Reliable Smart Contracts: State-of-the-art,
Applications, Challenges and Future Directions

César Sanchez', Gerardo Schneider?, and Martin Leucker®

! IMDEA Software Institute, Madrid, Spain
cesar.sanchez@imdea.org
2 University of Gothenburg, Sweeden
gerardo@cse.gu.se
3 University of Luebeck, Germany
leucker@isp.uni-luebeck.de

Abstract. The popularization of blockchain technologies have brought
a sudden interest in software that executes on top of blockchain, the so
called smart contracts, with many potential applications, from financial
contracts to unforgeable elections. Smart contracts are pieces of soft-
ware that manipulate the shared data stored in the blockchain, with
the promise that no central authority can forge or manipulate the ex-
ecution or its results. This promise also involves an important risk, as
well-intentioned users cannot easily roll-back undesired effects due to
errors, or prevent other users from finding and exploiting loop-holes in
deployed smart contracts. In this ISoOLA track we seek to attract a variety
of experts in the different aspects of smart contract reliability, discuss
the state of the art and explore avenues for future research.

1 Blockchains and Smart-Contracts

Blockchain is a global distributed ledger, or database, running on millions of
devices where not just information but anything of value (money, music, art,
intellectual property, votes, etc.) can be moved and stored with a certain level
of security and privacy. The blockchain trust is established through mass (dis-
tributed) collaboration. Blockchain has the potential to change in a fundamental
way how we deal, not only with financial services, but also with more gen-
eral applications, improving transparency and regulation. Many applications of
blockchain have been proposed, starting with cryptocurrencies like Bitcoin [5],
and more sophisticated programmable behaviors based on smart contracts, as
introduced in Ethereum [1].

Smart contracts are software programs that, once deployed, execute au-
tonomously on a blockchain. Smart contracts are openly stored in the blockchain
(they can be read and used by anyone), and—as everything else in blockchains—
they are permanent and cannot be altered, not even by their creator. The exe-
cution of smart contract is performed in the blockchain network by “workers”
(commonly known as miners) that earn some crypto money in return for the
execution of a smart contract. A smart contract typically offers several functions

which can be invoked by anyone via the Internet’s API of the blockchain. As
part of this functionality, users can transfer (crypto) value and any other kind
of information, to other users via the contract. The contract will manage these
invocations and execute the corresponding instructions that manipulate the lo-
cal book-keeping of data (including the cryptocurrency) and can transfer data
or value to the corresponding users. Underlying to the smart contract’s idea is
the description, and prescription, of an agreement between different parties in
order to automate the regulated exchange of value and information over the in-
ternet. Given their implementation over a blockchain, these smart contracts are
immutable and openly checkable.

The promise of smart contract technology is to diminish the costs of contract-
ing, enforcing contractual agreements, and making payments, while at the same
time ensuring trust and compliance, all in the absence of a central authority. It
is not clear, however, whether this promise can be delivered given the current
state-of-the-art and state-of-practice of smart contracts. In particular, some re-
cent multi-million Ethereum bugs [3,4, 6] just witness some the risks involved
in any kind of software and that the community were afraid of. It is not clear
what contracts mean and how to ensure that they are reliable and error free,
which are incarnations in the smart contract world of classical issues in software
reliability. This calls for better programming languages specifically for smart
contracts with stronger security and privacy guarantees, or to develop mecha-
nisms for the verification of smart contracts to guarantee reliability, security and
privacy concerns.

In the track we have collected new results and discussions related to:

— Research on different languages for smart contracts (e.g., Solidity [2]), in-
cluding their expressivity and reasoning methods.

— Research on the use of formal methods for specifying, validating and verifying
smart contracts (both statically and at runtime).

— Surveys and state-of-knowledge about security and privacy issues related to
smart contract technologies.

— New applications based on smart contracts.

— Description of challenges and research directions to future development for
better smart contracts.

2 Summary of Selected Articles

In this section, we briefly summarize the articles invited to the track “Reliable
Smart Contracts: State-of-the-art, Applications, Challenges and Future Direc-
tions”.

— Smart Contracts and Opportunities for Formal Methods, by Andrew
Miller, Zchicheng Cai and Somesh Jha, provides a background on smart con-
tracts and surveys existing smart contract languages and verification tools.
The paper also present some verification challenges for the formal methods
community.

— Contracts over Smart Contracts: Recovering from Violations Dy-
namically, by Gordon Pace, Christian Colombo and Joshua Ellul, discuss
the problem of checking and ensuring correctness of smart contracts, which
is a challenging problem as smart contracts cannot easily be changed once in
the blockchain. A variety of runtime monitoring, verification, recovery, en-
forcing as well as design patterns are discussed to achieve correct behaviour.

— Security Analysis of Smart Contracts in Datalog, by Petar Tsankov,
briefly introduces Securify, a fully automated security analyzer for Ethereum
smart contracts. Securify symbolically encodes relevant control- and data-
flow dependencies in stratified Datalog and uses scalable Datalog solvers
to derive relevant semantic facts about the smart contract. It allows the
possibility to check compliance and violation patterns to capture sufficient
conditions for proving if a given security property holds or not.

— Temporal Properties of Smart Contracts, by Ilya Sergey, Amrit Ku-
mar and Aquinas Hobor attacks the static verification of smart contracts
using theorem proving. The approach consists on using an intermediate rep-
resentation language, called Scilla, specifically designed for verification. Scilla
borrows well-known abstractions from static verification like communicating
automata state-transition systems and temporal property templates, and
separate the functional computation from the effects on the state of the con-
tract and the underlying blockchain. Verification activities are ultimately
carried out as proofs written in the Coq proof system.

— Temporal Aspects of Smart Contracts for Financial Derivatives
by Christopher Clack and Gabriel Vanca, presents the problem of modeling
over-the-counter financial derivative contracts. The paper first introduces
terminology to differentiate the different uses of the term “contract” (smart
legal contract vs smart contract code), and then argue that a formal language
that handles over-the-counter financial derivatives must include temporal,
deontic and operational aspects and sketches a potential direction for such
a formalism.

— Marlowe: financial contracts on blockchain, by Simon Thompson and
Pablo Lamela Seijas, explores the design of a DSL, called Marlowe, targeted
at the execution of financial contracts on blockchains. Domain Specific Lan-
guages, compared to general languages, have the potential of being simpler
for humans to comprehend programs, and to prevent ambiguities and in-
comprehensible behaviors. The paper presents an executable semantics of
Marlowe implemented in Haskell, examples of Marlowe, and describe a tool
that allows users to interact in-browser with simulations of Marlowe con-
tracts.

— SMT-based Verification of Solidity Smart Contracts, by Leonardo
Alt and Christian Reitwiessner presents a method to perform static analysis
checks for Ethereum smart contracts written in Solidity. Since Solidity con-
tracts are compiled into bytecode for the Ethereum Virtual Machine (EVM),
the static analysis that the authors propose is integrated in the compiler.
This technique is automatic and readily usable by developers, requiring no
additional knowledge of an intermediate representation or language.

— A Language-Independent Approach To Smart Contracts Verifica-
tion, by Xiaohong Chen, Daejun Park and Grigore Rosu, present an ap-
proach of using the so-called language independent formal methods for the
verification of smart contracts. Language independent methods consists of
using a sophisticated engine to formally encode operational semantics that
can be used to formally derive interpreters, debuggers, symbolic executors,
model checkers, etc. In this particular case, the system proposed uses the
K-framework to encode the formal semantics of the Ethereum Virtual Ma-
chine.

— Towards Adding Variety to Simplicity, by Nachiappan Valliappan,
Solene Mirliaz, Elisabet Lobo Vesga andAlejandro Russo, considers the smart
contract language Spimplicity for the Etherum platform which allows fast
analysis of resource consumption. It is argued that by using a categorical
semantics, new combinators can easily be added to Simplicity enhancing the
structure of corresponding contracts. Moreover, it is argued that the concept
of functions should be added to Simplicity.

— Fun with Bitcoin smart contracts, by Massimo Bartoletti, Tiziana Cimoli
and Roberto Zunino gives an introduction to BitML, a Domain Specific Lan-
guage (DSL) for smart contracts based on process algebra, that compiles into
Bitcoin. The computational soundness of the BitML compiler guarantees
that the execution of the compiled contract is coherent with the semantics
of the source specification, even in the presence of adversaries.

— Computing Exact Worst-Case Gas Consumption for Smart Con-
tracts by Matteo Marescotti, Martin Blicha, Antti Hyvarinen, Sepideh Asadi
and Natasha Sharygina, study the problem of calculating the resources needed
to execute Ethereum smart contracts. In the context of Ethereum, the re-
source is called gas, to be paid to the miners that maintain the block-chain,
which depends on the execution trace of the contract. This study presents
two methods for determining the exact worst-case gas consumption of an
Ethereum execution using methods borrowed by symbolic model checking.
Additionally, they identify the challenges and sketch potential solutions.

— Blockchains as Kripke Models: an Analysis of Atomic Cross-Chain
Swap, by Yoichi Hirai, considers the problem of proving the correctness of
blockchain artefacts. To this end, the atomic cross-chain swap protocol is
studied, a form of epistemic logic is introduced as proof vehicle, the protocol
is analyzed and too weak and sufficient assumptions for the protocol to be
correct are discussed.

References

1. Ethereum. https://www.ethereunm.org.

2. Solidity. http://solidity.readthedocs.io/en/develop/
introduction-to-smart-contracts.html.

3. A. Hern. $300m in cryptocurrency accidentally lost forever due to bug. Ap-
peared at The Guardian https://www.theguardian.com/technology/2017/nov/
08/cryptocurrency-300m-dollars-stolen-bug-ether, Nov 2017.

4. Mix. Ethereum bug causes integer overflow in numerous erc20 smart contracts
(update). Appeared at HardFork https://thenextweb.com/hardfork/2018/04/
25/ethereum-smart-contract-integer-overflow/, 2018.

5. Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. White Paper
https://bitcoin.org/bitcoin.pdf, 2009.

6. Haseeb Qureshi. A hacker stole $31M of Ethereum — how it happened, and
what it means for Ethereum. Appeared at FreeCodeCamp https://medium.
freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and
-what-it-means-for-ethereum-9e5dc29e33ce, 2017.

