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ABSTRACT
We revisit the topic of Stream Runtime Verification (SRV) both for
synchronous and asynchronous systems. Stream Runtime Verifica-
tion is a formalism to express monitors using streams, which results
in a simple and expressive specification language. This language
is not restricted to describe correctness/failure assertions, but can
also collect richer information (including statistical measures) for
system profiling and coverage analysis. The monitors generated in
SRV are useful for testing, under actual deployment, and to analyze
logs.

The steps in many algorithms proposed in runtime verification
are based on temporal logics and similar formalisms, which gener-
ate Boolean verdicts. The key idea of Stream Runtime Verification
is that these algorithms can be generalized to compute richer in-
formation if a different data domain is used. Hence, the keystone
of SRV is to separate the temporal dependencies in the monitoring
algorithm from the concrete operations performed at each step.

Early SRV languages, pioneered by Lola, considered that the
observations arrive in a periodic fashion, so the model of time is
synchronous sequences like in linear temporal logic. Newer systems,
like TeSSLa, RTLola and Striver, have adapted SRV to real-time event
streams, where input and output streams can contain events of data
at any point.

We will revisit the notions of SRV for synchronous and asyn-
chronous systems. Then, we will justify that synchronous SRV can
be modeled by real-time SRV and finally present conditions under
which synchronous SRV can simulate real-time SRV.

CCS CONCEPTS
• Theory of computation → Logic and verification; Models
of computation; Program verification; • Software and its en-
gineering→ Software verification and validation.
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1 INTRODUCTION
Runtime verification (RV) is a dynamic technique for software qual-
ity that starts from a formal specification of a property, and studies
(1) how to generate a monitor from the specification, and (2) algo-
rithms for the monitors to inspect traces of execution of the system
under analysis. Motivated by the counterparts in static verification,
many researchers in the early times of runtime verification adapted
to RV specification languages based on temporal logics [3, 7, 13],
regular expressions [20], timed regular expressions [1], rules [2],
or rewriting [18], to name a few. Stream runtime verification, pio-
neered by Lola [5], defines monitors by declaring the dependencies
between output streams of results and input streams of observa-
tions. Depending on the model of time considered, different notions
of streams arise and in turn, different SRV systems result. We will
compare two SRV systems that differ in the model of time assumed
(synchronous and real-time event streams) in terms of expressivity
and efficiency.

SRV is a more expressive formalism than temporal logics, which
are restricted to Boolean observations and verdicts. SRV allows spec-
ifying richer properties like collection of statistics counting events,
specifying robustness, generating models, quantitative verdicts, etc.
For example [21] shows how SRV specifications can describe a
Kalman filter that compute predictions of target coordinates and
trajectories that a UAV will follow. See [5, 6, 9, 12] for examples
illustrating the expressivity of SRV languages.

The most basic early SRV formalisms consider a simple notion
of time dictated by the index of the elements in the sequence, like
in LTL. Therefore, the data observed in different streams at the
same index in their sequences is considered to have occurred at the
same time. In this model of time, stream sequences are synchro-
nized and thus we say that formalisms following this paradigm are
synchronous. Examples of synchronous formalisms in this sense
include Lola [5], LTL [16], regular-expressions [14, 20], Mision-time
LTL [17], Functional Reactive Programming (FRP) [8] and systems
like Copilot [15].

Newer SRV systems consider a model of time streams to be se-
quences of events formed by data values that are time-stamped
with the time at which the data is produced (either observed or
generated). In this paradigm, streams can be of different length, and
the only condition is that the time-stamps are monotonically in-
creasing. As a result, the same position of different streams are not
necessarily time-correlated. In this regard, we can say that stream
sequences are asynchronous, and thus we say that formalisms fol-
lowing this paradigm are asynchronous SRV formalisms. Examples
of asynchronous SRV formalisms include RTLola [10], Striver [12]
and TeSSLa [4].
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Synchronous SRV formalisms are best suited for cases when data
is periodically gathered for every input stream at the same time
from the system under analysis. Asynchronous formalisms are best
suited for situations when data on the input streams can be received
at unpredictable moments—when something of interest happens—
and results can be calculated at any time, not only when an event
is observed. By these characteristics, we say that synchronous SRV
formalisms are sample based, while asynchronous SRV formalisms
are event based.

We will use here Lola and Striver to show how the semantics of
a synchronous SRV formalism can be mimicked by an asynchro-
nous SRV formalism and vice versa. As a corollary, the languages
subsumed by each formalism can be automatically translated to
the other under the conditions of our results. We also compare the
efficiency of each approach, and the different alternatives to deal
with the loss in performance.

2 LOLA AND STRIVER
We use sequences to refer to typed synchronous streams (formally
a map from N to the type of the stream), and we use 𝑧 (𝑛) for the
value at the 𝑛-th position in a sequence 𝑧. On the other hand, an
event stream is a succession of events (𝑡, 𝑑) where 𝑑 is a value from
a value domain (as in sequences) and 𝑡 is a time-stamp from a
temporal domain (e.g. R, Q, Z). Time values are totally ordered and
serve to compare the relative time between two events.

Streams and sequences are typed. A type has a collection of
function symbols used to construct expressions, together with an
interpretation of these symbols to compute values from values of the
arguments. Lola specifications describe monitors by declaratively
specifying the relation between output sequences (verdicts) and
input sequences (observations). Similarly, Striver specifications
describe the relation between output event-streams and input event-
streams. Both input and output streams are identified by (typed)
stream variables. In Lola, output stream variables are assigned a
defining expression that can built using (1) offsets 𝑣 [𝑘,𝑑] where
𝑣 is a stream variable of type 𝐷 , 𝑘 is an integer number and 𝑑

a value from 𝐷 , and (2) function applications 𝑓 (𝑡1, . . . , 𝑡𝑛) using
constructors 𝑓 from the theories to previously defined terms. The
intendedmeaning of expression 𝑣 [−1, false] is the value of sequence
𝑣 in the previous position of the trace (or false if there is no such
previous position, that is, at the beginning). An offset to the current
time 𝑣 [now] does not require a default value. For example, the
specification “the mean level of CO2 in the air in the last 3 instants”,
can be expressed as follows:
input num co2

output num steps := steps[-1|0]+1

output num evs := min(3,steps[now])

output num sum := co2[-2|0]+co2[-1|0]+co2[now]

output num mean := sum[now]/evs[now]

The semantics of Lola specification is one sequence for each
output stream, given a sequence for each input stream. This is
guaranteed to be unique if the dependencies given by the offsets do
not contain cycles of weight 0. Moreover, efficient online monitors
exist if no cycles of positive weight exist. See [5, 19] for details.

The language Striver attempts to extend Lola to real-time event-
streams. An output stream variable 𝑦 is now associated with two
expressions: a ticking expression that captures the set of instants

at which the 𝑦 may contain events, and a value expression that
describes the value if there is an event. Expressions in Striver are:

• ticking expressions are formed by constant instants, union
of the ticking instants of other streams, with possible shifts
and delays. Shifts and delays may be constants or values of
type time for example obtained from streams of type time.

• offset expressions, which are the analogous to offsets in Lola,
allowing to refer to the time instants at which other streams
contain values. The expression t represents the current in-
stant, The expression 𝑥«𝜏 is used to refer to the previous
instant at which 𝑥 ticked in the past of 𝜏 ( 𝑥<˜𝜏 is similar
but also considers the present as a possibility instant). Anal-
ogously, 𝑥»𝜏 refers to the next instant strictly in the future
of 𝜏 at which 𝑥 ticks (𝑥>˜𝜏 also considers the present as a
candidate)

• Value Expressions, which compute values using the construc-
tor symbols from the data theories and offset expressions to
fetch events from other streams.

We use x(<t,d) and x(~t,d) as syntactic sugar (mimicking x[-1|d]
and x[now] from Lola) easily definable in terms of offset expres-
sions.

A Striver specification relates every output stream variable 𝑦
with a ticking expression𝑇𝑦 and a value expression𝑉𝑦 (of the same
type as 𝑦). The intended meaning of a specification is that for every
collection of real-time event streams for input stream variables,
there is a unique collection real-time event streams (one per output
variables) satisfying the specification. Again, simple condition on
non-circularity of offsets guarantee well-defined semantics, and
the absence of positive cycles guarantee the existence of efficient
monitors. See [12] for details.

For example, consider the property “count for how long has the tv
been on”, can be expressed as follows, where stream variable tv_on
computes the result.
input TV_Status tv

ticks tv_on := tv.ticks

define int tv_on := if tv(<t,off) == on

then tv_on(<t,0) + t - tv<<t else 0

3 FROM SYNCHRONOUS TO
ASYNCHRONOUS AND BACK

3.1 From Lola to Striver
Simulating synchronous SRV monitoring with an asynchronous
SRV system is easy. One just needs to translate a 𝑣 [−1, 𝑑] offset with
the next event access v(<t,d), a 𝑣 [+1, 𝑑] offset with the next event
access v(>t,d) and a 𝑣 [𝑛𝑜𝑤] access with a v(~<t,d) access. The
only technical problem is the following. Circular dependencies that
combine future and past accesses which do not add to a zero path are
not a problem in Lola. However this becomes problematic in Striver,
as combining future and past references in asynchronous systems
is forbidden because absence of cycles at runtime is not guaranteed.
This is fixed by first transforming the synchronous specification into
a specification in which every cycle in the specification only contain
edges of one kind (either the cycle contains only future edges or
only past edges). Different cycles can contain different kinds of
edges, but each cycle is only of one kind. This transformation is
always possible (see [11]). The resulting specification is linear in
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the size of the original specification, and if the input fed into the
asynchronous monitor happens to be synchronized (in terms of
the time-stamps which are the indices), so will be the output. In
other words the output of the Striver monitor is equivalent to the
output produced by the starting Lola monitor. There is empirical
evidence [11] that indicates that the Striver monitor is virtually as
efficient as the Lola monitor.

3.2 From Striver to Lola
In order to simulate asynchronous real-time stream with a syn-
chronous language like Lola, we introduce two new concepts. The
first concept is that of temporal backbone. A temporal backbone is
a set of time instants at which events can happen in any stream;
in other words, events can only happen at instants covered in the
backbone. The second concept is that of an empty event, which
allows to encode the absence of an event as an actual element in
a sequence. Note that an event stream extended with additional
“empty” events encodes the same event stream.

One way to obtain a backbone is under the assumption of a
finite universe of time instants, for example because the quantum
of time is the millisecond. In this manner, every event stream can be
transformed into a sequence by assuming that there is an element in
everymillisecond obtained by filling an emptymillisecond an empty
event whenever there is no actual event in the instant considered.
The resulting system can be much less efficient than the original
Striver specification, particularly if the occurrence of events is
infrequent.

Another way to obtain a backbone is to assume that events only
exist in output streams whenever there are events in the input
streams as well. That is, is the system is purely event driven. Even if
the times at which events can happen is in principle unpredictable
statically, this assumption allows Lola to simulate asynchronous
monitoring. The reason is that Lola is only activated upon the
reception of an event, filling with empty events the streams that do
not have an event at the time. In this case, the resulting simulation
is as efficient as the original Striver monitor.

The second assumption can be extended even further with back-
bones that combine events from inputs and periodic events that
can be predicted statically (timeouts). This third assumption re-
sults again into an efficient simulation. This explains the reported
high efficiency of RTLola [10], which makes the assumption of
asynchronous arrivals and periodic summary calculations.

The general case occurs when events can happen:

• as a result of events in the input streams,
• as periodic events, or
• at instants calculated dynamically from value delays.

This case seems to increase the expressive of the format as no
known translation exists into a synchronous engine.
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