Hyperproperties are properties whose reasoning involves sets of traces. Examples of hyperproperties include information-flow security properties, properties of coding/decoding systems, linearizability and other consistency criteria, as well as privacy properties like data minimality. We study the problem of runtime verification of hyperproperties expressed as Hyper-LTL formulas that involve quantifier alternations. We first show that even for a simple class of temporal formulas, virtually no ∀∃ property can be monitored, independently of the observations performed. To manage this problem, we propose to use a combination of static analysis with runtime verification. By using static analysis/verification, one typically obtains a model of the system that allows to limit the source of “hypothetical” traces to a sound over-approximation of the traces of the system. This idea allows to extend the effective monitorability of hyperproperties to a larger class of systems and properties. We exhibit some examples where instances of this idea have been exploited, and discuss preliminary work towards a general method. A second contribution of this paper is the idea of departing from the convention that all traces come from executions of a single system. We show cases where traces are extracted from the observed traces of agents, from projections of a single global trace, or from executions of different (but related) programs.