
Online and Offline Stream Runtime Verification
of Synchronous Systems ?

César Sánchez

IMDEA Software Institute, Spain
cesar.sanchez@imdea.org

Abstract. We revisit Stream Runtime Verification for synchronous sys-
tems. Stream Runtime Verification (SRV) is a declarative formalism to
express monitors using streams, which aims to be a simple and expressive
specification language. The goal of SRV is to allow engineers to describe
both correctness/failure assertions and interesting statistical measures
for system profiling and coverage analysis. The monitors generated are
useful for testing, under actual deployment, and to analyze logs.
The main observation that enables SRV is that the steps in the algo-
rithms to monitor temporal logics (which generate Boolean verdicts)
can be generalized to compute statistics of the trace if a different data
domain is used. Hence, the fundamental idea of SRV is to separate the
temporal dependencies in the monitoring algorithm from the concrete
operations to be performed at each step.
In this paper we revisit the pioneer SRV specification language Lola
and present in detail the online and offline monitoring algorithms. The
algorithm for online monitoring Lola specifications uses a partial evalu-
ation strategy, by incrementally constructing output streams from input
streams, maintaining a storage of partially evaluated expressions. We
identify syntactically a class of specifications for which the online algo-
rithm is trace length independent, that is, the memory requirement does
not depend on the length of the input streams. Then, we extend the
principles of the online algorithm to create an efficient offline monitor-
ing algorithm for large traces, which consist on scheduling trace length
independent passes on a dumped log.

Keywords: Runtime verification, formal verification, formal methods, stream
runtime verification synchronous systems, dynamic analysis, monitoring.

1 Introduction

Runtime Verification (RV) is an applied formal method for software reliability
that analyzes the system by processing one trace at a time. In RV a specifica-
tion is transformed automatically into a monitor, and algorithms are presented

? This research has been partially supported by: the EU H2020 project Elastest (num.
731535), by the Spanish MINECO Project “RISCO (TIN2015-71819-P)” and by the
EU ICT COST Action IC1402 ARVI (Runtime Verification beyond Monitoring).

2

to evaluate monitors against traces of observations from the system. There are
two kinds of monitoring algorithms in RV depending on when the trace is gen-
erated and processed. In online monitoring the monitor checks the trace while
the system runs, while in offline monitoring a finite collection of previously gen-
erated traces are analyzed. Online monitoring is used to detect violations of the
specification when the system is in operation, while offline monitoring is used in
post-mortem analysis and for testing large systems before deployment.

Static verification techniques like model checking intend to show that every
(infinite) run of a system satisfies a given specification, while runtime verification
is concerned only with a single (finite) trace. Thus, RV sacrifices completeness to
provide an applicable formal extension of testing. See [24, 21] for modern surveys
on runtime verification and the recent book [4].

The first specification languages studied for runtime verification were based
on temporal logics, typically LTL [22, 13, 6], regular expressions [28], timed regu-
lar expressions [1], rules [3], or rewriting [27]. In this paper we revisit the Stream
Runtime Verification specification formalism, in particular the Lola specifica-
tion language for synchronous systems [12]. The Lola language can express
properties involving both the past and the future and their arbitrary combina-
tion. In SRV, specifications declare explicitly the dependencies between input
streams of values—that represent the observations from the system—and out-
put streams of values—that represent monitoring outputs, like error reports and
diagnosis information. The fundamental idea of SRV is to cleanly separate the
temporal reasoning from the individual operations to be performed at each step.
The temporal aspects are handled in a small number of constructs to express the
offsets between observations and their uses. For the data, SRV uses off-the-self
domains with interpreted functions so function symbols can be used as con-
structors to create expressions, and their interpretation is used for evaluation
during the monitoring process. The domains used for SRV are not restricted to
Booleans and allow richer domains like Integers, Reals (for computing quanti-
tative verdicts) and even queues, stacks, etc. These domains do not involve any
reasoning about time. The resulting expressiveness of SRV surpasses that of tem-
poral logics and many other existing formalisms including finite-state automata.
The restriction of SRV to the domain of Booleans is studied in [10], including
the expressivity, the comparison with logics and automata and the complexity
of the decision problems.

The online monitoring problem of past specifications can be solved efficiently
using constant space and linear time in the trace size. For future properties, on
the other hand, the space requirement depends on the length of the trace for
rich types (even though for LTL, that is for the verdict domain of the Booleans,
one can use automata techniques to reduce the necessary space to exponential in
the size of the specification). Consequently, online monitoring of future temporal
formulas quickly becomes intractable in practical applications with long traces.
On the other hand, the offline monitoring problem for LTL-like logics is known
to be easy for purely past or purely future properties. We detail in the paper
a syntactic characterization of efficiently monitorable specifications (introduced

3

in [12]), for which the space requirement of the online monitoring algorithm is
independent of the size of the trace, and linear in the specification size. This
property was later popularized as trace length independence [5] and is a very
desirable property as it allows online monitors to scale to arbitrarily large traces.
In practice, most properties of interest in online monitoring can be expressed as
efficiently monitorable properties. For the offline monitoring problem, we show
an efficient monitoring strategy in the presence of arbitrary past and future
combinations by scheduling trace length independent passes. We describe here
the algorithm and results using the Lola specification language. An execution
of the monitor extracted from a Lola specification computes data values at
each position by evaluating the expressions over streams of input, incrementally
computing the output streams.

Two typical specifications are properties that specify correct behavior, and
statistical measures that allow profiling the system that produces the input
streams. One important limitation of runtime verification is that liveness prop-
erties can never be violated on a finite trace. Hence, most of these properties
have been typically considered as non-monitorable (for violation) as every finite
prefix can be extended to a satisfying trace, at least if the system is considered as
a black box and can potentially generate any suffix. An appealing solution that
SRV supports is to compute quantitative measures from the observed trace. For
example, apart from “there are only finitely many retransmissions of each pack-
age,” which is vacuously true over finite traces, SRV allows to specify “what is
the average number of retransmissions.” Following this trend, runtime monitors
can be used not only for bug-finding, but also for profiling, coverage, vacuity and
numerous other analyses. An early approach for combining proving properties
with data collection, which inspired SRV, appeared in [16].

In the present paper we present a simplified semantics of Lola [12] together
with a detailed presentation of the monitoring algorithms as well as the nec-
essary definitions and proofs. In the rest of the paper we use SRV and Lola
interchangeably.

Related Work. The expressions that declare the dependencies between input
streams and output streams in SRV are functional, which resemble synchronous
languagues—which are also functional reactive stream computation languages—
like Lustre [20], Esterel [9] and Signal [17], with additional features that are
relevant to monitoring. The main difference is that synchronous languages are
designed to express behaviors and therefore assume the causality assumption and
forbid future references, while in SRV future references are allowed to describe
dependencies on future observations. This requires additional expressiveness in
the language and the evaluation strategies to represent that the monitor cannot
decide a verdict without observing future values. These additional verdicts were
also introduced for this purpose in LTL-based logics, like LTL3 and LTL4 [7, 6,
8], to encode that the monitor is indecisive.

An efficient method for the online evaluation of past LTL properties is pre-
sented in [22], which exploits that past LTL can be recursively defined using

4

only values in the previous state of the computation. The efficiently monitorable
fragment of SRV specifications generalize this idea, and apply it uniformly to
both verification and data collection. One of the early systems that most closely
resembles Lola is Eagle [3], which allows the description of monitors using great-
est and least fixed points of recursive definitions. Lola differs from Eagle in the
descriptive nature of the language, and in that Lola is not restricted to checking
logical formulas, but can also express numerical queries.

The initial application domain of Lola was the testing of synchronous hard-
ware by generating traces of circuits and evaluating monitors against these
traces. Temporal testers [26] were later proposed as a monitoring technique for
LTL based on Boolean streams. Copilot [25] is a domain-specific language that,
similar to Lola, declares dependencies between streams in a Haskell-based style,
to generate C monitors that operate in constant time and space (the fragment of
specifications that Copilot can describe is efficiently monitorable). See also [18].

The simple version of Lola presented here does not allow to quantify over
objects and instantiate monitors to follow the actual objects observed, like in
Quantified Event Automata [2]. Lola2.0 [14] is an extension of Lola that allows
to express parametrized streams and dynamically generates monitors that in-
stantiate these streams for the observed data items. The intended application of
Lola2.0 is network monitoring.

Stream runtime verification has a also been extended recently to asynchronous
and real-time systems. RTLola [15] extends SRV from the synchronous domain
to timed streams. In RTLola streams are computed at predefined periodic in-
stants of time, collecting aggregations between these predefined instants using a
library of building blocks. TeSSLa [11] also offers a small collection of primitives
for expressing stream dependencies (see also [23]) but allows to compute timed-
streams at arbitrary real-time instants. The intended application of TeSSLa is
hardware based monitoring. Striver [19] offers a Lola-like language with time off-
sets, that allows to express explicit instants of time in the expressions between
streams. Striver is aimed at testing and monitoring of cloud based systems.

The rest of the paper is structured as follows. Section 2 revisits the syntax and
semantics of SRV. Section 3 presents the online monitoring of SRV specifications,
including the notion of efficient monitorability. Section 4 presents the algorithm
for offline monitoring, and finally Section 5 concludes.

2 Overview of Stream Runtime Verification

In this section we describe SRV using the Lola specification language. The
monitoring algorithms will be presented in Sections 3 and 4.

2.1 Specification Language: Syntax

We use many-sorted first order interpreted theories to describe data domains.
A theory is given by a finite collection T of types and a finite collection F of
function symbols. Since our theories are interpreted every type T is associated

5

with a domain D of values and every symbol f is associated with a computable
function that, given elements of the domains of the arguments compute a value
of the domain of the resulting type. We use sort and type interchangeably in
this paper.

For example, the theory Boolean uses the type Bool associated with the
Boolean domain with two values {>,⊥}, and has constant symbols true and
false, and binary function symbols ∧, and ∨, unary function symbol ¬, etc all
with their usual interpretations. A more sophisticated theory is Naturals, the
theory of the Natural numbers, that uses two types Nat and Bool. The type Nat
is associated with the domain {0, 1, . . .} of the Natural numbers, and has constant
symbols 0, 1, 2, . . . and binary symbols +, ∗, etc of type Nat×Nat→ Nat. Other
function symbols in this theory are predicates <, ≤, . . . of type Nat×Nat→ Bool.
All our theories include equality and also, for every type T , a ternary predicate
if · then · else · of type Bool× T → T . For simplicity we restrict the rest of
the paper to types Nat and Bool.

Definition 1 (Stream Expression). Given a finite set Z of stream variable
(each with a given type) the set of stream expressions is defined as follows:
– Variable: If s is a stream variable of type T , then s is a stream expression

of type T ;
– Function Application: Let f : T1 × T2 × · · · × Tk 7→ T be a k-ary function

symbol. If for 1 ≤ i ≤ k, ei is an expression of type Ti, then f(e1, . . . , ek) is
a stream expression of type T .

– Offset: If v is a stream variable of type T , c is a constant of type T , and k
is an integer value, then v[k, c] is a stream expression of type T .

We use Expr(Z) for the set of stream expressions using stream variables Z.

Constants c (that is, 0-ary function symbols) and stream variables v are
called atomic stream expressions. Stream variables are used to represent streams.
Informally, the offset term v[k, c] refers to the value of v offset k positions from
the current position, where a negative offset refers to a past position in the stream
and a positive offset refers to a future position in the the stream. The constant c
is the default value of type T assigned to positions from which the offset is past
the end or before the beginning of the stream. For example v[−1, true] refers to
the previous position of stream v, with the value true when v does not have a
previous position (that is when v[−1, true] is evaluated at the begining of the
trace).

A Lola specification describes a relation between input streams and output
streams. A stream σ of type T and length N is a finite sequence of values from
the domain of T ; σ(i), i ≥ 0 denotes the value of the stream at time step i.

Definition 2 (Lola specification). A Lola specification ϕ : 〈I,O,E〉 consists
of:
– a finite set I of typed independent stream variables;
– a collection O of typed dependent stream variables; and
– a collections E of defining expressions, with one expression Ey ∈ Expr(I∪O)

for each output variable y ∈ O, where y and Ey must have the same type.

6

We write y := Ey to denote that the stream y is defined by its defining expression
Ey, which can use every stream variable in I ∪ O (including y itself) as atomic
terms. Sometimes, Lola specifications include a collection of triggers defined by
expressions of type Bool over the stream variables, with the intended meaning
of informing the user when the corresponding expressions become true, but we
do not use triggers in the presentation in this paper.

Independent variables refer to input streams and dependent variables refer
to output streams. It is often convenient to partition the dependent variables
into output variables and intermediate variables to distinguish streams that are
of interest to the user from those that are used only to facilitate the description
of other streams. However, for the semantics and the algorithm this distinction
is not important, and hence we will ignore this classification in the rest of the
paper.

Example 1. Let x1 and x2 be stream variables of type Boolean and x3 be a
stream variable of type integer. The following is an example of a Lola spec-
ification with I = {x1, x2, x3} as independent variables, O = {y1, . . . , y10} as
dependent variables and the following defining equations:

y1 := true y6 := if x1 then x3 ≤ y4 else ¬y3
y2 := x3 y7 := x1[+1, false]
y3 := x1 ∨ (x3 ≤ 1) y8 := x1[−1, true]
y4 := ((x3)2 + 7) mod 15 y9 := y9[−1, 0] + (x3 mod 2)
y5 := if y3 then y4 else y4 + 1 y10 := x2 ∨ (x1 ∧ y10[1, true])

Stream variable y1 denotes a stream whose value is true at all positions, while y2
denotes a stream whose values are the same at all positions as those in x3. The
values of the streams corresponding to y3, . . . , y6 are obtained by evaluating their
defining expressions place-wise at each position. The stream corresponding to y7
is obtained by taking at each position i the value of the stream corresponding to
x1 at position i+ 1, except at the last position, which assumes the default value
false. Similarly for the stream for y8, whose values are equal to the values of the
stream for x1 shifted by one position, except that the value at the first position
is the default value true. The stream specified by y9 counts the number of odd
entries in the stream assigned to x3 by accumulating (x3 mod 2). Finally, y10
denotes the stream that gives at each position the value of the temporal formula
x1U x2 with the stipulation that unresolved eventualities be regarded as satisfied
at the end of the trace. ut

To present formal results, it is sometimes convenient to work with a simpler
class of specifications.

Definition 3 (Flat). A specification is flat if each defining expression Ey is
one of the following

– A constant c
– A stream variable v
– A constructor over stream variables f(v1, . . . , vn)

7

– An offset expression v[k, c].

Definition 4 (Normalized). A specification is normalized if it only contains
offsets 1 or −1.

Any Lola specification can be converted into a flat specification by introducing
extra stream variables as place-holders for complex sub-expressions. Similarly,
any Lola specification can be converted into a normalized specification by intro-
ducing additional stream variables defined to carry value n−1 for offsets of n > 1
(and n+ 1 for offsets of n < −1). This transformation also preserves flatness so
every Lola specification can be converted into a normalized flat specification.

Example 2. Consider the Lola specification with I = {x1, . . . , x5}, O = {y}
and

y := x1[1, 0] + if x2[−1, true] then x3 else x4 + x5.

The normalized specification uses O = {y, y1, . . . , y4} with equations:

y := y1 + y2
y1 := x1[1, 0]
y2 := if y3 then x3 else y4

y3 := x2[−1, true]
y4 := x4 + x5

ut

2.2 Specification Language: Semantics

In order to define the semantics of SRV specifications we first define how to
evaluate expressions. Consider a map σI that assigns one stream σx of type T and
length N for each input stream variable x of type T , and a map σO : {. . . , σy, . . .}
that contains one stream σy of length N for each defined stream variable y (again
of the same type as y). We call (σI , σO) an interpretation of ϕ, and use σ as the
map that assigns the corresponding stream as σI or σO (depending on whether
the stream variable is an input variable or an output variable).

Definition 5 (Valuation). Given an interpretation (σI , σO) a valuation is a
map J·K that assigns to each expression a stream of length N of the type of the
expression as follows:

JcK(j) = c
JvK(j) = σv(j)
Jf(e1, . . . , ek)K(j) = f(Je1K(j), . . . , JekK(j))
Jif e1 then e2 else e3K(j) = if Je1K(j) then Je2K(j) else Je3K(j)

Jv[k, c]K(j) =

{
JvK(j + k) if 0 ≤ j + k < N

c otherwise

We now can define when an interpretation (σI , σO) of ϕ is an evaluation
model, which gives denotational semantics to Lola specifications.

8

Definition 6 (Evaluation Model). An interpretation (σI , σO) of ϕ is an eval-
uation model of ϕ whenever

JyK = JEyK for every y ∈ O

In this case we write (σI , σO) |= ϕ.

For a given set of input streams, a Lola specification may have zero, one,
or multiple evaluation models.

Example 3. Consider the Lola specifications (all with I = {x} and O = {y})
where x has type Nat and y has type Bool .

ϕ1 : y := (x ≤ 10)
ϕ2 : y := y ∧ (x ≤ 10)
ϕ3 : y := ¬y

For any given input stream σx, ϕ1 has exactly one evaluation model (σx, σy),
where σy(i) = true if and only if σx(i) ≤ 10, for 1 ≤ i ≤ N . The specification ϕ2,
however, may give rise to multiple evaluation models for a given input stream. For
example, for input stream σx : 〈0, 15, 7, 18〉, both σy : 〈false, false, false, false〉
and σy : 〈false, true, false, true〉 make (σx, σy) an evaluation model of ϕ2. The
specification ϕ3, on the other hand, has no evaluation models, because there is
no solution to the equations σy(i) = ¬σy(i). ut

2.3 Well-definedness and Well-formedness

SRV specifications are meant to define monitors, which intuitively correspond to
queries of observations of the system under analysis (input streams) for which we
want to compute a unique answer (the output streams). Therefore, the intention
of a specification is to define a function from input streams to output streams,
and this requires that there is a unique evaluation model for each instance of
the input streams. The following definition captures this intuition.

Definition 7 (Well-defined). A Lola specification ϕ is well-defined if for
any set of appropriately typed input streams σI of the same length N > 0, there
exists a unique valuation σO of the defined streams such that (σI , σO) |= ϕ.

A well-defined Lola specification maps a set of input streams to a unique set of
output streams. Unfortunately well-definedness is a semantic condition that is
hard to check in general (even undecidable for rich types). Therefore, we define a
more restrictive (syntactic) condition called well-formedness, that can be easily
checked on every specification ϕ and implies well-definedness. We first add an
auxiliary definition.

Definition 8 (Dependency Graph). Let ϕ be a Lola specification. The de-
pendency graph for ϕ is the weighted directed multi-graph D = 〈V,E〉, with

vertex set V = I ∪O. The set E contains an edge y
0→ v if v is occurs in Ey and

an edge y
k→ v if v[k, d] occurs in Ey.

9

An edge y
k→ v encode that y at a particular position potentially depends on the

value of v, offset by k positions. Note that there can be multiple edges between x
and y with different weights on each edge. Also note that vertices that correspond
to input variables do not have outgoing edges.

A walk of a graph is a sequence v1
k1→ v2

k2→ v3 · · · vn
kn→ vn+1 of vertices and

edges. A walk is closed if v1 = vn+1. The weight of a walk is the sum of the
weights of its edges. A simple walk is a walk in which no vertex is repeated. A
cycle is a simple closed walk.

Definition 9 (Well-Formed Specifications). A Lola specification ϕ is well-
formed if its dependency graph has no closed walk with weight zero.

Example 4. Consider the Lola specification with I : {x1, x2} and O : {y1, y2}
and the following defining equations:

y1 := y2[1, 0] + if (y2[−1, 7] ≤ x1[1, 0]) then (y2[−1, 0]) else y2
y2 := (y1 + x2[−2, 1]).

Its normalized specification is

y1 := y5 + y9 y2 := y1 + y4 y3 := x1[1, 0]
y4 := x2[−2, 1] y5 := y2[1, 0] y6 := y2[−1, 0]
y7 := y2[−1, 7] y8 := y7 ≤ y3 y9 := if y8 then y6 else y2

The dependency graph of the normalized specifications is:

y9
0 //

0

��

0

��

y8

0

��

0 // y3
1 // x1

y6

−2
!!

y7

−1
��

y1

0

FF

0
!!

y2
0

oo 0 // y4
−2
// x2

y5

1

==

This specification has a zero-weight closed walk, namely y1
0−→ y9

0−→ y2
0−→ y1,

and hence the specification is not well-formed. ut

To prove that well-formedness implies well-definedness, we first define the
notion of an evaluation graph which captures the dependencies for a given input
length N .

Definition 10 (Evaluation graph). Given a specification ϕ and a length N ,
the evaluation graph is the directed graph GN : 〈V,E〉 where V contains one
vertex vj for each position j of each stream variable v and

10

– there is an edge yj → vj if Ey contains v as an atom, and
– there is an edge yj → vj+k if Ey contains v[k, c] and 0 ≤ j + k < N .

The vertices vj are called position variables as they encode the value of stream
variable v at position j. We will prove later that a specification is guaranteed to
be well-defined if no evaluation graph for any length contains a cycle, because
in this case the value of each position variable can be uniquely determined. The
following lemma relates this acyclicity notion with the absence of zero-weight
cycles in the dependency graph.

Lemma 1. Let ϕ be a specification with dependency graph D, let N be a trace
length and GN the explicit dependency graph. If GN has a cycle then D has a
zero-weight closed walk.

Proof. Assume GN has a cycle

yj11 → yj22 → · · · → yjkk → yj11

The corresponding closed walk in D is

y1
j2−j1−→ y2 → · · · → yk

j1−jk−→ y1

with weight
∑k

i=1(ji⊕1 − ji) = 0. ut

Note that the closed walk induced in D needs not be a cycle since some of
the intermediate nodes may be repeated, if they correspond to the same yk for
different position j.

Lemma 2. Let ϕ be a specification and N a length. If GN has no cycles, then
for every tuple σI of input streams of length N , there is a unique evaluation
model.

Proof. Assume GN has no cycles, so GN is a DAG. Then we can define a topolog-
ical order > on GN by taking the transitive closure of→. We prove by induction
on this order that the value of each vertex is uniquely determined, either be-
cause this value is obtained directly from an input stream or constant value in
the specification, or because the value can be computed from values computed
before according to >.

For the base case, the value of a vertex vj without outgoing edges does not
depend on other streams. The only possible value is either the value of an input
stream (if v is an input stream variable) at position j, or a value obtained from
an equation with no variables or offsets as atoms. In all these cases the value is
uniquely determined.

For the inductive case, the value of vj can be computed uniquely from the
values of its adjacent vertices in GN . Indeed, by Definition 10, if the value of vj

depends on the value of vk then there exists an edge vj → vk in GN and thus
vj > vk and, by the inductive hypothesis, the value of vk is uniquely determined.
Then, since every atom in JEvK(j) is uniquely determined, the value of JEvK(j)
is uniquely determined. Since this value has been computed only from inputs,
this is the only possible value for σv(j) to form an evaluation model. ut

11

Consider now a well-formed specification ϕ. Then, by Lemma 1, no evaluation
graph has cycles, and thus by Lemma 2 for every set of input streams, there
exists a unique solution for the output streams, and hence there is exactly one
evaluation model.

Theorem 1. Every well-formed Lola specification is well-defined.

Note that the converse of Theorem 1 does not hold. First, the absence of
cycles in GN does not imply the absence of a zero-weight closed walk in D. For
example, the evaluation graph for the specification

y1 := y2[−k, c]
y2 := y1[k, c]

for N < k has no cycles (since it has no edges), but it is easy to see that D has a
zero-weight closed walk. Second, a cycle in GN does not necessarily imply that
ϕ is not well-defined. For example, the evaluation graph of the specification

y := (z ∨ ¬z) ∧ x
z := y

has a cycle for all N , but for every input stream, ϕ has exactly one evaluation
model, namely σy = σz = σx, and thus, by definition, the specification is well-
defined.

2.4 Checking Well-Formedness

A Lola specification ϕ is well-formed if its dependency graph D has no closed
walks, so checking well-formedness is reduced to construct D and check for closed
walks. In turn, this can be reduced to checking for cycles as follows.

Let a gez-cycle be a cycle in which the sum of the weight of the edges is
greater than or equal to zero, and let a gz-cycle be a cycle in which the sum of
the weight of the edges is strictly greater than zero. Similarly, a lez-cycle is a
cycle where the sum is less than or equal zero and a lz-cycle is one where the
sum is less than zero. The reduction is based on the observation that a graph has
a zero-weight closed walk if and only if it has a maximally strongly component
(MSCC) with both a gez-cycle and a lez-cycle.

Lemma 3. A weighted and directed multigraph D has a zero-weight closed walk
if and only if it has a vertex v that lies on both a gez-cycle and a lez-cycle.

Proof. (⇒) Assume v is part of gez-cycle C1 and lez-cycle C2, with weights
w1 ≥ 0 and w2 ≤ 0, respectively. The closed walk consisting of traversing w1

times C2 and then traversing |w2| times C1 has weight w1w2 + |w2|w1 = 0, as
desired.

(⇐) Assume D has a zero-weight closed walk. If D has a zero-weight cycle
C we are done, as C is both a gez-cycle and a lez-cycle and any vertex in C has
the desired property.

12

For the other case, assume D has no zero-weight cycles. It is easy to show
by induction in the length of W that every closed walk can be decomposed into
cycles that share one vertex. If one of these cycles is a lez-cycle or a gez-cycle
the result follows. Now, not all the cycles can be strictly positive, because then
the total weight of W would not be zero. Consequently there must a positive
cycle and a negative cycle, and therefore there must be two consecutive cycles
C1 and C2 that share one node and C1 is positive and C2 is negative. ut

Theorem 2. A directed weighted multigraph D has no zero-weight closed walk
if and only if every MSCC has only gz-cycles or only lz-cycles.

Proof. (⇒) Consider an arbitrary MSCC with only gz-cycles (the case for only
lz-cycles is analogous). By the proof of Lemma 3, a closed walk is the multiset
union of one or more cycles with weight the sum of the weights of the cycles.
Hence the weight of any closed walk within the MSCC must be strictly greater
than zero. Since any closed walk must stay within an MSCC, the weight of any
closed walk must be strictly greater than zero.

(⇐) Assume D has no zero-weight closed walk. Then, by Lemma 3, D has
no vertex that lies on both a gez-cycle and a lez-cycle. Suppose D has an MSCC
with a gz-cycle C1 and a lz-cycle C2. Consider an arbitrary vertex v1 on C1

and v2 on C2. If v1 = v2 = v, v lies on both a gez-cycle and a lez-cycle, a
contradiction. If v1 6= v2, since v1 and v2 are in the same MSCC, there exists a
cycle C3 that contains both v1 and v2. C3 is either a zero-weight cycle, a gz-cycle
or a lz-cycle. In all three cases either v1 or v2 or both lie on both a gez-cycle and
a lez-cycle, a contradiction. ut

Thus to check well-formedness of a SRV specification ϕ it is sufficient to check
that each MSCC in G has only gz-cycles or only lz-cycles. This can be checked
efficiently, even for large dependency graphs.

3 Online Monitoring

We distinguish two situations for monitoring—online and offline monitoring. In
online monitoring, the traces from the system under observation are received as
the system run, and the monitor works in tandem with the system. This leads
to the following restriction for online monitoring: the traces are available a few
points at a time starting at the initial instant on-wards, and need to be processed
to make way for more incoming data. In particular, random access to the traces
is not available. The length of the trace is assumed to be unknown upfront and
very large.

In offline monitoring, on the other hand, we assume that the system has run
to completion and the trace of data has been dumped to a storage device. Offline
monitoring is covered in Section 4.

13

3.1 Monitoring Algorithm

We start by exhibiting a general monitoring algorithm for arbitrary Lola spec-
ifications, and then study its efficiency. Let ϕ be a Lola specification with
independent stream variables I, dependent stream variables O and defining ex-
pressions E. Let j be the current position, at which the latest data is available
from all input streams. The monitoring algorithm maintains two sets of equations
as storage:

– Resolved equations R of the form (vk, c) for a given position variable vk

(with k ∈ {1, . . . , j}) and concrete value c.
– Unresolved equations U of the form (yk, e) for position variable yk expression
e (for e different from a constant).

An equation (vk, c) stored in R denotes that stream variable v at position k in
the trace has been determined to have value c. This happens in two cases: input
streams whose reading has been performed, and dependent stream variables
whose value has been computed. Equations in U relate position variables yk—
where y is a dependent stream variable—with a (possibly partially simplified)
expression over position variables whose values have not yet been determined.
Note that if (yk, e) is in U then e must necessarily contain at least one position
variable, because otherwise e is a ground expression and the interpreted functions
from the domain can transform e into a value.

The monitoring algorithm is shown in Algorithm 1. After initializing the U
and R stores to empty and j to 0, the monitoring algorithm executes repeatedly
the main loop (lines 5 to 11). This main loop first reads values for all inputs at
the current position and adds these values to R (line 6). Then, it instantiates
the defining equations for all outputs and adds these to U (line 7). Finally, it
propagates new known values (vk, c) in R by substituting all occurrences of vk

in unresolved equations by c and then simplifies resulting equations (procedure
Propagate). This procedure simply uses all the information in R to substitute
occurrences of known values in unresolved equations. In some cases, these equa-
tions become resolved (the term becomes a value) and the corresponding pair is
moved to R (lines 23 and 24). Then, the procedure Prune is used to eliminate
unnecessary information from R as described below. Finally, procedure Finalize
is invoked at the end of the trace. This procedure is used to determine whether
a given offset expression that remains in an unresolved equation falls beyond the
end of the trace, which is converted into its default value. This procedure also
performs a final call to Propagate, which is guaranteed (see below) to resolve
all position variables, and therefore U becomes empty.

Procedure Inst, shown in Algorithm 2, instantiates the defining equation
for v into the corresponding equation for vj at given position j by propagating
the value into the atomic stream variable references and offsets atoms, which
become instance variables. Note that the default value c is recorded in line 57
in case the computed position k + j falls beyond the end of the trace N , which
is not known at the point of the instantiation. Whether k+ j is inside the trace
will be determined after k steps or resolved by Finalize.

14

Algorithm 1 Monitoring algorithm

1: procedure Monitor
2: U ← ∅
3: R← ∅
4: j ← 0
5: while not finished do
6: R← R ∪ {(yj , σy(j)) | for every y ∈ I} . Add new inputs to R
7: U ← U ∪ {(xj , Inst(ex, j)) | for every x ∈ O} . Add output instances to U
8: Propagate()
9: Prune(j)

10: j ← j + 1
11: end while
12: N ← j + 1
13: Finalize(N)
14: end procedure

15: procedure Propagate
16: repeat
17: change← false
18: for all (vk, e) ∈ U do . Try to resolve every vk in U
19: e′ ← simplify(subst(e,R))
20: U.replace(vk, e′) . update vk

21: if e′ is value then
22: change← true . vk is resolved
23: R← R+ {(vk, e′)} . add vk to R
24: U ← U − {(vk, e)} . remove vk from U
25: end if
26: end for
27: until ¬change
28: end procedure

29: procedure Prune(j)
30: for all (vk, c) ∈ R do
31: if ∇v + k ≤ j then . Prune R
32: R← R− {(vk, c)}
33: end if
34: end for
35: end procedure

36: procedure Finalize(N)
37: for all (vk, e) ∈ U do
38: for all ul

c subterm of e with l ≥ N do
39: e← e[ul

c ← c]
40: end for
41: U.replace(vk, e)
42: end for
43: Propagate()
44: end procedure

15

Algorithm 2 Instantiate a defining expression for position j

45: procedure Inst(expr, j)
46: switch expr do
47: case c
48: return c
49: case f(e1, . . . , en)
50: return f(Inst(e1, j), . . . , Inst(en, j))

51: case v
52: return vj

53: case v[k, c]
54: if k + j < 0 then
55: return c
56: else
57: return vk+j

c

58: end if
59: end procedure

We show now how the resolved storage R can be pruned by removing informa-
tion that is no longer necessary. The back reference distance of a stream variable
represents the maximum time steps that its value needs to be remembered.

Definition 11 (Back Reference Distance). Given a specification ϕ with de-
pendency graph D the back reference distance ∇v of a vertex v is

∇v = max(0,
{
k | s −k→ v ∈ E

}
)

Example 5. We illustrate the use of back reference distances for pruning R (lines
31 and 32) revisiting Example 4. The back reference distances are ∇y1 = ∇y10 =
∇y11 = ∇y12 = ∇y13 = ∇y14 = ∇y15 = ∇y16 = ∇x1 = 0 and ∇y2 = ∇x2 = 2.
Consequently, all equations (vj , c) are removed from R in the same time step
that they are entered in R, except for yj2 and xj2, which must remain in R for
two time steps until instant j + 2. ut

Example 6. Consider the following specification

y := q ∨ (p ∧ z)
z := y[1, false]

which computes p U q. For input streams σp : 〈false, false, true, false〉 and σq :
〈true, false, false, false〉 the equations in stores R and U at the completion of

16

step (3) of the algorithm at each position are:

j 0 1 2 3

R
p0 = false
q0 = true
y0 = true

p1 = false
q1 = false
y1 = false
z0 = false

p2 = true
q2 = false

p3 = false
q3 = false
z3 = false
y3 = false
z2 = false
y2 = false
z1 = false

U z0 = y1 z1 = y2
y2 = z2

z2 = y3

z1 = y2
∅

Since the back reference distance of all stream variables is 0, all equations can
be removed from R at each position. ut

Theorem 3 (Correctness). Let ϕ be a specification and σI be input streams of
length N . If ϕ is well-formed, then Algorithm 1 computes the unique evaluation
model of ϕ for σI . That is, at the end of the trace the unique value has been
computed for each yk, and U is empty.

Proof. Assume ϕ is well-formed. By Definition 9 the dependency graph D has
no zero-weight closed walks and hence by Lemma 1, the evaluation graph GN

has no cycles, and we can define a topological order < in GN .
As in the proof of Lemma 1, every vertex of GN can be mapped to the

corresponding value of the unique evaluation model. We prove by induction on
GN that at the end of the trace each of these values has been computed and that
each value has been available in R at some point j < N during the computation.

For the base case, leaf vertices vj correspond to either input stream variables
or values from equations of the form x = c or x = y[k, c] such that j + k < 0.
In both cases the value is uniquely obtained and the corresponding equation is
added to R.

For the inductive case, the value for vertex vj is uniquely computed from
the values for vertices wk such that vj → wk, and hence wk < vj and by the
inductive hypothesis, the value for wk is uniquely computed or obtained and
is at some point available in R. It remains to be shown that these values are
available in R for substitution. We distinguish three cases:

1. j = k. In this case (vj , e) and (wk, e′) are added to U (or R) at position j
(either in line 6 or in line 7). If (wk, e′) is added to R, the value of wk in
e is substituted in e′ in line 19. If (wk, e′) is added to U , by the inductive
hypothesis, it is available at some later point in the computation. Then it
must be moved to R in line 23, and hence in the same step it is substituted
in e.

2. j < k. In this case (wk, e′) is added to U (or R) after (vj , e) is added to
U . Again, by the inductive hypothesis, (wk, c) will be resolved and become

17

available in R at some position l < N and thus at that same position is
substituted in e if (vj , e) is still in U .

3. j > k. In this case Ev contains w[i, c] and thus k = j + i (i.e. i < 0).
Now, (wk, c) is added to R or U before (vj , e) is added to U . Again, by the
inductive hypothesis, wk will be resolved at some position l ≤ N , which
must be after k. By the definition of k, (wk, c) will be in R at least until
k+∇w which is guaranteed to be at j or after and hence be available when
vj is added to U .

This finishes the proof. ut

3.2 Efficiently Monitorable Specifications

In the general case the algorithm Monitor described above is linear in both
time and space in the length of the trace and the size of the specification. In these
bounds, we assume that the value of a type can be stored in a single register of
the type, and that a single function is computed in a single step.

In online monitoring, since the traces are assumed to be large, it is generally
assumed that a specification can be monitored efficiently only if the memory
requirements are independent of the trace length.

Example 7. Consider the following specification with I = {x} andO = {y, last, w, z}:

y := false
last := y[1, true]
w := z[1, 0]
z := if last then x else w

For the input stream σx 〈37, 31, 79, 17, 14〉 the unique evaluation model is

σx 37 31 79 17 14

σy false false false false false
σlast false false false false true
σw 14 14 14 14 0
σz 14 14 14 14 14

In general, for any input stream σx, output stream σz has all its values equal to
the last value of σx. However, for all j, equations

(wj , zj+1
0) and (zj , if lastj then xj else wj)

remain unresolved until the end of the trace, and thus the memory requirements
of Algorithm 1 for this specification are linear in the length of the trace. ut

The worst-case memory usage of a Lola specification for a given trace length
can be derived from the evaluation graph with the aid of the following definitions.

18

Definition 12 (Fan and Latency). The fan of a vertex vj of an evaluation
graph GN is the set of vertices reachable vj:

fan(vj)
def
=
{
wk | vj →∗ wk

}
The latency of a position variable vj is the difference between j and the position
of the furthest vertex in fan(vj):

lat(vj)
def
= max

(
0,
{
k | wj+k ∈ fan(vj)

})
.

The fan of vj is an over-approximation of the set of vertices on which the value
of vj depends. The latency is an upper-bound on the number of trace steps it
takes before a value at a given position is guaranteed to be resolved.

Theorem 4. If a vertex vj has latency k, then the corresponding equation (vj , e)
will be fully resolved by Monitor at or before step j + k.

Proof. Since the specification is well-formed the evaluation graph is acyclic. We
show the results by induction on a topological order < of the evaluation graph.
Note that if vj → wi then lat(vj) ≥ lat(wi) directly by the definition of latency.
Then, at position j+k it is guaranteed that wi is resolved. Since all atoms in the
expression e of equation (vj , e) are resolved at j+k or before, the corresponding
values are subsituted in e (line 19) at step j + k or before, so e is simplified into
a value at j + k or before. ut

Example 8. Consider again the specification of Example 7. The latency of z2 is
N − 2, so equations for z2 may reside in U for N − 2 steps, so this specification
cannot be monitored online in a trace-length independent manner. ut

Definition 13 (Efficiently Monitorable). A Lola specification is efficiently
monitorable if the worst case memory usage of Monitor is independent of the
length of the trace.

Some specifications that are not efficiently monitorable may be rewritten into
equivalent efficiently monitorable form, as illustrated by the following example.

Example 9. Consider the specification “Every request must be eventually followed
by a grant before the trace ends”, expressed as ϕ1 as follows:

reqgrant := if request then evgrant else true
evgrant := grant ∨ nextgrant
nextgrant := evgrant [1, false]

This specification encodes the temporal assertion (request → grant). Es-
sentially, evgrant captures grant and reqgrant corresponds to (request →
grant) (see [12] and [10] for a description of translation from LTL to Boolean
SRV). An alternative specification ϕ2 of the same property is

waitgrant := ¬grant ∧ (request ∨ nextgrant)
nextgrant := waitgrant [−1, false]
ended := false[1, true]

19

It is easy to see that, for the same input, ended ∧ waitgrant is true at the
end of the trace (for ϕ2) if and only if ¬nextgrant is true at the beginning of
the trace for ϕ1. Hence, both specifications can report a violation at the end
of the trace if a request was not granted. The second specification, however, is
efficiently monitorable, while the first one is not. ut

Similar to the notion of well-definedness, checking whether a specification is
efficiently monitorable is a semantic condition and cannot be checked easily in
general. Therefore we define a syntactic condition based on the dependency graph
of a specification that guarantees that a specification is efficiently monitorable.

Definition 14 (Future Bounded). A well-formed specification ϕ is future
bounded if its dependency graph D has no positive-weight cycles.

We show that every future bounded specification is efficiently monitorable
by showing that in the absence of positive-weight cycles every vertex in the
dependency graph can be mapped to a non-negative integer that provides an
upper-bound on the number of trace steps required to resolve the equation for
the corresponding instance variable.

Definition 15 (Look-ahead Distance). Given a future bounded specification
with dependency graph D, the look-ahead distance ∆v of a vertex v is the maxi-
mum weight of a walk starting from v (or zero if the maximum weight is nega-
tive).

Note that the look-ahead distance is well defined only in the absence of
positive-weight cycles. The look-ahead distance of a vertex can be computed
easily using shortest path traversals on the dependency graph D.

Example 10. Consider the specification

y1 := y4 ∧ y5
y2 := if y6 then y7 else y8
y3 := y9 ≤ 5

y4 := p[1, false]
y5 := y3[−7, false]
y6 := y1[2, true]

y7 := q[2, 0]
y8 := q[−1, 2]
y9 := y2[4, true]

The dependency graph D of this specification is:

y4
1 // x1 y7

2

!!

y1
0 //

0

OO

y5
−7
// y3

0 // y9
4 // y2

0

==

0

vv

0

!!

x2

y6

2

hh

y8

−1
==

20

Consequently, the values of the look-ahead distance are:

∆y1 = 1
∆y2 = 3
∆y3 = 7

∆y4 = 1
∆y5 = 0
∆y6 = 3

∆y7 = 2
∆y8 = 0
∆y9 = 7

which are easily computer from D. ut
The look-ahead distance provides an upper-bound on the number of equa-

tions that may simultaneously be in U .

Lemma 4. For every vertex vj in an evaluation graph GN of a future bounded
specification lat(vj) ≤ ∆c.
Proof. Consider a vertex vj in an evaluation graph, with latency lat(v, j) = d.
Then, there exists a sequence of vertices

vj → yj11 → . . .→ yjnn

with jn−j = d. The walk in the dependency graph of the corresponding vertices

v
j1−j−→ y1

j2−j1−→ . . .
jn−jn−1−→ yn

has total weight
n∑

i=1

ji+1 − ji = jn − ji = d

and hence lat(vj) ≤ ∆v. ut
Theorem 5 (Memory Requirements). Let ϕ be a future bounded specifica-
tion. Algorithm 1 requires to store in U and R, at any point in time, a number
of equations linear in the size of ϕ.

Proof. From the description of the algorithm and Lemma 4 it follows that the
maximum number of equations in U is less than or equal to∑

y∈O
∆y + |O|

where the second term reflects that all equations for the dependent variables are
first stored in U in line 7 and after simplification moved to R in line 23.

Moreover, the maximum number of equations stored in R is bounded by ∇v
and the number of stream variables v. ut
Example 11. Consider again the specification of Example 10. The back reference
distance is 0 for all variables except for x2 and y3, which are ∇x2 = 1,∇y3 = 7.
Hence, at the end of every main loop, R only contains one instance of x2 and
seven instances of y3. Additionally, the look-ahead distance of a stream variable
v bounds linearly the number of instances of v in U . ut
Corollary 1. Every future-bounded specification is efficiently monitorable.

Note that the converse does not hold. In practice, it is usually possible to
rewrite an online monitoring specification with a positive cycle into one without
positive cycles, as illustrated in Example 9.

21

4 Offline Monitoring

In offline monitoring we assume that all trace data is available on tape, and there-
fore we can afford more flexibility in accessing the data. In this section we show
that every well-formed SRV specification can be monitored efficiently offline, in
contrast to online monitoring where we required that the dependency graph not
have any positive-weight cycles. The reason why we can efficiently monitor in
an offline manner all specifications is that we can perform both forward and
backward passes over the trace. We will show that every well-formed specifica-
tion can be decomposed into sub-specifications such that each sub-specification
needs to be checked only once and can be done so efficiently by either traversing
the trace in a forward or in a backward direction. In this manner, all values of
the output streams of a sub-specification can written to tape and are accessible
for subsequent traversals.

We first define the notions of reverse efficiently monitorable and its corre-
sponding syntactic condition, past bounded, as the duals of efficiently monitorable
and future bounded. A reverse monitoring algorithm RevMonitor can be eas-
ily obtained by initializing j to N (line 4) decreasing j (line 10), pruning j on
the dual of the back-reference distance in line 31 and performing substitutions
when the offset becomes negative (so Finalize is not necessary for reverse mon-
itoring). This is essentially the same algorithm as Monitor but performing the
index transformation j′ = N − (j + 1).

Definition 16 (Reverse Efficiently Monitorable). A Lola specification is
reverse efficiently monitorable if its worst-case memory requirement when apply-
ing RevMonitor is independent of the length of the trace.

Definition 17 (Past Bounded). A well-formed Lola specification is past
bounded if its dependency graph has no negative-weight cycles.

Lemma 5. Every past-bounded specification is reverse efficiently monitorable.

Proof. The dual of the argument for Corollary 1. ut

We construct now an offline algorithm that can check a well-formed Lola
specification in a sequence of forward and reverse passes over the tapes, such
that the number of passes is linear in the size of the specification and each pass
is trace-length indepedent.

Let ϕ be a well-formed specification with dependency graph D. From the
definition of well-formedness it follows that D has no zero-weight cycles, so
each MSCC consists of only negative-weight or only positive-weight cycles. Let
GM : 〈{Vp, Vn} , EM 〉 be the graph induced by the MSCCs of D defined as
follows. For each positive-weight MSCC in D there is a vertex in Vp and for each
negative-weight MSCC in D there is a vertex in Vn. For each edge between two
MSCCs there is an edge in EM connecting the corresponding vertices. Clearly,
GM is a DAG.

Now we assign each MSCC a stage that will determine the order of comput-
ing the output for each MSCC following the topological order of GM . Positive

22

MSCCs will be assigned even numbers and negative MSCCs will be assigned odd
numbers. Every MSCC will be assigned the lowest stage possible that is higher
than that of all its descendants with opposite polarity. In other words, the stage
of an MSCC v is at least the number of alternations in a path in GM from v.
Formally, let the opposite descendants be defined as follows:

op(v) = {v′ | (v, v′) ∈ E∗M and (v ∈ Vp and v′ ∈ Vn, or v ∈ Vn and v′ ∈ Vp)}

Then,

stage(v) =

0 if op(v) is empty and v ∈ Vn
1 if op(v) is empty and v ∈ Vp
1 + max{stage(v′) | v′ ∈ op(v)} otherwise

which can be computed following a topological order on GM . Each vertex v in
GM can be viewed as representing a sub-specification ϕv whose defining equa-
tions refer only to stream variables in sub-specifications with equal or lower stage
processing order. Based on this processing order we construct the following al-
gorithm.

Algorithm 3 Offline Trace Processing

1: procedure OfflineMon
2: for i = 0 to max(stage(v)) with increment 2 do
3: for all v with stage(v) = i do
4: Monitor(ϕv) . Forward pass
5: end for
6: for all v with stage(v) = i+ 1 do
7: RevMonitor(ϕv) . Backward pass
8: end for
9: end for

10: end procedure

Theorem 6. Given a well-formed specification, a trace can be monitored in time
linear in the size of the specification and the length of the trace, with memory
requirements linear in the size of the specification and independent of the length
of the trace.

Proof. Follows directly from Lemmas 1 and 5 and Algorithm 3. ut

Example 12. Figure 1 shows the dependency graph of a Lola specification and
its decomposition into MSCCs, along with its induced graph GM annotated with
the processing order of the vertices. MSCCs G1 and G4 are positive, while G2 and
G5 are negative. G3 is a single node MSCC with no edges, which can be chosen
to be either positive or negative. The passes are: G5 is first monitored forward
because it is efficiently monitorable. Then, G4 is monitored backwards. After
that, G3 and G2 are monitored forward. Finally, G1 is monitored backwards.

23

y1

G1
2
++

��

1 ��

y2
−1

kk

1

��

y3

G2
−1

//

2

y5

G3

1

��

2

��

y4

−3

JJ

y6

G4 1 ��

y7

G5−1��

G13

�� ��

G22 // G3 2

�� ��

G41 G5 0

Fig. 1. A dependency graph G and its MSCC induced graph GM .

5 Conclusions

We have revisited Stream Runtime Verification, a formalism for runtime veri-
fication based on expressing the functional relation between input streams and
output streams, and we have presented in detail evaluation strategies for online
and offline monitoring.

SRV allows both runtime verification of temporal specifications and collection
of statistical measures that estimate coverage and specify complex temporal
patterns. The Lola specification language is sufficiently expressive to specify
properties of interest to applications like large scale testing, and engineers find
the language easy to use. Even specifications with more than 200 variables could
be constructed and understood relatively easily by engineers. Even though the
language allows ill-defined specifications, SRV provides a syntactic condition
that is easy to check and that guarantees well-definedness, using the notion
of a dependency graph. Dependency graphs are also used to check whether a
specification is efficiently monitorable online, that is, in space independent of
the trace length. In practical applications most specifications of interest are in
fact efficiently monitorable or can be rewritten into an efficiently monitorable
fashion. We revisited the online algorithm for Lola specifications, and presented

24

an algorithm for offline monitoring whose memory requirements are independent
of the trace length for any well-formed specification.

The design of the Lola specification language was governed by ease of use
by engineers. In runtime verification, unlike in static verification, one is free to
choose Turing-complete specification languages. As a result researchers have ex-
plored the entire spectrum from temporal logics to programming languages. The
advantage of a programming language in comparison with a temporal logic is
that a declarative programming language is more familiar to engineers and large
specifications are easier to write and understand. The disadvantage is that the
semantics is usually tied to the evaluation strategy (typically in an informal im-
plicit manner) and the complexity is hard to determine, while the semantics of a
logic is independent of the evaluation strategy and upper bounds for its complex-
ity are known. In practice, the choice is motivated by the intended use. Stream
Runtime Verification is usually employed to facilitate the task of writing large
specifications for engineers, so the natural choice was a programming-language.
SRV retains, however, most of the advantages of a logic: the semantics is inde-
pendent of the evaluation strategy and the efficiently monitorable specifications
provide a clear bound on complexity. See [10] where we study decision procedures
and complexities of decision problems for Boolean Stream Runtime Verification.
For example, comparing Lola with specification languages at the other end of
the spectrum, such as Eagle [3], Lola usually allows simpler specifications, as
illustrated in Figure 2.

Eagle encoding of the operator 2pF with intended meaning that F holds with at
least probability p over a given sequence [3]:

min A(Form F,float p, int f, int t) =©Empty() ∧

 (F ∧ (1− f
t
) ≥ p)

∨
(¬F ∧ (1− f+1

t
) ≥ p)

 ∨

¬Empty() ∧

 (F → ©A(F, p, f, t+ 1))
∧

(¬F → ©A(F, p, f + 1, t+ 1))

Corresponding Lola specification:

countF = F [1, 0] + ite(F, 1, 0)
total = total [1, 0] + 1
BoxFp = (F/total) ≥ p

Fig. 2. Comparison between the Lola and Eagle specification language

25

References

1. Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. J. ACM,
49(2):172–206, 2002.

2. Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David Ry-
deheard. Quantified event automata: Towards expressive and efficient runtime
monitors. In Proc of the 18th Int’l Symp. on Formal Methods (FM’12), volume
7436 of LNCS, pages 68–84. Springer, 2012.

3. Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based
runtime verification. In Proc. of VMCAI’04, LNCS 2937, pages 44–57. Springer,
2004.

4. Ezio Bartocci and Yliès Falcone, editors. Lectures on Runtime Verification - In-
troductory and Advanced Topics, volume 10457 of LNCS. Springer, 2018.

5. Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach. From propositional to
first-order monitoring. In Proc. of RV’13, volume 8174 of LNCS, pages 59–75.
Springer, 2013.

6. Andreas Bauer, Martin Leucker, and Chrisitan Schallhart. Runtime verification
for LTL and TLTL. ACM T. Softw. Eng. Meth., 20(4):14, 2011.

7. Andreas Bauer, Martin Leucker, and Christian Schallhart. Monitoring of real-time
properties. In Proc. of the 26th Conf. on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’06), volume 4337 of LNCS, pages 260–
272. Springer, 2006.

8. Andreas Bauer, Martin Leucker, and Christian Schallhart. The good, the bad, and
the uglybut how ugly is ugly? In Proc. of RV’07, volume 4839 of LNCS, pages
126–138. Springer, 2007.

9. Gérard Berry. Proof, language, and interaction: essays in honour of Robin Milner,
chapter The foundations of Esterel, pages 425–454. MIT Press, 2000.

10. Laura Bozelli and César Sánchez. Foundations of Boolean stream runtime verifi-
cation. In In Proc. RV’14, volume 8734 of LNCS, pages 64–79. Springer, 2014.

11. Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Scheffel, Malte
Schmitz, and Daniel Thoma. TeSSLa: Temporal stream-based specification lan-
guage. In Proc. of the 21st. Brazilian Symp. on Formal Methods (SBMF’18),
LNCS. Springer, 2018.

12. Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: Run-
time monitoring of synchronous systems. In Proc. of TIME’05, pages 166–174.
IEEE CS Press, 2005.

13. Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and
David Van Campenhout. Reasoning with temporal logic on truncated paths. In
Proc. of CAV’03, volume 2725 of LNCS 2725, pages 27–39. Springer, 2003.

14. Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem Torfah. A
stream-based specification language for network monitoring. In Proc. of the 16th
Int’l Conf. on Runtime Verification (RV’16), volume 10012 of LNCS, pages 152–
168. Springer, 2016.

15. Peter Faymonville, Bernd Finkbeiner, Maximilian Schwenger, and Hazem Torfah.
Real-time stream-based monitoring. CoRR, abs/1711.03829, 2017.

16. Bernd Finkbeiner, Sriram Sankaranarayanan, and Henny B. Sipma. Collecting
statistics over runtime executions. ENTCS, 70(4):36–54, 2002.

17. Thierry Gautier, Paul Le Guernic, and Löic Besnard. SIGNAL: A declarative
language for synchronous programming of real-time systems. In Proc. of FPCA’87,
LNCS 274, pages 257–277. Springer, 1987.

26

18. Alwyn E. Goodloe and Lee Pike. Monitoring distributed real-time systems: A
survey and future directions. Technical report, NASA Langley Research Center,
2010.

19. Felipe Gorostiaga and César Sánchez. Striver: Stream runtime verification for
real-time event-streams. In Proc. of RV’18, LNCS. Springer, 2018.

20. Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The syn-
chronous data-flow programming language lustre. Proc. of IEEE, 79(9):1305–
1320, 1991.

21. Klaus Havelund and Allen Goldberg. Verify your runs. In Proc. of VSTTE’05,
LNCS 4171, pages 374–383. Springer, 2005.

22. Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety properties. In
Proc. of TACAS’02, LNCS 2280, pages 342–356. Springer, 2002.

23. Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Alexander
Schramm. TeSSLa: Runtime verification of non-synchronized real-time streams.
In Proc. of the 33rd Symposium on Applied Computing (SAC’18). ACM, 2018.

24. Martin Leucker and Christian Schallhart. A brief account of runtime verification.
J. Logic Algebr. Progr., 78(5):293–303, 2009.

25. Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A hard
real-time runtime monitor. In Proc. of RV’10, LNCS 6418. Springer, 2010.

26. Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification
via testers. In Proc. of FM’06, LNCS 4085, pages 573–586. Springer, 2006.

27. Grigore Roşu and Klaus Havelund. Rewriting-based techniques for runtime verifi-
cation. Autom. Softw. Eng., 12(2):151–197, 2005.

28. Koushik Sen and Grigore Roşu. Generating optimal monitors for extended regular
expressions. ENTCS, 89(2):226–245, 2003.

