choosing a model of I, which
determines the initial position (M, ·, 0) (here · represent an irrelevant state).
The legal moves of the game are captured by the relation E = EA ∪ EP which
correspond to A choosing a model from a VA position, and P choosing the next
successor from a given model from a VP position. A play is an infinite sequence
of positions π : V0v0V1v1 . . . with V0 being an initial position, vi obtained from
Vi by a P move, and Vi+1 obtained from vi by an A move. The map f : V →
{0 . . . d} determines the outcome of a play. We define the trace of a play π :
V0v0V1v1 . . . as the sequence of states trace(π) : p0p1 . . . obtained by projecting
the first component of the VP positions of the play (i.e., vi = (pi, i)). The following
follows directly from the definition:

Proposition 4. Every trace of a play of G(A, w) is also a trace of some run of
A on w.

As for parity automata the outcome of a play is determined by the highest
color that is seen infinitely often in the play. Player A wins play π whenever:

max{f(q) | q ∈ inf (trace(π))} is even

Otherwise, P wins play π. A strategy for player A is a map ρA : (V ∗VA∪ ε)→ V ,
that maps histories of positions into moves. Here, ε denotes the empty sequence
of positions, to let player A choose an initial state in the game. A memoryless
strategy simply takes into account the last position: ρA : VA ∪ ε → V . Since
parity games are memoryless determined [4] it is enough to consider memoryless
strategies. Similarly, a strategy for player P is a map ρP : VP → V . A play
π : V0v0V1v1 . . . is played according to strategy ρA whenever the initial position
is V0 = ρA(ε) and all moves of A are played according to it Vi = ρA(vi). A strategy
ρA is winning for player A whenever all plays played according to ρA are winning
for A. Memoryless determinacy of parity games guarantees that either player
A has a memoryless winning strategy or player P has a memoryless winning
strategy. We say that π is a G · ρA play whenever π is played in G according to
ρA.

We restrict our attention to strategies for A that choose minimal models, and
strategies for P that are proper choice functions. This is not a drastic restriction.

6

Clearly, if there is a winning strategy for A that does not choose a minimal
model, then any strategy that chooses a smaller minimal model is also winning.
This is because the set of plays is reduced, and all plays in the unrestricted set
are winning for A. Similarly, if ρP is a winning strategy for P , then restricting
its moves to be a proper choice functions (by restricting the image) also gives
a winning strategy. In both cases, the set of successor moves is restricted but
still confined within winning regions. This lemma is essentially Prop. 2 from [13],
where complementation of weak alternation automata by dualization is studied.

Lemma 1. w ∈ L(A) if and only if A has a winning strategy in G(A, w).

Specular Pairs and Complementation We show in this section that specular
automata accept complement languages. In the rest of the section we let A and
Ã be a specular automata pair, w be a word and G : G(A, w) and G̃ : G(Ã, w)
be the corresponding word games. First we need some preliminary definitions.

Definition 2. We say that strategies ρA (for A in G) and ρ̃P (for P in G̃) are
duals whenever both:
– for every G · ρA play π there is a G̃ · ρ̃P play π̃ s.t. trace(π̃) = trace(π).

– for every G̃ · ρ̃P play π̃ there is a G · ρA play π s.t. trace(π̃) = trace(π).

Theorem 1 (Dual Strategies). The following holds:

(1) For every strategy ρA for A in G, there is a dual strategy ρ̃P for P in G̃.

(2) For every ρP for P in G, there is a dual strategy ρ̃A for A in G̃.

The following theorem follows directly from Lemma 1 and Theorem 1. This
theorem allows to reason about complementation simply by reasoning about
traces of two automata with dual frames.

Theorem 2. Let A and Ã be specular automata. Then L(A) = Σω \ L(Ã).

4 Temporal Logic to Specular Automata

We show in this section how the results in Section 3 can be used to translate
temporal logic expressions into alternating parity automata. Most previous trans-
lations fix the logic first, and then show a translation from the whole expression
into automata. Typically, these translations are preceded by a previous trans-
formation of the expression into negation normal form, by pushing the negation
operator to the propositional level. This transformation requires the logics to en-
joy duality laws for all operators, or in other words, to admit a negation normal
form. Using this transformation, the negation operator need not be considered in
the translation into automata.

We follow here a different approach. For each operator we construct a spec-
ular automata pair: one automaton is equivalent to the expression, and another
equivalent to its complement. The construction for a given operator starts from
a specular automata pair for each of the operands. This approach has two advan-
tages. First, negation becomes trivial. Second, adding more constructs to a logic

7

simply requires the addition of specific translations for the added operand. In
this manner, operators from different logics can be easily combined. We present
here a few examples of constructs from LTL and some extensions.

Linear Temporal Logic: Linear temporal Logic was introduced by Pnueli [11],
see also [9]. We consider here the following operators

ϕ ::= p
∣∣ ¬ϕ ∣∣ ϕ ∨ ϕ ∣∣ ϕ ∣∣ ϕ ∣∣ϕ ∣∣ ϕ U ϕ ∣∣ ϕR ϕ

∣∣ ϕW ϕ

This definition is not minimal but it serves to illustrate how to translate some
of the operators into APW. The semantics of LTL expressions are defined using
a binary relation � between pointed ω-words and LTL expressions:
− (w, i) � p when p ∈ w[j].
− (w, i) � ¬x when (w, i) 6� x.
− (w, i) � x ∨ y when (w, i) � x or (w, i) � y or both.
− (w, i) � x when (w, i+ 1) � x.
− (w, i) �x when (w, j) � x for some j ≥ i.
− (w, i) � x when (w, j) � x for all j ≥ i.
− (w, i) � x U y when (w, j) � y for some j ≥ i, and (w, k) � x for all i ≤ k < j.
− (w, i) � xR y when (w, j) � y for all j ≥ i, or

for some j, (w, j) � x and for all k in i ≤ k ≤ j, (w, k) � y.
− (w, i) � xW y when (w, j) � x for all j ≥ i, or

(w, j) � y for some j ≥ i, and (w, k) � x for all i ≤ k < j.

We now show the translation of each operator. We assume a pair of dual
automata (Ax,Ax) for each operand x.

– p: The automaton Ap is 〈Q, δ, I, F 〉 such that Q = {q0, q1, q2}, I = q0,
F (q0) = F (q1) = 2 and F (q2) = 1. The transitions function is: δ(q0, p) = q1,
δ(q0,¬p) = q2, and δ(q1, ·) = q1 and δ(q2, ·) = q2 are self loops. The dual au-
tomaton Ap has, as final condition, F (q0) = F (q1) = 1, F (q2) = 2. Note, in
particular, how the dualization of the acceptance condition is not performed
by incrementing the color of each state, but by reasoning independently about
the traces. The automata pair is shown graphically in Fig. 1(a).

– ¬x: the automaton for A¬x is Ax and the automaton for A¬x is Ax.

– x ∨ y: The automaton Ax∨y is 〈Q, δ, I, F 〉 with Q = Qx∪Qy, and I = Ix ∨ Iy.
The acceptance condition works as Fx for Qx and as Fy for Qy. For Ax∨y,
the automaton is build similarly, but from Ax and Ay with I = Ix ∧ Iy. The
construction is depicted in Fig. 1(b)

– x: The automaton Ax has Q = {q0} ∪Qx, where q0 is a fresh state. The
initial condition is I = {q0}. The acceptance condition works as Fx in Qx, and
assigns F (q0) = 1. Finally, δ(q0, a) = q0 ∧ δx(Ix, a). The dual automaton Ax
is built analogously, from Ax, except: F (q0) = 2 and δ(q0, a) = q0 ∨ δx(Ix, a).

– x: The construction is exactly the dual as for x. Hence, given (Ax,Ax)
the automata obtained for Ax is identical to Ax, and Ax is identical to
Ax. This construction directly proves the duality of  and .

8

p

¬p

2

1

2 p

¬p

1

2

2

(a). Automata pair for p.

2

=

Ax Ay

=

2

= =

Ax Ay

(b). Automata pair for x ∨ y.

Ax

1

=

Ax

2

=

(c). Automata pair for x.

2

=

Ax

2

=

Ax

(d). Automata pair for x.

Ay

1

=

Ax

=
1

Ay

2

=

Ax

=
2

(e). Automata pair for x U y.

Ay

2

=

Ax

=
2

Ay

1

=

Ax

=
1

(f). Automata pair for xR y.

Figure 1. Translations of LTL ito APW (1,2)

– x U y: The automaton AxUy has Q = {q0} ∪ Qx ∪ Qy and I = {q0}. The
acceptance condition is such that F (q0) = 1, and as Fx for states in Qx,
and Fy for states in Qy. The transition function, maps δ(q0, a) = δ(Iy, a) ∨
(δ(Ix, a) ∧ q0); for states in Qx and Qy, δ is as δx and δy. The dual automaton
is constructed analogously, except that F (q0) = 2 and δ(q0, a) = δy(Iy, a) ∧
(δx(Ix, a) ∨ q1). This case illustrates again how colors need not be increased in
the dualization. The only trace to be considered when incrementally proving
the correctness (accepting complement languages) of AxUy and AxUy is the
infinite sequence q0q0q0 . . ., which is accepting for AxUy and rejecting for
AxUy. The other traces follow from the inductive construction.

– x R y: The construction is exactly dual as for x U y, which illustrates the
duality between U and R.

– xW y: The construction is as for U , except that F (q0) = F (q1) = 2 for AxWy
and F (q0) = F (q1) = 1 for AxWy.

This translations are depicted graphically in Fig. 1. In all cases, the APW
generated uses only two colors: 1 and 2. Every APW (1,2) automaton is a Büchi
automaton: traces will be accepted if at least one 2 state is visited infinitely often.
Also, by looking at the automata graph, we see that all even valued states can
be assigned any even value, and all odd states can be assigned any odd value,
because every trace will still have the same acceptance outcome. Hence, choosing
0 instead of 2 in all steps of the inductive construction will produce an APW

9

with colors 0 and 1, which is a co-Büchi automaton. Our construction avoids the
need to complement the Büchi automaton obtained from the formula for model-
checking (or to negate the formula upfront and convert into negation normal
form).

Regular Linear Temporal Logic We sketch here an incremental construction
for operators of Regular Linear Temporal Logic RLTL [8, 12]. RLTL is a logic that
fuses regular expressions and temporal operators in a single formalism. RLTL is
defined in two stages: the first stage consists of a variation of regular expressions
over finite words, using

α ::= p
∣∣ α+ α

∣∣ α ; α
∣∣ α∗α

We assume that a non-deterministic finite automaton of linear size is con-
structed from a given regular expression. The second stage defines temporal logic
expressions that describe languages over infinite words, using regular expressions
as building blocks. Since regular expressions are used to later build temporal ex-
pressions, the semantics for regular expressions are defined to accept segments
of infinite words. Given an infinite word w and two positions i and j, the tuple
(w, i, j) is called a segment of the word w. The syntax of RLTL expressions is
defined by the following grammar:

ϕ ::= ∅
∣∣ ϕ ∨ ϕ ∣∣ ¬ϕ ∣∣ α ; ϕ

∣∣ ϕ|α〉〉ϕ ∣∣ ϕ|α〉ϕ
where α ranges over regular expressions. The symbol ; stands for the conventional
concatenation of an expression over finite words followed by an expression over
infinite words. The operator ∅ represents the empty language.

The operators ϕ|α〉〉ϕ and its weak version ϕ|α〉ϕ are the power operators. The
power expressions x|r〉〉y and x|r〉y (read x at r until y, and, respectively, x at z
weak-until y) are built from three elements: y (the attempt), x (the obligation)
and r (the delay). Informally, for x|r〉〉y to hold, either the attempt holds, or the
obligation is met and the whole expression evaluates successfully after the delay;
in particular, for a power expression to hold the obligation must be met after a
finite number of delays. On the contrary, x|r〉y does not require the obligation
to be met after a finite number of delays. These two simple operators allow the
construction of many other operators like x U y and rω, which make RLTL ω-
complete. Also, for every LTL operator there is a RLTL operator with the same
number of operands, and consequently LTL can be translated linearly into RLTL.
The semantics of the new RLTL operands ∅, r;x, r|x〉〉y and r|x〉y is:
− (w, i) � ∅ never holds.
− (w, i) � r ; y when for some k, (w, i, k) �re r and (w, k) � y
− (w, i) � x|r〉〉y when (w, i) � y or for some (i0 = i, i1, . . . im), and for all k < m

(w, ik, ik+1) �re r and (w, ik) � x, and (w, im) � y
− (w, i) � x|r〉y when one of:

(i) (w, i) � y.
(ii) for some (i0 = i, i1, . . . im), (w, im) � y, and

(w, ik, ik+1) �re r and (w, ik) � x for all k < m.
(iii) for some inf. seq. (i0 = i, i1, . . .), (w, ik, ik+1) �re r and (w, ik) � x

10

We show now the translations of RLTL into APW. The operators ∨ and
¬ can be reused from LTL. We assume again that we have the automata pair
(Ax,Ax) for all operands x, and a non-deterministic automaton Nr for each
regular expression r.

– ∅: The automaton A∅ consists of a single state Q = {q0} with I = {q0} and
a self-loop δ(q0, a) = q0. The accepting condition maps F (q0) = 1. The dual
automaton A∅ is identical except that F (q0) = 2.

– r;x: The automaton for Ar;x consists of Q = Qr ∪ Qx, and I = Ir. The
transition function is as in Ax for states Qx; for states q in Qr:

• if δr(q, a) ∩ Fr = ∅, then δ(q, a) =
∨
δr(q, a).

• if δr(q, a) ∩ Fr 6= ∅, then δ(q, a) =
∨
δr(q, a) ∨ Ix.

This allows δ to non-deterministically jump to x when an accepting segment
is matched by r. Finally, the acceptance condition is F (q) = Fx(q) for all
states in Qx and F (q) = 1 for all states in Qr. Hence, a trace that remains
in Qr is a non-accepting trace.

The automaton for Ar;x is built from Nr and Ax: Q = Qr∪Qx. The transition
function now interprets the transitions from states in Qr universally:

• if δr(q, a) ∩ Fr = ∅, then δ(q, a) =
∧
δr(q, a).

• if δr(q, a) ∩ Fr 6= ∅, then δ(q, a) =
∧
δr(q, a) ∧ Ix.

Finally, F (q) = Fx(q) for q in Qx and F (q) = 2 for q in Qr. Note how a trace
that gets trapped in Qr is now accepting, and how the frame corresponding
to the regular expression r is universal.

– x|r〉〉y: The set of states is Q = Qx ∪Qy ∪Qr ∪ {q0}. The initial condition is
I = {q0}. The transition function is as δx for states in Qx, as δy for states in
Qy. For states q in Qr:

• if δr(q, a) ∩ Fr = ∅ then δ(q, a) =
∨
δr(q, a).

• if δr(q, a) ∩ Fr 6= ∅ then δ(q, a) =
∨
δr(q, a) ∨ q0.

For q0:

• if δr(Ir, a) ∩ Fr = ∅ then δ(q0, a) = δy(Iy, a) ∨ (δx(Ix, a) ∧ δr(Ir, a)).

• if δr(q, a)∩Fr 6= ∅ then δ(q0, a) = δy(Iy, a) ∨ (δx(Ix, a) ∧ (δr(Ir, a) ∨ q0)).

The acceptance condition is F (q) = Fx(q) for q in Qx, F (q) = Fy(q) for q in
Qy, and F (q0) = F (q) = 1 for q in Qr.

The dual automaton A
x|r〉〉y is built analogously. The transition function is

dual of Ax|r〉〉y. The acceptance condition is F (q) = Fx(q) for q in Qx, F (q) =
Fy(q) for q in Qy, and F (q0) = F (q) = 2 for q in Qr.

– x|r〉y: The set of states Q, the initial state I and the transition function δ
are like in x|r〉〉y. The acceptance condition is F (q) = Fx(q) for q in Qx,
F (q) = Fy(q) for q in Qy, and F (q0) = 2, F (q) = 1 for q in Qr. This makes
traces that visit q0 infinitely often accepting, but traces that get trapped in
r rejecting.

The dual automaton A
x|r〉〉y is built with a dual frame and F (q0) = 1, and

F (q) = 0 for q ∈ Qr. Color increasing was prevented by reasoning about
traces independently.

11

Note how the automata obtained in this translation is now an APW (0,1,2).
Still, the automata obtained has some particular structured. All strongly con-
nected components (SCCs) are either labeled with 0 and 1, or labeled with 1
and 2. This is not a weak acceptance condition but can be potentially used to
improved the translation into NBW further (this is ongoing work).

PSL operators The logic PSL [5] and its precursors ForSpec [1] and Sugar [2],
also combine regular expressions with temporal operators. We illustrate here how
to translate the PSL operator r|� x, assuming that r is a regular expression as
defined above. The semantics of r|�x and r�x is:
− (w, i) � r|�x when there is a j with (w, i, j + 1) � r and (w, j) � x.
− (w, i) � r�x when for all j with (w, i, j + 1) � r, then (w, j) � x.

We sketch the translation from r|�x and r�x into specular APW pairs:

– r|� x: The automaton for Ar|�x consists of Q = Qr ∪ Qx, and I = Ir. The
transition function is as in Ax for states Qx; for states q in Qr:
• if δr(q, a) ∩ Fr = ∅, then δ(q, a) =

∨
δr(q, a).

• if δr(q, a) ∩ Fr 6= ∅, then δ(q, a) =
∨
δr(q, a) ∨ δx(Ix, a).

This allows δ to non-deterministically jump to x when an accepting segment
is matched by r, overlapping the last state. Finally, the acceptance condition
is F (q) = Fx(q) for all states in Qx and F (q) = 1 for all states in Qr. Hence,
a trace that remains in Qr is a non-accepting trace.
The automaton for A

r|�x is built dually. For the accepting condition: F (q) =

Fx(q) for q in Qx and F (q) = 2 for q in Qr. Note how a trace that gets
trapped in Qr is now accepting, and how the frame corresponding to the
regular expression r is universal.

– r�x is dual of r|�x.

Dynamic Linear Temporal Logic DLTL DLTL is defined as a dynamic logic
in [6]. DLTL introduces a generalized until operator xUr y that constraints those
points at which the attempt y can be evaluated by successful matches of the
regular expression r. In order for x Ur y to be satisfied, there must be a segment
met by regular expression r after which y is satisfied, and x must be satisfied in
all the positions until the successful match of r. More formally:
− (w, i) � x Ur y when there is a j with (w, i, j) � r and (w, j) � y,

and for all k within i ≤ k < j, (w, k) � x.
The translation into APW is:

– xUr y: The set of states Q = Qx ∪Qy ∪Qr ∪{q0}. The initial state is I = q0.
The transition function is like δx for states in Qx and like δy for states in Qy.
For q0:
• if δr(Ir, a) ∩ Fr = ∅ then δ(q0, a) = δy(Iy, a) ∨ (δx(Ix, a) ∧ δr(Ir, a)).
• if δr(Ir, a) ∩ Fr 6= ∅ then δ(q0, a) = δy(Iy, a) ∨ (δx(Ix, a) ∧ (δr(Ir, a) ∨
q0)).

For states q ∈ Qr:
• if δr(q, a) ∩ Fr = ∅ then δ(q, a) = (δx(Ix, a) ∧ δr(q, a).
• if δr(q, a) ∩ Fr 6= ∅ then δ(q, a) = (δx(Ix, a) ∧ (δr(q, a) ∨ q0).

12

The acceptance condition is F (q) = Fx(q) for q in Qx, F (q) = Fy(q) for q in
Qy, and F (q0) = 1, F (q) = 1 for q in Qr. The dual automaton AxUry is built
analogously, with the dual frame and F (q0) = 0, and F (q) = 0 for q ∈ Qr.

5 Conclusions

In this paper we have presented a finer grain complementation construction for
alternating automata with the parity condition. This complementation allows
to reason about walks in the graph of the specular automata pair, which are
the only potential traces of runs. In turn, we showed how this results can be
used to inductively translate temporal logic into APW. The translation of each
operator produces a specular automata pair: one for the expression, one for its
complement. This construction generates APW with few colors (2 for most ex-
pressions, 3 for the most sophisticated), which enables its efficient translation into
non-deterministic Büchi Automata for model-checking. Future work includes the
design of antichain algorithms directly for the APW generated from temporal
logic expressions to alleviate even further the state explosion.

References

1. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. Information and Computation, 183(2):140–164, 2003.

2. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The
temporal logic Sugar. In CAV’01, pages 363–367. Springer, 2001.

3. C. Dax and F. Klaedtke. Alternation elimination by complementation. In LPAR’08,
volume 5530 of LNCS, pages 214–229. Springer, 2008.

4. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
FOCS’91, pages 368–377. IEEE Computer Society, 1991.

5. D. Fisman, C. Eisner, and J. Havlicek. Formal syntax and Semantics of PSL: App.
B of Accellera Property Language Ref. Manual, v1.1, March 2004.

6. J. G. Henriksen and P. S. Thiagarajan. Dynamic linear time temporal logic. Annals
of Pure and Applied Logic, 96(1–3):187–207, 1999.

7. O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.
ACM Transactions on Computational Logic, 2(3):408–429, 2001.

8. M. Leucker and C. Sánchez. Regular linear temporal logic. In ICTAC’07, volume
4711 of LNCS, pages 291–305. Springer, September 2007.

9. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems. Springer, 1995.
10. D. E. Muller and P. E. Schupp. Altenating automata on infinite trees. TCS, 54:267–

276, 1987.
11. A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–67, 1977.
12. C. Sánchez and M. Leucker. Regular linear temporal logic with past. In VMCAI’10,

volume 5944 of LNCS, pages 295–311. Springer, 2010.
13. W. Thomas. Complementation of Büchi automata revisited. In Jewels are Forever,

pages 109–120. Springer, 1999.
14. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In LICS’86, pages 332–344. IEEE CS Press, 1986.
15. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information

and Computation, 115:1–37, 1994.

13

A Missing Proofs

Lemma 1. w ∈ L(A) if and only if A has a winning strategy in G(A, w).

Proof. Assume w ∈ L(A) and let σ : (Vσ, Eσ) be a successful run of w on A. We
first build a strategy ρA for A on G(A, w) and then show that ρA is winning:

ρA(ε) = (M0, ·, 0) with M0 = {q | (q, 0) ∈ Vσ}
ρA(q, i) = (M, q, i+ 1) with M = {q′ | (q, i)→ (q′, i+ 1) ∈ Eσ}

The set M in (M, q, i+ 1) is a model of δ(q, i) because σ is a run. For positions
(q, i) that do not appear in the run σ, the strategy ρA(q, i) = (M, q, i + 1) can
assign any model M in Mod(δ(q, w[i])). This model is not relevant because no
play played according to ρA will visit these states. Consider now an arbitrary
play π : V0v0V1v1 . . . of G(A, w) played according to ρA. We show by induction
that trace(π) : p0p1 . . . is a trace of σ.

– base: By construction M0 is the set of initial positions of σ. Since p0, chosen
by player P , is v0 ∈M0, then v0 is a prefix of a trace of run σ.

– induction step: assume p0 . . . pi is a prefix of some trace in σ, so (pi, i) is in
Vσ. Hence, ρA(pi, i) = (M,pi, i+1) for M being the set of successors of (pi, i)
in Eσ. Consequently pi+1 = (q, i + 1) for some (pi, i) → (pi+1, i + 1) in Eσ,
so v0 . . . vivi+1 is a longer prefix of a trace of run in σ.

This shows that trace(π) is a trace of the run σ. Now, since σ is a successful
run all its traces must be accepting, and then:

max{F (q) | q ∈ inf (trace(π)} is even,

which shows that ρA is a winning strategy for G(A, w).
We now show the other direction: we start from a winning strategy ρA for A in

G(A, w) and show that there is a successful run σ of w onA. Let (M, ·, 0) = ρA(ε).
Then we let Vσ contain (q, 0) for all q ∈ M . Note that M is a minimal model of
I. Now, consider an arbitrary position (q, i) and let (M, q, i+ 1) be ρA(q, i). We
add to Eσ all pairs of the form (q, i)→ (q′, i+ 1) for all q′ ∈M . We have to show
that σ is successful run. We show by induction that all traces of σ correspond
to plays in G(A, w) played according to ρA. For the base case (q, 0) is the initial
state of the trace. By construction (q, 0) ∈ ρA(ε) so (q, 0) is a possible choice
of player P , and consequently a play prefix. For the inductive case, assume that
trace prefix (q0, 0) . . . (qi, i) is a play prefix, and let (qi, i) → (qi+1, i + 1) be in
Eσ. By construction ρA(qi, i) contains position (qi+1, i+ 1) so player P can again
move to it. This shows that the arbitrary trace of σ correspond to a play played
according to ρA. ut

