
Noname manuscript No.
(will be inserted by the editor)

Parametrized Verification Diagrams:

Temporal Verification of
Symmetric Parametrized Concurrent Systems

Alejandro Sánchez · César Sánchez

the date of receipt and acceptance should be inserted later

Abstract This paper studies the problem of verifying temporal properties (in-
cluding liveness properties) of parametrized concurrent systems executed by an
unbounded number of threads. To solve this problem we introduce parametrized

verification diagrams (PVDs), that extend the so-called generalized verification di-
agrams (GVDs) adding support for parametrized verification. Even though GVDs
are known to be a sound and complete proof system for non-parametrized systems,
the application of GVDs to parametrized systems requires using quantification or
finding a potentially different diagram for each instantiation of the parameter
(number of threads). As a consequence, the use of GVDs in parametrized verifica-
tion requires discharging and proving either quantified formulas or an unbounded
collection of verification conditions.

Parametrized verification diagrams enable the use of a single diagram to rep-
resent the proof that all possible instances of the parametrized concurrent system
satisfy the given temporal specification. Checking the proof represented by a PVD

requires proving only a finite collection of quantifier-free verification conditions.
The PVDs we present here assume that the parametrized systems are sym-

metric, which covers a large class of concurrent and distributed systems, including
concurrent data types. Our second contribution is an implementation of PVDs and
its integration into Leap, our prototype theorem prover. Finally, we illustrate em-
pirically, using Leap, the practical applicability of PVDs by building and checking
proofs of liveness properties of mutual exclusion protocols and concurrent data
structures. To the best of our knowledge, these are the first machine-checkable
proofs of liveness properties of these concurrent data types.

Keywords temporal logic; formal verification; formal methods; liveness proper-
ties; parametrized systems; concurrent data types; deductive method; verification
conditions

Alejandro Sánchez
IMDEA Software Institute, Madrid, Spain
E-mail: alejandro.sanchez@imdea.org

César Sánchez
IMDEA Software Institute, Madrid, Spain
E-mail: cesar.sanchez@imdea.org



2 Alejandro Sánchez, César Sánchez

1 Introduction

We are interested in the verification of parametrized temporal properties of systems
executed by an arbitrary number of threads, with a special emphasis on programs
that modify the heap by concurrently manipulating complex pointer-based data
structures. Examples of these programs include concurrent implementations of
conventional software data types.

The problem of verifying parametrized systems has received a lot of attention
in recent years, particularly the verification of finite-state parametrized systems.
However, in general, the problem is undecidable [1], even for finite-state com-
ponents [51]. There are two ways to overcome this limitation: (a) algorithmic
approaches, which are necessarily incomplete; and (b) deductive proof methods,
that require manual intervention. Most of the research performed in recent years
focuses on algorithmic methods trying to improve their applicability.

Typically, algorithmic methods—in order to regain decidability—are restricted
to finite-state processes [15, 16, 20] and finite-state shared data. In the work pre-
sented in this paper we propose a complementary approach, seeking a general

method to prove arbitrary temporal properties of a large class of infinite-state pa-
rametrized systems. We extend temporal deductive methods such as Manna and
Pnueli’s [33] with specialized proof rules and other deductive formalisms tailored
for parametrized systems. In comparison with algorithmic techniques we sacrifice
full automation to handle complex concurrency and data manipulation. We pro-
pose to start from a widely applicable method and improve its automation, instead
of trying to improve the applicability of an automatic method.

In contrast with approaches that handle the data and the evolution of the com-
putation altogether, the temporal deductive style of reasoning allows a clean sepa-
ration in a proof between the temporal part—which explains why the interleaving
of actions that a set of threads can perform satisfies the given property—and the
underlying data being manipulated.

We aim for a general framework that enables the formal verification of safety
and liveness properties of parametrized concurrent systems. Our framework is
based on temporal deductive techniques. In [48] we introduced a collection of
proof rules for proving safety properties of parametrized systems, that are adapta-
tions of the classical invariance rules for non-parametrized systems. In this paper
we present deductive techniques to prove temporal properties (not only safety
but also liveness properties) of parametrized systems. Our methods take a pa-
rametrized program and a property, with additional annotations if required, and
generate a finite number of verification conditions (VCs). The validity of these VCs
implies that the parametrized program satisfies the property. In previous papers,
we have explored the construction and implementation of decidable theories for a
number of data heap layouts [43–45] common in concurrent data types. The deci-
sion procedures for these theories can be used to automatically check the validity
of the verification conditions as long as these VCs are quantifier-free. We show
in [43–45], using model-theoretic arguments, that many theories of data are decid-
able and can be used as state and data assertion languages in temporal deductive
frameworks like the one introduced in this paper.

The method we propose here is called parametrized verification diagrams. A
preliminary version of PVDs was introduced in [47]. PVDs are an extension of
generalized verification diagrams [12, 50], specialized to deal with concurrent pa-



Parametrized Verification Diagrams: 3

rametrized systems. Generalized verification diagrams [12, 32, 50] are a formalism
to prove temporal properties of reactive systems, even if the state space of these
systems is infinite. A diagram is essentially an abstraction of the system crafted
specifically for the property under consideration. Diagrams can be precise enough
to formally represent the temporal proof, and allow to check its correctness me-
chanically. All verification conditions can be checked automatically provided there
are decision procedures for the state assertion language. GVDs are effective for the
verification of non-parametrized concurrent and reactive systems. Although using
GVDs directly for parametrized verification is possible (see [34] and Section 8
of [8]), it requires the use of quantifiers which in turn precludes the use of many
decision procedures, like the ones mentioned above. The parametrized verification
diagrams introduced in this paper are a specific temporal deductive technique
which is general enough to effectively enable proving temporal properties. PVDs
are designed for coping with parametrized systems without generating quantified
verification conditions. In this paper, we present in full detail PVDs and we prove
the soundness of this method. We illustrate how to use PVDs for the verification
of parametrized liveness properties and we present some empirical results obtained
using an implementation of PVDs in Leap [46], a tool under development at the
IMDEA Software Institute for the verification of parametrized concurrent systems.

Verification Diagrams. Formal verification using generalized verification diagrams
starts from a program and a specification in linear temporal logic (ltl) [33, 39].
These formulas are built from atomic predicates capturing properties of program
states. These atomic predicates can be combined using Boolean connectives and
temporal operators like  (always),  (eventually),  (next) or U (until).

The semantics of the program are represented as a fair transition system (fts)
that encompasses all executions of the program. Given a program P and a temporal
specification ϕ, as shown in Fig. 1, a GVD D encodes a proof that all fair traces
of program P satisfy the temporal specification ϕ. Checking the proof encoded by
the diagram requires two activities:

1. Check the validity of a finite collection of verification conditions, which are
automatically generated from the program and the diagram. The validity of all
verification conditions guarantees that the diagram covers all (fair) executions
of the system.

2. Check that every fair path of the diagram satisfies the temporal property.

The first part can be handled using suitable decision procedures (DPs) for the
underlying data that the program manipulates, like Boolean, integers, lists in the
heap, trees, etc. The second part can be fully automated using finite-state model

P D ϕ�
Program gvd Temporal property

Verification conditions Model checking

�

Fig. 1: Schematic representation of the use of a GVD D to prove P � ϕ.



4 Alejandro Sánchez, César Sánchez

checkers. This way, GVDs cleanly separates two concerns: the temporal reasoning
and the data manipulation. GVDs are complete in the following sense: if a reactive
system satisfies a given temporal property then there is a diagram that encodes a
correct proof. Unfortunately, GVDs cannot be used directly (without quantifica-
tion) to verify concurrent programs executed by an arbitrary number of threads,
which are naturally modeled as parametrized systems, where the parameter is the
number of threads involved. This problem arises because each instantiation of the
parameter produces a different closed system. Each closed system requires finding
a different diagram, discharging a different collection of verification conditions,
and solving a different model checking problem.

Parametrized Verification Diagrams. In order to verify parametrized temporal prop-
erties of systems composed by an unbounded number of threads we have developed
parametrized verification diagrams. PVDs enrich verification diagrams with capabil-
ities to reason about executions with an arbitrary number of symmetric threads.
Checking the proof represented by a PVD requires handling a single finite col-
lection of quantifier-free verification conditions and to solve a single finite-state
model checking problem. Success in proving each of these obligations guarantees
that the property holds for all parameter instances.

The key idea behind PVDs is that a correctness argument usually only requires
to reason about a fix number of threads at each time instant. This finite collection
includes: (a) the threads referred to in the property; (b) some other threads with
a particularly significant characteristic in the given state (e.g., being a leader);
and (c) one fresh thread identifier representing an arbitrary thread that executes
a small step in the global execution.

The PVDs we present in this paper rely on the symmetry assumption. This
assumption states that thread identifiers are interchangeable and are only com-
pared using equality and inequality. Swapping identifiers in a given legal execution
produces another legal execution. Even though some protocols are not symmetric,
full symmetry covers an important class of concurrent systems, in particular con-
current data types [27], which are an efficient approach to exploit the parallelism of
modern multiprocessor architectures. The assumption of symmetry is guaranteed
when thread identifiers are only compared with equality and inequality, and when
concurrency primitives do not depend on specific thread identifiers. This model
of concurrency is quite pervasive. In fact, most modern programming languages
like Java and the concurrency control found in modern processors and operating
systems implement this model of concurrency. Concurrent data types, for exam-
ple, can be modeled naturally as fully symmetric parametrized systems, where
each thread executes in parallel a client of the data type. The results reported in
this paper are part of a larger research effort aimed at the verification of complex
properties of concurrent data types.

The rest of the paper is structured as follows. Section 2 presents a simple
(infinite-state) mutual exclusion protocol based on tickets, which we will use as
a running example. Section 3 includes the preliminaries and notation. Section 4
presents PVDs and shows the main result of this paper: that PVDs are sound
as a proof system. Section 5 presents the experimental results we have obtained
using PVDs to prove liveness properties of the mutual exclusion protocol and of
an implementation of concurrent lock-coupling lists from [27]. Section 6 describes
related work. Finally, Section 7 concludes.



Parametrized Verification Diagrams: 5

2 Running Example: A Mutual Exclusion Protocol

For illustration purposes we use a simple programming language similar to spl [33]
to express programs. A parametrized program P is described by a sequence of spl

instructions. Each instruction in P is identified uniquely by a program location
ranging from line 1 up to L. We use Locs for the set {1 . . . L} of lines in a given
program. A program P also contains a number of typed variable identifiers, parti-
tioned into global variables and local variables. We use Vglobal for the set of global
variables and Vlocal for the set of local variables. A parametrized program is run in
parallel by a collection of threads. The size of this collection is not known a priori.
We consider in this paper asynchronous interleaving semantics as the semantics
of parallel composition: at each point in time one of the threads executes an ac-
tion, corresponding to the program statement pointed to by its program counter.
Fig. 2 shows a symmetric protocol that solves the mutual exclusion problem using
tickets, first proposed in [13] (see also [35]), and based on Lamport’s bakery algo-
rithm [31]. The version we present here is a slight modification of [13, 35], where
we store the tickets in a set of pairs. Each pair consists of a ticket and a thread
identifier, to capture the association between a thread and the ticket it holds.

The goal of program MutExc is to protect the critical section at line 5, using
two global variables. The int variable avail stores the shared increasing counter.
The set variable bag stores the ticket number and the thread identifier of all threads
that are trying to access the critical section. In our example, we use the reserved
word me to denote the identifier of the thread currently executing the program.
When a thread wishes to enter the critical section (line 3), it grabs the current
value of avail as its ticket and atomically performs the following two operations:
(a) it increases the value of avail, and (b) it adds the value of its ticket as well as
its thread identifier to the global storage bag. Then, the thread waits (line 4) until
it holds the smallest ticket in the storage bag. Upon exiting the critical section,
the thread removes its ticket from the bag (line 6).

In this paper we illustrate how to use PVDs to formally prove that if a thread
wants to enter the critical section, then it will eventually enter the critical section.
In Section 5 we also use PVDs to verify a liveness property of a concurrent lock-
coupling list [27, 52] implementation that manipulates an unbounded heap.

procedure MutExc
int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := avail++
bag .add(ticket ,me)

〉

4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,me)
7: end while

end procedure

global
int avail := 0
set〈int, tid〉 bag := ∅

Fig. 2: MutExc: Mutual exclusion algorithm.



6 Alejandro Sánchez, César Sánchez

3 Model of Computation

In this section we introduce a general model of computation to reason about para-
metrized concurrent programs. We first revisit the notion of fair transition system.
One of the first works to use similar transition systems in concurrent verification
was [29]. We borrow the formalism from the monograph [33]. Second, we intro-
duce parametrized programs and parametrized fair transition systems, which in
turn provide the necessary vocabulary to define parametrized temporal formulas.
Finally, we define our notion of correctness of concurrent programs by associating
parametrized fair transition systems with parametrized temporal formulas.

3.1 Fair Transition Systems

A fair transition system, which models the executions of a non-parametrized sys-
tem, is a tuple S : 〈Σprog,V , Θ, T ,J 〉 where:

– Signature. The signature Σprog is a first-order signature modeling the data
manipulated by the program, where a signature Σ : (S, F, P ) consists of a set
of sorts S, a set F of function symbols, and a set P of predicate symbols. We use
Tprog for the theory that allows to reason about formulas from Σprog. There are
many theories that are useful as assertion languages in software verification,
which have decidable satisfiability and validity problems, particularly when
restricted to their quantifier-free fragments.

– Program Variables. V is a finite set of typed variables, whose types are taken
from the set of sorts in Σprog. We use V σ to denote all variables of sort σ in
set V . In this paper we use type and sort interchangeably.

– Initial Condition. Θ is the initial condition, expressed as a first-ordered as-
sertion from theory Tprog using only variables from V . Values of the variables
V satisfying Θ correspond to initial states of the system.

– Transition Relation. T is a finite set of transitions. Each transition τ is ex-
pressed as a first-order formula τ(V, V ′) that can refer to program variables
from V and to their primed version in V ′. The set V ′ contains a fresh copy of
v′ of each variable v from V . The variable v′ denotes the value of variable v
after a transition is taken.

– Fairness condition. J ⊆ T is the set of fair transitions.

A state is an interpretation of V , which assigns to each program variable a
value of the corresponding type. A transition between two states s and s′ satisfies a
transition relation τ when the combined valuation which assigns values to variables
in V according to s and to variables in V ′ according to s′, satisfies the formula
τ(V, V ′). In this case we write τ(s, s′), and we say that the system reaches state s′

from state s by taking transition τ . We say that a transition τ is enabled in state
s if there is a state s′ for which τ(s, s′). We will generally use the predicate pres

over a set of variables to indicate that the transition preserves the values of the
variables, that is, that the values of these variables are the same in s and in s′.
Formally, if U ⊆ V is a set of variables, then pres(U) is a short for

∧
u∈U u

′ = u.

We borrow the notion of pres from [33] which is equivalent to the common notion
of framing in program logics.



Parametrized Verification Diagrams: 7

We use pc to denote the program counter, which in the case of non-parametrized
systems is a variable of type loc. As usual, we use pc ∈ {i, j} and pc ∈ {i1 . . . in}
to denote (pc = i ∨ pc = j) and

∨n
j=1 pc = ij , respectively. Note that pc captures

the program counter of a sequential program (which fair transition systems in-
tend to model). We will present later a generalization for concurrent systems and
parametrized concurrent systems.

Example 1 Consider the following program statement:

1: x := x+ 3

This is modeled by the following formula:

pc = 1 ∧ pc′ = 2 ∧ x′ = x+ 3 ∧ pres(V \ {pc, x})

ut

Given a transition τ , the state predicate En(τ), called the enabling condition,
captures whether τ can be taken from s, that is, whether there exists a successor
state s′ such that τ(s, s′). In the example above, En(τ) is equivalent to pc = 1,
because the statement “1: x := x + 3” can always be taken if the program is at
location 1.

A run of S is an infinite sequence s0τ0s1τ1s2 . . . of states and transitions such
that the following two conditions hold1:

(a) the first state satisfies the initial condition: s0 � Θ.
(b) all steps are legal. That is, for all i, the relation τi(si, si+1) holds.

A computation of S is a run of S such that for each transition τ ∈ J , if τ is
continuously enabled after some point, then τ is taken infinitely many times. We
use L(S) to denote the set of computations of S. Given an ltl formula ϕ over a
propositional vocabulary AP , L(ϕ) denotes the set of sequences of elements of 2AP

satisfying ϕ. Given a computation π : s0τ0s1 . . . of a system S, the corresponding
run πAP for a given propositional vocabulary AP is the sequence P1P2 . . . with
Pi ⊆ AP , such that for all instants i:

si � p for all p ∈ Pi and si � ¬p for all p /∈ Pi

We use LAP (S) for the set of sequences of propositions from AP that results from
L(S). A system S satisfies a temporal formula ϕ over AP whenever all computa-
tions of S when interpreted over AP satisfy ϕ, that is LAP (S) ⊆ L(ϕ). In this case
we write S � ϕ.

1 For notational convenience we have added the transitions in the sequence s0τ0s1τ1s2 . . .
instead of defining a run as a sequence of states s0s1s2 . . ., which is a more standard approach.
The main reason is to be able to easily refer to the thread and transition that executed a given
step. Both notions of run are equivalent, since one can equip states with a fresh variable to
record the last transition that was executed from the previous state.



8 Alejandro Sánchez, César Sánchez

3.2 Parametrized Concurrent Programs

Given a parametrized program P , we associate P with an instance family {P [M ]},
a collection of non-parametrized transition systems P [M ] indexed by M ≥ 1, the
number of running threads. This family is called the parametrized system corre-
sponding to program P . We use [M ] to denote the set {0, . . . ,M−1} of thread iden-
tifiers in the instance P [M ]. Formally, for each M , the concrete non-parametrized
transition system P [M ] : 〈Σprog,V , Θ, T ,J 〉 consists of:

– Signature. The signature Σprog is as in non-parametrized fair transition sys-
tems.

– Program Variables. The set V of typed variables is:

V = Vglobal ∪ {v[k] | for every v ∈ Vlocal, k ∈ [M ]}
∪ {pc[k] | for every k ∈ [M ]}.

Note that “v[k]” and “p[k]” are indivisible variable names. We could have
chosen alternative names like vk or vk. The set {pc[k] | k ∈ [M ]} contains
one variable of sort loc for each thread identifier k in [M ]. The variable pc[k]
models the program counter of thread k. Similarly, for each local program
variable v and thread k, there is one variable v[k] of the appropriate sort in the
set {v[k] | v ∈ Vlocal and k ∈ [M ]}.

– Initial Condition. The initial condition Θ is described by the following two
predicates. First, Θg, that only refers to variables from Vglobal. Second, Θl, that
can refer to variables in Vglobal and Vlocal. Both predicates are extracted from
P using the semantics of the programming language. Given a thread identifier
a ∈ [M ] for a concrete system P [M ], Θl[a] is the initial condition for thread a,
obtained by replacing in Θl every occurrence of a local variable v from Vlocal
for v[a]. The initial condition of the concrete transition system P [M ] is:

Θ : Θg ∧
∧

i∈M
Θl[i]

– Transition Relation. T contains a transition τ`[a] for each program location
` and thread identifier a in [M ], which are obtained again from P by the
semantics of the programming language. The formula τ`[a] is obtained from
τ` by replacing every occurrence of a local variable v for v[a], and v′ for v[a]′.
Note again that “v[a]′” is an indivisible variable name, denoting the primed
version of v[a].

– Fairness. We consider all transitions fair, that is J = T .

Example 2 Consider the program MutExc in Fig. 2, which corresponds to the
instance family {MutExc[M ]}. The instance consisting of two running threads,
MutExc[2], contains the following variables:

V = {avail , bag , ticket [0], ticket [1], pc[0], pc[1]}

The global variable avail has type int, and global variable bag has type set〈int, tid〉.
The instances of local variable ticket for threads 0 and 1, ticket [0] and ticket [1],



Parametrized Verification Diagrams: 9

have type int. The program counters pc[0] and pc[1] have type loc = {1 . . . 7}. The
initial condition of MutExc[2] is:

Θg : avail = 0 ∧ bag = ∅ Θl[0] : ticket [0] = 0 ∧ pc[0] = 1

Θl[1] : ticket [1] = 0 ∧ pc[1] = 1
(1)

There are fourteen transitions in MutExc[2], seven transitions for each thread:
τ1[0] . . . τ7[0] and τ1[1] . . . τ7[1]. The transitions corresponding to thread 0 are:

τ1[0] : pc[0] = 1 ∧ pc[0]′ = 2 ∧ pres(V \ {pc[0]})

τ2[0] : pc[0] = 2 ∧ pc[0]′ = 3 ∧ pres(V \ {pc[0]})

τ3[0] : pc[0] = 3 ∧ pc[0]′ = 4 ∧




ticket [0]′ = avail

avail ′ = avail + 1

bag ′ = bag ∪ {(avail, 0)}


 ∧ pres({pc[1], ticket [1]})

τ4[0] : pc[0] = 4 ∧ pc[0]′ = 5 ∧ bag .min = ticket [0] ∧ pres(V \ {pc[0]})

τ5[0] : pc[0] = 5 ∧ pc[0]′ = 6 ∧ pres(V \ {pc[0]})

τ6[0] : pc[0] = 6 ∧ pc[0]′ = 7 ∧ bag ′ = bag \ {(ticket [0], 0)} ∧ pres(V \ {bag , pc[0]})

τ7[0] : pc[0] = 7 ∧ pc[0]′ = 1 ∧ pres(V \ {pc[0]})

The transitions for thread 1 are analogous. The predicate pres, introduced in
page 6, summarizes the preservation of the values of variables, that is, pres pre-
serves all variables in the set it receives as argument. In MutExc[2], the predicate
pres(V \ {bag , pc[0]}) is:

avail ′ = avail ∧ pc[1]′ = pc[1] ∧ ticket [0]′ = ticket [0] ∧ ticket [1]′ = ticket [1]

Note that each transition in MutExc[2] is expressed as a quantifier-free formula.
These formulas are expressed using a combination of theories, including Presburger
Arithmetic and a theory of finite sets of pairs with non-repeating first component
and a minimum function according also to the first component. ut

A plausible alternative model of computation to model parametrized execu-
tions would include only one transition per program location, independently of
the number of threads. A transition in this model of computation would choose
one thread that satisfies its enabling condition and manipulate the local variables
for that thread only. There is an advantage in our choice to include a separate
transition for each thread and program location. Fairness of a non-parametrized
fts guarantees that a fair transition must be taken if enabled continuously. In the
alternative model of computation, lifting this simple notion of fairness would not
guarantee that each thread must eventually execute, but only that each transition

is taken for some thread. Obtaining thread fairness in this alternative model would
require extending the temporal reasoning specifically for this purpose or to use
quantification over threads to express the precise fairness condition.



10 Alejandro Sánchez, César Sánchez

3.3 Parametrized fts and Parametrized Formulas

A parametrized transition system associated with a parametrized program P is a
tuple PP : 〈Σparam, Vparam, Θparam, Tparam〉, where Σparam is the first-order signature
used to reason about data, Vparam is the set of system variables, Θparam describes
the initial condition and Tparam is the parametrized transition relation, consisting of
a finite collection of parametrized transitions. We assume all transitions in Tparam
are fair. The intention of our notion of parametrized transition systems is not to
define program runs directly (as in the case of non-parametrized ftss and runs)
but to serve as a modeling language for the definition of parametrized formulas and
to enable the definition of proof rules and verification diagrams for parametrized
systems. We describe each component separately:

– Parametrized Program Signature. To be able to refer symbolically to thread
identifiers in an arbitrary instantiation of the parametrized system, we intro-
duce a new sort tid interpreted as an unbounded discrete set of values. The
signature Σtid contains only = and 6=, and no constructor. Theory Ttid is the
theory of thread identifiers defined over the signature Σtid. We also extend the
theory Tprog—used to reason about the data in the program—with TA, the the-
ory of arrays from [10], with indices from tid and elements ranging over sorts σ
of the local variables of program P . In this manner we can model local variables
as arrays indexed by thread identifiers. We use Tparam for the union of theories
Tprog, Ttid and TA, and we use Σparam for the combined signature.

– Parametrized Program Variables. For each local variable v of type σ in the
program, we introduce a variable name av of sort array〈σ〉. For example, we
introduce apc of sort array〈loc〉 to model the program counter pc. Using the
theory of arrays, the expression av(k) denotes the elements of sort σ stored in
array av at position given by expression k of sort tid. The expression av{k ← e}
corresponds to an array update, and denotes the array that results from av
by replacing the element at position k with e. For clarity, we abuse notation
and write v(k) instead of av(k), and v{k ← e} instead of av{k ← e}. Note
that v[0] is different than v(k). The term v[0] is an atomic term in V (for a
concrete system P [M ]) referring to the local program variable v of a concrete
thread with id 0. On the other hand, v(k) is a non-atomic term built using
the signature of arrays, where k is a variable (logical variable, not program
variable) of sort tid serving as index of the array v. The use we make of TA is
very limited: we do not use arithmetic over indices and we do not allow nested
arrays, so the conditions for decidability in [10] are trivially met. Variables of
sort tid indexing arrays play a special role, so we classify formulas depending on
the set of free variables of sort tid. The parametrized set of program variables
with index variables X of sort tid is defined as:

Vparam(X) = Vglobal ∪ {av | v ∈ Vlocal} ∪ {apc} ∪X
We use Fparam(X) for the set of first-order formulas constructed using predicates
and symbols from Tparam and variables from Vparam(X). Given a formula ϕ from
Fparam(X), we use Voc(ϕ) to refer to the set of variables of type tid free in ϕ.
We usually refer to Voc(ϕ) as the vocabulary of formula ϕ. Since we restrict our
formulas to the quantifier-free fragment of Fparam(X), then Voc(ϕ) corresponds
to the subset of variables from X actually occurring in ϕ. We say that ϕ is a
1-index formula if the cardinality of Voc(ϕ) is 1 (similarly for 0, 2, 3, etc).



Parametrized Verification Diagrams: 11

– Parametrized Transition Relation. The set Tparam contains, for each state-

ment ` in the program, one formula τ
(k)
` indexed by a fresh tid variable k.

These formulas are built using the semantics of the program statements, as for
concrete systems, except that we now use array reads and updates (to position
k) instead of concrete local variable reads and updates. The predicate pres

is now defined with array extensional equality for unmodified local variables.

Note that there is a finite number of parametrized transitions τ
(k)
` for a given

program because ` ranges over location Locs, and Locs is finite.
– Parametrized Initial Condition. We similarly define the parametrized initial

condition for a given set of thread identifiers X as follows:

Θparam(X) : Θg ∧
∧

k∈X
Θl(k),

where Θl(k) is obtained by replacing every local variable v in Θl by v(k).

Example 3 Consider again program MutExc. The parametrized transition τ
(k)
4 ,

for thread k executing line 4, is the following formula from Fparam({k}):

pc(k) = 4 ∧ pc′ = pc{k ← 5} ∧
(
bag .min = ticket(k)

)
∧ pres(ticket , bag , avail)

where pc{k ← 5} denotes the array that results from pc by replacing the element at
position k with 5, as we introduced in page 10. Additionally, pres(bag , avail , ticket)
stands for the equalities:

bag ′ = bag ∧ avail ′ = avail ∧ ticket ′ = ticket

Note that the last equality (ticket ′ = ticket) is an array equality.
The parametrized initial condition of MutExc for two thread identifiers i and

j is the formula Θparam({i, j}):

avail = 0 ∧ bag = ∅ ∧
(

ticket(i) = 0 ∧
pc(i) = 1

)
∧
(

ticket(j) = 0 ∧
pc(j) = 1

)
(2)

ut

A parametrized formula ϕ({k0, . . . , kn}) with free variables {k0, . . . , kn} of sort tid
is simply a formula from Fparam({k0, . . . , kn}). For clarity, we use k for {k0, . . . , kn}
when the size and index of the set of tid variables are not relevant.

We are interested in verifying temporal properties of parametrized programs,
so we extend parametrized formulas to temporal parametrized formulas by taking
predicates from Fparam({k0, . . . , kn}) and combining them using temporal operators
from ltl (, U , , etc). For example, the following formula mutex is a 2-index
safety formula which expresses mutual exclusion for program MutExc:

mutex(i, j)
def
= (i 6= j → ¬(pc(i) ∈ {5, 6} ∧ pc(j) ∈ {5, 6})) (3)

Similarly, progress of each individual thread is expressed by the following 1-index
temporal formula:

eventually critical(i)
def
= 

(
pc(i) = 3→pc(i) = 5

)
(4)



12 Alejandro Sánchez, César Sánchez

3.4 Parametrized Temporal Verification

In order to define the parametrized temporal verification problem, we first intro-
duce the notion of concretization. Let P be a parametrized program, let {P [M ]}
be its instance family and let PP be the corresponding parametrized transition
system.

Definition 1 (Concretization) Given a parametrized formula ϕ and a concrete
number of threads M , a concretization of ϕ is a substitution that maps tid variables
in ϕ into concrete thread identifiers in [M ]:

α : Voc(ϕ)→ [M ]

Elementary propositions from the parametrized formula ϕ are in Tparam, but the
corresponding elementary propositions of the concrete α(ϕ) are in Tprog using the
variables of the concrete system P [M ]. We use ArrϕM for the set of concretizations
of ϕ and M . Note that ArrϕM is a finite set because ϕ has a finite number of thread
identifiers and M is a finite number, so the resulting set of functions from Voc(ϕ)
into [M ] is finite.

We now describe how a concretization α can be lifted inductively to con-
vert Σparam expressions (parametrized expressions) into Σprog expressions (non-
parametrized expressions for P [M ]). All function symbols F and predicate symbols
P in Σparam that are not in the theory of arrays are translated to the same symbols
in Σprog:

α(F (t1, . . . , tn)) 7→ F (α(t1), . . . , α(tn))

α(P (t1, . . . , tm)) 7→ P (α(t1), . . . , α(tm))

To define the effect of the concretization on symbols in the theory of arrays, we
first translate all literals of sort array in a formula ϕ to either:

(a) comparisons between variables of sort array (w = v or w 6= v), or
(b) array updates in the right of equalities w = v{k ← e}.

This translation can be easily achieved by introducing a fresh array variable v for
every more complex term t of type array occurring in ϕ, conjoining v = t to the
root of ϕ, and substituting in ϕ all occurrences of t for v. For example, consider the
following formula that contains a literal (A{j ← 0} 6= B{k ← 1}) that compares
two complex array expressions:

ϕ1 : (x > y ∨ A{j ← 0} 6= B{k ← 1})

This formula is simplified introducing the fresh variables v1 and v2:

ϕ2 : v1 = A{j ← 0} ∧ v2 = B{k ← 1} ∧ (x > y ∨ v1 6= v2)

The formulas ϕ1 and ϕ2 are equivalent, and ϕ2 is in the desired form.
Now, we lift α to expressions by considering the only two remaining array

cases. First, variables of array types are mapped to their corresponding concrete
variable, according to α:

α(v(ki)) 7→ v[α(ki)]



Parametrized Verification Diagrams: 13

Then, for comparisons between array variables (literals (a) above):

α(w = v) 7→
∧

a∈M
w[a] = v[a]

α(v 6= w) 7→ v[k] 6= w[k] for a fresh k

For array update literals (case (b) above):

α(w = v{k ← e}) 7→
(
w[α(k)] = e ∧

∧

a∈M\α(k)

w[a] = v[a]
)

Finally, this translation can be extended to formulas in the usual manner, extend-
ing it homomorphically to Boolean and temporal connectives.

Let ψ be a parametrized formula and α(ψ) a concretization of ψ for a given
number of threads M . For fully symmetric systems, it is easy to see [48], that if ψ
is valid then α(ψ) is also a valid formula.

In general, we use parenthesis for parameters of parametrized formulas and
brackets for parameters of formulas on concrete systems. That is, if ϕ(t) is a
1-index parametrized formula, then ϕ(i) is the formula obtained from ϕ(t) by
replacing all occurrences of t by i. Note that ϕ(i) is still a parametrized formula.
Instead, ϕ[3] denotes formula ϕ where all occurrences of t has been instantiated
for the concrete thread identifier 3. The same notation applies for transitions. For

instance, τ
(t)
` is the transition relation associated with program location ` for an

arbitrary thread t, while τ
[3]
` is the same transition relation but instantiated for

the concrete thread identifier 3.

Example 4 Consider the formula Θparam({i, j}) shown as (2) in Example 3 above:

avail = 0 ∧ bag = ∅ ∧
(

ticket(i) = 0 ∧
pc(i) = 1

)
∧
(

ticket(j) = 0 ∧
pc(j) = 1

)
.

The concretization of Θparam({i, j}) by the map α : {i ← 0, j ← 1} is the concrete
initial condition expressed by (1) in Example 2:

Θg : avail = 0 ∧ bag = ∅ Θl[0] : ticket [0] = 0 ∧ pc[0] = 1

Θl[1] : ticket [1] = 0 ∧ pc[1] = 1

Similarly, if we consider the formula mutex from (3):

mutex(i, j) = (i 6= j → ¬(pc(i) ∈ {5, 6} ∧ pc(j) ∈ {5, 6}))

The concretization of mutex(i, j) according to the map α1 : {i→ 0, j → 1} is:

α1(mutex) = ¬(pc[0] ∈ {5, 6} ∧ pc[1] ∈ {5, 6})

On the other, the concretization map α2 : {i→ 0, j → 0} maps mutex into:

α2(mutex) = 
(
0 6= 0→ ¬(pc[0] ∈ {5, 6} ∧ pc[1] ∈ {5, 6})

)

which is equivalent to true. ut



14 Alejandro Sánchez, César Sánchez

We are now ready to define the parametrized temporal verification problem.

Definition 2 (Parametrized Temporal Verification Problem) Given a parame-
trized system P and parametrized temporal formula ϕ(k)—with parameters k—we
say that P � ϕ(k) whenever for all concrete instances P [M ] and concretizations α,
P [M ] � α(ϕ(k)).

4 Parametrized Verification Diagrams

Parametrized verification diagrams are an effective method to solve the parametrized
temporal verification problem, particularly for liveness temporal properties. In this
section, we formally define PVDs. The aim of PVDs is to capture formally the
proof that all instances of a parametrized program satisfy a temporal specification.
Essentially, for each value of M , the diagram over-approximates the set of fair runs
of P [M ]. In turn, fair runs of the diagram are covered by the executions allowed
by the temporal formula.

4.1 Definition of Parametrized Verification Diagrams

Given a parametrized temporal formula ϕ(k) and a parametrized system P, a PVD

is a tuple D : 〈N,N0, E,B, µ, η,F , f〉 consisting of the following components:

– Nodes. N is a finite set of nodes, and N0 ⊆ N is the subset of initial nodes.
– Boxes. B is a finite collection of pairs {(B1, b1), . . . , (Bq, bq)} where Bi ⊆ N ,
Bi ∩ Bj = ∅ for i 6= j, and bi is a fresh variable of sort thread identifier. Each
pair (Bi, bi) is called a box and the set Vbox = {b1, . . . , bq} is called the set of
box variables. Boxes group nodes and label them with thread identifiers. The
intended meaning of boxes is to capture intervals of the computation in which
some thread, not necessarily a thread referred to in the formula ϕ, plays a
significant role in the part of the proof corresponding to the interval. Finally,
we use Vtid to denote the set of thread identifiers formed by the parameters of
the parametrized temporal formula ϕ(k) and the thread identifiers which label
boxes in the PVD. That is, Vtid = k ∪ Vbox.

– Edges. E is a finite set of edges. Edges are equipped with the following sup-
porting functions and predicates:
– in : E → N and out : E → N , which given an edge provide the incoming

and outgoing node.
– within ⊆ E, is a predicate which indicates whether a transition modeled

by an edge which connects two nodes that belong to the same box must
preserve the box variable. For all e ∈ within, we require that there exists a
box Bi such that both in(e) ∈ Bi and out(e) ∈ Bi. If an edge e is in within,
the semantics of PVDs will force the preservation of the box variable for
all transitions that correspond to edge e. If an edge e for which both the
in(e) and out(e) are in the same box, but e /∈ within, a transition that
corresponds to edge e can assign different values to the box variable in the
pre and post-states.



Parametrized Verification Diagrams: 15

– Node labeling: µ is a function that assigns to each node n a formula µ(n) in
Fparam(k ∪ Vbox), with the restriction that µ(n) can only contain bi whenever
node n is in box Bi. The intended meaning of the label of node n is to abstract
the set of states of a concrete system that satisfy the formula µ(n).

– Edge labeling: η : E ⇀ T × Vtid is a partial function labeling some edges with
transitions of the system to indicate that these edges label fair transitions.
The intended meaning is that the transitions labeling an edge will be eventu-
ally taken due to fairness. In other words, an execution cannot get stuck in
a strongly connected component of the diagram if there is an outgoing edge
from all nodes of the component labeled by η with the same variable. In par-
ticular, a computation cannot get stuck in a self-loop if the node contains an
outgoing labeled edge. There are some restrictions for the labels of edges. The
map η can label an edge with a transition parametrized by a thread identifier
taken from the thread identifiers in the formula. Alternatively, the transition
can be parametrized by a box variable bi only when the edge begins at a node
belonging to the box (Bi, bi).

– Acceptance. The intention of the acceptance condition is to rule out infinite
loops in the execution whose termination is explained by the way the program
manipulates data. F is the acceptance condition of the diagram, which consists
of a finite collection of triplets:

〈〈B1, G1, δ1〉 . . . 〈Bm, Gm, δm〉〉

Each triplet in the acceptance condition 〈Bj , Gj , δj〉 is formed by an edge-
Streett condition Bj , Gj ⊆ E and a ranking function δj : N → O, where O is
a well founded domain. The edge-Streett condition 〈Bj , Gj , δj〉 indicates that
in every path some edge in Gj is visited infinitely often or all edges in Bj are
visited only finitely often. Without loss of generality we can assume Gj∩Bj = ∅.
Edges in Gj are called good edges, and edges in Bj are called bad edges.

– Propositions. The function f maps nodes into Boolean combinations of ele-
mentary propositions from ϕ(k).

Informally, parametrized verification diagrams can model an infinite collection
of non-parametrized generalized verification diagrams, one per parameter M , as
follows. Once a parameter instance M is fixed, every box can be populated M

times, assigning in each expansion one of the possible thread identifier values
within [M ] to the box variable. Similarly, edges incoming or outgoing boxes are
populated to connect the corresponding concretized instances, and every edge label
is populated into the corresponding transitions of the concrete system. Following
this intuition, PVDs concisely model an infinite family of GVDs, one per value of
M . The proof of correctness of PVDs can be reduced to showing that for every
M , the corresponding GVD proves that P [M ] satisfies all possible concretizations
of the specification ϕ. Instead, we choose to follow a shorter and more intuitive
proof of soundness, showing that finding a valid parametrized diagram solves the
parametrized verification problem.

A path in the diagram is a sequence of diagram nodes and edges n0e0n1e1 . . .
such that for every i, ni →ei ni+1 is an edge in the diagram. A path is fair

whenever if after some point i all nodes ni ∈ N have an outgoing edge labeled
with τ(v) then edges labeled τ(v) are taken infinitely often. A path is accepting

whenever for every acceptance condition (Bj , Gj , δj) either all edges from Bj are



16 Alejandro Sánchez, César Sánchez

traversed finitely often, or some edge from Gj is traversed infinitely often in the
path.

Given a concretization function α : k → [M ] for some concrete system P [M ]
and a path π of the diagram, we define an extended concretization of the path as
a sequence of functions αi : (k ∪ Vbox) → [M ] that coincide with α on all k ∈ k,
and such that if ei ∈ within then αi+1(b) = αi(b) where b is the box variable of ni.
Essentially, the basic concretization (that chooses concrete variables of the threads
mentioned in the formula) is rigid (constant throughout the execution) and the
extended concretizations choose concrete indices for the box variables whenever
these are free to be chosen. The predicate within forces an edge to preserve the
corresponding box variable.

Given a run π : s0τ0s1τ1 . . . of a concrete instance P [M ] and a concretization
α : k →M , a path d = n0e0n1e1 . . . of D is a trail of π whenever for some extended
concretization {αi}, the following holds:

si � αi(µ(ni)) for all i ≥ 0

A run π is a computation of D if there exists a trail of π that is fair and accepting.
L[M ](D) denotes the set of computations of D for parameter instance M (i.e.,
sequences of states of P [M ] accepted by D).

A PVD encodes a proof of the parametrized temporal verification problem.
Checking the proof encoded by the diagram requires two activities, described in
detail in the next sub-section:

1. Check the validity of a finite collection of verification conditions, which are
automatically generated from the program and the diagram. The validity of
these VCs guarantees that the diagram covers all computations of the system.

2. Check that every computation of the diagram satisfies the temporal property.

We will show that the first activity implies that, for every M , all computations
of P [M ] are in L[M ](D). In other words, that the diagram is a (fair) abstraction
of the system for all instantiations.

Given a concrete instance P [M ] and a concretization α : k → [M ], a sequence
P0P1 . . . of elements from concrete elementary propositions of α(AP(ϕ)) is a propo-
sitional model of D whenever there is a fair and accepting path π : n0e0n1 . . . of D
for which Pi � α(f(ni)). We use L[M ]

p (D) to denote the set of propositional models
of D (for P [M ]). Again, we will show that checking all VCs implies that for all
P [M ] and concretizations α, every sequence of elementary propositions of a run of

P [M ] is included in L[M ]
p (D). We use L[M ](ϕ) for ∪α:k→[M ]

L(α(ϕ)).

For the second activity we will show in Section 4.3 below how to construct a
pair of non-deterministic Büchi automata on words. This construction allows to use

finite-state model checking to check whether every trace in L[M ]
p (D) is a trace in-

cluded in the language α(ϕ) for every concretization α. That is, L[M ]
p (D) ⊆ L[M ](ϕ).

In other words, that all traces in the diagram satisfy the temporal formula.

4.2 Verification Conditions

In this section we show how to discharge from D a finite collection of verification
conditions whose validity guarantees that L(P [M ]) ⊆ L[M ](D). Recall that the



Parametrized Verification Diagrams: 17

Given P [M], ϕ(k) and D, D shows that P [M] � ϕ(k) whenever all these conditions hold:

Initiation:

(Init) Θ → µ(N0)

Consecution: for every node n ∈ N, with V = NVoc(n):

(SelfConsec)
∨

n→em
µ(n) ∧ τ(i) ∧ boxed(e) → µ′(m) for all i ∈ V

(OtherConsec)
∨

n→em
µ(n) ∧ τ(j) ∧ boxed(e) ∧

∧
i∈V

i 6= j → µ′(m) for a fresh j /∈ V

Acceptance: for each (B,G, δ) ∈ F and edge n→e m. Let V = NVoc(n),

(SelfAcc) for all i ∈ V(
µ(n) ∧ τ(i) ∧ µ′(m) ∧ boxed(e)

)
→ δ(n) � δ(m) if e ∈ B(

µ(n) ∧ τ(i) ∧ µ′(m) ∧ boxed(e)
)
→ δ(n) � δ(m) if e ∈ E \ (G ∪ B)

(OtherAcc) for a fresh j /∈ V(
µ(n) ∧ τ(j) ∧

∧
i∈V

i 6= j ∧ µ′(m) ∧ boxed(e)
)
→ δ(n) � δ(m) if e ∈ B(

µ(n) ∧ τ(j) ∧
∧
i∈V

i 6= j ∧ µ′(m) ∧ boxed(e)
)
→ δ(n) � δ(m) if e ∈ E \ (G ∪ B)

Fairness: for each edge e = (n,m, p) and τ(i) = η(e):

(En) µ(n)→ En(τ(i))

(Succ) µ(n) ∧ τ(i)→
∨

τ(i)=η(n→em)

µ′(m)

Satisfaction:

(Prop) µ(n)→ f(n) for all n ∈ N

(ModelCheck) L[M ]
p (D) ⊆ L[M ](D)

Fig. 3: Verification conditions for parametrized verification diagrams.

vocabulary of a formula ϕ, denoted by Voc(ϕ) is the set of free variables of type
tid appearing in ϕ. We use Voc(x1, . . . , xn) to denote

⋃n
i=1 Voc(xi). Note that the

vocabulary represents the set of variables of type tid whose modification can po-
tentially alter the truth value of a given formula. We define the vocabulary of a
node as: NVoc(n) = {bi | n ∈ Bi} ∪ k.

Given a parametrized transition system P [M ], a parametrized temporal for-
mula ϕ(k) and a parametrized verification diagram D, Fig. 3 presents the veri-
fication conditions generated from the diagram. Given an edge e ∈ E such that
in(e), out(e) ∈ Bi, we define the auxiliary predicate boxed(e) as follows:

boxed(e) =

{
b′i = bi if e ∈ within

true otherwise

Recall that within ⊆ E, introduced in Section 4.1, captures the set of edges within
a box that must preserve the variable parametrizing the box. The formula boxed(e)
captures this constraint logically. Also, τ(i) is the formula obtained from the tran-
sition relation τ by replacing all occurrences of local variables v[i] by parameters
v(i), and all occurrences of v[i]′ by v′(i).

We now describe the VCs discharged from the diagram:



18 Alejandro Sánchez, César Sánchez

– Initiation. Verification condition (Init), known as initiation, states that at least
one initial node in N0 satisfies the initial condition of P.

– Consecution2. These VCs ensure that every node in the diagram has a τ -
successor, consequently for every concrete run of a concrete system there is a
trail in the diagram. Condition (SelfConsec), called self-consecution, establishes
that if the system is in a state modeled by µ(n) and a thread mentioned in
the formula or in the node takes a transition, a successor node of n models the
resulting state. In other words, the diagram can always move when taking any
enabled transition by any thread mentioned in the property or in the node.
Condition (OtherConsec), called others-consecution, is analogous to condition
(SelfConsec), with the difference that this condition considers transitions taken
by an arbitrary thread not mentioned in the vocabulary of ϕ(k) or used as
argument in any of the boxes in the diagram. This condition is the key to
guarantee that only a finite number of verification conditions are necessary
because this condition encompasses all other threads.

– Acceptance. Conditions (SelfAcc) and (OtherAcc), called self-acceptance and
others-acceptance respectively, guarantee the acceptance condition of the dia-
gram using ranking functions. Intuitively, these verification conditions encode
information about the way the program manipulates its data to ensure that cer-
tain sequences of states must be terminating. For example, this is the manner
in which one checks that at most a finite number of threads can out-run a given
thread when entering the critical section. These conditions guarantee that the
ranking function δj is (strictly) decreasing in Bj-edges, and non-increasing in
edges E \ (Gj ∪Bj). We use Aj to denote edges in E \ (Gj ∪Bj), called allowed

edges.
If the verification conditions for δ are valid, infinite trails either traverse Gj
edges infinitely often, or traverse Bj-edges only finitely often. This second case
holds because: (a) the domain of δ is well-founded, (b) allowed edges are non-
increasing, and (c) bad edges are decreasing.

– Fairness. For fairness, condition (En) establishes that any transition labeling
an edge coming out from a node must be enabled in every state modeled by
the node. On the other hand, condition (Succ) establishes that if a transition
labeling an edge is taken at the incoming node, then the outgoing edges with
the same label cover all possible effects of the transition. The combination of
(En) and (Succ) guarantee that a label τ is always enabled at the incoming
nodes and that the labeled edges cover all effects of the transition. These two
conditions relate fairness in any concrete system with fairness in the diagram,
showing that fair trails cover all fair paths.

– Satisfaction. Finally, satisfaction ensures that the diagram satisfies the tem-
poral parametrized specification ϕ(k). Condition (Prop) guarantees the cor-
rectness of the propositional models of the diagram, which map trails in the
diagram with the corresponding sequences of atomic actions from the prop-
erty, that is, the propositional models of the diagram. Condition (ModelCheck)
ensures that all propositional models of the diagram are included in traces of
the property ϕ(k). The propositional label f of the diagram allows to use a
single query to a finite-state model checker to automatically decide whether

2 The term “consecution” was introduced by Zohar Manna in order to describe the relation
between two consecutive states of a computation through a transition relation, see [33].



Parametrized Verification Diagrams: 19

condition (ModelCheck) is satisfied. We show in Section 4.3 how to leverage

finite-state model checkers to decide whether L[M ]
p (D) ⊆ L[M ](ϕ).

Given a parametrized system P [M ], a formula ϕ and a PVD D, if all verification
conditions described above hold we say that D is (P,ϕ)-valid. Note that there is a
finite number of verification conditions. In particular, we need to verify |N |(|Vtid|+
1) conditions for consecution and at most |F||E|(|Vtid|+1) conditions for acceptance.
The number of conditions discharged for fairness is limited by the number of edges,
program lines and thread identifiers in the vocabulary of the formulas labeling
nodes in each box.

4.3 Model Checking that a PVD Satisfies a Temporal Property

All conditions described in Section 4.2, except from condition (ModelCheck), can
be automatically verified using appropriate decision procedures. We now show how

to check automatically that L[M ]
p (D) ⊆ L[M ](ϕ), given a temporal property ϕ. The

first step is to extract the propositional alphabet from ϕ. Then, we show how to
construct two non-deterministic Büchi automata on words (NBW for short):

– AD, which captures the propositional models of the diagram; and
– A¬ϕ, for the negation of the property (obtained by classical constructions).

Both automata use the propositional alphabet of the property. Then, an algo-

rithmic check for emptiness: AD × A¬ϕ = ∅ allows to decide whether L[M ]
p (D) ⊆

L[M ](ϕ). We now show how to build an NBW for the propositional traces of the
diagram. The reason to choose an edge-Streett acceptance condition was to ease
in the manual creation of PVDs for specific proofs. We show here an automata
construction to translate an edge-Streett automaton into an NBW.

The Intended Meaning of F . Conditions (SelfAcc) and (OtherAcc) imply that
the ranking function δj is (strictly) decreasing in Bj-edges, and non-increasing in
Aj- edges (that is, edges in E \ (Gj ∪Bj)).

Without loss of generality we assume that Gj ∩Bj = ∅. Otherwise consider the
pair 〈Gj , B′

j〉 with B′
j = Bj \Gj . The pair 〈Gj , B′

j〉 satisfies that:

– Gj ∩B′
j = ∅, and

– every trail π is accepting for (Gj , Bj) precisely when it is accepting for (Gj , B
′
j).

To see this last claim, observe that a good trail that traverses Gj-edges infinitely
often is accepted for both. Also, if a trail visits all Bj-edges only finitely often,
then the trail visits all B′

j-finitely often. For the other direction, consider the
cases:
1. if a trail visits all edges in B′

j only finitely often but some edge in Bj \ B′
j

infinitely often, then some edge in Gj is seen infinitely (because all edges
in Bj \B′

j are Gj-edges), and the trail is accepting in both cases again.
2. the last case is that all edges in B′

j are traversed only finitely and all edges
in Bj \ B′

j are also traversed only finitely often, which again is accepting
for both.



20 Alejandro Sánchez, César Sánchez

Edge-Streett Automaton on Words. We define now ESNW (for edge-Streett
non-deterministic automaton on words) as a tuple 〈AP , Q,Q0, L, T, F 〉, where:
– AP is a finite set of propositions.
– Q is a finite set of states.
– Q0 ⊆ Q is the initial set of states.
– L is a map L : Q→ 2AP assigning predicates from AP to states.
– T ⊆ Q×Q is a transition function.
– F is an edge-Streett acceptance condition, F = 〈〈B1, G1〉, . . . , 〈Bm, Gm〉〉 de-

scribed by a finite collection of pairs, where Bj , Gj ⊆ T are sets of edges.
A trace of an ESNW is an infinite sequence s0t0s1t1 . . . of states and transitions,

where for each position i, (si, si+1) ∈ ti. The set of edges from T seen infinitely
often in a trace π is denoted by infT (π), and the set of states that occur infinitely
often in π is infQ(π). A trace π of an ESNW is accepting whenever for all 1 ≤ j ≤ m,
either:
– infT (π) ∩Gj 6= ∅, or
– infT (π) ∩Bj = ∅.

From ESNW into NBW. An NBW is a tuple 〈AP , Q,Q0, L, T, F 〉, where AP , Q,
Q0, L and T are like in ESNW, and F ⊆ Q. An infinite trace π of the automaton
is accepting if infQ(π)∩F 6= ∅, that is, if some state in F is present infinitely often
in π.

The translation from ESNW to NBW works as follows. Given an ESNW E
we first generate an NBW Aj for each edge-Streett pair (Bj , Gj) separately. The
automaton Aj is defined as a composition of two sub-automata A1 and A2, which
we describe first:

1. Automaton A1. The automaton A1 : 〈AP , Q1, I1, L1, T1, F1〉 is:
– The set of states Q1 contains two copies qG1 and q1 for each state q in
Q. Essentially, qG1 encodes that a good edge has just been taken, and q1
encodes that a good edge was not taken in the transition that reaches q in
E.

– For edges:
– For every good edge p → q in T ∩Gj we add an edge p1 → qG1 and an

edge pG1 → qG1 into T1.
– For every non-good edge p → q we add an edge p1 → q1 and an edge
pG1 → q1 into T1.

– The accepting states are F1 = {qG1 }.
– I1 = {q1 | q ∈ I}.
– L1(q1) = L(q), and L1(qG1 ) = L(q).

The first sub-automaton A1 checks whether the corresponding trace in E tra-
verses good edges infinitely often, because accepting traces in A1 must visit qG1
states infinitely often. Since incoming edges to these states are G-edges, then
good edges must be traversed infinitely often in the corresponding trace in E.
The other direction holds similarly.

2. Automaton A2. The second component of Aj is A2 : 〈AP , Q2, I2, L2, T2, F2〉:
– Q2 contains one state q2 for each state q in Q.
– T2 contains an edge p2 → q2 whenever there is a non-B edge p→ q in T .
– I2 = ∅.
– L2(q2) = L(q).



Parametrized Verification Diagrams: 21

– F2 = Q2: all states are accepting.
The automaton A2 captures all suffixes of traces that do not visit any bad
edge.

3. Automaton Aj . The automaton Aj : 〈AP , Qj , Ij , Lj , T j , F j〉 is defined as fol-
lows:
– Qj = Q1 ∪Q2,
– The transitions T j are:

T j = T1 ∪ T2 ∪
{p1 → q2|for every edge p→ q in T}
{pG1 → q2|for every edge p→ q in T}

The additional edges allow Aj to jump from A1 into A2.
– Ij = I1,
– Lj(q) = L1(q) if q ∈ Q1, and Lj(q) = L2(q) if q ∈ Q2,
– F j = F1 ∪ F2.

Note that in Aj there are no edges back into A1 from A2, so if one of the jump
edges is traversed, the trace stays in A2. Then, since all states in A2 are Büchi-
accepting and all B-edges are removed in A2, the trace that gets trapped in A2

corresponds to a trace in E that only traverses B-edges finitely often. Conversely,
a trace in E that only traverses B-edges finitely often, will—at some finite point—
not traverse B-edges any longer. Then, E can jump at that point to A2, and will
be able to simulate the rest of trace in A2, which will guarantee the acceptance of
the trace.

The construction described so far allows to translate an ESNW with only one
pair (B,G) of edge-Streett conditions into an NBW. The size of the generated
automaton is (|Q|+ |G|) + |Q|, where |Q|+ |G| corresponds to A1 and the last |Q|
to A2.

In order to create a single NBW that captures the general case of k edge-Streett
conditions, it is tempting to construct an alternating automaton by merging all
NBW computed for each of the individual accepting conditions and simply letting
I =

∧k
j=1 Ij . The resulting automaton is an alternating Büchi automaton that can

be easily converted into an NBW using standard constructions. Unfortunately, this
construction is not correct because the different copies of the alternating automa-
ton can potentially move when reading the same symbol to different states qi and
qj of the original ESNW automaton, which does not correspond to a simulation of
a trace of the original automaton. Instead, we present here a translation where we
build a unique NBW in which every component is forced to be in the same state
in the automata for different ESNW accepting conditions.

The construction for the NBW A for the full ESNW starts from the NBWs
Aj obtained by translating each of the edge-Streett conditions. The resulting au-
tomaton is AE : 〈AP , Qf , I, L, T, F 〉 where:
– Qf = (Q× 3k × 2k). A state (q, v, o) represents the state of all sub-component

automata:
– every sub-automaton is in state q.
– automaton Aj is in state q1 (if v[j] = 0), in state qG1 (if v[j] = 1) or in state
q2 (if v[j] = 2);

– automaton A “owes” a visit to a final state (if o[i] = 1), or has already
visited a final state since the last reset (see F below). Essentially, this field
records which components have visited Büchi accepting states. When all



22 Alejandro Sánchez, César Sánchez

components have visited accepting states, the vector o is reset and the cor-
responding state declared accepting. This guarantees that all sub-automata
visit accepting states infinitely often precisely when the vector is reset in-
finitely often.

– L((q, v, o)) = L(q).
– I contains (q, v, o) for every q ∈ I, with v[i] = 0 and o[i] = 1 for all i.
– T contains a transition (q, v, o) → (p, v′, o′) whenever, for all i, one of the

following hold:
– (q1 → p1) ∈ T i, v[i] = 0 and v′[i] = 0.
– (q1 → pG1 ) ∈ T i, v[i] = 0 and v′[i] = 1.
– (qG1 → p1) ∈ T i, v[i] = 1 and v′[i] = 0.
– (qG1 → pG1 ) ∈ T i, v[i] = 1 and v′[i] = 1.
– (q1 → p2) ∈ T i, v[i] = 0 and v′[i] = 2.
– (qG1 → p2) ∈ T i, v[i] = 1 and v′[i] = 2.
– (q2 → p2) ∈ T i, v[i] = 2 and v′[i] = 2.

For the owing set o, if (q, v, o) ∈ F , then, for all i:
– o′[i] = 1 whenever v′[i] = 1 or v′[i] = 2.
– o′[i] = 0 whenever v′[i] = 0.

Finally, if (q, v, o) /∈ F , then, for all i:
– o′[i] = 1 whenever o[i] = 1 and v′[i] = 0.
– o′[i] = 0 whenever either o[i] = 0, or when v′[i] = 1 or v′[1] = 2.

– F = {(q, v, o) | for all i, o[i] = 0}
The choice of a single state q forces all sub-automata to be in the same state.

The component v allows to distinguish, for each sub-automaton, the active version
of state q (either q1, qG1 or q2). The owing vector o is used to remember which sub-
automaton has visited a final state since the last visit to a global final state.
A global final state (i.e., a final state of the resulting NBW) occurs when all
sub-automata have visited a local final state, which is captured by the owing
vector being 0 at all positions. This guarantees that between two global final states
every sub-automaton has visited a final state, and hence all sub-automata accept
the trace. Also, if all sub-automata visit a final state infinitely often, it follows
that a global final state will be visited infinitely often. The use of owe sets was
first introduced in the Miyano-Hayashi construction [36] to translate alternating
automata into non-deterministic automata. It is easy to check that AE and E
accept the same language.

4.4 Soundness of Parametrized Verification Diagrams

We now present the main result of this paper.

Theorem 1 (Soundness) Let P be a parametrized system and ϕ(k) a temporal for-

mula. If there exists a (P,ϕ)−valid PVD, then P � ϕ.

Proof We start by assuming that there is a (P, ϕ)−valid PVD D, and show that
P � ϕ. This requires showing P [M ] � α(ϕ(k)) for an arbitrary M and concretization
α : k → [M ]. In the proof, we will use repeatedly the following fact for symmetric
systems. Given a parametrized non-temporal formula ψ(k) and a concretization α,
if ψ(k) is valid, then α(ψ(k)) is also valid (see [48]).



Parametrized Verification Diagrams: 23

Let M be an arbitrary bound and α an arbitrary concretization function. We
consider an arbitrary run (that is, a fair computation) of P [M ]: σ : s0τ0[i0]s1τ1[i1] . . .
and show that σp � α(ϕ), where σp is the projection of σ on the propositional al-
phabet of α(ϕ).

We first consider an extension of α such that Img(α) = M by adding one fresh
thread identifier i for each k ∈ M not mapped by the original α and making
α(i) = k. In this manner, all elements of M have at least one representative thread
identifier (not necessarily in k, but perhaps a fresh one).

First, we show by induction that there is a path π : n0e0n1e1n2 . . . of σ in the
diagram, and a sequence of thread identifiers j0j1 . . . such that α(jk) = ik and
si � α(µ(ni)). The concretization α maps jk into the concrete identifier of the
thread taking the k-th step in the computation skτk[ik]sk+1. It is enough to prove
that there is a trail of nodes nk of the diagram and an extended concretization αk
such that:

(a) sk � αk(µ(nk)); and

(b) τ
(jk)
k can be taken to traverse edge ek. That is, ¬(µ(nk) ∧ τ (jk)k ∧ boxed(ek)→
µ′(nk+1)) is not valid.

Note that the last formula implies that in every state that is captured by µ(nk)
(such as sk) all moves of any instance of the system are considered by the diagram.

We build the trace by induction:
– Base case: The base case of induction follows from condition (Init). Since Θ →
µ(N0) is valid, then α(Θ → µ(N0)) is valid, and α(Θ) → α(µ(N0)) is valid.
Hence, since s0 � α(Θ) it follows that s0 � α(µ(N0)) and for some n0 ∈ N0,
s0 � α(µ(n0)) as desired.

– Induction step: Let nk be the last node of the trail, αk be the extended con-
cretization, and jk be a thread identifier for which αk(jk) = α(jk) = ik. We
consider the cases for the outgoing transition τk(jk) from nk:
– Case: jk is referred to in the property. From condition (SelfConsec) we have

that the following is valid

∨

nk→enk+1

µ(nk) ∧ τ(jk) ∧ boxed(e)→ µ′(nk+1)

so the following is also valid

αk

( ∨

nk→enk+1

µ(nk) ∧ τ(jk) ∧ boxed(e)→ µ′(nk+1)
)

and, finally, the following is also valid

∨

nk→enk+1

αk(µ(nk)) ∧ τ [ik] ∧ boxed(e)→ αk(µ′(nk+1)))

Now, sk � αk(µ(nk)) holds by inductive hypothesis, and (sk, sk+1) is a
model of the last formula (possibly for a different value of the box variable
if boxed(e) is not true). It follows that for at least one of the disjuncts
sk+1 � αk+1(µ′(nk+1)). This disjunct provides the edge ek, the successor
nk+1 and the value of the box for αk+1.

– the case for condition (OtherConsec) follows similarly.



24 Alejandro Sánchez, César Sánchez

Up to now we have shown that, provided that the verification conditions are
valid, every path of the system is captured by a trail of the diagram. We

now show that the trail π : n0e0n1 . . . with transitions τ
(jk)
k is a fair trail

of the diagram. The proof is by contradiction: Assume trail π is not fair for
transition τ taken by thread identifier i, which is enabled continuously but not
taken. Then, there is a position j in the path π after which, for all successive
states k > j, the node nk of the path has an outgoing edge labeled τ(i) but

the transitions taken at position k in the path (that is, τ
(jk)
k ) is not τ(i). Now,

by verification conditions (En) and (Succ), there is a successor in the diagram
for τ(i), and τ(i) is enabled. By taking α on these two verification conditions
it follows that τ [α(i)] is enabled in sk, that sk has a τ [α(i)] successor in P [M ].
However, τ [α(i)] is not taken in the path. Hence, σ is not a fair run of P [M ],
which contradicts our assumption that σ is a computation.
We now check that the trail π is accepting. Again, we proceed by contradiction.
Assume π is not accepting and let (Bi, Gi, δi) be the offending acceptance
condition. This means that after some position j, for all k > j, only edges
ek /∈ Gi are visited, and some edges in Bi are seen infinitely often. This means,
by conditions (SelfAcc) and (OtherAcc), that δ(nk) � δ(nk+1) and for infinitely
many r > j: δ(nr) � δ(nr+1). Hence, there is an infinite descending chain in a
well-founded domain, which is a contradiction. This shows that σ ∈ L[M ](D).
Finally, condition (Prop) ensures that sk � αk(µ(nk)) and since αk(µ(nk) →
f(nk)) is valid, then sk � αk(f(nk)). Hence, σp is in L[M ]

p (D). Finally, by

(ModelCheck), L[M ]
p (D) ⊆ L(α(ϕ)). This concludes the proof. ut

5 Experimental Evaluation

We have implemented PVDs as part of Leap [46], a prototype theorem prover
under development at the IMDEA Software Institute. The aim of Leap is to en-
able the verification of safety and liveness properties of parametrized concurrent
systems and in particular concurrent data types. Leap and the examples presented
in this section can be downloaded from the webpage http://software.imdea.org/

leap.

For the verification of liveness properties, Leap receives as input a program
description, an intended property and a PVD. Starting from the program and the
PVD, Leap automatically generates the VCs described in Section 4.2. Leap also
implements internally many decision procedures, including decision procedures
for Presburger Arithmetic with sets and complex pointer-based concurrent data
structures like lists with locks. With the assistance of these decision procedures,
Leap can automatically verify the validity of the generated verification conditions
for the programs described here.

We now present the experimental results we have obtained using Leap for the
verification of liveness properties for the mutual exclusion protocol presented in
Section 2 and for an implementation of concurrent lock-coupling lists [27, 52]. All
the experiments presented here were carried out using a computer with a 2.8 GHz
processor and 8GB of memory running a version of Leap compiled for Linux.



Parametrized Verification Diagrams: 25

n0 : ¬(wants(k) ∨ awaits(k) ∨ critical(k))

n1 : wants(k)

n2 : awaits(t)

t 6= k ∧ isMin(t) ∧ awaits(k)

n3 : pc(t) = 5

n4 : pc(t) = 6

t

n5 : awaits(k)

n6 : critical(k)

isMin(k)

τ3(k)

τ3(k)

τ4(t)

τ5(t) τ6(t)

τ6(t)

τ4(k)

Fig. 4: PVD for the proof that MutExc satisfies eventually critical(k).

5.1 Mutual Exclusion Protocol

First, we consider the mutual exclusion protocol MutExc introduced in Section 2.
For this program, we verify the liveness property eventually critical(k) presented in
(4):

eventually critical(i)
def
= 

(
pc(i) = 3→pc(i) = 5

)

For the verification, we use the theory of finite sets of pairs, where the elements
of the pairs are integers and thread identifiers, with ordered comprehension and
minimum value. Given a pair p, function πint (p) returns the integer component
of p. Function lower(s, n) receives a set of pairs s and an integer n, and returns
the subset of pairs whose first component is strictly lower than n. Additionally,
this theory provides a function minPair that returns the lowest value in a set of
pairs, using the integer component for comparison. If more than one pair satisfy
the condition of being the lowest element in a set, then one of such pairs can be
arbitrarily returned. It is easy to show that validity of quantifier-free formulas of
this theory is decidable.

We now present the PVD that represents the desired proof. In the diagram,
we use isMin(i) for πint (minPair(bag)) = ticket(i). That is, if isMin(i) holds, then
thread i has the minimum ticket in the set bag. The diagram is depicted in Fig. 4.
Note how the diagram proves the liveness property eventually critical(k) thanks to
the fact that the thread with the minimum ticket can freely progress, eventually
leaving the critical section. Once the thread with the minimum ticket leaves the
critical section, the thread owning the new minimum ticket is allowed to access
the critical section. Since we use bag to keep pairs of tickets and threads, we can
know the thread owning the new minimum ticket in the system. In the PVD We
use the following auxiliary predicates:

wants(k)
def
= pc(k) = 3

awaits(k)
def
= pc(k) = 4

critical(k)
def
= pc(k) = 5



26 Alejandro Sánchez, César Sánchez

The PVD is defined as follows:

N =̂ {ni | 0 ≤ i ≤ 6}
N0 =̂ {n0}
E =̂ {n0 → n1, n2 → n3, n3 → n4, n5 → n6, n6 → n0} ∪

{ni → nj | i = 1, 4 and j = 2, 3, 4, 5} ∪ {ni → ni | i = 0, 1, 2, 3, 4, 5, 6}
within =̂ {n2 → n3, n3 → n4}
B =̂ {({n2, n3, n4}, t)}

µ(n0) =̂ ¬(wants(k) ∨ awaits(k) ∨ critical(k))

µ(n1) =̂ wants(k)

µ(n2) =̂ t 6= k ∧ isMin(t) ∧ awaits(k) ∧ awaits(t)

µ(n3) =̂ t 6= k ∧ isMin(t) ∧ awaits(k) ∧ pc(t) = 5

µ(n4) =̂ t 6= k ∧ isMin(t) ∧ awaits(k) ∧ pc(t) = 6

µ(n5) =̂ isMin(k) ∧ awaits(k)

µ(n6) =̂ isMin(k) ∧ critical(k)

η(e) =̂





(τ3, k) if e ∈ {n1 → ni | i = 2, 3, 4, 5}
(τ4, t) if e ∈ {n2 → n3}
(τ4, k) if e ∈ {n5 → n6}
(τ5, t) if e ∈ {n3 → n4}
(τ6, t) if e ∈ {n4 → ni | i = 2, 3, 4, 5}

F =̂ 〈〈{n4 → ni | i = 2, 3, 4, 5}, {n6 → n0}, λn→ lower(bag , ticket(k))〉〉

f(n) =̂





¬(wants(k) ∨ critical(k)) if n = n0

wants(k) if n = n1

critical(k) if n = n6

true otherwise

The diagram presented above consists of 7 nodes, named ni for i = 0, . . . , 6.
The initial node is n0. Each node in the diagram has a self-loop edge to allow
transitions that do not change the truth value of the node, and are not labeling
any other outgoing edge. For example, for node n4 there exists an (implicit) edge
n4 → n4 for all transitions other than τ6(t). Additionally, the value of the ranking
function is the subset of tickets lower than the ticket of k. This set decreases (with
respect to ⊂) every time the leader thread (captured by the box variable t) exits
the critical section and removes its pair from the set. Note that this transition
is not in within, which is graphically represented by an edge that leaves the box
and returns back into the box. Table 1 in page 31 reports running times and the
number of VCs generated using Leap for verifying the PVD that represents the
proof that program MutExc satisfies the eventually critical(k) property.



Parametrized Verification Diagrams: 27

procedure MGCList()
elem e

begin
1: while true do
2: e := havocListElem()
3: nondet
4: call Search(e)
5: or call Insert(e)
6: or call Remove(e)
7: end choice
8: end while

end procedure

procedure Search(elem e)
addr prev , curr , aux
bool found

begin
9: prev := head

10: lock(prev→lock)
lockedSet := lockedSet ∪ {me}

11: curr := prev→next
12: lock(curr→lock)
13: while curr→data < e do
14: aux := prev
15: prev := curr
16: unlock(aux→lock)
17: curr := curr→next
18: lock(curr→lock)
19: end while
20: found := (curr→data = e)
21: unlock(prev→lock)
22: unlock(curr→lock)

lockedSet := lockedSet \ {me}
aheadSet := aheadSet \ {me}

23: return found
end procedure

procedure Insert(elem e)
addr prev , curr , aux , newnode

begin
24: prev := head
25: lock(prev→lock)

lockedSet := lockedSet ∪ {me}
lockedInsert := lockedInsert ∪ {me}
if (me = k) then

aheadSet := lockedSet
aheadInsert := lockedInsert

endif
26: curr := prev→next
27: lock(curr→lock)
28: while curr 6= null ∧ curr→data < e do
29: aux := prev
30: prev := curr
31: unlock(aux→lock)
32: curr := curr→next
33: lock(curr→lock)
34: end while
35: if curr 6= null ∧ curr→data > e then
36: newnode := malloc(e)
37: newnode→next := curr
38: prev→next := newnode

reg := reg ∪ {newnode}
elems := elems ∪ {e}
lockedInsert := lockedInsert \ {me}
aheadInsert := aheadInsert \ {me}

39: else
40: skip

lockedInsert := lockedInsert \ {me}
aheadInsert := aheadInsert \ {me}

41: end if
42: unlock(prev→lock)
43: unlock(curr→lock)

lockedSet := lockedSet \ {me}
aheadSet := aheadSet \ {me}

44: return
end procedure

procedure Remove(elem e)
addr prev , curr , aux

begin
45: prev := head
46: lock(prev→lock)

lockedSet := lockedSet ∪ {me}
47: curr := prev→next
48: lock(curr→lock)
49: while curr 6= tail ∧ curr→data < e do
50: aux := prev
51: prev := curr
52: unlock(aux→lock)
53: curr := curr→next
54: lock(curr→lock)
55: end while
56: if curr 6= tail ∧ curr→data = e then
57: aux := curr→next
58: prev→next := aux

reg := reg \ {curr}
elems := elems \ {e}

59: end if
60: unlock(prev→lock)
61: unlock(curr→lock)

lockedSet := lockedSet \ {me}
aheadSet := aheadSet \ {me}

62: return
end procedure

Fig. 5: Implementation of procedures Search, Insert, Remove and MGCList for
concurrent lock-coupling lists.



28 Alejandro Sánchez, César Sánchez

5.2 Concurrent Lock-Coupling Lists

The second case study is the formal verification of a progress property of lock-
coupling concurrent lists. A lock-coupling concurrent list [27, 52] is a concurrent
data type that implements a set by maintaining in the heap an ordered single-
linked list with non-repeating elements. Each node in the list is protected by a
lock which guarantees that only one thread can access any given node at the same
time. However, different nodes can potentially be accessed by different threads
concurrently. When a thread traverses the list, it acquires the lock of the node
that it visits, and only releases this lock after the lock of the successor node has
been successfully acquired. Since new nodes can be inserted, the heap memory
used can grow unboundedly.

Each node contains an element, a pointer to the next node and a lock that
protects the node. These fields are accessible thorough field names data, next and
lock respectively. Concurrent lock-coupling lists maintain two global pointers, head

and tail , which point to the head and tail of the list. The data type is annotated
with so-called “ghost variables” which are additional variables added for verifica-
tion purposes that are removed during compilation. Ghost variables are used to
store interesting aspects of the history of a given computation. These variables are
updated with additional code annotated to the program, called ghost code, which
is only allowed to update ghost variables. Ghost code appears in dashed boxes in
the figure.

Concurrent lock-coupling lists maintain six ghost variables named reg, elems,
lockedSet , lockedInsert , aheadSet and aheadInsert . Variable reg keeps track of the
portion of the heap whose cells form the list. Variable elems stores the collection
of elements stored in the list. Set lockedSet contains the set of thread identifiers that
owns at least a lock in the list. In lockedInsert we keep the set of thread identifiers
that own a lock and are executing procedure Insert but have not reached Insert’s
linearization point yet. Set aheadSet contains the set of thread identifiers that own
at least one lock in the list and are ahead of thread k. Finally, aheadInsert is similar
to lockedInsert and keeps the set of thread identifiers that own a lock in the list, are
ahead of thread k and are executing procedure Insert but have not still reached
Insert’s linearization point (at line 38).

Concurrent lock-coupling lists provide 3 main operations: Search, Insert and
Remove. Procedure Search looks for an element in the list. Procedure Insert

adds a new element in the list and procedure Remove deletes an element from the
list. Finally, procedure MGCList acts as the most general client of the concurrent
list. That is, MGCList is a procedure that non-deterministically performs calls to
all the operations provided by the concurrent list data type. Fig. 5 presents the
implementation of these procedures.

The progress property we want to verify is that if an arbitrary thread k at-
tempts to insert an element in the concurrent lock-coupling list, then thread k

eventually successfully inserts the element and returns. We can express this prop-
erty as the following 1-index parametrized temporal formula:

eventually insert(k) =  (pc(k) = 26→pc(k) ∈ {42..44})

That is, whenever thread k gets its first lock in an attempt to insert an element
(line 26) it eventually finishes the execution of the procedure (reaches the lines
between 42 and 44 of Insert).



Parametrized Verification Diagrams: 29

ins working(k) ∧ pc(k) 6∈ {42, 43} ∧
leader(t) ∧ t 6= k

t

τ22(t)

τ43(t)

τ61(t)

τ38(t)

τ30(k)

τ44(k)

m3 :
working(t) ∧
pc(t) = 38

n0 : ¬ins working(k)

m1 :
working(t) ∧

pc(t) 6∈ {22, 38, 43, 61}

m2 :
working(t) ∧
pc(t) = 22

m4 :
working(t) ∧
pc(t) = 43

m5 :
working(t) ∧
pc(t) = 61

n5 : pc(k) ∈ {42..44}

n4 : pc(k) = 38

n3 :
leader(k) ∧
pc(k) = 30

n2 :
leader(k) ∧

ins prev no changing(k)

τ38(k)

Fig. 6: PVD for proving eventually insert(k) in concurrent lock-coupling lists.

Fig. 6 shows the parametrized verification diagram that encodes the proof that
any system composed by an unbounded number of threads executing the program
shown in Fig. 5 satisfies property eventually insert(k).

In the diagram, we use the following abbreviations:

sch working(i)
def
= pc(i) ∈ {11..22}

ins working(i)
def
= pc(i) ∈ {26..43}

rem working(i)
def
= pc(i) ∈ {47..61}

ins prev no changing(i)
def
= pc(i) ∈ {26..29, 31..37, 39..42}

working(i)
def
= (sch working(i) ∨ ins working(i) ∨ rem working(i))

Labels sch working, ins working and rem working refer to those program lines
within procedures Search, Insert and Remove where the thread owns at least
one lock and, thus, is performing some work on the list. Label ins prev no changing

refers to the program lines within procedure Insert in which the field next of the
node pointed by prev is not about to be modified. Finally, label working refers to
any of the program locations labeled by sch working, ins working or rem working.

Predicate leader(i) holds if and only if thread i owns the lock of a node in
the list and there is no other locked node between such node and tail . When a



30 Alejandro Sánchez, César Sánchez

thread i satisfies the predicate leader(i) we say that i is the “leader” thread, as it is
the thread owning the lock closest to the tail of the list. The diagram is formally
defined as follows:

N =̂ {ni | i = 0, 2, 3, 4, 5} ∪ {mj | j = 1, 2, 3, 4, 5}
N0 =̂ {n0}
E =̂ {n0 → mj | j = 1, 2, 3, 4, 5} ∪ {mj → ni | j = 1, 2, 3, 4, 5 and i = 4, 5} ∪

{n0 → n2, n2 → n3, n3 → n2, n2 → n4, n2 → n5, n4 → n5, n5 → n0,m3 → m1} ∪
{mi → mj | i = 2, 4, 5 and j = 1, 2, 3, 4, 5} ∪ {ni → ni | i = 0, 2, 3, 4, 5} ∪
{mj → ni | j = 2, 4, 5 and i = 2, 3} ∪ {mj → mj | j = 1, 2, 3, 4, 5}

within =̂ {m1 → mj | j = 1, 2, 3, 4, 5} ∪ {m3 → m1}

B =̂
{

({m1,m2,m3,m4,m5}, t)
}

µ(n0) =̂ ¬ins working(k)

µ(m1) =̂ ins working(k) ∧ pc(k) 6∈ {42, 43} ∧ leader(t) ∧ t 6= k ∧ working(t) ∧ pc(t) 6∈ {22, 38, 43, 61}
µ(m2) =̂ ins working(k) ∧ pc(k) 6∈ {42, 43} ∧ leader(t) ∧ t 6= k ∧ working(t) ∧ pc(t) = 22

µ(m3) =̂ ins working(k) ∧ pc(k) 6∈ {42, 43} ∧ leader(t) ∧ t 6= k ∧ working(t) ∧ pc(t) = 38

µ(m4) =̂ ins working(k) ∧ pc(k) 6∈ {42, 43} ∧ leader(t) ∧ t 6= k ∧ working(t) ∧ pc(t) = 43

µ(m5) =̂ ins working(k) ∧ pc(k) 6∈ {42, 43} ∧ leader(t) ∧ t 6= k ∧ working(t) ∧ pc(t) = 61

µ(n2) =̂ leader(k) ∧ pc(k) ∈ {26..29, 31..37, 39..41}
µ(n3) =̂ leader(k) ∧ pc(k) = 30

µ(n4) =̂ leader(k) ∧ pc(k) = 38

µ(n5) =̂ leader(k) ∧ pc(k) ∈ {42..44}

η(e) =̂



(τ38, t) if e ∈ {m3 → m1}
(τ22, t) if e ∈ {m2 → mj | j = 1, 2, 3, 4, 5}
(τ43, t) if e ∈ {m4 → mj | j = 1, 2, 3, 4, 5}
(τ61, t) if e ∈ {m4 → mj | j = 1, 2, 3, 4, 5}
(τ30, k) if e ∈ {n3 → n2}
(τ38, k) if e ∈ {n4 → n5}

F =̂
〈
〈{mi → mj | i = 2, 4, 5 and j = 1, 2, 3, 4, 5} ∪ {n3 → n2,m3 → m1} ,
{n0 → mj | j = 1, 2, 3, 4, 5} ∪ {mj → ni | j = 1, 2, 3, 4, 5 and i = 4, 5} ∪
{n0 → n0, n0 → n2, n2 → n4, n2 → n5, n4 → n5, n5 → n5, n5 → n0} ,

λn→ 〈aheadSet , aheadInsert , addr2set(heap, Insert::prev(k))〉〉
〉

f(n) =̂


pc(k) = 26 if n = m1,m2,m3,m4,m5, n2

pc(k) ∈ {42..44} if n = n5

true otherwise

The diagram consists of 10 nodes which are named ni (with i = 0, 2, 3, 4, 5) and
mj (with j = 1, 2, 3, 4, 5). The initial node is n0. The PVD also contains a box,
which is labeled with thread t. This box encloses all nodes mi.



Parametrized Verification Diagrams: 31

Node n0 describes the situation in which thread k has not yet acquired a lock
within procedure Insert. All nodes ni with i = 2, 3, 4, 5 represent the situation in
which thread k is executing procedure Insert and thread k is the leader. In this
case, thread k has no obstacle for advancing through the list.

The other case, when a thread different from k is the leader, is modeled by the
box. All nodes within the box represent the situation in which thread k has a lock
in the list and is executing procedure Insert, but the leader is a thread t different
from k. Note that thread t can be executing any of the procedures Search, Insert
or Remove. The situation in which thread t releases its last lock is modeled by

transitions τ
(τ)
22 , τ

(τ)
43 and τ

(τ)
61 . When these transitions are taken, thread k becomes

the new leader or a new thread becomes the leader.

We use the ghost variables aheadSet and aheadInsert for proving acceptance.
The ranking function associated to the acceptance condition is a triple that fol-
lows a lexicographic order. The first component is aheadSet , which contains the
set of thread identifiers owning a lock ahead of thread k. The idea is that aheadSet

decreases with respect to ⊂ every time a thread t stops being the leader (following

the execution of transitions τ
(t)
22 , τ

(t)
43 or τ

(t)
61 ). The second component of the rank-

ing function is aheadInsert , which keeps the threads that are executing procedure
Insert and own a lock ahead of thread k. To understand the need of this second
component we need to first look at the third component of the ranking function,
which is the distance between Insert::prev and the tail of the list. As thread k pro-
gresses through the list, this distance will decrement. However, if another thread
j inserts an element between the current location of Insert::prev and tail , the

distance between Insert::prev and tail can increase when thread j executes τ
(j)
38 ,

which is the transition that effectively inserts the node. However, in this case, the

#VC #solved VC single VC time(s.) DP Leap
pos num slowest average time(s) time(s)

mutex (init) 1 0 1 0.01 0.01 0.01 0.01

mutex (consec) 153 144 9 2.66 0.03 4.22 0.06

mutex (accept) 195 132 63 1.46 0.08 15.28 0.05

mutex (fair) 24 20 4 0.03 0.01 0.10 0.02

lists (init) 1 0 1 0.01 0.01 0.01 0.01

lists (consec) 1550 1343 207 3.80 0.05 78.12 3.42

lists (accept) 5404 4352 1052 191.61 0.12 647.04 1.61

lists (fair) 48 20 28 0.42 0.16 7.82 0.14

Table 1: Running times, in seconds, for the verification eventually critical(k) and
eventually insert(k). Each row corresponds to an activity in the proof (initiation,
consecution, acceptance and fairness). The first column shows the number of gen-
erated VCs. The second shows the number of VCs solved using a very simple
decision procedure that can only reason about pc. The third column reports the
number of remaining VCs, which are proven valid using a specialized decision pro-
cedure. The forth and fifth column report the slowest and average solving time for
a single VC. The sixth column shows the total time used by the DPs to solve all
VCs. Finally, the last column shows the running time taken to generate all VCs.



32 Alejandro Sánchez, César Sánchez

set aheadInsert decrements, making the ranking function strictly decrease in the
lexicographic order.

Table 1 reports the results obtained using Leap to verify eventually insert(k) and
eventually insert(k). All verification conditions are automatically checked as valid.
The verification of (ModelCheck) is reduced to a simple model checking query which
is performed according to the process described in Section 4.3.

6 Related Work

Most of the work in formal verification of sequential pointer programs is based on
program logics following the Hoare tradition [9, 30, 55, 56]. In this sense, separa-
tion logic [38, 42] is the best known and extensively used general framework for
describing dynamically allocated mutable data structures in the heap. The success
of these logics to deal with sequential heap manipulating programs has influenced
much research [11,28,37,52] to extend these logics for concurrent programs. How-
ever, handling unbounded unstructured concurrency is still very challenging. Also,
virtually all these approaches are restricted to safety properties. In spite of some
recent partial success [18, 25], extending separation logic techniques to build a
general framework for liveness properties is still an open problem.

The main advantage of separation logic is its ability to describe concisely com-
positional proofs, thanks to the frame rule enabled by the hiding of the heap
regions implicit in the separation conjunction operator. We advocate the use of
explicit heap regions [2] represented as finite sets of object references. Explicit
region manipulation provides the user full control over the heap partitioning and
allows the use of classical first-order assertion languages to reason about heaps,
including mutation and disjointness of memory regions. Unlike separation logic,
the theory of sets [54] can be easily combined with other classical theories to build
more powerful decision procedures, and is also amenable to integration into SMT
solvers [3].

The problem of verifying parametrized systems is in general undecidable [1],
even for finite-state components [51]. Some algorithmic methods proposed are re-
stricted to classes of finite-state processes [15, 16, 20] and finite-state shared data
to regain decidability. For instance, methods for automatically verifying infinite-
state programs over unboundedly many threads such as [22] focus only on nu-
merical and Boolean programs and tackle only safety properties. Model checking
techniques [14, 49, 53, 57] are not readily applicable to systems composed of an
unbounded number of threads, and cannot even scale to concrete systems with
large number of threads due to the state space explosion problem. Methods such
as [40] present an incomplete solution to the problem of uniform verification of
finite-state parametrized systems, in particular for liveness, using symbolic model
checking. Baukus et al. [4, 5] proposed and applied [6] a method which enabled
the verification of parameterized networks of finite-state processes by modeling
an infinite family of networks by a single transition system expressed in WS1S.
However, their approach is limited to programs that manipulate simple data types
while we advocate the use of specialized decision procedures, which allows the
verification of programs that manipulate non-trivial data structures. An intrinsic
limitation of algorithmic methods arises from the approach of handling data and
temporal reasoning together.



Parametrized Verification Diagrams: 33

Instead of considering algorithmic methods, we follow an alternative approach
by extending temporal deductive methods such as Manna and Pnueli’s [33] with
specialized proof rules and formalisms for parametrized systems, thus sacrificing
full automation to handle complex concurrency and data manipulation. This style
of reasoning allows to handle separately in a proof the temporal part and the un-
derlying data being manipulated. Temporal deductive methods, like ours, are very
powerful for reasoning about (structured or unstructured) concurrency, but they
have been traditionally restricted to non-parametrized systems and scalar data.
Our approach can be applied to any theory of data with an available decision pro-
cedure. In [43–45] we describe some decision procedures for heap data structures
that can be used in combination with PVDs.

In [48] we studied the problem of verifying parametrized safety properties in
systems composed by an unbounded number of threads proposing specialized proof
rules. The proof rules presented in [48] are the safety counterpart of the work
presented in this paper. For safety, starting from the program and a safety spec-
ification, we generate a bounded number of verification conditions that can then
be automatically checked using specialized decision procedures [43–45]. For tack-
ling the problem of verifying parametrized temporal properties we have proposed
in this paper the new formalism of PVDs. Leap [46] includes an implementation
of (1) proof rules for parametrized safety properties (see [48]) (2) the PVDs pre-
sented in this paper, and (3) several decision procedures to automatically prove
VCs (e.g., [43–45]). Leap is inspired by the STeP theorem prover [8] developed by
Zohar Manna’s group at Stanford in the 1990s.

For constructing PVDs, we extend generalized verification diagrams [12, 50]
with capabilities to deal with concurrent parametrized systems. The work that
is closest to ours, considering the verification of parametrized properties, is [34]
and Section 8 of [8] (both of them from Zohar Manna’s group), in which the au-
thors use diagrams to verify temporal properties of parametrized reactive systems.
However, their methods require quantification in the nodes and hence generate
quantified verification conditions. In many cases, using quantifiers sacrifices the
automation in the proof of the generated verification conditions. The PVD for-
malism we present in this paper generates quantifier-free verification conditions
for parametrized systems that can be handled automatically by SMT solvers.

Another relevant work is the Deductive Verification Framework (DVF) [24],
which consists on a language and a tool for verifying properties of transition sys-
tems by generating verification conditions from specific goals which are then passed
to SMT engines. However, DVF is based on Hoare-style reasoning, does not tackle
parametrized verification and is restricted to safety properties.

Environment abstraction [17] and thread quantification abstractions [7] are
abstraction-based techniques that deal with parametrized systems by abstracting
processes and data altogether, making them much more difficult to extend to
arbitrary data and memory layouts. In contrast, our approach can be applied
to any data type as long as there is a decision procedure for its state assertion
language. This is also a key difference between our approach and parametrized
model checking for symmetric systems [21]. Similarly, [26] presents a verification
approach which uses abstract transition systems to simulate lock-free algorithms.
However, their method is limited to safety, and the use of simulation obscures the
verification. Our framework, on the other hand, is capable of dealing with temporal
properties of lock-free algorithms.



34 Alejandro Sánchez, César Sánchez

Apart from generalized verification diagrams, the other general technique for
the verification of temporal properties is transition invariants [41], which charac-
terize the validity of liveness properties by the existence of a disjunctively well-
founded transition invariant. A transition invariant is a relation-based abstraction
of the transition relation of a program expressed as a disjunctive set of relations.
Even though transition invariants are more suitable for automation, they are more
difficult to understand and craft by human engineers, and hence less suitable as a
semi-automatic verification method. Moreover, the transition invariant approach
is not immediately applicable to parametrized systems. Even though we plan to
attack the extension of transition invariants to parametrized systems in future
work, this is out of the scope of this paper. Other techniques for checking pro-
gram termination include [19] and [23], but all these techniques are restricted to
non-parametrized systems.

7 Conclusion

In this paper we presented parametrized verification diagrams, an extension of
generalized verification diagrams which is specifically designed to tackle the veri-
fication of temporal properties of concurrent systems executed by an unbounded
number of threads. An advantage of PVDs is that they can encode in a single
object the formal proof that all instances of the parametrized system satisfy a
given temporal specification. The proof that the PVD encodes can be automati-
cally checked solving a finite-state model checking problem, and proving a finite
number of verification conditions, which are generated automatically from the pro-
gram and the PVD. The generated verification conditions are guaranteed to be
quantifier-free and can be automatically verified if there exists an appropriate de-
cision procedure which can deal with the underlying theories of the data types
manipulated by the program.

We have implemented PVDs as part of Leap, a theorem prover for parame-
trized systems under development at the IMDEA Software Institute. Using Leap

we successfully verified liveness properties of mutual exclusion protocols and con-
current data types.

Future work includes studying the completeness of the PVD technique and
relaxations of the symmetry requirement to expand the class of systems for which
PVDs can be used.

Finally, the quest for generalized verification diagrams in the 1990s was pursu-
ing two objectives: to find a unifying deductive framework for all temporal prop-
erties, and to serve as a humanly readable graphical formalism. In this paper we
have focused on the effective applicability of PVDs in the verification of concurrent
data types. Future work also includes studying and improving the applicability of
PVDs as a graphical formalism amenable for human use.

Acknowledgment

We would like to acknowledge the anonymous reviewers for their feedback and
numerous suggestions about how to improve this paper.



Parametrized Verification Diagrams: 35

References

1. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent sys-
tems. Inf. Proc. Letters 22(6), 307–309 (1986)

2. Banerjee, A., Naumann, D.A., Rosenberg, S.: Regional logic for local reasoning about
global invariants. In: Proc. of ECOOP’08. pp. 387–411. Springer (2008)

3. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Handbook of Satisfiability, chap.
Satisfiability Modulo Theories. IOS Press (2008)

4. Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting WS1S systems to verify
parameterized networks. In: Proc. of TACAS’00. LNCS, vol. 1785, pp. 188–203. Springer
(2000)

5. Baukus, K., Lakhnech, Y., Stahl, K.: Verifying universal properties of parameterized net-
works. In: Proc. of FTRTFT’00. LNCS, vol. 1926, pp. 291–303. Springer (2000)

6. Baukus, K., Lakhnech, Y., Stahl, K.: Parameterized verification of a cache coherence
protocol: Safety and liveness. In: Proc. of VMCAI’02. LNCS, vol. 2294, pp. 317–330.
Springer (2002)

7. Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, S.: Thread quantification
for concurrent shape analysis. In: Proc. of CAV’08. LNCS, vol. 5123, pp. 399–413. Springer
(2008)

8. Bjørner, N., Browne, A., Colón, M., Finkbeiner, B., Manna, Z., Sipma, H., Uribe, T.E.:
Verifying temporal properties of reactive systems: A STeP tutorial. Form. Meth. in Sys.
Design 16(3), 227–270 (2000)

9. Bouajjani, A., Dragoi, C., Enea, C., Sighireanu, M.: A logic-based framework for reasoning
about composite data structures. In: Proc. of CONCUR’09. pp. 178–195. Springer (2009)

10. Bradley, A.R., Manna, Z., Sipma., H.B.: What’s decidable about arrays? In: Proc. of
VMCAI’06. LNCS, vol. 3855, pp. 427–442. Springer (2006)

11. Brookes, S.D.: A semantics for concurrent separation logic. In: Proc. of CONCUR’04.
LNCS, vol. 3170, pp. 16–34. Springer (2004)

12. Browne, A., Manna, Z., Sipma, H.B.: Generalized temporal verification diagrams. In: Proc.
of FSTTCS’95. LNCS, vol. 1206, pp. 484–498. Springer (1995)

13. Bultan, T., Gerber, R., Pugh, W.: Symbolic model checking of infinite state systems using
Presburger Arithmetic. In: Proc. of CAV’97. LNCS, vol. 1254, pp. 400–411. Springer (1997)

14. Cerný, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model checking of
linearizability of concurrent list implementations. In: Proc. of CAV’10. LNCS, vol. 6174,
pp. 465–479. Springer (2010)

15. Clarke, E.M., Grumberg, O.: Avoiding the state explosion problem in temporal logic model
checking. In: Proc. of PODC’87. pp. 294–303. ACM (1987)

16. Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about networks with many iden-
tical finite-state processes. In: Proc. of PODC’86. pp. 240–248. ACM (1986)

17. Clarke, E.M., Talupur, M., Veith, H.: Proving Ptolemy right: The environment abstraction
framework for model checking concurrent systems. In: Proc. of TACAS’08. LNCS, vol.
4963, pp. 33–47. Springer (2008)

18. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that programs
eventually do something good. In: Proc. of POPL’07. pp. 265–276. ACM (2007)

19. Dershowitz, N., Lindenstrauss, N., Sagiv, Y., Serebrenik, A.: A general framework for au-
tomatic termination analysis of logic programs. Applicable Algebra in Engineering, Com-
munication and Computing 12(1/2), 117–156 (2001)

20. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In: Proc. of
CADE’00. LNAI, vol. 1831, pp. 236–254. Springer (2000)

21. Emerson, E.A., Kahlon, V.: Model checking large-scale and parameterized resource allo-
cation systems. In: TACAS. LNCS, vol. 2280, pp. 251–265. Springer (2002)

22. Farzan, A., Kincaid, Z.: Verification of parameterized concurrent programs by modular
reasoning about data and control. In: Proc. of POPL’12. pp. 297–308. ACM (2012)

23. Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker, M.,
Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving termination of
programs automatically with AProVE. In: Proc. of IJCAR’14. LNCS, vol. 8562, pp. 184–
191. Springer (2014)

24. Goel, A., Krstic, S., Leslie, R., Tuttle, M.R.: SMT-based system verification with DVF.
In: Proc. of SMT’12. EPiC Series, vol. 20, pp. 32–43. EasyChair (2012)

25. Gotsman, A., Cook, B., Parkinson, M.J., Vafeiadis, V.: Proving that non-blocking algo-
rithms don’t block. In: Shao, Z., Pierce, B.C. (eds.) Proc. of POPL’09. pp. 16–28. ACM
(2009)



36 Alejandro Sánchez, César Sánchez

26. Groves, L.: Verifying Michael and Scott’s lock-free queue algorithm using trace reduction.
In: CATS. CRPIT, vol. 77, pp. 133–142. Australian Computer Society (2008)

27. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan-Kaufmann
(2008)

28. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separation logic.
In: Proc. of ESOP’08. LNCS, vol. 4960, pp. 353–367. Springer (2008)

29. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–384
(1976)

30. Lahiri, S.K., Qadeer, S.: Back to the future: Revisiting precise program verification using
smt solvers. In: Proc. of POPL’08. pp. 171–182. ACM (2008)

31. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Commun.
ACM 17(8), 453–455 (1974)

32. Manna, Z., Browne, A., Sipma, H., Uribe, T.E.: Visual abstractions for temporal verifica-
tion. In: Proc. of AMAST’98. LNCS, vol. 1548, pp. 28–41. Springer (1998)

33. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer (1995)
34. Manna, Z., Sipma, H.: Verification of parameterized systems by dynamic induction on

diagrams. In: Proc. of CAV’99. LNCS, vol. 1633. Springer (1999)
35. Marco Bozzano, G.D.: Beyond parameterized verification. In: Proc. of TACAS’02. LNCS,

vol. 2280, pp. 221–235. Springer (2002)
36. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theor. Comput. Sci. 32,

321–330 (1984)
37. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Proc. of CONCUR’04.

LNCS, vol. 3170, pp. 49–67. Springer (2004)
38. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter data

structures. In: Proc. of CSL’01. LNCS, vol. 2142, pp. 1–19. Springer (2001)
39. Pnueli, A.: The temporal logic of programs. In: Proc. of FOCS’77. pp. 46–57. IEEE Com-

puter Society Press (1977)
40. Pnueli, A., Shahar, E.: Liveness and acceleration in parameterized verification. In: Proc.

of CAV’00. vol. 1855, pp. 328–343. Springer (2000)
41. Podelsky, A., Rybalchenko, A.: Transition invariants. In: Proc. of LICS’04. pp. 32–41.

IEEE Computer Society Press (2004)
42. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proc. of

LICS’02. pp. 55–74. IEEE Computer Society Press (2002)
43. Sánchez, A., Sánchez, C.: Decision procedures for the temporal verification of concurrent

lists. In: Proc. of ICFEM’10. LNCS, vol. 6447, pp. 74–89. Springer (2010)
44. Sánchez, A., Sánchez, C.: A theory of skiplists with applications to the verification of

concurrent datatypes. In: Proc. of NFM’11. LNCS, vol. 6617, pp. 343–358. Springer (2011)
45. Sánchez, A., Sánchez, C.: Formal verification of skiplists with arbitrary many levels. In:

Proc. of ATVA’14. vol. 8837, pp. 314–329. Springer (2014)
46. Sánchez, A., Sánchez, C.: LEAP: A tool for the parametrized verification of concurrent

datatypes. In: Proc. of CAV’14. vol. 8559, pp. 620–627. Springer (2014)
47. Sánchez, A., Sánchez, C.: Parametrized verification diagrams. In: Proc. of TIME’14. pp.

132–141. IEEE Computer Society (2014)
48. Sánchez, A., Sánchez, C.: Parametrized invariance for infinite state processes. Acta Inf.

52(6), 525–557 (2015)
49. Sethi, D., Talupur, M., Schwartz-Narbonne, D., Malik, S.: Parameterized model checking

of fine grained concurrency. In: Proc. of SPIN’12. pp. 208–226. Springer (2012)
50. Sipma, H.B.: Diagram-Based Verification of Discrete, Real-Time and Hybrid Systems.

Ph.D. thesis, Stanford University (1999)
51. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Proc. Letters 28,

213–214 (1988)
52. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-concurrent

linearisable objects. In: Proc. of PPOPP’06. pp. 129–136. ACM (2006)
53. Vechev, M.T., Yahav, E., Yorsh, G.: Experience with model checking linearizability. In:

Proc. of SPIN’09. LNCS, vol. 5578, pp. 261–278. Springer (2009)
54. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations. In: Proc.

of FROCOS’09. LNCS, vol. 5749, pp. 366–382. Springer (2009)
55. Yorsh, G., Rabinovich, A.M., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reachable

patterns in linked data-structures. In: Proc. of FOSSACS’06. pp. 94–110 (2006)
56. Yorsh, G., Rabinovich, A.M., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reachable

patterns in linked data-structures. J. Log. Algebr. Program. 73(1-2), 111–142 (2007)
57. Zhang, S.J.: Scalable automatic linearizability checking. In: Proc. of ICSE’11. vol. 5578,

pp. 1185–1187. ACM (2011)


