Regular Linear Temporal Logic with Past

Abstract

This paper upgrades Regular Linear Temporal Logic (RLTL) with past operators and complementation. RLTL is a temporal logic that extends the expressive power of linear temporal logic (LTL) to all omega-regular languages. The syntax of RLTL consists of an algebraic signature from which expressions are built. In particular, RLTL does not need or expose fix-point binders (like linear time mu-calculus), or automata to build and instantiate operators (like ETLstar). Past operators are easily introduced in RLTL via a single previous-step operator for basic state formulas. The satisfiability and model checking problems for RLTL are PSPACE-complete, which is optimal for extensions of LTL. This result is shown using a novel linear size translation of RLTL expressions into 2-way alternating parity automata on words. Unlike previous automata-theoretic approaches to LTL, this construction is compositional (bottom-up). As alternating parity automata can easily be complemented, the treatment of negation is simple and does not require an upfront transformation of formulas into any normal form.

Type
Publication
Proc. of the 11th Int’l Conf. on Verification, Model Checking, and Abstract Interpretation, (VMCAI'10), vol. 5944 of LNCS, pp 295-311. Springer, 2010
César Sánchez
César Sánchez
Research Professor

My research focuses on formal methods, in paricular logic, automata and game theory. Temporal logics for Hyperproperties. Applications to Blockchain.