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Abstract We study the uniform verification problem for infinite state pro-
cesses. This problem consists of proving that the parallel composition of an
arbitrary number of processes running the same program (or a finite col-
lection of programs) satisfies a temporal property. Our practical motivation
is to build a general framework for the temporal verification of concurrent
datatypes.

In this paper we propose a general method for the verification of safety
properties of parametrized programs that manipulate complex local and
global data, including mutable state in the heap. Our method is based on a
clear division between the following two dimensions of the problem: the inter-
action between executing threads—handled by novel parametrized invariance
proof rules—, and the data being manipulated—handled by specialized de-
cision procedures. Our proof rules discharge automatically a finite collection
of verification conditions. The size of this collection depends only on the size
of the program and the specification, but not on the number of processes in
any given instance or on the kind of data manipulated. Moreover, all verifi-
cation conditions are quantifier free, which eases the development of decision
procedures for complex data-types on top of off-the-shelf SMT solvers.

We prove soundness of our proof rules and illustrate their application in
the formal verification of (1) two infinite-state mutual exclusion protocols;
(2) shape and functional correctness properties of several concurrent data-
types, including fine-grained and non-blocking concurrent lists and queues.
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We report empirical results using a prototype implementation of the proof
rules and decision procedures.

1 Introduction

In this paper we present a general method to verify concurrent programs. The
concurrent programs that we consider are executed by an arbitrary number of
parallel threads which manipulate complex data, including unbounded local
and share state. Our solution consists of a method that cleanly separates
two concerns: (1) the data and its changes, handled by specialized decision
procedures; and (2) the concurrent thread interactions, which is handled by
novel proof rules called parametrized invariance presented in this paper. The
method of parametrized invariance solves the uniform verification problem
for safety properties:

Given a parametrized system S[N ] : P (1) ‖ P (2) ‖ . . . ‖ P (N) and a safety
property ϕ, establish whether S[M ] � ϕ for all instances M ≥ 1.

in particular, for systems processes that manipulate arbitrary infinite data.
Our method is a generalization of the inductive invariance proof rules

from temporal deductive verification [30], in which each verification condition
corresponds to a small-step (a single transition) in the execution of a system.
The applicability of these proof rules (without adding quantifiers) is restricted
to non-parametrized systems. Non-parametrized systems can be described by
a finite number of transitions, so one can generate one verification condition
per transition. However, in parametrized systems, the number of transitions
depends on the concrete number of processes in each particular instantiation,
which is unbounded.

The main contribution of this paper is the principle or parametrized in-
variance, presented as proof rules that capture the effect of single steps of
both:
– all threads explicitly referred to in the property, and
– an arbitrary thread not involved in the property definition.

Our parametrized invariance rules automatically discharge a finite collec-
tion of verification conditions. The validity of these verification conditions
imply the correctness of all concrete system instantiations. In the rest of
the paper we will use VC as a short for verification condition. We show
that all VCs generated are quantifier-free as long as transition relations and
specifications are quantifier-free, which is the case in conventional system
descriptions, for example programs. For simplicity we present the rules for
fully symmetric systems in which thread identifiers are only compared with
equality, which encompasses many real systems. Other topologies, like rings
of processes or totally ordered collections of processes can be handled with
variations of our proof rules. To prove the generated verification conditions
we use specific decision procedures for each manipulated data-type. For many
data-types one can use directly SMT solvers [21, 33], or specialized decision
procedures built on top of these solvers. We illustrate in this paper the use
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of a decision procedure for a quantifier-free theory of single linked list lay-
outs with locks [37] to verify several fine-grained and non-blocking concurrent
datatypes. Other powerful logics and tools for building similar decision pro-
cedures include [27,29].

1.1 Related Work

The problem of uniform verification of parametrized systems has received a
lot of attention in recent years. This problem is, in general, undecidable [5],
even for finite state components [41]. There are two general ways to overcome
this limitation: deductive proof methods as the one we propose here, and
(necessarily incomplete) algorithmic approaches.

Most algorithmic methods are restricted to finite state processes [11,12,16]
to regain decidability. Examples are synchronous systems with guards [22]; in-
terleaving systems with pairwise rendezvous [18]; systems with only conjunc-
tive guards or only disjunctive guards [16]; implicit induction [17]; network
invariants [28]; etc. A related technique, used in parametrized model checking,
is symmetry reduction [13,19]. There also exists some automatic approaches
designed to verify automatically specific properties such as linearizability [46].
Our approach is not automatic, but can be used to prove many other proper-
ties other than linearizability. Other approaches are based on shape analysis,
but in general they are limited to a fixed number of threads [4] or limited to
fixed data structures or shapes, like simple linked-list data structures [45].
Our approach can be applied to any theory of data with an available deci-
sion procedure. These aforementioned automatic approaches based on shape
analysis can alleviate the human intervention needed in our approach by
generating intermediate invariants.

A different tradition of automatic (incomplete) approaches is based on ab-
stracting control and data altogether, for example representing configurations
as words from a regular language [1, 3, 26, 31]. Property directed techniques
can be used to automatically prove invariants without manual effort [25], but
they are in general restricted to Boolean programs. Other approaches use ab-
straction, like thread quantification [7] and environment abstraction [14] are
based on similar principles as the full symmetry presented here, according to
which all threads identifiers are interchangeable. However, these approaches
rely on building specific abstract domains that abstract symbolic states in-
stead of using decision procedures based on SMT solvers, as in our work.
A very powerful method is invisible invariants [6, 35, 47], which works by
heuristically generating invariants on small instantiations and trying to gen-
eralize these to parametrized invariants. However, this method is so far also
restricted to finite state processes.

In contrast with these methods, the verification framework we present
here can handle infinite data. The price to pay is, of course, automation be-
cause one needs to provide additional program annotations in the form of
supporting invariants. We see our line of research as complementary to the
lines mentioned above. We start from a general method and investigate how
to improve automation as opposed to starting from a restricted automatic
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technique and improve its applicability. The verification conditions we gener-
ate can still be verified automatically as long as there are decision procedures
for the data that the program manipulates.

Our target application is the verification of concurrent datatypes [24],
where the main difficulty arises from the mix of unstructured unbounded
concurrency and heap manipulation. We use the term unstructured concur-
rency to refer to programs that are not structured in sections protected by
locks but that allow a more liberal pattern of shared memory accesses, in-
cluding fine-grain locking or lock-free algorithms. Unbounded refers to the
lack of bound on the number of running threads. Concurrent datatypes can
be modeled naturally as fully symmetric parametrized systems, where each
thread executes in parallel a client of the data-type. There exist results [2]
proving decidability for systems with finite control flow and infinite domain
provided the infinite domain contains a well-founded preorder. On the con-
trary, our approach can be applied to any finite or infinite data domain for
which there is a decision procedure.

In this paper we focus only in verification of safety properties using para-
metrized invariance proof rules. The main focus of our earlier work [37] was
on decision procedure for concurrent lists. In [37] we preliminarily sketched a
method for the verification of liveness properties of parametrized system later
formally developed in [38], currently under review. These methods build on
the proof rules presented here. Temporal deductive methods [30], like ours,
are very powerful to reason about (structured or unstructured) concurrency,
but they have been traditionally restricted to non-parametrized systems and
scalar data.

The rest of the paper is structured as follows. Section 2 includes the pre-
liminaries. Section 3 introduces the parametrized invariance rules. Section 4
contains the examples, a description of our tool and empirical evaluation
results. Finally, Section 5 concludes.

2 Preliminaries and Running Examples

2.1 Running Examples

Throughout the paper we illustrate the concepts and application of parame-
trized invariance using the running example programs shown in Fig. 1. We
use a simple programming language similar to spl [30].

Fig. 1(a) contains SetMutex, a parametrized mutual exclusion protocol
based on tickets. Each thread that intends to access the critical section at line
5, acquires a ticket with a unique and increasing number and—atomically—
announces its intention to enter the critical section by adding the ticket to a
shared global set of tickets (line 3). Then, the thread waits (line 4) until its
ticket becomes the lowest value in the set before entering the critical section.
After a thread leaves the critical section it removes its ticket from the global
set (line 6). SetMutex uses two global variables: avail , of type Int , which
stores the shared counter; and bag , of type Set〈Int〉, which stores the set
of tickets owned by those threads that are trying to access the critical sec-
tion. Any concrete instance of the parametrized system, obtained by fixing
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global
Int avail := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: loop
2: noncritical

3:

〈
ticket := avail ++
bag .add(ticket)

〉

4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end loop

end procedure

global
Int avail := 0
Int min := 0

procedure IntMutex
Int ticket

begin
1: loop
2: noncritical
3: ticket := avail ++
4: await (min == ticket)
5: critical
6: min := min + 1
7: end loop

end procedure

(a) SetMutex, using a set of integers (b) IntMutex, using two counters

Fig. 1: Two implementations of a ticket based mutual exclusion protocol

the number of running threads, is an infinite state system because the avail-
able ticket is ever increasing. Program IntMutex in Fig. 1(b) implements a
similar version of the protocol in which only the minimum value among all
given tickets is maintained, in a global variable of type Int . This program
is also infinite state for any concrete instantiation since tickets are also ever
increasing. We include these two very similar programs to illustrate that our
method is not wired for a specific theory of data, but it allows to be applied
to every program as long as there is a procedure to reason about the data.

2.2 Preliminaries

The formal verification problem for non-parametrized systems takes a system
described as a program and a specification of a safety property expressed as
a state predicate. A system satisfies its specification if all states reachable in
all the traces of the transition system that models the set of executions of
the program satisfy the specified property.

A transition system that models the executions of a non-parametrized
system is a tuple S : 〈Σprog,V , Θ, T 〉:

– Signature. The signature Σprog is a first-order signature modeling the data
manipulated in a given program, where a signature Σ : (S, F, P ) consists
of a set of sorts S, a set F of function symbols, and a set P of predicate
symbols. We use Tprog for the theory that allows to reason about formulas
in Σprog.

– Program Variables. V is a finite set of (typed) variables, whose types are
taken from sorts in Σprog.

– Initial Condition. Θ is the initial condition, expressed as a first-ordered
assertion over the variables V . Values of V satisfying Θ correspond to
initial states of the system.
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To show that P satisfies ϕ:

B1. Θ → ϕ

B2. ϕ ∧ τ → ϕ′ for all τ

ϕ

To show that P satisfies ϕ, find q:

I1. Θ → q

I2. q ∧ τ → q′ for all τ

I3. q → ϕ

ϕ

(a) The basic invariance rule b-inv (b) The invariance rule inv

Fig. 2: Rules b-inv and inv for non-parametrized systems.

– Transition Relation. T is a finite set of transitions. Each transition τ in
T is expressed as a first-order formula τ(V, V ′) that can refer to program
variables from V (the set V ′ contains a fresh copy of v′ of each variable v
from V ). The variable v′ denotes the value of variable v after a transition
is taken. We assume that every system is equipped with an idle transition
whose transition relation is τε(V, V

′) describes the preservation of all sys-
tem variables (v = v′ for all v ∈ V ). This idle transition allows to reason
only about infinite runs even for deadlocked systems.

A state is an interpretation of V that assigns to each program variable
a value of the corresponding type. A transition between two states s and s′

satisfies a transition relation τ when the combined valuation (that assigns
values to variables in V according to s and to variables in V ′ according to
s′) satisfies the formula τ(V, V ′). In this case, we write τ(s, s′), and we say
that the system reaches state s′ from state s by taking transition τ . We say
that a transition τ is enabled in state s if there is a state s′ for which τ(s, s′).
The enabling condition of transition τ is then the formula ∃V ′.τ(V, V ′).

A run of S is an infinite sequence s0τ0s1τ1s2 . . . of states and transitions
such that
– the first state is initial: s0 � Θ; and
– all steps are legal. For all i, the following relation holds: τi(si, si+1). We

say that τi is taken at si, leading to state si+1.
A system S satisfies a safety property p, which we write S � p, whenever

all runs of S satisfy p at all states. For non-parametrized systems, invariants
can be proven using the classical invariance rules [30], shown in Fig. 2. The
formula ϕ′ in the consequent of premise B2 refers to the formula obtained
from ϕ by replacing every variable v in ϕ by v′. The formula q′ in the con-
sequent of I2 is obtained from q similarly. The basic rule b-inv establishes
that if the candidate invariant ϕ holds initially and is preserved by every
transition, then ϕ is indeed an invariant. In this case we call ϕ an induc-
tive invariant. Rule inv uses an intermediate strengthening invariant q. If q
implies ϕ and q is an invariant, then ϕ is also an invariant. An alternative
characterization of rule inv requires finding q and proving that (q ∧ ϕ) is an
inductive invariant using rule b-inv.

For non-parametrized systems, premises B1 and I1—called initiation—
discharge one verification condition, and premises B2 and I2—called consecu-
tion—discharge a collection verification conditions whose size is linear in the
number of transitions. To use these invariance rules directly for parametrized
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systems, one either needs to use quantification (as in [35]) or apply the rules
once for each concrete system instantiation, which requires to discharge and
prove unbounded number of verification conditions. In this paper we present
novel proof rules that allow to tackle parametrized system discharging only
a finite number of VCs.

2.3 Parametrized Concurrent Programs

Programs manipulate data during their execution. In our approach, the rea-
soning about the program data and its manipulation is handled by spe-
cialized decision procedures for specific theories of data. We use Σprog for
the first-order signature and Tprog for the theory. For example, for program
SetMutex in Fig. 1, Tprog is the combined theory of Presburger arithmetic,
finite sets of integers with minimum, and finite values (to reason about loca-
tions).

The parametrized programs we consider here consist of the parallel ex-
ecution of processes running the same program. It is easy to extend this
framework to systems where processes can run programs taken from a finite
collection–to model for example, reader/writers. We assume asynchronous
interleaving semantics for parallel composition, so precisely one process ex-
ecutes atomically a single statement at a given point it time. The effect of
the execution of a statement is fully visible to all other processes after the
statement finishes. A program is described by a sequence of statements, each
assigned to a program location in the range Loc : 1 . . . L. Each instruction
can manipulate a collection of typed variables partitioned into Vglobal, the set
of global variables, and Vlocal, the set of local variables. A running program
contains one shared copy of each global variable, and each thread manipu-
lates its own copy of each local variable. There is one special local variable
pc of sort Loc that stores the program counter of each thread.

When building verification arguments it is sometimes convenient to en-
large the set of variables with auxiliary variables, called ghost variables, to
store interesting information about the history of the computation. These
variables are not allowed in the enabling condition of statements occurring
in the actual program, and are only used to update other ghost variables us-
ing statements added to the program. We call these statements ghost code,
which is executed atomically with the real code they annotate. In particular,
ghost variables do not occur in the code in expressions or assignments to
program variables.

Given a parametrized program P , we associate to P an instance fam-
ily {SP [M ]}, a collection of non-parametrized transition systems indexed
by M ≥ 1 the number of running threads. We use [M ] to denote the set
{0, . . . ,M − 1} of concrete thread identifiers. For each M , the concrete non-
parametrized transition system SP [M ] : 〈Σprog,V , Θ, T 〉 consists of:

– Signature. The signature Σprog for reasoning about data, including pro-
gram locations.
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– Program Variables. The set V of variables is:

V = Vglobal ∪{v[k] | for every v ∈ Vlocal and k ∈ [M ]}
∪{pc[k] | for every k ∈ [M ]}.

Note that “v[k]” is an indivisible variable name. Alternative names could
have been vk or vk.

– Initial Condition. The initial condition Θ is described by two predicates
Θg (that only refers to variables from Vglobal) and Θl (that can refer
to variables in Vglobal and Vlocal). These expressions are extracted from
the program using the semantics of the programming language. Given a
thread identifier a ∈ [M ] for a concrete system S[M ], Θl[a] is the initial
condition for thread a, obtained by replacing in Θl every occurrence of a
local variable v from Vlocal for v[a]. The initial condition of the concrete
transition system S[M ] is:

Θ : Θg ∧
∧

i∈M

Θl[i]

– Transition Relation. T contains a transition τ`[a] for each program loca-
tion ` and thread identifier a in [M ], which are obtain from the semantics
of the programming language. The formula τ`[a] is obtained from τ` by
replacing every occurrence of a local variable v for v[a], and v′ for v[a]′.
Note again that that “v[a]′” is an indivisible variable name, denoting the
primed version of v[a].

Example 1 Consider program SetMutex in Fig. 1(b). The instance consist-
ing of two running threads, SetMutex[2], contains the following variables:

V = {avail , bag , ticket [0], ticket [1], pc[0], pc[1]}

Global variable avail has type Int , and global variable bag has type Set〈Int〉.
The instances of local variable ticket for threads 0 and 1, ticket [0] and
ticket [1], have type Int . The program counters pc[0] and pc[1] have type
Loc = {1 . . . 7}. The initial condition of SetMutex[2] specifies that:

Θg : avail = 0 ∧ bag = ∅ Θl[0] : ticket [0] = 0 ∧ pc[0] = 1

Θl[1] : ticket [1] = 0 ∧ pc[1] = 1
(1)

There are fourteen transitions in SetMutex[2], seven transitions for
each thread: τ1[0] . . . τ7[0] and τ1[1] . . . τ7[1]. The transitions corresponding
to Thread 0 are:
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τ1[0] :




pc[0] = 1

∧
pc[0]′ = 2


 ∧ pres(V \ {pc[0]})

τ2[0] :




pc[0] = 2

∧
pc[0]′ = 3


 ∧ pres(V \ {pc[0]})

τ3[0] :




pc[0] = 3

∧
pc[0]′ = 4


 ∧




ticket [0]′ = avail

avail ′ = avail + 1

bag ′ = bag ∪ {avail}


 ∧ pres({pc[1], ticket [1]})

τ4[0] :




pc[0] = 4

∧
pc[0]′ = 5


 ∧ bag .min = ticket [0] ∧ pres(V \ {pc[0]})

τ5[0] :




pc[0] = 5

∧
pc[0]′ = 6


 ∧ pres(V \ {pc[0]})

τ6[0] :




pc[0] = 6

∧
pc[0]′ = 7


 ∧ bag ′ = bag \ ticket [0] ∧ pres(V \ {bag , pc[0]})

τ7[0] :




pc[0] = 7

∧
pc[0]′ = 1


 ∧ pres(V \ {pc[0]})

The transitions for Thread 1 are analogous. The predicate pres encodes
the preservation of the values its argument variables, allowing to describe
what a program statement does not modify. For example, in SetMutex[2],
the predicate pres(V \ {bag , pc[0]}) is:

avail ′ = avail ∧ ticket [0]′ = ticket [0] ∧ pc[1]′ = pc[1] ∧ ticket [1]′ = ticket [1].

Using pres, the idle transition τε implicitly added to every system is pres(V ).
Note that each transition in SetMutex[2] is quantifier free, and involve a
combination of theories, including Presburger arithmetic and a theory of
finite sets of integers with minimum. ut

3 Parametrized Transition Systems, Formulas and Proof Rules

We show in this section how to specify and prove invariant properties of para-
metrized systems. Unlike in [35] we generate quantifier-free verification condi-
tions, enabling the development of decision procedures for complex datatypes.
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3.1 Parametrized Transition Systems

We introduce here the notion of parametrized transition system. A para-
metrized transition system associated with a program P is a tuple PP :
〈Σparam, Vparam, Θparam, Tparam〉, where Σparam is the first-order signature used
to reason about data, Vparam is the set of system variables, Θparam describes
the initial condition and Tparam is the parametrized transition relation. The
intention of parametrized transition systems is not to define program runs
directly but to serve as a modeling language for the definition of parame-
trized formulas and to enable the definition of proof rules for parametrized
systems. We describe each component separately:

– Parametrized Program Signature. To capture thread identifiers in an ar-
bitrary instantiation of the parametrized system we introduce a new sort
tid interpreted as an unbounded but finite set. The signature Σtid contains
only = and 6=, and no constructor. Then, we extend the theory Tprog—
used to reason about the data in the program— with the theory of arrays
TA from [9], taking indices from tid and elements ranging over sorts t of
the local variables of program P . We use Tparam for the union of theories
Tprog, Ttid and TA, and Σparam for the combined signature.

– Parametrized Program Variables. For each local variable v of type t in
the program, we introduce a variable name av of sort array〈t〉, including
apc for the program counter pc. Using the theory of arrays, the expression
av(k) denotes the element of sort t stored in array av at position given
by expression k of sort tid. The expression av{k ← e} corresponds to an
array update, and denotes the array that results from av by replacing the
element at position k with e. For clarity, we abuse notation using v(k)
for av(k), and v{k ← e} for av{k ← e}. Note that v[0] is different from
v(k): the term v[0] is an atomic term in V (for a concrete system SP [M ])
referring to the local program variable v of a concrete thread with id 0.
On the other hand, v(k) is a non-atomic term built using the signature
of arrays, where k is a variable (logical variable, not program variable)
of sort tid serving as index of array v. The use we make of TA is very
limited: we do not use arithmetic over indices or nested arrays, so the
conditions for decidability in [9] are trivially met. Variables of sort tid
indexing arrays play a special role, so we classify formulas depending on
the number of free variables of sort tid. The parametrized set of program
variables with index variables X of sort tid is:

Vparam(X) = Vglobal ∪ {av | v ∈ Vlocal} ∪ {apc} ∪X
We use Fparam(X) for the set of first-order formulas constructed using
predicates and symbols from Tparam and variables from Vparam(X). Given
a formula ϕ from Fparam(X) we use Var(ϕ) to refer to the set of variables
of sort tid that occur free in ϕ. Since we restrict to the quantifier-free
fragment of Fparam(X) then Var(ϕ) corresponds to the subset of variables
from X actually occurring in ϕ. We say that ϕ is a 1-index formula if the
cardinality of Var(ϕ) is 1 (similarly for 0, 2, 3, etc).

– Parametrized Transition Relation. The set Tparam contains for each state-

ment ` in the program one formula τ
(k)
` indexed by a fresh tid variable
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k. These formulas are built using the semantics of the program state-
ments, as for concrete systems except that we now use array reads and
updates (to position k) instead of concrete local variable reads and up-
dates. The predicate pres is now defined with array extensional equality
for unmodified local variables.

– Parametrized Initial Condition. We similarly define the parametrized ini-
tial condition for a given set X of index variables (of sort tid) as:

Θparam(X) : Θg ∧
∧

k∈X

Θl(k)

where Θl(k) is obtained by replacing every local variable v in Θl by v(k).

Example 2 Consider program SetMutex. The parametrized transition τ
(k)
4 ,

for thread k in line 4, is the following formula from Fparam({k}):
(

pc(k) = 4 ∧
pc′ = pc{k ← 5}

)
∧
(
bag .min = ticket(k)

)
∧ pres(ticket , bag , avail)

where pres(bag , avail , ticket) stands for the equalities:

bag ′ = bag ∧ avail ′ = avail ∧ ticket ′ = ticket

Note that the last equality (ticket ′ = ticket) is an array equality. The pa-
rametrized initial condition of SetMutex for two thread ids i and j is the
formula Θparam({i, j}):

avail = 0 ∧ bag = ∅ ∧




ticket(i) = 0

∧
pc(i) = 0


 ∧




ticket(j) = 0

∧
pc(j) = 0


 (2)

ut

3.2 Parametrized Formulas

A parametrized formula ϕ({k0, . . . , kn}) with free variables {k0, . . . , kn} of
sort tid is simply a formula from Fparam({k0, . . . , kn}). For clarity, we use k
for {k0, . . . , kn} when the size and index of the set of tid variables is not
relevant. Parametrized formulas can only compare thread identifiers using
equality and inequality. Moreover, there is no constant thread identifier.

Let us fix a program P , and let {SP [M ]} be its instance family and PP
be the parametrized transition system.

Definition 1 (concretization) Given a parametrized formula ϕ and a con-
crete number of threads M , a concretization of ϕ is a substitution that maps
tid variables in ϕ into concrete thread identifiers in [M ]:

α : Var(ϕ)→ [M ]
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We use ArrϕM for the set of concretizations of ϕ and M .
A concretization α can be lifted inductively to convert Σparam expressions

(parametrized expressions) into Σprog expressions (non-parametrized expres-
sions for SP [M ]). All function symbols F and predicate symbols P in Σparam

that are not in the theory of arrays are translated to the same symbol in
Σprog:

α(F (t1, . . . , tn)) 7→ F (α(t1), . . . , α(tn))

α(P (t1, . . . , tm)) 7→ P (α(t1), . . . , α(tm))

For symbols in the theory of arrays, we first translate all literals of sort array
in a formula ϕ to (a) either variables of sort array, or (b) array updates in
the right of equalities w = v{k ← e}. This translation can be easily achieved
by introducing a new array variable v for a more complex term t occurring
in ϕ, conjoining v = t to the root of ϕ and substituting in ϕ all occurrences
of t for v. Then, α can be defined for the remaining array cases:

α(v(ki)) 7→ v[α(ki)]

α(w = v{k ← e}) 7→
(
w[α(k)] = e ∧ ∧

a∈M\α(k)
w[a] = v[a]

)

α(w = v) 7→ ∧
a∈M

w[a] = v[a]

Essentially, a concretization computes the predicate α(ϕ) for system SP [M ]
that results from ϕ by instantiating its variables Var(ϕ) according to the map
α. For example, consider the formula Θparam({i, j}) in (2) above. The con-
cretization of Θparam({i, j}) by the map α : {i ← 0, j ← 1} is the concrete
initial condition expressed by (1) in Example 1.

We can now formulate the uniform verification problem in terms of con-
cretizations.

Definition 2 (Uniform Verification Problem) Given a program P and
parametrized formula ϕ(k) we say that P satisfies the universal safety prop-
erty

(
∀k . ϕ(k)

)
whenever for every M and substitution α : k → [M ], the

concrete closed system SP [M ] satisfies SP [M ] � α(ϕ(k)). In this case we
write P � ∀k.ϕ(k), or simply P � ϕ and say that ϕ is a parametrized
invariant of P .

A näıve approach to prove parametrized invariants is to try to enumer-
ate all concrete instances and repeatedly use rule inv for each resulting in-
stance to show that each possible concretization is an invariant. However, this
approach requires proving an unbounded number of verification conditions
because one (potentially different) verification condition is discharged per
transition and per thread that is present in each instantiated closed system.

We prove first an important intermediate result, that will ease later to
prove soundness theorems.

Lemma 1 Let ψ be a parametrized formula and α a concretization of ψ for
a given number of threads M . Then,

if ψ is a valid formula, then α(ψ) is also a valid formula.
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Proof The proof proceeds by showing that if α(ψ) has a model then ψ also
has a model. The lemma follows because if ψ is valid, then ¬ψ has no model.
Consequently, α(¬ψ) can have no model either and α(ψ) must be valid too.

Starting from a model A of α(ψ) we build the model B of ψ as follows:

– The domains of all sorts in A and B coincide, except for arrays, in which
case indices are Z and values are the corresponding domain in A. In
particular, the domain of the program counter variable is that of arrays
indexed by Z with values ranging over locations.

– For terms: the only terms of sort tid occurring in ψ are variables. For
these, B assigns the integer within range [M ] given by α:

kB = α(k)

Array terms in ψ can be either a variable v or a term v{k ← e}, but the
function symbol {· ← e} is interpreted, so we only need to specify the
valuation in B of array variables. We let B assign, for indices within [M ]
the value of the corresponding variable in A and for values out of the
range [M ], the array is filled with a fixed value dσ (an arbitrary value) in
the domain of the sort σ of elements of the array. Formally:

vB(n) =

{
(v[n])A if n ∈ [M ]

dσ if n /∈ [M ]
(3)

Note, in particular, that for tid variable k,

(v(k))B = vB(kB) = (v[α(k)])A.

All other function symbols are interpreted in B as in A. This is well-
defined since all domains (and signatures) coincide. It follows that, with
the possible exception of arrays:

for all terms t tB = (α(t))A.

– The only predicate in the extended theory that is not in the concrete
theory is array equality. We first show that for all array variables v and
w:

(w = v)B ⇐⇒ (α(w = v))A (4)

Since for all n /∈ [M ], by (3), wB(n) = dσ = vB(n), it follows that:

(w = v)B ⇐⇒ (dσ = dσ) ∧
∧

a∈[M ]

(wB(a) = vB(a))

⇐⇒
∧

a∈[M ]

(w[a]A = v[a]A)

⇐⇒
∧

a∈[M ]

(w[a] = v[a])A

⇐⇒ (α(w = v))A

Therefore, (4) holds.
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Second, we show that:

(w = v{k ← e})B ⇐⇒ (α(w = v{k ← e}))A (5)

Given array variables v and w, tid variable k, and term e (of the appro-
priate sort of elements stored in arrays v and w) by (3) all indices not
in [M ] are mapped to the same value dσ. Then, wB(n) = vB(n) for all
n /∈ [M ]. It follows that:

(w = v{k ← e})B ⇐⇒ wB(n) = (v{k ← e))B(n) forall n ∈ [M ]

⇐⇒ wB(α(k)) = eB ∧
∧

a∈[M ]\α(k)

(w(a)B = v(a)B)

⇐⇒ w[α(k)]A = eA ∧
∧

a∈[M ]\α(k)

(w[a]A = v[a]A)

⇐⇒ (α(w = v{k ← e}))A

Therefore, (5) holds as well.
Finally, for all common predicates P , that is, for all predicates except
those in the theory of arrays we let:

PB(a1, . . . , an)⇐⇒ PA(a1, . . . , an)

Hence, by (3), (4) and (5) it follows that for all predicates, including those
in the theory of arrays:

(P (t1, . . . , tn))B ⇐⇒ α(P (t1, . . . , tn))A

Since all atomic predicates of ψ have the same truth value in B as the
corresponding predicates of α(ψ) in A, it follows that B is a model of ψ
because A is a model of α(ψ). ut

3.3 Parametrized Proof Rules

We introduce now specialized proof rules for parametrized systems, which
allow to prove parametrized invariants discharging only a finite number of
verification conditions. The simplest proof rule is bp-inv, the basic parame-
trized invariance rule, which appears in Fig. 3.

Premise P1 guarantees that the initial condition holds for all instantia-
tions. Premise P2 guarantees that ϕ is preserved under transitions taken by
all threads referred in the formula and considering all possible transitions
of the system. Finally, P3 guarantees that ϕ is preserved for all transitions
taken by any other thread (this is achieved by taking a fresh thread identi-
fier in P3. A fresh variable of type thread identifier refers to a variable not
appearing in ϕ. Premise P1 discharges only one verification condition, P2 dis-
charges one VC per transition in the description of the system (statement in
the program) and per index variable in the formula ϕ. Finally, P3 generates
one extra VC per transition in the system. All these VCs are quantifier-free
provided that ϕ is quantifier-free. Rules P2 and P3 must be verified for all
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To show that P satisfies ϕ (where k = Var(ϕ)):

P1. Θparam(k) → ϕ

P2. ϕ ∧ τ (i) → ϕ′ forall τ and all i ∈ k

P3. ϕ ∧ (
∧

x∈Var(ϕ)

j 6= x ∧ τ (j)) → ϕ′ forall τ and one fresh j /∈ k

ϕ

Fig. 3: The basic parametrized invariance rule bp-inv

possible system transitions. Moreover, rule P2 requires each transition to be
checked for every thread identifier appearing in the formula ϕ. Corollary 1
below justifies the soundness of rule bp-inv.

There are cases in which premise P3 cannot be proven, even if ϕ is initial
and preserved by all transitions of all threads.

Example 3 Consider the following program Positive and the 1-index prop-
erty ϕpos : (x > 0 ∧ c(i) > 0).

global
Int x > 0

procedure Positive
Int c > 0

1: x = x+ c
2:

end procedure

This property is trivially a parametrized invariant, but premise P3 is not
valid, when fresh thread id j takes transition at line 1:
(
x > 0 ∧ c(i) > 0 ∧ (j 6= i) ∧ x′ = x+ c(j) ∧ c′ = c

)
→ x′ > 0 ∧ c′(i) > 0

An example counter-model is:

x = 1 i = 0 j = 1 c(0) = 1 c(1) = −1 x′ = 0 c′ = c

Essentially, the formula ϕpos does not imply that c(j) > 0 before the transi-

tion τ
(j)
1 is taken, and the counter-example assigns c(j) = −1. A transition

for which the corresponding verification condition is not valid is known as
an offending transition (see [30]), or more modernly as a counter-example to
induction [8]. ut

The problem exposed in Example 3 is that in the antecedent of premise
P3, ϕ does not refer to the fresh arbitrary thread introduced. In other words,
bp-inv tries to prove a property for the threads referred to in the formula,
without assuming anything about any other thread. It is sound, however, to
assume that in the pre-state the property one intends to prove holds for all
processes, and not only for the processes explicitly mentioned in the formula.
Intuitively speaking, the justification of this assumption is based on ∀k.ϕ(k)
being equivalent to ∀k.ϕ(k). However, we want to avoid quantification in
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all verification conditions. Instead, we propose to instantiate the formula ϕ
in the antecedent of premises, not only to threads in the formula itself, but
also to other threads, in particular in the transition relation. The notion of
support allows to formally capture this intuition. We use the conventional
notion of substitution in first-order-logic (as a map from variables to terms),
and restrict our attention to maps from a set of tid variables X into set of
tid variables Y . Substitutions can be extended to maps from terms to terms
and (formulas to formulas) homomorphicaly in the usual way, preserving all
symbols except the replaced variables. A partial substitution is a partial map.

Definition 3 (Support) Let ψ, A and B be parametrized formulas, and
let S be the set of partial substitutions from Var(ψ) into Var(A → B). We
say that ψ supports (A→ B), whenever

(
(
∧

σ∈S

σ(ψ)
)
∧ A

)
→ B is valid

We use ψ � (A→ B) as a short notation for
(
(
∧
σ∈S σ(ψ)) ∧ A

)
→ B.

Note that if S′ ⊆ S is a subset of the substitutions, and

(
(
∧

σ∈S′

σ(ψ)
)
∧ A

)
→ B is valid

then (
(
∧

σ∈S

σ(ψ)
)
∧ A

)
→ B is also valid

Essentially, if one is successful proving the validity of a formula obtained by
removing some of the conjuncts from the antecedent, the validity of the full
formula is guaranteed. Hence, in practice, it is enough to consider only some
of the partial substitutions to show that a support formula is valid.

Example 4 Consider the program Positive in Example 3 above, and let A
and B be the formulas:

A : (i 6= j) ∧ τ (j)1 B : ϕpos(i)
′

The formula ϕpos � (A→ B) is:

(ϕpos(i) ∧ ϕpos(j) ∧ ϕpos(k)) ∧ (i 6= j) ∧ τ (j)1 → ϕpos(i)
′

This formula is valid. Note that the subformula ϕpos(k) in the antecedent is
obtained by applying the empty substitution to ϕpos. ut

The main motivation for introducing the notion of support is to in-
stantiate a formula ψ (an assumed fact in the pre-state) to strengthen the
antecedent of an implication (the VC) without extending the vocabulary
(the free tid variables) in the resulting strengthened implication. We can
strengthen premise P3, so the target invariant candidate ϕ can be assumed
in the pre-state for every thread, in particular for the fresh thread that takes
the transition:
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S3. ϕ �
( ∧
x∈Var(ϕ)

j 6= x ∧ τ (j) → ϕ′) forall τ and one fresh j /∈ Var(ϕ)

For example, let ϕ(i) be a candidate invariant with one thread variable
(an index 1 invariant candidate). Premise S3 is

(
ϕ � (j 6= i ∧ τ (j) → ϕ′(i))

)
,

or equivalently (
ϕ(j) ∧ ϕ(i) ∧ j 6= i ∧ τ (j)

)
→ ϕ′(i).

Note how ϕ(j) in the antecedent is the result of instantiating ϕ for the fresh
thread j introduced by the premise.

Unfortunately, rule p-inv can still fail to prove invariants if they are not
inductive.

Example 5 Consider the following property of program SetMutex:

(
i 6= j ∧ active(i) ∧ active(j))→ ticket(i) 6= ticket(j) (6)

where active(i) is a short notation for (pc(i) = 4 ∨ pc(i) = 5 ∨ pc(i) =
6). This property is a 2-index parametrized invariant of SetMutex, but it

cannot be proven by bp-inv. Premise P2 fails by taking τ
(j)
3 (this transition

is an offending transition for proving the property invariant) as witnessed by
a model from a pre-state in which:

pc(i) = 4 pc(j) = 3 ticket(i) = 1 avail = 1

A true fact of the program that eliminates this spurious counter-example is
that ticket(i) < avail is invariant, but neither the goal invariant (6) nor the

transition relation for τ
(j)
3 directly imply this fact. ut

Using support we can rewrite the basic parametrized invariance rules into
the parametrized invariance rule p-inv in Fig. 4.

To show that P satisfies ϕ (where k = Var(ϕ)):

S1. Θparam(k) � ϕ

S2. ϕ � τ (i) → ϕ′ forall τ and all i ∈ k

S3. ϕ � (
∧

x∈Var(ϕ)

j 6= x ∧ τ (j) → ϕ′) forall τ and one fresh j /∈ k

ϕ

Fig. 4: The parametrized invariance rule p-inv

Theorem 1 (Soundness of p-inv) Let S be a parametrized system and
ϕ a parametrized safety property. If S1, S2 and S3 hold, then S � ϕ.
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Proof Given ϕ, let M be an arbitrary bound. We will show that the premises
B1 and B2 of the basic invariance rule b-inv hold for the concrete non-
parametrized system SP [M ] and the concrete formula Ψ :

Ψ
def
=

∧

α∈ArrϕM

α(ϕ).

Since for an arbitrary concretization α, the formula α(ϕ) is one of the con-
juncts of Ψ , it follows that if Ψ is an invariant of SP [M ] then α(ϕ) is also an
invariant of SP [M ]. An alternative model-theoretic proof would consist on
showing that there is no violating trace of α(ϕ) in SP [M ]. We present here
the proof-theoretic argument, that shows additionally that Ψ is inductive
(and not only that Ψ is invariant as the model-theoretic proof would show).
We use Imgα for those concrete indices in [M ] that are in the image of α,
that is, those concretes indices that α maps from tid variables in ϕ.

We need to show that both premises of b-inv are valid.

– Premise B1: Since S1 is valid, then Θparam(k) � ϕ is valid, or equiva-

lently Θparam(k) → ϕ, where k = Var(ϕ). Consequently, by Lemma 1,

α(Θparam(k) → ϕ) is valid for an arbitrary α, and then, α(Θparam(k)) →
α(ϕ)) is valid for an arbitrary α. Then,

Θg ∧
∧

n∈[M ]

Θl[n]→
∧

α∈ArrϕM

α(ϕ) is valid

and, finally,

Θg ∧
∧

n∈[M ]

Θl[n]→ Ψ is valid

– Premise B2: We need to show that for all n ∈ [M ] and all transitions τ [n]:

Ψ ∧ τ [n]→ Ψ ′ is valid (7)

Let α be an arbitrary concretization in ArrϕM . We will show that:

Ψ ∧ τ [n]→ α(ϕ) is valid

which implies (7) because α is arbitrary. We consider two cases depending
on whether the concrete n is in the image of α or not:
1. n ∈ Imgα, i.e., there is a i ∈ Var(ϕ) for which α(i) = n. Then, since

S2 for τ (i) is valid, by Lemma 1,

α(ϕ � τ (i) → ϕ′) is valid

or, equivalently, for the set S of partial substitutions

α(
∧

σ∈S

σ(ϕ)) ∧ α(τ (i))→ α(ϕ′) is valid
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Then, since the application of concretization α after a substitution is
a concretization

∧

α2 ∈ ArrϕM

α2(ϕ) ∧ τ [n]→ α(ϕ′) is valid

which implies that

(Ψ ∧ τ [n])→ α(ϕ′) is valid

2. there is not an i ∈ Var(ϕ) for which α(i) = n. Let j be a fresh tid
identifier, and let α3 be the following concretization of Var(ϕ) ∪ {j}:

α3(k) =

{
n if k = j

α(k) if k 6= j

Now, since premise S3 is valid, by Lemma 1 for α3:

α3

(
ϕ �

∧

x∈Var(ϕ)

j 6= x ∧ τ (j) → ϕ′) is valid

Then, for the set of substitutions S

(
α3(

∧

σ∈S

σ(ϕ)) ∧ α3

( ∧

x∈Var(ϕ)

j 6= x
)
∧ α3(τ (j))

)
→ α3(ϕ′) is valid

and, since substitutions followed by concretizations are concretiza-
tions from ArrϕM , and α3

( ∧
x∈Var(ϕ)

j 6= x
)

simplifies to true, α3(τ (j))

simplifies to τ [n], and α3(ϕ) simplifies to α(ϕ):

( ∧

α4 ∈ ArrϕM

α4(ϕ) ∧ τ [n]
)
→ α(ϕ′) is valid

and hence

(
Ψ ∧ τ [n]

)
→ α(ϕ′) is valid

Hence, premise B2 is valid for SP [M ] and Ψ . Since both B1 and B2 are valid,
then Ψ is an inductive invariant of SP [M ], and α(ϕ) is an invariant of SP [M ]
for an arbitrary α. ut

The following corollary establishes the soundness of rule bp-inv, and
follows immediately from Theorem 1 by observing that if A � B → C is
valid then (A ∧ B)→ C is also valid.

Corollary 1 (Soundness of bp-inv) Let S be a parametrized system and
ϕ a parametrized safety property. If P1, P2 and P3 hold, then S � ϕ.
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As for closed systems, there are two reasons that explain the failure to
prove, using the inductive rules, that a candidate invariant is indeed in-
variant: (1) the candidate is actually not an invariant; (2) the candidate is
invariant but not inductive, so one needs to use strengthening invariants, or
to prove the candidate is inductive relative to other invariants. However, in
parametrized systems it is not necessary the case that by simply conjoining
the candidate and its strengthening one obtains a bp-inv inductive invariant,
because one may need to instantiate the candidate formulas for all thread
identifiers in their shared vocabulary. One solution is to prove the invariants
incrementally, and use support to instantiate to freshly introduced thread
identifiers. This idea is captured by rule sp-inv in Fig. 5.

Theorem 2 Let S be a parametrized system and ϕ a parametrized safety
property. If R0, R1, R2 and R3 hold, then S � ϕ.

Proof Assume that Var(ϕ) ∩ Var(ψ) = ∅ which can be easily achieved by
renaming tid variables. The proof is very similar to the proof of Theorem 1
showing that:

Ψ
def
=

∧

α1∈ArrϕM

α1(ϕ) ∧
∧

α2∈ArrψM

α2(ψ)

satisfies the premises B1 and B2 of rule b-inv for SP [M ] for an arbitrary M .
In this case, one can use, by R0, that α2(ψ) holds for every concretization α2

of ψ. ut

3.4 The Parametrized Graph Proof Rule

Finally, we introduce an specialized proof rule for parametrized systems,
called the graph proof rule. The main motivation is that carrying out incre-
mental invariance proofs using sp-inv requires in R0 to start from an already
proven invariant, and it is often the case that invariants mutually depend on
each other.

A näıve solution attempt would be to write down all necessary candidates
in a single large formula and prove this formula invariant using p-inv. In
parametrized systems, this approach quickly leads to formulas with many

To show that S satisfies ϕ (where k = Var(ϕ)). Find ψ with:

R0. ψ

R1. Θparam(k) � ϕ

R2. ψ, ϕ � τ (i) → ϕ′ forall τ and all i ∈ k

R3. ψ, ϕ �
∧

x∈Var(ϕ)

j 6= x ∧ τ (j) → ϕ′ forall τ and one fresh j /∈ k

ϕ

Fig. 5: The general strengthening parametrized invariance rule sp-inv for
proving relative inductive parametrized invariants.
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To show that S satisfies ϕ find a proof graph (Invs,Supp) with ϕ ∈ Invs such
that:

G1. Θparam(k) � ψ forall ψ ∈ Invs, where k = Var(ψ)

G2. Φ, ψ � τ (k) → ψ′ forall ψ ∈ Invs, forall τ ,

and all j ∈ Var(ψ),

and Φ = {ψi | (ψi, ψ) ∈ Supp}
G3. Φ, ψ �

∧
x∈v

k 6= x ∧ τ (k) → ψ′ forall ψ ∈ Invs, forall τ ,

one fresh k /∈ v = Var(ψ),

and Φ = {ψi | (ψi, ψ) ∈ Supp}
ϕ

Fig. 6: The graph parametrized invariance rule g-inv.

duplications due to thread renaming which in turn jeopardizes the scalability
of the decision procedures for sophisticated data by requiring to prove large
formulas, which requires to search for large models. A more efficient approach
consists on building the proof modularly, splitting invariants into meaningful
sub-formulas to be used only when required. This sort of proof modularity
is captured by rule g-inv shown in Fig. 6. This rule handles cases in which
invariants that mutually dependent on each other need to be verified.

A proof graph is a finite directed graph (Invs,Supp) whose nodes in Invs
are labeled with candidate invariant formulas. An edge in Supp between two
nodes indicates that in order to prove the formula pointed by the edge it is
useful to use the formula at the origin of the edge as support. As a particular
case, a formula with no incident edges is inductive and can be shown directly
using p-inv. Note that a proof graph can be (and in practice it is) a cyclic
graph. A proof graph encodes the proof that all the formulas labeling nodes
are invariants of the system. The edges encode the information of which
sub-formulas (the set of predecessor nodes) are needed to prove a particular
node.

Theorem 3 (Soundness of Proof Graphs) Let PP be a parametrized
system and (Invs,Supp) a proof graph. If G1, G2, and G3 hold, then P � ψ
for all ψ ∈ Invs.

Proof Again, we present a proof theoretic argument to show that, for an
arbitrary M , the following is a concrete non-parametrized inductive invariant
of SP [M ]:

Ψ
def
=

∧

ψ∈Invs

∧

α∈ArrψM

α(ψ)

The argument to show that premise B1 follows from G1 is identical to the
argument that B1 follows from S1, in the proof of Theorem 1 above.

For B2, we consider an arbitrary ψ in Invs and an arbitrary concretization

α from ArrψM . We need to show the following:
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Ψ ∧ τ [n]→ α(ψ) is valid

Again, we consider two cases, depending on whether n is in the image of
α or not.

1. n ∈ Imgα. Let k in Var(ψ) be such that α(k) = n. In this case, by
premise G2 with Φ = {ψi|(ψi, ψ) ∈ E},

Φ,ψ � τ (k) → ψ′ is valid

and hence

α(Φ,ψ � τ (k) → ψ′) is valid

Now, by considering the definition of Φ, considering that α(τ (k)) = τ [n],
and adding conjuncts to the antecedent (which keeps a valid implication
valid)

Ψ ∧ τ [n]→ α(ψ′) is valid

2. n /∈ Imgα. Then, let α2 be α extended by mapping a fresh tid j with
α2(j) = n. Then, by G3 of rule g-inv:

Φ,ψ �
∧

x∈Var(ψ)

j 6= x ∧ τ (j) → ψ′ is valid

or, for α2 by Lemma 1,

α2(Φ,ψ �
∧

x∈Var(ψ)

j 6= x ∧ τ (j) → ψ′) is valid

Now, by considering the definition of Ψ , that α2(
∧

x∈Var(ψ)

j 6= x) simplifies

to true, that that α2(τ (j)) = τ [n], adding conjuncts to the antecedent
(which keeps a valid implication valid), and that α2(ψ′) = α(ψ′):

Ψ ∧ true ∧ τ [n]→ α(ψ′) is valid

In both cases (Ψ ∧ τ [n]→ α(ψ′)) is valid, which finishes the proof. ut
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4 Implementation and Empirical Evaluation

We illustrate the use of our parametrized invariance rules showing that the
infinite state protocols SetMutex and IntMutex satisfy mutual exclu-
sion. Additionally, we also verify list shape preservation and some functional
properties of an implementation of concurrent lock-coupling lists, a course-
grain unbounded total concurrent queue, a lock-free queues and a lock-free
stack [24]. The proof rules presented in this paper are implemented in the
temporal theorem prover tool Leap1. Leap parses a temporal specification
and a program description in a C-like language, and automatically generates
VCs applying the parametrized invariance rules. Each VC is then discharged
and automatically verified using a suitable decision procedure for each theory.

We report here the use of three decision procedures built on top of the
SMT solvers Z3 [33] and Yices [15]:

1. a simple decision procedure that can reason only about program locations,
and treats all other predicates as uninterpreted;

2. a decision procedure based on TLL3 (see [37]) capable of reasoning about
single-linked lists layouts in the heap with locks to aid in the verification
of fine grain locking algorithms;

3. a decision procedure that reasons about program locations, integers and
finite sets of integers with minimum and maximum functions, for the
mutual exclusion protocols.

All these decision procedures are implemented as part of Leap. Some of
these decision procedures and their corresponding implementations are based
on small model theorems. The satisfiability of a quantifier free formula is re-
duced to the search for a model of a sufficiently large size (see e.g., [37] for an
example of the calculation of the upper-bound). The theories involved in each
decision procedures can also be combined through Nelson-Oppen [34] pro-
vided the theories to be combined meet some requirements [20,42,43]. Leap
also implements some heuristic optimizations, called tactics, like attempting
first to use a simpler decision procedure, or instantiating support formulas
lazily. These optimizations aid the solvers to speed the proof of validity of
many VCs by reducing the formulas obtained by partial assignments in the
application of rules sp-inv or g-inv.

4.1 Mutual Exclusion for IntMutex

We first introduce the following abbreviations for IntMutex and SetMutex.
We use active(k) and critical(k) defined as follows:

active(k)
def
=
(
pc(k) = 4 ∨ pc(k) = 5 ∨ pc(k) = 6

)

critical(k)
def
=
(
pc(k) = 5 ∨ pc(k) = 6

)
.

1 Available at http://software.imdea.org/leap
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Mutual exclusion is specified as the following 2 index formula:

mutex(i, j)
def
=
(
i 6= j → ¬(critical(i) ∧ critical(j))

)

Using the p-inv rule to provemutex fails for τ
(i)
4 , because the VC discharged

is not valid:

mutex(i, j) ∧




pc(i) = 4 ∧ pc′ = pc{i← 5} ∧
ticket(i) = min ∧

pres(avail ,min, ticket(i), ticket(j))


→ mutex′(i, j)

The SMT Solver reports two counter models:

pc(j) = 5 ∧ min = 1 ∧ avail = 2 ∧ ticket(i) = 1 ∧ ticket(j) = 3 (8)

and

pc(j) = 5 ∧ min = 1 ∧ avail = 2 ∧ ticket(i) = 1 ∧ ticket(j) = 1 (9)

Each of these models illustrate that the VC is not valid. Hence, mutex is
not inductive. The formula mutex(i, j) by itself does not include information
about two important facts of the program. First, if a thread is in the critical
section, then it owns the minimum announced ticket, unlike in the counter-
model (8). Second, the same ticket cannot be given to two different threads,
unlike in the second counter-model (9). Two new auxiliary support invariants
encode these facts:

minticket(i)
def
=
(
critical(i)→ min = ticket(i)

)

notsame(i, j)
def
=
(
i 6= j ∧ active(i) ∧ active(j)→ ticket(i) 6= ticket(j)

)

Using sp-inv, we can prove that mutex is invariant, using minticket and
notsame as support, except for the fact that minticket is not inductive. When
trying to use p-inv to prove minticket invariant the solver reports that if two
different threads i and j are in the critical section with the same ticket and

τ
(j)
6 is taken, then minticket(i) does not hold in the post state. Using notsame

as support allows to prove minticket, but notsame is also not inductive. In
this case, the offending transition is τ3 when an existing ticket is reused. The
following invariant rules out this spurious case:

activelow(i)
def
=
(
active(i)→ ticket(i) < avail

)

The formula activelow is inductive and can be proved directly using p-inv.
Also, activelow is enough to support notsame, so the proof is completed. The
dependencies between invariants are shown in Fig. 7(a).



Parametrized Invariance for Infinite State Processes 25

mutex

minticket notsame

activelow

mutexS

minticketS notsameS

activelowS
(a) IntMutex (b) SetMutex

Fig. 7: Proof graph showing the dependencies between invariants

4.2 Mutual Exclusion for SetMutex:

To prove mutual exclusion for SetMutex we proceed in a similar way as for
IntMutex. The invariants mutexS, notsameS and activelowS are identically
to mutex, notsame and activelow. The invariant minticketS is now defined as
follows:

minticketS(i)
def
= critical(i)→ bag .min = ticket(i)

To prove that mutexS is invariant it is enough to use minticketS and
notsameS as support. This time, to prove the invariance of minticketS re-
quires the use of activelowS in addition to notsameS as support. This extra
support is required to encode that when a thread takes transition τ3, it adds
to bag a value strictly greater than any other previously assigned ticket. Fi-
nally, notsameS relies on activelowS, which again, is an inductive invariant.
Fig 7(b) contains the proof graph that describes the dependencies between
these invariants.

4.3 List Preservation and Set Representation for Lock-coupling Concurrent
Lists

We now present a larger real-world example of a concurrent data-type verified
using the parametrized proof rules presented in this paper: a concurrent lock-
coupling list, whose pseudo-code is shown in Fig. 8.

Concurrent lock-coupling lists implement a set [24] by maintaining an or-
dered list of non-repeating elements. Each node in the list consists of three
fields: (1) an element, (2) a pointer to the next node in the list, and (3) a
lock used to protect concurrent accesses to the node. To search an element, a
thread advances through the list acquiring a lock before visiting a node. This
lock is only released after the lock of the next node has been acquired. Con-
current lists also maintain two sentinel nodes, head and tail , with phantom
values representing the lowest and highest possible values, −∞ and +∞ re-
spectively. Sentinel nodes are not modified at runtime. We define two “ghost”
variables that aid the verification: reg , a set of addresses of the memory lo-
cations of nodes in the list; and elems, a set of elements we use to keep
track of elements contained in the list. Ghost variables are compiled away
and are only used in the verification process. In Fig. 8 ghost variables (reg
and elems) and ghost code (program lines 37 and 55) appear inside a box.
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global
Addr head ; Addr tail ;
Set〈Addr〉 reg ; Set〈Elem〉 elems;

assume
reg = {head , tail ,null}
∧ elems = {head→data, tail→data}
∧ head 6= tail ∧ head 6= null ∧ tail 6= null
∧ head→data = −∞ ∧ tail→data = +∞
∧ head→next = tail ∧ tail→next = null

procedure MGC
Elem e

begin
1: while true do
2: e := havocListElem()
3: nondet
4: call Search(e)

or
5: call Insert(e)

or
6: call Remove(e)
7: end while

end procedure

procedure Search(e)
Addr prev
Addr curr
Addr aux
Bool found

begin
8: prev := head
9: prev→lock()

10: curr := prev→next
11: curr→lock
12: while curr→data < e do
13: aux := prev
14: prev := curr
15: aux→unlock()
16: curr := curr→next
17: curr→lock()
18: end while
19: found := (curr→data = e)
20: prev→unlock()
21: curr→unlock()
22: return found

end procedure

procedure Insert(e)
Addr prev
Addr curr
Addr aux

begin
23: prev := head
24: prev→lock()
25: curr := prev→next
26: curr→lock()
27: while curr→data < e do
28: aux := prev
29: prev := curr
30: aux→unlock()
31: curr := curr→next
32: curr→lock()
33: end while
34: if curr 6= null ∧ curr→data > e then
35: aux := malloc(e,null ,#)
36: aux→next := curr
37: prev→next := aux

reg := reg ∪ {aux}
elems := elems ∪ {e}

38: end if
39: prev→unlock()
40: curr→unlock()
41: return

end procedure

procedure Remove(e)
Addr prev
Addr curr
Addr aux

begin
42: prev := head
43: prev→lock()
44: curr := prev→next
45: curr→lock()
46: while curr→data < e do
47: aux := prev
48: prev := curr
49: aux→unlock()
50: curr := curr→next
51: curr→lock()
52: end while

53: if

(
curr 6= tail ∧
curr→data = e

)
then

54: aux := curr→next
55: prev→next := aux

reg := reg \ {curr}
elems := elems \ {e}

56: end if
57: prev→unlock()
58: curr→unlock()
59: return

end procedure

Fig. 8: Concurrent lock-coupling list implementation
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In particular, ghost code at program locations 37 and 55 is simply used for
updating the values of reg and elems at the exact point in which a new cell
is added or removed from the skiplist. When invoking malloc in program line
35 we use the # symbol to denote that the lock is initially available, i.e., no
thread has initially acquired the lock. Hence, malloc(e,null ,#) returns a cell
which stores element e, whose next pointer points to null and whose lock
is unlocked. Concurrent lock-coupling lists provide three main operations:
(a) Search: finds an element in the list; (b) Insert: adds a new element to
the list; and (c) Remove: deletes an element from the list. For verification
purposes we define the most general client MGC—shown also in Fig. 8—
which non-deterministically chooses a method and its parameters. We verify
a parametrized system whose processes run the MGC.

For lock-coupling concurrent lists we prove that the most general client
of the concurrent lock-coupling list implementation in Fig. 8 satisfies:

1. the layout in the heap is always that of a list;
2. the data-type implements a set, whose elements correspond to the set of

elements elems.

We use the theory TLL3 (see [37]) to describe the property of list shape
preservation. This theory allows to reason about addresses, elements, locks,
sets, order, cells (i.e., list nodes), memory and list reachability. A cell is a
structure containing an element, a pointer to next node in the list and a
lock to protect the cell. A lock is associated with operations lock and unlock
to acquire and release. The memory (heap) is modeled as an array of cells
indexed by addresses (which is equivalent to a map from addresses to cells).
List shape preservation is modeled as the following formula:

list
def
=





null ∈ reg ∧ reg = addr2set(heap, head) ∧ head 6= tail ∧ (L1)

heap[tail ].next = null ∧ tail 6= null ∧ head 6= null ∧ (L2)

heap[head ].data = −∞ ∧ heap[tail ].data = +∞ ∧ (L3)

elems = set2elemset(heap, reg \ {null}) ∧ (L4)

Ordered(heap, head , tail) (L5)

The formula list is 0-index because it only refers to global program variables.
(L1) establishes that null belongs to reg and that reg is exactly the set of
addresses reachable in the heap starting from head , which ensures that the
list is acyclic. (L2) and (L3) express some sanity properties of the sentinel
nodes head and tail . (L4) establishes that elems is the set of elements in cells
referenced by addresses in reg , except for the element at the cell pointed by
null . Finally, (L5) express the fact that the list is ordered.

Using p-inv, Leap can establish that list holds initially, but fails to prove
that list is preserved by all transitions. As in the previous examples, the use
of decision procedures for proving verification conditions allows to obtain
counter-examples as models of an execution step that leads to a violation of
the desired invariant. Leap parses the counterexample returned by the SMT
solver, which is usually very small, involves only few threads and allows to
understand the missing information. In practice, these models alleviate the
human ingenuity required to produce intermediate support invariants. We
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Fig. 9: Invariant dependencies to prove that list is an invariant for concurrent
lock-coupling lists

introduce some support invariants that allow to prove list. Here we just sketch
the support invariants used in the verification process. The full description
of each invariant can be downloaded from the Leap web site2.

The formula region is a 1-index formula that describes that local variables
prev , curr and aux point to cells contained in region reg . The auxiliary
invariant next captures the relative position in the list of the cells pointed
by head and tail and local variables prev , curr and aux . This invariant is
needed to prove (L2). To prove (L3) and (L4) we need to show that the order
is preserved. The invariant candidate order captures the increasing order
between the data in cells pointed by curr , prev and aux among themselves,
and with respect to the element e used as a parameter to the Search, Insert
and Remove functions. The auxiliary invariant lock identifies those program
locations at which a thread owns a cell in the heap by means of acquiring a
lock. Finally, we introduce the formula disj, which encodes that invocations
to malloc by different threads return different fresh cells. The formula disj is
a 2-index formula, because it needs to refer to local variables of two different
threads:

disj(i, j)
def
= (i 6= j ∧ pc(i) = 36, 37 ∧ pc(j) = 36, 37) → aux (i) 6= aux (j)

Fig. 9 shows the proof graph encoding the proof of list shape preservation.
We also verify other properties of the concurrent lock-coupling list im-

plementation, including the following functional specifications expressed as
invariants:

– funSchL, which establishes that the result of Search corresponds to
whether the searched element e is present at the linearization point of
Search:

funSchL(i)
def
= pc(i) = 19→ (heap[curr(i)].data = e(i)↔ e(i) ∈ elems)

This specification states that after the loop, if the element stored at curr
is e, then e belongs to the set of elements represented by the list. That is,
the element is found by the Search procedure if and only if the element
is in the list.

2 Full examples available at http://software.imdea.org/leap/examples.html



Parametrized Invariance for Infinite State Processes 29

– funSchI, which states that if a search is successful then e was inserted
earlier in the history. For this specification we need to slightly modify
the program presented in Fig. 8. First we need to declare two new global
ghost variables of sort Set〈Elem〉 named histIns and histRem. Variable
histIns initially contains the same elements as elems and it is updated
using ghost code at line 37 of program Insert by inserting element e.
Variable histRem initially is assigned to the empty set and it is updated
as ghost code at line 55 of program Remove by removing element e.
Then, the specification of funSchL can be defined as:

funSchI(i)
def
=





funSchL(i) ∧ (FI1)

(pc(i) = 20..22 ∧ found) → e(i) ∈ histIns ∧ (FI2)

elems ⊆ histIns (FI3)

Sub-formula (FI2) establishes that if element e was found by Search
then e must have been previously inserted by some thread in the list,
and (FI3) describes the fact that all elements present in the list were
previously inserted.

– funSchR, which captures the fact that if a search is unsuccessful then
either e was never inserted or it was removed, but in any case was not
present at the linearization point of Search. To describe this specifi-
cation, we need to additionally declare two local ghost variables of sort
Set〈Elem〉 named histICopy and histRCopy . These variables are updated
at line 19 with the values of histIns and histRem respectively and their
purpose is just to keep a copy of the state of histIns and histRem at the
linearization point of Search. Then, the specification of funSchR is:

funSchR(i)
def
=





funSchL(i) ∧ (FR1)(
pc(i) = 20..22

∧¬found

)
→
(
e(i) /∈ histICopy ∨
e(i) ∈ histRCopy

)
∧ (FR2)

histIns ⊆ (elems ∪ histRem) (FR3)

Formula (FR2) establishes that, at the end of the loop, if element e was
not found in the list then either e has never been inserted into the list or
e has been removed by a call to Remove. Finally, (FR3) describes that
all elements that have been historically inserted into the list by a call to
Insert are still in the list or they have been removed from the list using
a call to Remove.

Additionally, we prove that funRem(i), funIns(i) and funSch(i) are invari-
ants. These formulas consider the case in which one thread handles different
elements than all other threads. In this case, the specification is similar to a
sequential functional specification: an element is found if and only if it is in
the list, an element is not present after removal, and an element is present
after insertion.

4.4 Unbounded Total Concurrent Queue

We also verify an implementation of unbounded concurrent queue from [24]
that uses internally a single-linked list. The implementation is shown in
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global
Addr head , tail ;
Lock queueLock ;
Set〈Addr〉 reg ;
Set〈Elem〉 enqueueSet = ∅;
Set〈Elem〉 dequeueSet = ∅;

procedure Enqueue(Elem e)
Addr n

begin
1: queueLock .lock()
2: n := malloc(e)
3: n→next := null
4: tail→next := n

reg := reg ∪ {n}
enqueueSet := enqueueSet ∪ {e}

5: tail := n
6: queueLock .unlock()
7: return()

end procedure

procedure Dequeue()
Elem result

begin
8: queueLock .lock()
9: if head→next = null then

10: queueLock .unlock()
11: raise(EmptyException)
12: end if
13: result := head→next→data
14: head := head→next

reg := reg \ {head}
dequeueSet := dequeueSet ∪ {result}

15: queueLock .unlock()
16: return(result)

end procedure

Fig. 10: Concurrent unbounded queue implementation

Fig. 10. The queue contains two sentinel nodes, named head and tail . An
element e is inserted in the queue using procedure Enqueue, which appends
a cell containing e them to tail of the list. Procedure Dequeue removes the
cell pointed by head and returns the element that stored in that cell. The
implementation we analyze uses a single lock called queueLock to protect
both procedure body, which then execute atomically. This is an example of
a coarse-grain concurrent data-type.

For this implementation we prove queue shape preservation expressed as
the formula UQPres:

UQPres
def
=

{
null ∈ reg ∧ tail ∈ reg ∧ tail 6= null ∧
reg = addr2set(heap, head) ∧ head 6= null

We also prove that UQInc is invariant This formula states that all elements
that have been inserted at some point in the queue are still in the queue or
they have been removed by a call to Dequeue.

UQInc
def
=




set2elemset(heap, reg \ {head ,null})
∪

deqSet




Function set2elemset is defined of theory TLL3. Given a heap h and a set
of addresses s, the term set2elemset(h, s) corresponds to the set of elements
stored in cells pointed by addresses in s according to h. Note that we do not
consider the addresses null and head since in this implementation head is used
as a sentinel node. We also define two auxiliary formulas named UQNext and
UQLock to describe the relation between pointers and the behavior of the
global lock.
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global
Addr top;
Set〈Addr〉 reg = ∅;
Set〈Elem〉 pushSet = ∅;
Set〈Elem〉 popSet = ∅;

procedure Push(Elem e)
Addr oldTop, newTop, n;

begin
n := malloc(e)
n→next := null
while true do

oldTop := top
n→next := oldTop
if CAS (top, oldTop, n) then

if top = oldTop then
reg := reg ∪ {n}
pushSet := pushSet ∪ {e}

endif
return()

end if
end while
end procedure

procedure Pop()
Addr oldTop, newTop;

begin
while true do

oldTop := top
if oldTop = null then

raise(EmptyException)
end if
newTop := oldTop→next
if CAS (top, oldTop,newTop) then

if top = oldTop then
reg := reg \ {oldTop}
popSet := popSet ∪{oldTop→data}

endif
return(oldTop→data)

end if
end while
end procedure

Fig. 11: Lock-free implementations of a stack.

4.5 Lock-free queues and stacks

Finally, we also verify two more concurrent datatypes: an implementation
of a lock-free stack [24] and the lock-free non-blocking implementation of a
queue known as Michael-Scott queue [32].

In both cases we verify similar specifications to those for lock-coupling
lists in Section 4.3 and unbounded queues in Section 4.4. More specifically,
for the lock-free stack implementation presented in Fig. 11 we prove the
following invariants:

– LFSPres, which states that the Push and Pop operations preserve the
list shape of the stack.

– LFSRegion, which captures the structure of the heap region where the
nodes of the stack are located.

– LFSReach, that describes which nodes are reachable from the head of the
stack.

– LFSNext, which states the relation between nodes top, oldTop, newTop
and n, in terms of their next field, during the execution of Push and Pop.

– LFSInc, which establishes that all elements inserted into the stack using
a call to Push are either still in the stack or they have been removed by
a call to Pop.

– LFSDisj, which encodes the fact that invocations to malloc performed by
different threads return different fresh cells.

– LFSVals, which establishes that the procedure arguments are precisely the
elements inserted or removed.
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global
Addr head , tail ;
Set〈Addr〉 reg = ∅;
Set〈Elem〉 enqSet = ∅;
Set〈Elem〉 deqSet = ∅;

procedure Enqueue(Elem e)
Addr last , nextptr , n;

begin
n := malloc(e)
n→next := null
while true do

last := tail
nextptr := last→next
if last = tail then

if nextptr = null then
if CAS (last→next ,nextptr , n) then

if last→next = nextptr then
reg := reg ∪ {n}
enqSet := enqSet ∪ {e}

endif
break

end if
else

CAS (tail , last ,nextptr)
end if

end if
end while
CAS (tail , last , n)
return()
end procedure

procedure Dequeue()
Addr first , last , nextptr ;
Elem value;

begin
while true do

first := head
last := tail
nextptr := first→next
if first = head then

if first = last then
if nextptr = null then

raise(EmptyException)
end if
CAS (tail , last ,nextptr)

else
value := nextptr→data
if CAS (head ,first ,nextptr) then

if head = first then
reg := reg \ {first}
deqSet := deqSet ∪ {value}

endif
break

end if
end if

end if
end while
return(value)
end procedure

Fig. 12: Lock-free implementations of a queue.

Similarly, for the lock-free queue implementation shown in Fig. 12 we
prove the following invariants:

– LFQPres, which states that calls to Enqueue and Dequeue preserve the
list shape of the queue data structure.

– LFQRegion, which describes the composition of the region of the heap
containing the nodes in the queue.

– LFQReach, that establishes the reachability relation between head , tail
and the nodes traversed during the execution of Enqueue and Dequeue.

– LFQNext, which establishes the relation between head , tail , first , last ,
nextptr and n in terms of their next field.

– LFQInc, that states that all elements inserted into the queue using a call
to Enqueue are still in the queue of have been removed as a result of a
call to Dequeue.

– LFQDisj, which encodes the fact that invocations to malloc performed by
different threads return different fresh cells.



Parametrized Invariance for Infinite State Processes 33

4.6 Experimental Results

Fig. 13 contains the results of our empirical evaluation, executed on a com-
puter with a 2.8 GHz processor and 8GB of memory. Each row reports the
empirical results obtained when proving a single invariant. Rows 1 to 4 cor-
respond to the mutual exclusion protocol based on integers presented in Sec-
tion 4.1. Rows 5 to 8 contain the invariants for the mutual exclusion protocol
based on sets presented in Section 4.2. Rows 9 to 20 present the invariants
for the concurrent lock-coupling single-linked lists presented in Section 4.3.
Rows 21 to 24 contain the results for unbounded concurrent queues, pre-
sented in Section 4.4. Finally, rows 25 to 31 and rows 32 to 37 correspond
to the invariants for the lock-free implementation of a stack and a lock-free
implementation of a queue respectively, presented in Section 4.5.

In the table, the first two columns enumerate the examples and present
the name of the formulas. The following four columns show:

– “id”: The index of the formula, that is, the number of threads which
parameterizing the formula. For instance, list is a 0-index formula be-
cause it only uses global variables. On the other hand, a specification like
mutexS describes a relation involving the program counter of two different
threads, and thus it is a 2-index formula.

– “#vc”: The total number of generated verification conditions.
– “pos”: The number of VCs successfully proved by a position decision pro-

cedure, which can only reasoning about program locations and consider
all other program predicates uninterpreted. This decision procedure is
very fast but can only solve simple verification conditions.

– “dp”: The number of the remaining VCs proved by an specialized decision
procedure. For invariants in lines 1 to 8 we use the decision procedure for
Presburguer arithmetic with sets. For invariants in lines 9 to 37 we use
the TLL3 decision procedure.

When discharging a VC, Leap first tries to use a positional decision
procedure, which can quickly verify VCs that are provable valid using simple
reasoning about program locations. The specialized decision procedure is
invoked only for those VCs for which the positional decision procedure fails.
The total number of VCs proved for a given candidate invariant is then the
sum of columns “pos” and “dp”. Consequently, if this sum equals the total
number of VCs discharged (column “#vc”) all VCs are valid and the formula
is an invariant.

The final four columns in the table show the total running time required
by the specialized decision procedures, with trying four different approaches:

– “Full”: which corresponds to naively instantiating all support invariants
for all VCs. This is equivalent to trying to solve the VCs by brute force,
passing the resulting formula directly to the decision procedure.

– “Supp”: which corresponds to instantiate only the necessary support.
– “Offend”: which corresponds to instantiating the support as in “Supp”

but only in potentially offending transitions, which are those transitions
that modify a program variable in the formula.

– “Tactics”: which reports the running time required after using some stan-
dard first-order tactics like lazy instantiation and formula normalization
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form. info #solved vc Solving time for all VCs (sec.)
id #vc pos dp Full Supp Offend Tactics

1 mutex 2 28 26 2 0.32 0.23 0.10 0.01
2 minticket 1 19 18 1 0.04 0.04 0.01 0.01
3 notsame 2 28 26 2 0.13 0.13 0.10 0.02
4 activelow 1 19 17 2 0.01 0.01 0.01 0.01

5 mutexS 2 28 26 2 0.44 0.38 0.14 0.04
6 minticketS 1 19 18 1 0.31 0.18 0.08 0.01
7 notsameS 2 28 26 2 0.14 0.13 0.10 0.02
8 activelowS 1 19 17 2 0.02 0.02 0.02 0.01

9 list 0 61 38 23 TO TO TO 12.85
10 order 1 121 62 59 998.35 7.56 2.69 1.20
11 lock 1 121 76 45 778.15 4.82 1.44 0.50
12 next 1 121 60 61 TO TO 26.58 1.76
13 region 1 121 95 26 TO TO 85.27 25.67
14 disj 2 181 177 4 121.74 1.29 1.29 0.22

15 funSchL 1 121 97 24 TO TO 82.13 4.63
16 funSchI 1 121 93 28 TO TO 80.20 5.00
17 funSchR 1 121 93 28 TO TO 110.84 5.49

18 funSch 1 208 198 10 TO TO 6.14 4.55
19 funIns 1 208 200 8 TO TO 2.04 0.51
20 funRem 1 208 200 8 TO TO 2.73 1.56

21 UQPres 0 23 18 5 1.13 0.90 0.35 0.18
22 UQNext 1 45 35 10 0.98 0.20 0.18 0.11
23 UQLock 1 45 33 12 0.18 0.08 0.07 0.07
24 UQInc 0 23 19 4 0.74 0.64 0.34 0.30

25 LFSPres 0 37 30 7 29.43 0.70 0.32 0.05
26 LFSRegion 1 73 69 4 1.54 0.16 0.10 0.05
27 LFSReach 1 109 90 19 TO TO 16.81 24.35
28 LFSNext 1 73 63 10 1.13 0.50 0.31 0.22
29 LFSInc 0 37 30 7 3.78 2.38 1.12 0.05
30 LFSDisj 2 109 105 4 0.63 0.23 0.20 0.19
31 LFSVals 1 73 62 11 0.42 0.16 0.15 0.06

32 LFQPres 1 103 78 25 TO TO TO 2.85
33 LFQRegion 1 103 99 4 113.97 0.30 0.29 0.07
34 LFQReach 1 103 81 22 TO TO 22.78 96.55
35 LFQNext 1 103 76 27 622.41 53.74 6.12 8.20
36 LFQInc 0 52 40 12 438.30 41.24 27.96 0.20
37 LFQDisj 2 154 150 4 1.89 0.46 0.51 0.30

Fig. 13: VCs proven using each decision procedure and running times.

and propagation. These tactics allow to simplify the formula before in-
voking the decision procedures, sometimes at the price of requiring sev-
eral invocations. These simplifications lead to smaller cut-offs and faster
search times for the decision procedure.

TO represents a timeout of 30 minutes. Our results suggest that, in prac-
tice, tactics are essential for efficiency when handling non-trivial examples
such as concurrent lists. Also, our decision procedures have room for imple-
mentation improvements which would lead to faster running times.
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An alternative proof method for generating and proving invariants is to
compute an over-approximation of the reachable state space by iteratively
computing formulas in sophisticated logics for heap shapes. However, our
results suggest that this approach is not likely to be feasible for complicated
heap manipulating programs. Instead, we propose to use proof rules like the
ones presented in this paper and improve automation via researching decision
procedures, combining automated first-order reasoning and decision proce-
dures to improve the efficiency in proving each VC, and invariant generation
techniques to alleviate the human intervention.

5 Concluding Remarks

This paper has introduced a temporal deductive technique for the uniform
verification problem of safety properties of parametrized infinite state pro-
cesses, in particular for the verification of concurrent datatypes that ma-
nipulate data in the heap. Our proof rules automatically discharge a finite
collection of verification conditions. The size of this collection depends on the
program description and the index of the formula to prove, but not on the
number of threads in a particular instance. Each VC describes a small-step
in the execution of all corresponding instances. The VCs are quantifier-free
as long as the formulas are quantifier free. We use the theory of arrays [9] to
encode the local variables of a system with an arbitrary number of threads,
but the dependencies with arrays can be eliminated, under the assumption
of full symmetry. It is immediate to extend our framework to a finite family
of process classes, for example to model client/server systems.

An interesting research direction is to relax the requirement of full sym-
metry to cover other process topologies, like for example process rings or
totally order processes. Handling these topologies requires to specialize the
proof rules in this paper by adapting the premises that refer to threads not
in the formula (premises P3, S3, R3 and G3) to consider all cases according
to the topology. For example, totally order processes would require to split
the case i 6= j into (i < j ∨ i > j).

Our main goal is the development of a framework for the deductive verifi-
cation of temporal properties of parametrized systems. In this paper we tackle
the verification of safety properties through the introduction of the parame-
trized invariance proof rules. For liveness properties we propose the use of
parametrized verification diagrams (pvd), an extension of general verifica-
tion diagrams [10], amenable for the verification over parametrized systems.
pvd are studied in a companion paper [38] based on the results presented
here.

Future work includes invariant generation to simplify or even automate
proofs. We are studying how to apply the decision procedures with the calcu-
lation of precondition formulas (like [27]), extended to parametrized systems,
to effectively infer candidate invariants from the target specification. We are
also studying how to extend the “invisible invariant” approach [6, 35, 47] to
processes that manipulate infinite state, not only by instantiating small sys-
tems with a few threads (like in invisible invariants) but also by limiting the
counter-model exploration to a bounded size, heuristically determined. The
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candidate invariants produced this way must then be verified with the proof
rules presented in this paper for the unrestricted system. We envision this
method to be a smart exploration of the space of candidate invariants.

We are also extending our previous work on abstract interpretation-
based invariant generation for parametrized systems [39] to handle complex
datatypes. Our work in [39] was restricted to numerical domains.

As our empirical evaluation suggests, the instantiation of support is crit-
ical to the efficiency of the decision procedure and hence to the effectiveness
of our verification method. This is because the size of the formula passed
to the decision procedure depends heavily on the instantiation of support.
Our current tactics for instantiating support are rather heuristic. We plan to
research more rigorous and sophisticated methods for instantiation, or even
to develop decision procedures that include instantiation. Promising direc-
tions for this study are local theory extensions [40] and the search for natural
proofs [36]. This line can also potentially lead to complete methods for some
class of programs and theories of data [44].

Finally, another approach that we are currently investigating is to use the
proof rules presented here to enable a Horn-Clause Verification engine [23]
to automatically generate parametrized invariants guided by the invariant
candidate goal. Our preliminary results are promising but out of the scope
of this paper.
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